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Chapter 1

Executive Summary

This deliverable describes the work performed in WP2.1 in year 4. In particular, it mainly addresses
the technical integration of the developed methods that extract sensorimotor experiences for the final
demonstration. In addition, the deliverable also includes scientific results on how to implement the
separately implemented representations of sensorimotor experience.

We will start with scientific contributions from individual partners on deriving various sensorimotor
experiences. Figure 1.1 shows the block diagram of the currently developed system architecture which
is triggered with the visual data captured either by stereo cameras or the Kinect device. Blue, red,
and green colors in the diagram indicate the contribution from the partners KIT, UGOE, and SDU,
respectively. The dashed arrow highlights the data flow between currently integrated modules within
the architecture. Below each module in Figure 1.1 we also indicate the corresponding task numbers as
mentioned in WP2.1.

Figure 1.1: Block diagram of the currently developed modules within the system architecture.

The deliverable is organized as follows. Section 2.1 (see Fig. 1.1) introduces the recently implemented
object segmentation approach based on local convexity criterion. This method employs only the depth
information of the scene and leads to the decomposition of objects into various parts. In section 2.2 we
continue with the verification of the primarily estimated scene segments by applying pushing actions.
Such verified, but still undefined object segments are then employed for the reactive grasping task as
addressed in section 2.3. In section 2.4 we introduce our incremental learning framework that extracts
the semantics of observed actions from different human demonstrations.

The following sections (2.5 and 2.6) describe scientific works of a general nature that will, if at all, only
be integrated in the final demo as components to enable core research. In section 2.5 we describe a new
approach to extract edges from 3D point clouds as a means to faster matching for applications such as
pose estimation, while section 2.6 details a system for object recognition in a robotics setup with multiple
stereo or kinect cameras.

In this deliverable we aim at designing a unified structure within the software framework ArmarX that
feeds the outcome of the part-based segmentation unit (section 2.1) into the segmentation verification
module (section 2.2) in order to increase the efficiency of the segmentation and the subsequent reactive

3



Xperience 270273 PU

grasping. This process is indicated by the dashed line in Fig. 1.1. The data transferred over the dashed
line is the labeled point cloud gathered from the visual sensory input. Data transfer between other
modules is still subject to research.
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Chapter 2

Content of the Deliverable

We here briefly present each module shown in Fig. 1.1.

2.1 Locally convex connected patches (LCCP) segmentation

Perception of objects in the scene as well as decomposition of objects into unique parts are nontrivial
topics in vision-based robotic applications, which usually require high level object knowledge and limits
application to known objects. We here address the problem of object segmentation by employing a
bottom-up concave-convex criterion on point cloud data without employing any model fitting or learning
techniques. Using a novel convexity criteria, our approach separates connected convex surface patches by
concave boundaries, which leads to remarkably accurate scene segmentation. This work was published
in the attached paper [SWS+14].

Figure 2.1 illustrates the main algorithmic steps in our proposed segmentation method. Our method starts
with capturing 3D point cloud data of the scene, for example the wooden cubes shown in Figure 2.1 A.
Psycho-physical studies revealed that a human observer would consider the cubes in the upper row to
form one object, however, the same cubes assembled differently in the bottom row will be perceived as
two objects. To imitate the human perception we represent the scene by a graph, containing nodes and
edges which represent surface patches and their neighborhood relations. We use the supervoxel algorithm
by [9] to generate the surface patches. Supervoxels (see Figure 2.1 B) respect object boundaries. Their
edge relation can thus be classified as being convex or concave using the convexity and sanity criteria
(depicted in Figure 2.1 C-D). The sanity criterion is used to invalidate convex edges where patches are
only connected by a singular point. In Figure 2.1 E black lines denote convex and red lines concave
connections after considering both criteria. Our segmentation method then continues as a region growing

Figure 2.1: Flow diagram of the segmentation algorithm.
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process in which randomly chosen seed patches propagate their label to convex connected patches (see
Figure 2.1 F). New seeds are generated and propagated until all patches have been assigned a label.
We finally apply noise filtering to remove small segments at the edges as highlighted in Figure 2.1 G.
The final segmentation result after noise filtering is shown in Figure 2.1 H. We observe two segments for
the object in the bottom row, whereas only one segment in the upper object. For more details see the
attached paper [SWS+14].

2.2 Object Segmentation and Verification by Physical Interac-
tion

As already described in D2.1.2, we have improved our approach for using physical interaction of a robot
with its environment in order to discover and segment unknown objects in cluttered scenes. This method
(see attached paper [SUA14]) can be applied to all kinds of rigid objects, independent of their shape or
the appearance of their surface (textured, single/multicolored, ...).

As the next step, we plan to combine this approach with the LCCP segmentation presented in section
2.1. To this end, we have already integrated the LCCP algorithm into the ArmarX framework. In the
next year, we intend to leverage it for the creation of object hypotheses that can then be verified by
pushing. Refining the object segmentation based on their motion on a supervoxel level in addition to the
RGBD-point level as it is done in the current implementation might also lead to improved segmentation
quality.

2.3 Visual Collision Detection for Corrective Reactions during
Grasping

We continued our line of research on reactive grasping. While this is traditionally based on the input
from force or tactile sensors, those are sometimes not sensitive enough when dealing with e.g. rather
light objects. If an object that the robot tries to grasp can easily be pushed away, tactile and force-based
sensors are often unable to provide reliable contact detections.

To overcome this deficiency, we developed a vision-based collision detection method. It is designed for
the cases in which an object does not resist to the contact with the robot’s hand and thus doesn’t provide
significant force feedback, but starts moving instead. This motion is detected visually and used as an
indicator for the collision event.

We detect the motion of the object caused by the robot’s hand based on the optical flow observed during
the grasp execution. The optical flow gives, for each pixel of the robot’s camera image, a 2D motion
vector from one image to the following. This work is to some extent inspired by [6], where the contact
between a robot and an object is observed from a static external camera, and in the moment when the
object starts to move, the area of nonzero optical flow caused by arm and hand spreads instantaneously
to a larger image area.

In the context of robotic grasping, the situation is a bit more difficult, as the camera is mounted in the
robot’s head and thus itself moving during the grasping process, and in consequence there is usually a
nonzero optical flow throughout the whole image all the time. What we therefore need to detect within
the optical flow image is whether there is a region next to the hand, in the direction in which it is moving,
where the optical flow is different from the rest of the scene (except maybe hand and arm).

To this end, we cluster the optical flow vectors by their 2D values, i.e. we get clusters of relatively similar
optical flow. We track the robot hand in the camera image using forward kinematics and a particle filter
that also localizes the exact pose of the fingertips which will be relevant later. We define a region next
to the hand in the direction in which it moves, which corresponds in size to the object. If there is a
cluster of optical flow that exists only within that region but not outside of it (with the exception of the
area covered by arm and hand), this means that something there is moving relative to the scene, which
strongly indicates that the hand has caused the object to move. Figure 2.2 shows the camera images of
the robot, the optical flow and the clusters of similar optical flow just before and after a collision.

When a collision has been detected, this means that the current grasp attempt is probably going to fail
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Figure 2.2: Visual collision detection in the moment when the robot’s hand touches the object: The
left column shows the scene from the robot’s cameras immediately before and after the collision. The
central column visualizes the optical flow, the right column the clusters of similar optical flow, where
each cluster has been marked with a distinct color. The darker area is occupied by hand and arm and
therefore ignored. The white box marks the area next to the hand where we expect a possible collision
to occur. If we find a cluster of optical flow that exists mostly within this area but not outside of it, this
observation indicates that the hand collided with an object and caused it to move.

and a corrective reaction is necessary. As premature collisions between hand and object are virtually
always caused by one of the fingertips, we use their positions that are determined by the particle filter
to decide which one is closest to the object. Based on that knowledge, we implemented three different
reaction strategies. In all cases, the hand is moved a little bit back along its trajectory. The first strategy
modifies the hand position by moving it into the direction from the hand center to the finger that caused
the collision, projected into the plane that is perpendicular to the hand’s approach vector. Thus, the
fingertip which collided with the object is moved away from it. The second strategy aims at a similar
effect by rotating the hand around the axis that is perpendicular to the approach vector and the direction
from the palm to the colliding fingertip. The third strategy is a weighted combination of the first two
correction movements. In all cases, the respective modification of the hand pose is performed and also
applied to the intended grasp pose, and another grasping attempt is executed.

If another collision occurs, this can be repeated as often as necessary until the intended grasp pose has
been reached without a collision. We tested the approach on grasping of known objects. Figure 2.3
shows, for the different strategies, how many corrections were needed until grasp success. For the tests,
we used a set of known objects with predefined grasp configurations that all failed at the first approach.
The graph shows how many of the objects were grasped after at most 1, 2, etc. reactive correction
movements, depending on the strategy. As a baseline, we also implemented an uninformed strategy that
just applied a small random rotation to the hand pose. As can be seen, although the random modification
of the grasp pose sometimes leads to a success, it mostly still fails, while the three strategies that take
into account which fingertip caused the collision are usually able to successfully complete the grasp after
few correction movements. The two strategies that involve a rotation of the hand are significantly more
effective than the one which modifies only the hand position.

So far, we have only tested our approach for visual collision detection in the context of corrective move-
ments for reactive grasping of known objects. We intend to test it in combination with tactile and
force-based collision detection for reactive grasping of unknown objects that were just segmented using
the approach presented in the previous section.

For more details see the papers [10] and [SVA14].
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Figure 2.3: Percentage of successful grasps after a certain number of correction movements, depending
on the applied strategy. E.g., for the orientation correction strategy, in 56% of the cases one corrective
motion was enough, another 36% of the grasps were successful after two corrections, and the remaining
8% of the attempts required three corrective movements.

2.4 Incremental learning of manipulation semantics from human
observation

Defining a generic action representation to learn the variations in trajectory, pose, and object phases is of
great interest in cognitive robotics. We have recently introduced the concept of Semantic Event Chains
(SECs) [1] as a novel method to encode the semantics (meaning) of manipulation actions (e.g. Cutting)
independent from all variations in trajectory, pose, and object domains. SECs are derived on-the-fly from
the graph representations of the consistently tracked object segments in the scene.

In this work, we use the concept of SECs as the main processing tool in order to learn the semantics
of human demonstrated manipulation actions and to generate a vocabulary of such observed manipu-
lations like Cutting or Stirring. We here aim at designing a cognitive agent that can infer and learn
frequently observed spatiotemporal changes embedded in SECs in an unsupervised manner whenever a
new manipulation instance is observed. This work was published in the attached paper [ATW14].

Figure 2.4 illustrates the on-line unsupervised learning framework which is triggered whenever a new
manipulation sample is observed. At start, an individual manipulation is shown and the first extracted
SEC sample is assumed to be the first “model” and stored in a “library”. We then encode the manipulation
that follows again by a SEC. Next, we compare it with all existing SEC models in the library. For this
purpose, the framework measures semantic similarities (δ) between the new SEC sample and the existing
models by employing the method described in [1], which compares rows and columns of two SECs using
sub-string search and counting algorithms. Computed semantic similarity values between all existing
models and the new sample are stored in a matrix, called the similarity matrix (ζsim), which is then
converted into a histogram (H) representing the distribution of similarities. We apply the conventional

Figure 2.4: Overview of the proposed on-line learning framework.
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Otsu’s method [8] to the normalized histogram to distinguish low from high similarities. We take the
average of the high similarities to estimate a threshold τ to classify the currently observed SEC sample
against the existing models.

If similarity (δ) is higher than τ , then the new sample will be assigned to the best fitting (highest similar)
model and this model will be updated with additional rows or columns that might exist in the new SEC
sample. In this way, the model SECs will only consist of those rows and columns observed frequently in
all type-similar manipulations. If similarity (δ) is lower than τ , the novel SEC sample will be used as a
new model. In addition, we merge learned SEC models, which have higher semantic similarities (ϕ) than
τ , as they are likely representing the same manipulation.

We benchmarked the proposed framework with a large action dataset with eight manipulations: cut-
ting, chopping, stirring, pushing, hiding, putting, taking, and uncovering. Each manipulation consists of
15 versions demonstrated by 5 different individuals and have vast variations in terms of manipulated
objects, their poses, and followed trajectories. We let the learning framework run only once through
120 manipulations by choosing a random sample at each time. To investigate the robustness of the
framework, we repeated the same learning experiment 100 times independently from each other and
computed differences between the incrementally learned SEC models. Among eight manipulation types
in the dataset, the proposed learning algorithm extracted seven SEC models in all 100 trials by naturally
merging the cutting and chopping manipulations due to high semantic similarity between each task. The
threshold value τ always converged to 72% in all these 100 independent trials. These results highlight
the robustness of our proposed learning framework. For more details see the attached paper [ATW14].

2.5 Geometric Edge Description and Classification in Point
Cloud Data

With the recent advent of new sensor technology point clouds have become a very important representa-
tion in computer vision and especially robotics. In [JBK15] our motivation was to speed up and improve
high level 3D point cloud analysis by using edges. The hypothesis was that using 3D edges to represent
objects should produce a sparser and yet fairly descriptive representation, compared to using the entire
surface. This general idea has shown several promising results particularly for 2D images, but also for
3D point clouds. Some applications where edges can improve algorithm speed are pose estimation and
point cloud registration [2, 3]. Besides reducing run times, geometric edges can be used to improve point
cloud enrichment by preserving edges.

Figure 2.5: Left: A scene captured with a laser scanner [7]. Right: Edge detector response using our
method (red means high confidence).

In order to investigate the benefits of edges, our first step was to develop a point cloud based edge detector.
Unfortunately only a few edge detectors can be applied directly to 3D point cloud data. Therefore a new
approach was developed, based on a new descriptor, machine learning and non-maximum suppression to
determine sparse edges. The reason for using supervised machine learning to generate the edge models,
is that it is difficult to manually define a robust edge in 3D point cloud data. Therefore we labeled a
dataset with edges, and used this to generate an edge model based on random forests. Descriptors were
used to generate input data for the random forest, since these produce a more structured representation
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compared to the raw point cloud data. In order to improve the performance of the classification scheme,
a new descriptor focusing on edge description was developed. This descriptor has the added benefit
of estimating the direction of the edges, which proved beneficial during the developed edge thinning
scheme. After all edges in a point cloud are classified, edge response smoothing and non-maximum edge
suppression is used in order to generate thinner and thereby sparser edge representations. Figure 2.5
shows the edge response of a point cloud using our method.

This edge detection approach was applied to a pose estimation problem, in order to show the benefit of
using edge based descriptions compared to full surface descriptions. This showed that edges can speed
up pose estimation by up to a factor of four. The result of our pose estimation is seen in Figure 2.6,
where it is compared with several other methods (PPF [4], tensor matching [7] and spin images [5]). The
proposed approach (ECSAD), in a surface and edge version, shows the benefits of using edges to reduce
run times of algorithms. Both methods perform well in terms of occlusion vs. recognition rates, but the
edge based method is substantially faster.
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Figure 2.6: Comparison of our surface- and edge-based recognition systems with other works. Left: Pose
estimation performances in terms of occlusion-recognition rates along with average running times per
object. Right: Sample object alignment results. The magenta objects are the determined poses while
the green points represent the scene. In this scene all objects have been correctly recognized.

2.6 Multi-View Object Instance Recognition

In [MPBK15] we introduce a fast object recognition system, coding shape by viewpoint invariant geomet-
ric relations and also coding appearance information. The system (see Figure 2.7) can observe the work
space by three pairs of Kinect and stereo cameras allowing for reliable and complete object information.
From these sensors, we derive global viewpoint invariant shape features and robust color features making
use of color normalization techniques. The recognition system is trained using Random Forests.

Figure 2.7: Object instance recognition.

We show that our system can achieve high performance already with a very low number of training
samples, which is crucial for user acceptance and that the use of multiple views is crucial for performance.
The system was evaluated on a dataset of 100 objects recorded under three lighting conditions. This
indicates that our approach can be used in controlled but realistic contexts that require—besides high
reliability—fast processing and an intuitive and easy end user experience.
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Chapter 3

Conclusion

The described modules in this deliverable build the basis for the acquisition of sensorimotor experience
needed to demonstrate structural bootstrapping in the context of the final demonstration. In particular,
the deliverable describes advanced methods for visual object segmentation, feature extraction from 3D
point clouds, pose estimation, visual collision detection as well as incremental learning of manipulation
semantics from human observation.
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Abstract

Understanding and learning the semantics of complex manipulation actions

are intriguing and non-trivial issues for the development of autonomous robots.

In this paper, we present a novel method for an on-line, incremental learning

of the semantics of manipulation actions by observation. Recently, we had in-

troduced the Semantic Event Chains (SECs) as a new generic representation

for manipulations, which can be directly computed from a stream of images

and is based on the changes in the relationships between objects involved in

a manipulation. We here show that the SEC concept can be used to boot-

strap the learning of the semantics of manipulation actions without using any

prior knowledge about actions or objects. We create a new manipulation action

benchmark with 8 different manipulation tasks including in total 120 samples to

learn an archetypal SEC model for each manipulation action. We then evaluate

the learned SEC models with 20 long and complex chained manipulation se-

quences including in total 103 manipulation samples. Thereby we put the event

chains to a decisive test asking how powerful is action classification when using

this framework. We find that we reach up to 100% and 87% average precision

and recall values in the validation phase and 99% and 92% in the testing phase.

This supports the notion that SECs are a useful tool for classifying manipulation

actions in a fully automatic way.

∗Corresponding author
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1. Introduction1

One of the main problems in cognitive robotics is how to recognize and2

learn human demonstrations of new concepts, for example learning a relatively3

complex manipulation sequence like cutting a cucumber. Association-based or4

reinforcement learning methods are usually too slow to achieve this in an effi-5

cient way. They are therefore most often used in combination with supervised6

learning. Especially the Learning from Demonstration (LfD) paradigm seems7

promising for cognitive learning ([1, 2, 3, 4, 5]) because humans employ it very8

successfully. The problem that remains in all these approaches is how to rep-9

resent complex actions or chains of actions in a generic and generalizable way10

allowing inferring the essential “meaning” (semantics) of an action irrespective11

of its individual instantiation.12

In our earlier studies we introduced the “Semantic Event Chain” (SEC) as13

a possible descriptor for manipulation actions [6, 7]. The SEC framework ana-14

lyzes the sequence of changes of the spatial relations between the objects that15

are being manipulated by a human or a robot. Consequently, SECs are invariant16

to the particular objects used, the precise object poses observed, the actual tra-17

jectories followed, or the resulting interaction forces between objects. All these18

aspects are allowed to change and still the same SEC is observed and captures19

the “essence of the action” as demonstrated in several action classification tests20

performed by us [6, 7, 8, 9].21

In this paper, we address the problem of on-line, incremental learning of the22

semantics of manipulation actions observed from human demonstrations. We23

use the concept of SECs as the main processing tool to encode manipulations24

in a generic and compact way. Manipulations are continuous in the temporal25

domain but with event chains we discretize them by sampling only decisive key26

time points. Those time points represent topological changes between objects27

and the hand in the scene which are highly descriptive for a given manipula-28

tion. Our main intent here is to design a cognitive agent that can infer and29

learn frequently observed spatiotemporal changes embedded in SECs in an un-30

2



supervised manner whenever a new manipulation instance occurs. The learning31

phase is bootstrapped only with the semantic similarities between SECs, i.e. the32

encoded spatiotemporal patterns, without using any prior knowledge about ac-33

tions or objects. Since we use computer vision methods to derive event chains,34

our approach for incremental learning of semantics is highly grounded in the35

signal domain. To the best of our knowledge, this is the first attempt to apply36

reasoning at the semantic level, while being fully grounded at the signal level,37

to learn manipulations with an unsupervised method. Note, here – on purpose38

– we do not include any object- or other information to show the power of39

our methods to fully automatically and in an unsupervised way extract action40

and object information. Clearly, in praxis, it will often make sense to include41

whatever additional knowledge is available to further ease action understanding.42

The paper is organized as follows. We start with introducing the state43

of the art. We next provide a detailed description of each processing step;44

extraction of SEC representations and learning model-SECs for each observed45

manipulation. In the next section, we discuss experimental results from the46

proposed framework, which also includes validation and testing of the learned47

models. We finally conclude with a discussion.48

2. State of the Art49

Learning from Demonstration (LfD) has been successfully applied both at50

the control [1, 2, 10] as well as the symbolic level [3, 4, 5]. Although vari-51

ous types of actions can be encoded at the control level, e.g. trajectory-level,52

this is not general enough to imitate complicated actions under different cir-53

cumstances. On the other hand, at the symbolic level, sequences of predefined54

abstract action units are used to learn complex actions, but this might lead to55

problems for execution as many parameters are left out in a symbolic represen-56

tation. Although our approach with SECs is a symbolic-level representation,57

SECs can be enriched with additional decisive descriptors (e.g. trajectory, pose,58

etc.) and do not use any assumption or prior knowledge in the object or action59
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domain. Ideas to utilize relations to reach semantics of actions can be found60

as early as in 1975. For instance, [11] introduced the first approach about di-61

rected scene graphs in which each node identifies one object. Edges hold spatial62

information (e.g. LEFT-OF, IN-FRONT-OF, etc.) between objects. Based on63

object movement (trajectory) information, events are defined to represent ac-64

tions. The main drawback of this approach is that the continuous perception65

of actions is ignored and is substituted instead by idealized hand-made image66

sequences. This approach, however, had not been pursued in the field any longer67

as only now powerful enough image processing methods became available from68

which object and action information can be extracted.69

Still there are only a few approaches attempting to reach the semantics of70

manipulation actions in conjunction with the manipulated objects [12, 13, 14,71

15, 16, 17, 18]. The work in [12] is one of the first approaches in robotics that72

uses the configuration transition between objects to generate a high-level de-73

scription of an assembly task from observation. Configuration transitions occur74

when a face-contact relation between manipulated and stationary environmental75

objects changes. The work presented in [13] represents an entire manipulation76

sequence by an activity graph which holds spatiotemporal object interactions.77

The difficulty is, however, that very complex and large activity graphs need78

to be decomposed for further processing. In the work of [14], segmented hand79

poses and velocities are used to classify manipulations. A histogram of gra-80

dients approach with a support vector machine classifier is separately used to81

categorize manipulated objects. Factorial conditional random fields are then82

used to compute the correlation between objects and manipulations. Visual83

semantic graphs (inspired from our scene graphs) were introduced in [15] to84

recognize action consequences based on changes in the topological structure of85

the manipulated object. These visual semantic graphs were further employed86

together with a context-free manipulation action grammar in [19] to design a87

cognitive architecture for human manipulation action understanding. In [16]88

activity trees were presented to recognize actions using a minimal action gram-89

mar. The work in [17] suggested a method for hierarchical estimation of contact90
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relationships (e.g. on and into) between multiple objects. Such contact rela-91

tions were then employed to execute different daily tasks with robots. Abstract92

hand movements, such as moving, not moving or tool used, were extracted to-93

gether with the object information in [18] to further reason about more specific94

action primitives (e.g. Reaching, Holding). Recent works such as [20] modeled95

human activities by employing the human skeleton information as well as roles96

of manipulated objects. In the modeling process they used the human skele-97

ton information, object segments and their tracks. Likewise, the work in [21]98

introduced a Bayesian model by using hand trajectories and hand-object inter-99

actions while monitoring observed manipulations. In [22] hierarchical models of100

manipulations were learned with weak supervision from an egocentric perspec-101

tive without using depth information. Although all those works to a certain102

extent improve the classification of manipulations and/or objects, none of them103

extracts key events of individual manipulations and learns a descriptive seman-104

tic model in a fully unsupervised manner to represent different manipulation105

tasks independent from the manipulated objects and their tracks.106

In this sense, to our best knowledge, our work is the first study to evaluate107

and learn the semantics of manipulations in an incremental and model free man-108

ner. The concept of semantic event chains has been successfully utilized and109

extended by others [23, 24, 25, 26, 27, 28] not only to represent manipulation110

actions but also to replicate them by robots. The work in [23] presented active111

learning of goal directed manipulation sequences, each was recognized using se-112

mantic similarities between event chains. Our scene graphs were represented113

with kernels in [24] to further apply different machine learning approaches. Ad-114

ditional trajectory information was used in [25] to reduce noisy events occur115

in SECs. Others [26, 27, 28] showed execution of various manipulations with116

different robots by using the key spatiotemporal points provided by SECs.117
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3. Method118

In this method section we will present the core algorithmic components where119

are complex details will only be given in the Appendix. This should make120

reading easier, while still everything is present to implement this algorithm if121

desired.122

3.1. Data Acquisition123

In this work, we investigate eight different manipulation actions: Pushing,124

Hiding, Putting, Stirring, Cutting, Chopping, Taking, and Uncovering. Fig. 1 (a)125

Figure 1: Eight different real action scenarios: Pushing, Hiding, Putting, Stirring, Cutting,

Chopping, Taking, and Uncovering. (a) A sample original frame for each manipulation. (b)

A sample frame from each demonstration of the Cutting action performed by 5 different

individuals. (c) 30 different objects manipulated in all 120 manipulation demonstrations.
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shows a sample frame for each manipulation action. All movies used in this126

study can also be found at www.dpi.physik.uni-goettingen.de/~eaksoye/127

MANIAC_DATASET. The Pushing action shows how a hand can move objects128

around randomly. In the action of Hiding, some objects are made invisible by129

covering them with other objects. In the Putting action objects are taken from130

the supporting background and put on top of each other. The Stirring action131

represents a scenario in which a spoon is used to stir some liquid in a bucket. In132

the Cutting action, a hand is cutting vegetables by moving a cutting tool back133

and forth. In the Chopping action, a cutting tool follows a straight trajectory134

to divide vegetables into parts. The Taking action represents a scenario where135

some objects are taken down and put on the supporting background. In the136

Uncovering action some objects are becoming visible after moving occluding137

objects away.138

We recorded 15 different versions for each of these manipulations by asking139

5 different individuals to demonstrate each manipulation 3 times with different140

objects in various scene contexts. Fig. 1 (b) depicts a sample frame from each141

individual demonstration of the Cutting action to give an impression of the dif-142

ferences in demonstrations. There are in total 30 different objects manipulated143

in all 120 demonstrations. All manipulated objects are shown in Fig. 1 (c).144

All manipulations were recorded with the Microsoft Kinect sensor which145

provides both color and depth image sequences. Colored objects are preferred146

to cope with the intrinsic limitations of the Kinect device. The central goal in147

these demonstrations is to learn a common archetypical SEC model for each148

manipulation including all possible variations in trajectory, pose, velocity, and149

object domains.150

3.2. Segmentation and Tracking151

The recorded image sequences are first pre-processed by a real-time image152

segmentation procedure to uniquely identify and track objects (including hands)153

in the scene. The segmentation algorithm is based on the color and depth in-154

formation fed from the Kinect device and uses phase-based optical flow [29] to155

7

www.dpi.physik.uni-goettingen.de/~eaksoye/MANIAC_DATASET
www.dpi.physik.uni-goettingen.de/~eaksoye/MANIAC_DATASET
www.dpi.physik.uni-goettingen.de/~eaksoye/MANIAC_DATASET


track segments between consecutive frames. Data transmission between these156

different pre-processing sub-units is achieved with the modular system architec-157

ture described in [30]. Segmentation and tracking approaches are described in158

detail elsewhere [31, 32], therefore, details are omitted here.159

3.3. Extracting Semantic Event Chains (SECs)160

Each consistently segmented image is represented by a graph: nodes repre-161

sent segment centers and edges indicate whether two objects touch each other162

or not. By using the depth information we exclude the graph node for the back-163

ground segment, i.e. supporting surface, since it does not play any crucial role164

in the dynamics of the manipulation. By using an exact graph matching tech-165

nique, the framework discretizes the entire graph sequence into decisive main166

graphs. A new main graph is identified whenever a new node or edge is formed167

or an existing edge or node is deleted. Thus, each main graph represents a “key168

frame” in the manipulation sequence. All extracted main graphs form the core169

skeleton of the SEC, which is a matrix where rows are spatial relations (e. g.170

Figure 2: SEC representation for a sample Cutting action where a hand is cutting a cucumber

with a knife. Each column corresponds to one key frame some of which are shown on the

top with original images, respective segments (colored regions), and main graphs. Rows are

spatial relations between object pairs, e. g. between the hand (9) and knife (6) in the first row.

Possible spatial relations are N , T , and A standing for Not touching, Touching, and Absence.
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touching) between object pairs and columns describe the scene configuration at171

the time point when a new main graph has occurred.172

Fig. 2 depicts the SEC representation with some sample key frames including173

original images, respective segments (colored regions), and corresponding main174

graphs for one of the Cutting action demonstrations. For instance, the first row175

represents the spatial relations between graph nodes 9 and 6 which are hand176

and knife, respectively. Note that, although the whole demonstration sample177

has approximately 1000 frames, it is now represented by a 3× 9 matrix.178

Possible spatial relations are Not touching (N), Touching (T), and Absence179

(A), where N means that there is no edge between two segments, i.e. graph180

nodes corresponding to two spatially separated objects, T represents objects181

that touch each other, and the absence of an object yields A. In the event182

chain representation, all pairs of objects need to be considered once, however,183

static rows which do not contain any change from N to T or vise versa are184

deleted as being irrelevant. For instance, the relation between the left and right185

hand is always N and never switches to T to trigger an event, therefore, the186

respective row is ignored in the event chain. In Appendix A we introduce a de-187

noising process to cope with spurious spatial (rows) and/or temporal (columns)188

information propagated from noisy segmentation and tracking.189

We note that there is no object recognition module included to identify190

graph nodes, i.e. segments, in the SEC framework. Event chains purely rely on191

spatial relational changes between segments in the temporal domain. The SEC192

extraction explained briefly in this section has been described in detail in [7].193

3.4. Learning of Model SECs194

The learning approach described next is an on-line unsupervised method to195

cluster observed SEC samples and to derive an archetypal SEC model for each196

cluster based on the semantic similarities between event chains. Each learned197

SEC model can then be used to describe a manipulation action.198

Fig. 3 shows an overview of the proposed framework. The learning phase199

is triggered when a new manipulation experiment is observed; for example, a200
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Figure 3: Overview of the proposed on-line learning framework.

Cutting manipulation sample is introduced as the first experiment in Fig. 3.201

The new observed sample is represented by an event chain to be compared with202

the already learned SEC models. If there is no model existing, as in the case203

for this very first manipulation observation, the currently observed SEC sample204

N is directly assumed as a new model M1. Once a new manipulation example205
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is acquired, e.g. a Chopping sample as the second experiment in Fig. 3, the206

framework measures semantic similarities between the new SEC sample N and207

the known model M1 in the spatiotemporal domain. We provide a detailed208

explanation of the similarity measure in Appendix B.209

Semantic similarity values between the known models and the new sample210

are stored in a matrix, called the similarity matrix (ζsemantic), which is then211

converted into a histogram (H) representing the distribution of similarities.212

We apply the conventional Otsu’s method introduced in [33] to the normalized213

version of the histogram to further compute a threshold τ . See section 3.4.1214

for the details of the derivation of H and τ from ζsemantic. The gray box in215

Fig. 3 depicts extracted ζsemantic and H in which the red dashed line indicates216

τ computed between the first two experiments.217

Threshold τ is used for two purposes: First, we merge already learned SEC218

models which have higher semantic similarities than τ . Second, we compare the219

currently observed SEC sample with the so far existing models. If the com-220

parison yields a higher similarity than τ , then the best fitting (highest similar)221

model will be refined with the new SEC sample. Otherwise, a new model will222

be created based on the SEC sample.223

The comparison of the first two experiments N and M1 shown in the gray224

box in Fig. 3 yields 80% semantic similarity which is less than τ estimated as225

90% (See Appendix B). Therefore, the Chopping sample N is considered as a226

new SEC model M2. We repeat the same procedure, i.e. computing ζsemantic,227

H, and τ , once the next sample N , which is a Stirring experiment in this case,228

is observed. As depicted in the purple box τ drops below 80% which allows us229

to update M1 with M2 yielding M̃1. As the Stirring demonstration still has less230

similarities with any of the known models, a new model M3 is initialized with231

N .232

The threshold value is required to better assess the obtained semantic sim-233

ilarities between models and the observed sample. Therefore, whenever a new234

observation is available, the entire process of estimating a new τ by determin-235

ing ζsemantic and H is repeated to decide on the fly whether the current SEC236
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sample belongs to one of the already learned manipulation models or whether it237

represents a new manipulation. This is summarized with the fourth experiment238

introduced as an Unknown demonstration in Fig. 3, the fate of which depends239

on three possible cases. Case 1 and 2 are respectively standing for the processes240

of refining the models M̃1 and M3 with N , whereas Case 3 is representing the241

initialization of a new model M4.242

In the following, we will describe how to compute the threshold and update243

a learned model with a new SEC sample.244

3.4.1. Computing the Threshold245

Let M be a set of learned SEC models at any observation time as246

M = {m1,m2, · · · ,mn} , (1)

where n is the total number of existing models. Semantic similarity values247

between all learned models are stored in a matrix as248

ζsemantic =


ϕ1,1 ϕ1,2 · · · ϕ1,n

ϕ2,1 ϕ2,2 · · · ϕ2,n

...
...

. . .
...

ϕn,1 ϕn,2 · · · ϕn,n

 , 0 ≤ ϕi,j ≤ 100 and ϕi,j = ϕj,i ,

where ϕi,j holds the semantic similarity between models mi and mj and is249

computed as described in Appendix B.250

Semantic similarity matrix ζsemantic is then converted into a histogram H251

representing the distribution of similarities as252

H = {hk : k ∈ [1, · · · , λ]} , (2)

hk =
1

η

n∑
i=1

n∑
j=i

δi,j , (3)
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δi,j =

 1 if
ϕi,j

φ is at bin k

0 else
, (4)

where λ is the total number of bins each has a size of φ which is chosen as253

10 in our experiments and η is the normalization factor. Note that, since the254

similarity matrix ζsemantic is symmetric, only half of the matrix is processed,255

thus, the value of j changes from i to n in Eq. (3) and η is defined as n(n+1)/2.256

The normalized histogram H is now used to calculate the required threshold257

using the conventional Otsu’s method introduced in [33]. For this purpose, we258

compute zero- and first-order cumulative moments of the normalized histogram259

at each bin as260

ω(k) =

k∑
i=1

hi , (5)

261

µ(k) =

k∑
i=1

ihi . (6)

The total mean value of the histogram is calculated as262

µT =

λ∑
i=1

ihi . (7)

The variance of the histogram separability is then given by263

σ2
B(k) =

[µTω(k)− µ(k)]2

ω(k)[1− ω(k)]
. (8)

Otsu’s method yields a threshold value k∗ for that bin at which the variance264

σ2
B is maximal; that is,265

k∗ = arg max
1≤k<λ

(σ2
B(k)) . (9)

The threshold k∗ separates the histogram into two distinct regions. The266

left side of k∗ indicates low semantic similarity between models in M, and vice267

versa. As we are seeking for a threshold τ to group similar manipulations, we268

take the average of the similarities falling into the right side of k∗ as269

13



τ =
1

ηr

λ∑
i=k∗

hi , (10)

where ηr is the normalization term which is the total number of similarity270

values on the right side of k∗.271

3.4.2. Updating Model SECs272

Once the highest semantic similarity between a novel SEC sample and any273

of the known models is higher than the threshold τ , the one model with highest274

similarity to the new SEC is now updated with this new SEC sample. To update275

a model, the learning procedure just needs to search for all common rows and276

columns observed in the new SEC sample.277

Each model is initially created by assigning weight value of 1 for each row.278

Once a new SEC sample is observed, weights of each row in the model that279

match to a row in the new SEC are incremented. This way existing common280

rows between the matched model and the novel sample are receiving increasing281

weights. In the case of having additional rows in the new SEC sample, the282

model is extended by these rows, each of which is initiated again by giving them a283

weight of one. As the next step, we search for the common temporal information284

embedded in the columns of the event chains by employing a procedure very285

similar to that applied for extracting common rows. Finally, the model SEC286

consists of only those rows and columns observed frequently in the observed287

new SEC samples. A detailed explanation of the model updating procedure is288

given in Appendix C.289

4. Results290

In this section, we will first show experimental results from our proposed291

incremental learning framework. We will then continue with enrichment of292

each learned SEC model with object information. Next, validation and testing293

processes of the learned models will be given.294
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4.1. Learning295

We apply the incremental learning and clustering framework described above296

to 8 different manipulation actions each of which has 15 versions, yielding in297

total 120 samples, as introduced in section 3.1. Manipulation tasks have vast298

variations in terms of manipulated objects, their poses, and followed trajectories299

as depicted in Fig. 1. The framework is first tracking each segment in the scene300

and extracting the corresponding SEC representation from a randomly observed301

manipulation sample. While observing more samples, different SEC models are302

learned or updated based on the threshold value.303

When we let the framework run only once through 120 manipulation tasks304

by randomly choosing a sample at each time, it learns 22 model event chains.305

Fig. 4 (a) shows the final computed semantic similarity matrix ζsemantic be-306

tween each of the learned models. Low similarities between models indicate307

how distinct those models are. The corresponding histogram representation H308

with derived thresholds k∗ and τ is depicted in Fig. 4 (b). The threshold k∗ sep-309

arates the histogram into two distinct regions as depicted with the gray shade310

and τ is then calculated as 72 from Eq. (10). In Fig. 4 (c), we can see the311

complete behavior of τ during the learning cycle with 120 observation samples.312

Figure 4: Thresholding. (a) Semantic similarity matrix ζsemantic computed between 22

learned SEC models. The scale bar on the right indicates the similarity values in percent.

(b) Respective histogram representation H with extracted k∗ and τ values. The threshold

k∗ separates the histogram into two distinct regions as depicted with the gray shade. (c)

Development of τ during the observation of 120 samples. τ is initiated with 100 and after

updating with Eq. (10) it starts to converge to 72.
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Figure 5: Number of learned models and clustering accuracy of observed samples. (a) Learned

22 SEC models with corresponding number of trained samples. The green dashed line indicates

the actual sample numbers as the ground truth. (b) Number of true and false positive samples

clustered in learned models with respect to the ground truth.

It is initiated with 100 and after updating with Eq. (10) at each observation it313

starts to converge to approximately 72.314

Fig. 5 (a) depicts all learned models with corresponding number of observa-315

tion samples employed for updating each. The green dashed line indicates the316

actual sample numbers as the ground truth. Although the framework learns in317

total 22 models, only 7 of them, those in the red box, contain more than 10318

samples and the rest hold at most 2 samples. Recalling the fact that the train-319

ing set has 8 manipulations, we can state as one central result that 7 of them320

are indeed found with high numbers of examples each. Cutting and Chopping321

models are merged, though, but we will explain below that this actually “makes322

more sense” than the naively (by us) assumed ground truth. Furthermore, we323

observe that only few demonstrated samples have either enormous variations or324

noise, i.e. less semantic similarities than τ with any other models, which leads325

to the generation of the additional models outside the red box. As mentioned,326

our framework produces a single model representing the Cutting and Chopping327

manipulations together due to having high semantic similarities. It is because328

both manipulations have the same fundamental action primitives, i.e. similar329
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columns in the event chains, and the only differences are mostly in the followed330

trajectories and velocity of the movements which are not captured by SECs. See331

Fig. B.14 in Appendix B as an example of high semantic similarities between332

the Cutting and Chopping tasks. Thus, Fig. 5 (a) shows that without using any333

human intervention the proposed learning framework can automatically retrieve334

the demonstrated 8 manipulation types two of which are naturally merged.335

As addressed in section 3.4, all manipulation samples used for updating the336

same SEC model will have the same cluster label. In Fig. 5 (b), we show the337

number of true and false positive samples falling into the same model with re-338

spect to the ground truth. Except for the Cutting and Chopping manipulations,339

none of the given manipulation samples is wrongly clustered. This means, for340

instance, a given Stirring demonstration is used only for updating the Stirring341

model, but not for the Pushing model, etc. However, since we have now only342

one SEC model for the Cutting and Chopping manipulations, samples from both343

manipulations will be used for the same model. As the ground truth expects344

two different models, high false positives are observed for both.345

Fig. 6 shows how the clustering results for all 120 manipulation samples are346

varying from observation to observation. Colors encode the cluster labels and347

the ground truth for each cluster is given on the left. Note that time is pro-348

gressing from left to right, thus the first observed sample is the one depicted349

in cyan in the Chopping manipulation. As a consequence of merging models350

with high semantic similarity, some clusters will merge once new observations351

become available. Black ellipses depict when a sample switches from one cluster352

to another. For instance, cyan clusters observed for the Chopping samples in the353

beginning are turned into red clusters originally created for the Cutting task.354

At the sample number 120 in the very right hand side we therefore observe 7355

different colored clusters each from one learned model. This figure illustrates356

that for some manipulations types the model is immediately converging to the357

optimal solution, whereas for other models certain number of samples are re-358

quired. Noisy clusters, which belong to the noisy models shown outside the red359

box in Fig. 5 (a), are indicated by black dots.360
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Figure 6: Clustering result of 120 manipulation samples. Colors encode the cluster labels and

the ground truth for each cluster is given on the left. Noisy clusters are indicated in black.

Black ellipses depict when a sample switches from one cluster to another.

To investigate the robustness of the framework, we repeat the same learn-361

ing experiment explained above 100 times independently from each other and362

compute differences between the learned models. In each trial, the framework363

produces at least 21 and at most 23 various models. However, when we com-364

pare all these models extracted in 100 trials, we see indeed 29 different ones, the365

distribution of which is shown in Fig. 7 (a). Among those 29 models, it is again366

the same 7 models introduced in Fig. 5 (a) which have high number of samples.367

Furthermore, as indicated in Fig. 7 (b) we still do not obtain any false positives368

among the clustered samples except for the Cutting and Chopping manipula-369

tions due to the same reason as clarified above. Note that the red bars depict370

the standard error of the mean for those which are not zero. Fig. 7 consequently371

proves that the learning approach is always converging to the same 7 models no372

matter in which order the manipulation samples are provided.373
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Figure 7: Total number of learned models and clustering accuracy after 100 independent trials.

(a) Learned 29 SEC models with corresponding number of trained samples. (b) Number of

true and false positive samples clustered in learned models with respect to the ground truth.

Red bars depict standard error of the mean for those which are not zero.

We can now take a close look at some of those 7 SEC models explored374

from demonstrated manipulation actions. Fig. 8 shows models for the Cutting375

& Chopping, Stirring, and Uncovering manipulations with all derived states376

introduced in Eq. (C.2) and the transition probabilities between each. States377

and arrows given in red color correspond to the most commonly observed event378

chain columns and their transitions with the highest probabilities as described379

in Eqs. (C.3) and (C.4), respectively. On the left side of each model, we also380

show weight values (W from Eq. (C.1)) for each row in the states. It can be381

seen that in all 3 models some rows are quite commonly obtained in the trained382

samples since their weights are close to 1, whereas this is not the same for383

the state transitions. For instance, in the Cutting & Chopping model, there384

exist three more states given in gray color which are particularly observed in385

the second half of the action and cause drop of some state transitions to 0.28.386

This is because even though each subject grasps a tool and cuts or chops an387

object in the same temporal order, they leave the scene in different orders; for388

example, one subject first removes the hand supporting the object to be cut389

and then withdraws the hand holding the cutting tool whereas another subject390

either does it the other way around or removes both hands at the same time.391
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Another reason of having extra states, thus smaller transition probabilities,392

is the noise propagated from the segmentation and tracking components as393

observed in the Stirring model. Nevertheless, we can now extract all these394

variations that occurred due to the nature of manipulation or noise and pick395

the most often observed states, i.e. states in red, as a representative model for396

each manipulation action. Note that the learning process never ends and is open397

to refine models incrementally whenever new samples are provided, just like the398

assimilation process that happens in humans [34].399

Figure 8: Complete learned SEC models for the Cutting & Chopping, Stirring, and Uncovering

manipulations. Each state corresponds to one SEC column and arrows represent the transition

probabilities from one state to the next. Those in red color correspond to the most commonly

observed states, their transitions having the highest probabilities. Weight values W on the

left indicate how often each row in the states is obtained in the trained samples.
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4.2. Enriching Learned Model SECs400

In this section, we will show how learned SEC models can be enriched with401

additional object information.402

During the updating process of model SECs, we determine correspondences403

between rows of event chains as explained in section 3.4.2. Since each row in404

an event chain holds relational changes between segments in the scene, the row405

correspondences can also be used to calculate matchings between segments in406

two event chains. We refer the interested reader to [7] for details of the segment407

matching method. We now use this technique to extract segments, i.e. objects,408

that play the same role in different versions of the same manipulations observed409

during the learning phase.410

Fig. 9 (a) shows the learned Cutting & Chopping model, columns of which411

are the states indicated in red in Fig. 8. The framework now estimates which412

segment is used as a main tool and which one as an object to be cut or chopped413

in each observation. As explained in Appendix A, we refer to the hand as414

the manipulator and to the object interacting with the hand as the primary415

object, e.g. a knife or a cleaver. Other objects which are combined with the416

primary object are called secondary objects like the cucumber to be cut. Note417

that the second hand is almost always used to help the manipulator, hence it is418

called the supporter. Fig. 9 (a) illustrates all matched primary and secondary419

objects used for training of the Cutting & Chopping model. Fig. 9 (b) shows420

Figure 9: Learned Cutting & Chopping and Stirring models enriched with object information.

Each column in the SEC model corresponds to one state indicated in red in Fig. 8. Primary

and secondary objects are extracted from observed manipulations during the learning process.
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the primary and secondary objects for the Stirring model. In this case, not421

only a spoon but a knife and a spatula are also selected by subjects as the422

primary object used for stirring. The secondary object is the stirred liquid and423

the buckets are the supporters. As learned model SECs are refined with every424

new observation, all these variations of the different objects will be attached to425

the model, simultaneously. Note that segments representing the manipulator426

and supporter are also matched, however, are not shown due to lack of space.427

It is important to underline that the proposed framework is not utilizing any428

object recognition method, hence, we are here strictly at the level of segments.429

For the sake of simplicity, object images are shown instead of segments in Fig. 9.430

It is evident that this unsupervised segment categorization process could be431

coupled to object models, thus, providing access to object categorization, too.432

4.3. Validation and Testing433

A validation process of the learned 7 SEC models is performed with the434

classification of all 120 training samples according to their semantic similarities435

with the learned models. This step is required to show the clustering accuracy of436

the training data but nothing unexpected will be observed here. We note that437

the main and critical evaluation is then shown by the next following testing438

experiment with a set of novel and complex manipulation sequences.439

We label each SEC model as a different class and introduce a static threshold440

chosen as 72 which is the converging value (τ) obtained during the learning441

phase as depicted in Fig. 4 (c). Once the highest semantic similarity between442

a training sample and any of the known models is higher than this threshold,443

the sample is assigned to that class. The classification method has also a class444

type called Unknown to detect samples that have low similarities with all known445

models.446

Fig. 10 (a) shows the confusion matrix depicting the classification accuracies447

of the complete training data set with respect to the learned models. The448

first impression that the figure conveys is that there is no misclassification of449

any training data; for instance, 87% of the Hiding training manipulations are450
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correctly classified in the model Hiding and the rest is assigned as Unknown.451

As there is only one representative SEC model existing for both Cutting and452

Chopping manipulations, training samples from those are assigned within the453

same model Cutting & Chopping. The validation phase of the complete training454

set leads to 100% average precision and 87% average recall.455

As addressed in section 4.2, we can also extract objects which are manipu-456

lated in a similar manner in different demonstrations of the same manipulation457

type. Fig. 10 (b) indicates the primary object types frequently manipulated in458

each classified training data. It is observed that objects like Knife, Cleaver, and459

Spatula are manipulated often in the Cutting & Chopping model class, whereas,460

due to its size, Bowl is the only preferred object in the Hiding manipulation to461

cover other objects. Fig. 10 consequently proves the high success rates of the462

discriminative and descriptive features of the learned 7 SEC models and their463

direct relations with manipulated objects.464

To further evaluate the performance of the learned model SECs, we create465

a new testing set with 20 long chained actions which consist of in total 103466

different versions of the learned single manipulations such as Cutting, Stirring,467

and Pushing. We also introduce a new manipulation type called Pouring to468

Figure 10: Confusion matrix showing (a) the classification accuracy for the complete training

data set including in total 120 samples and (b) the usage rate of different objects primarily

manipulated in the learned models.
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measure the responses of the learned SEC models against a novel manipula-469

tion. In each chained action the subject has a certain task, e.g. “making a470

sandwich”, which involves execution of multiple single manipulations in various471

orders, either sequentially or parallelly. Fig. 11 depicts sample frames from two472

different chained action sequences in which subjects are performing the same473

task “making a sandwich” by using novel objects in various ways to increase the474

complexity of the scenes. We here apply an unsupervised, probabilistic method475

that measures the frequency of the changes in the spatial relations embedded476

in event chains to extract the main manipulator, e.g. hand, and to decompose477

the long chained actions into their primitive action components according to478

the spatiotemporal relations of the manipulator. Hence, also the decomposition479

process is model free and automatic. Since the decomposition issue is not in the480

core of the proposed framework, we omit the details here and refer the interested481

Figure 11: Sample frames from two different long chained manipulation sequences which

are used to test the learned SEC models. In these demonstrations subjects are performing

the same task “making a sandwich” by using novel objects in various ways to increase the

complexity of the scenes.
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Figure 12: Confusion matrix showing (a) the classification accuracy for the complete testing

data set including in total 103 samples and (b) the usage rate of different objects primarily

manipulated in the learned models.

reader to [35].482

Each single decomposed manipulation action is again analyzed as a classifi-483

cation task as described in the validation phase. Fig. 12 (a) indicates the highly484

successful classification results of decomposed manipulations with respect to the485

learned models. We receive minimum 82% accurate classification rate which is486

for the Taking manipulation and maximum 10% misclassification rate as ob-487

served only for the Pushing manipulation. It is also significant to note that488

the novel Pouring manipulation is never confused with any of the known SEC489

models. In this testing phase, average precision and recall values are measured490

as 99% and 92%, respectively.491

Fig. 12 (b) shows the most often manipulated primary object types in each492

classified test data. Compared to the results obtained in the training phase,493

the major difference here is the high usage rates of the object type Food in the494

Hiding, Taking, and Putting models. This is because making a sandwich by495

taking and putting cheese or bread slices on top of each other naturally results496

in occlusions as expected by the Hiding model.497

Note that all results shown in Figs. 10 and 12 are acquired in a fully auto-498

mated, unsupervised manner and show that the learned SEC models are highly499
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accurate and discriminative to recognize manipulation actions which can even500

be embedded in the long and complex chained demonstrations performed with501

novel objects under different circumstances.502

5. Discussion503

The main contribution of our paper is a novel method for incrementally504

learning the semantics of manipulation actions by observation. The proposed505

learning framework is bootstrapped with the semantic relations (SECs) between506

observed manipulations without using any prior knowledge about actions or507

objects while being fully grounded at the sensory level (image segments). To508

our best knowledge this is one of the first attempts in cognitive robotics to infer509

descriptive semantic models of observed manipulations in a fully automated and510

unsupervised manner.511

In our previous work in [6] we only introduced the basic concept of event512

chains for the first time on 2D image sequences. In the subsequent work in [7]513

we presented the extended version of SECs together with a robust method to514

measure semantic similarities between event chains of different manipulations515

in a limited dataset with 3D image streams. Different from these works, the516

contribution of the current framework is manifold. We not only introduce an517

on-line learning method, but we also analyze robustness of the SEC concept518

with a large dataset including various complicated manipulations.519

One of the most fundamental advantages of the proposed framework is that520

during the learning, when a new sample is observed, it is not compared with521

all previously acquired samples, which is an exhausting operation, but instead522

is compared only with the already learned models which are then updated ac-523

cordingly. This is of importance to allow the cognitive agent to use its memory524

in a more efficient way for lifelong learning, which is known as “Assimilation525

Process” in human cognition as originally defined by Piaget [34].526

The proposed framework can be easily enriched with object information since527

event chains naturally group objects considering only their performed roles in a528
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manipulation. As a strong contribution, we showed that objects, i.e. segments,529

can be categorized based on how an object is being manipulated, rather than530

by knowing what type of object it is. As shown in our previous works [9, 28],531

not only object but pose and the followed trajectory information can also be532

embedded into the SEC representations as further enrichment.533

In this paper, we also introduced a new manipulation action data set with534

8 different manipulation tasks (e.g. Cutting, Chopping, Stirring, etc.), each of535

which consists of 15 different versions performed by 5 different human actors.536

This data set was used to learn an archetypal SEC model for each manipu-537

lation action. To further quantitatively evaluate the learned SEC models, we538

extended our data set with 20 long and complex chained manipulation sequences539

(e.g. “making a sandwich” or “preparing a breakfast”) which consist of in to-540

tal 103 different versions of these 8 manipulation tasks performed in different541

orders with novel objects under different circumstances. These data sets are542

publicly available and could be used for action/object benchmarking also of543

other methods.544

In contrast to other well-known data sets, our new benchmark set captures545

manipulation activities from the subjects’s own point of view with a static RGB-546

D camera since we are interested in understanding the spatiotemporal interac-547

tions between the manipulated objects and hands. The conventional data sets,548

however, employ the entire human body configurations and movements as main549

features and therefore either do not involve hand-tool features [36, 20, 37] or550

are not rich to provide enough recordings required for the learning [15, 16].551

The observed high accuracy of our method when classifying the unknown552

(long-sequence) test-data set support that the learned models are indeed dis-553

criminative and descriptive of these actions (and objects). The here shown554

experimental results also exhibit a similar behavior to that of the ontologies555

presented in [38, 15]. In these both studies manipulation actions were classified556

into six distinct structural categories (e.g. Rearrange, Destroy, Break, etc.) in557

which Cutting and Chopping manipulations were subsumed in the same category558

as the learned single Cutting & Chopping model in our framework.559
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The main drawback that we are facing by the here presented framework560

is the segment discontinuity problem. Since we heavily rely on tracked scene561

segments, inconsistently tracked over-segmented scenes can lead to failures in562

the proposed method. We are currently investigating feature binding and object563

permanence concepts to reduce such failures. We are also aware of the fact that564

touching is a very naive and abstract event. However, to more efficiently use565

the memory we would like to keep our approach at this abstract level and apply566

fine-detailed scene analysis at a different level by further employing more action567

descriptors such as trajectory and pose information.568

As mentioned in the introduction, additional information, if available about a569

given action, will further improve action understanding. This notwithstanding,570

we believe that the current study strongly supports the power of the Semantic571

Event Chain framework, because here we have “pushed it to an extreme” by572

fully relying on model-free, unsupervised algorithms for clustering and classifi-573

cation. Therefore, we would hope that this study might stimulate the research574

community to adopt this framework in the future.575

Appendices576

We here provide three appendices each describes details of individual algo-577

rithmic steps in details. The first appendix introduces the de-noising process578

to filter out noisy spatiotemporal relations in the event chains. In the next ap-579

pendix, the detailed description of the similarity measure between event chains580

is given. The last appendix highlights the updating process of a learned SEC581

model with a novel SEC sample.582

Appendix A. De-noising of SECs583

Due to some early vision problems such as illumination variations or occlu-584

sions observed in the segmentation and tracking phases, extracted event chains585

can contain noisy spatial (rows) and/or temporal (columns) information. To586

prevent noisy event chain elements to propagate further to the next learning587
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stage, we apply a de-noising process to the extracted raw SECs. The de-noising588

process is based on reasonable action descriptive assumptions (rules) introduced589

in [38], which are as follows:590

1. only single hand manipulations are considered;591

2. the hand can manipulate, i.e. touch, only one object at a time;592

3. the manipulation can take place at the touched object itself (the one mentioned593

in rule 2) or only one other object can be a target, with which the first one594

interacts, i.e. touches;595

4. before and after the manipulation the hand is free and not-touching anything;596

5. before and after the manipulation the hand is not in the scene.597

The first two rules guarantee that there is only one hand and at most one598

object interacting with the hand, which we call manipulator and primary object,599

respectively. Other objects, which are combined with the primary object, are600

called secondary objects. The third rule assures that manipulator, primary and601

secondary objects are the only ones having direct interaction with each other602

affecting the dynamics of the manipulation. The last two rules define the natural603

start and end points of the manipulation.604

The de-noising process checks whether all those rules are satisfied in the605

SEC representation. For instance, the first two rules require that the event606

chain must have a row holding spatial relations between the manipulator and607

primary object and last three rules define these relations as:608

manipulator , primary object
[
A N T · · · T N A

]
, (A.1)

where the manipulator is first absent (A) in the scene (rule 5), then appears609

but does not touch (N) the primary object (rule 4). Next, the manipulator610

touches (T) primary object to apply a certain task on it (rule 3). Depending611

on the manipulation, the temporal length of the touching (T) relation can vary.612

Finally, the manipulator releases (N) the primary object (rule 4) and leaves (A)613

the scene (rule 5).614
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Since segments, i.e. graph nodes, are not identified as objects in event chains,615

we do not know which segment corresponds to the manipulator or primary616

object. Therefore, we apply a probabilistic reasoning to estimate segment roles617

in the manipulation. Probability values for each segment are assigned based on618

similarities of their relations with Eq. (A.1) and the frequency of their touching619

relations. See Appendix B for similarity calculation between SEC rows. In this620

regard, all rows in the event chain are compared with Eq. (A.1) and the most621

similar one is taken as the best candidate for the manipulator and the primary622

object.623

Fig. A.13 (a-b) shows a noisy raw event chain with corresponding key frames624

extracted from a Putting manipulation sample where a hand is putting a cup on625

a box. For instance, the first and second rows of the SEC given in Fig. A.13 (b)626

are similar to Eq. (A.1), however, the second row has a higher probability to be627

Figure A.13: SEC representation for a sample Putting action where a hand is putting a cup

on a box. (a) Extracted 8 key frames with original images, corresponding segments (colored

regions), and main graphs. (b) Respective SEC where each key frame corresponds to one

column. Rows are spatial relations between object pairs, e. g. between the hand (4) and box

(3) in the first raw. Possible spatial relations are N , T , and A standing for Not touching,

Touching, and Absence, respectively. (c) De-noised SEC after applying action descriptive

rules. First and last rows as well as repetitive key frames, shown in blue frames, are removed

from the raw SEC in (b).
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a better candidate due to having more touching relations. Therefore, segments628

4 and 1 in the second row have the highest likelihood to be the manipulator629

and the primary object. Since rule 5 constrains the manipulator to appear in630

the scene later, we choose segment 4 as the manipulator and segment 1 as the631

primary object.632

Once the manipulator and primary object are estimated, the de-noising pro-633

cess is concluded by examining the second and third rules once more. Since634

the second rule does not allow the manipulator to interact with any other ob-635

ject other than the primary object, such rows can be considered as noise to be636

omitted. In this manner, the first row in the SEC given in Fig. A.13 (b) can637

be ignored as the manipulator (segment number 4) is also touching the box638

(segment number 3) which is not the primary object. Note that the hand is639

here accidentally touching the box while putting the cup. Recalling the third640

rule, we can ignore any segment which does not have any interaction with the641

manipulator or primary object. In this sense, the forth row of the SEC in642

Fig. A.13 (b) is omitted because segment 6 and 7 represent the spoon which is643

occluded by the manipulator and primary object and not playing any role in the644

manipulation. Fig. A.13 (c) shows the final de-noised SEC representation for645

the Putting action in Fig. A.13 (a). Note that de-noised event chain includes less646

columns since redundant duplicate (repetitive) columns observed after deleting647

noisy rows (indicated in blue frames in Fig. A.13 (a)) are also removed.648

It is important to underline that the de-noising process considers temporal649

interactions between entire segments in the manipulation to solve illumination or650

occlusion based early vision problems which can not be solved without reasoning651

at a higher level.652

Appendix B. Measuring Semantic Similarity653

Once event chains are extracted in the observation phase, their semantic sim-654

ilarities need to be compared to further explore whether they describe the same655

type of manipulation. In [7], we introduced a method to measure semantic sim-656
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ilarities and here we describe an updated version which is more robust against657

noisy spatiotemporal information coming from the early vision stage. To better658

explain the semantic comparison we will use sample demonstrations from the659

Cutting and Chopping manipulations which are shown in Fig. B.14 (a-b) with660

extracted de-noised SECs including some sample key frames with respective661

segments and graphs. Note that even though those two samples have different662

perspectives and contain different number and types of objects, the dimensions663

of the event chains are accidentally the same. This is of no importance as our664

proposed method does not rely on dimensions, allowing to compare arbitrarily665

long manipulations.666

To calculate the semantic similarity between two manipulations, spatial and667

temporal aspects are being analyzed in two separate steps. In the first step,668

we compare spatial information, i.e. relational changes in each row, and in the669

following second step the temporal information, i.e. the order of columns, is670

considered. In both steps we apply a standard sub-string search algorithm. To671

achieve this, we first perform a data-compression on the original chain (ξo) by672

simply scanning each row of ξo from left to right and substitute “changes” by673

combining their values into a two-digit format. For example a change from674

Not touching to Touching, hence from N to T , is now encoded by NT . When675

nothing has changed, a double digit like TT , is removed. This compressed event676

chain, represented by ξc, lost all temporal information and is used only for the677

spatial-relational analysis in the first step. The original chain (ξo) will then be678

used for the temporal analysis in the second step. ξo and ξc of the Cutting and679

Chopping actions are given in Fig. B.14 (a-d).680

Let ξ1c and ξ2c be the sets of rows for the two manipulations, written as a681

matrix (e.g. Fig. B.14 (c) and B.14 (d)):682

ξ1c =


r11,1 r11,2 · · · · · · r1

1,γ1
1

r12,1 r12,2 · · · r1
2,γ1

2

...
...

. . .
...

r1m,1 r1m,2 · · · · · · · · · r1m,γ1
m

 ,
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Figure B.14: Two sample manipulation action scenarios: “Cutting a cucumber with a knife”

(on the left) and “Chopping a sausage with a cleaver” (on the right). (a-b) Extracted de-

noised SECs (ξo) with some sample original key frames including respective segments and main

graphs. (c-d) Corresponding compressed SECs (ξc). Colored arrows show row matchings.

Figure B.15: Similarity matrices between the Cutting and Chopping samples given in

Fig. B.14. (a) Spatial similarity matrix ζspatial indicates possible correspondences between

rows (see colored arrows in Fig. B.14). (b) Temporal similarity matrix ζtemporal with LCS

matchings indicated in red circles shows correspondences between columns.

33



and683

ξ2c =


r21,1 r21,2 · · · · · · · · · · · · r2

1,γ2
1

r22,1 r22,2 · · · · · · r2
2,γ2

2

...
...

. . .
...

r2k,1 r2k,2 · · · · · · · · · r2
k,γ2

k

 ,

where ri,j represents a relational change between a segment pair684

ri,j ∈ {AN,AT,NA,NT, TA, TN} ,

where A, N , and T stand for Not touching, Touching, and Absence, respec-685

tively. The lengths of the rows are usually different and given by indices γ.686

The first step is comparing the rows of the compressed event chains (ξ1c and687

ξ2c ) accounting for a possibly shuffling of rows in different versions of the same688

manipulations. Therefore, each row of ξ1c is compared with each row of ξ2c in689

order to find the highest similarity. The comparison process searches for equal690

entries of one row against the other using a standard sub-string search, briefly691

described next. Assume that we compare the ath row of ξ1c with the bth row of692

ξ2c . If row a is shorter or of equal length than row b (γ1a ≤ γ2b ), the ath row of ξ1c693

is shifted γ2b − γ1a + 1 times to the right. At each shift its entries are compared694

with the one of the bth row of ξ2c and we get as a result set Fa,b defined as:695

Fa,b = {ft : t ∈ [1, γ2b − γ1a + 1]} ,

ft =
100

γ2b

γ1
a∑

i=1

δi , (B.1)

where γ2b is the normalization factor and i is the row index and with696

δi =

 1 if r1a,i = r2b,i+t−1

0 else
, (B.2)
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where the set Fa,b represents all possible similarities for every shift t, given by697

ft, which holds the normalized percentage of the similarity calculated between698

the shifted rows.699

As usual for sub-string searches, we are only interested in the maximum700

similarity of every comparison hence we define:701

Ma,b = max(Fa,b),

For the case γ1a > γ2b , a symmetrical procedure is performed by interchanging702

all indices of Eqs. (B.1), (B.2) above.703

Spatial similarity values between all rows of ξ1c and ξ2c are stored in a matrix704

ζspatial with size m× k as705

ζspatial =


M1,1 M1,2 · · · M1,k

M2,1 M2,2 · · · M2,k

...
...

. . .
...

Mm,1 Mm,2 · · · Mm,k

 .

The final similarity value (ψspatial) between the rows of two compressed706

event chains is calculated by taking the mean value of the highest similarities707

across both rows and columns of ζspatial as708

ψspatial =
1

m

m∑
i=1

max
j

(Mi,j), j ∈ [1, · · · , k], (B.3)

if709

max
j

(Mi,j) = max
t

(Mt,j), t ∈ [1, · · · ,m] . (B.4)

The spatial similarity matrix ζspatial indicates possible correspondences be-710

tween rows of ξ1c and ξ2c used to compute temporal similarity in the second step.711

Note that there can be more than one correspondences between each row and712

all existing permutations need to be considered in the second step, separately.713

If there is a size differences between event chains, extra rows with no correspon-714

dences will be omitted here, but penalty values will then be applied at the end715

of the second step.716
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The complete similarity matrix (ζspatial) between the Cutting and Chopping717

samples (ξ1c and ξ2c ) is given in Fig. B.15 (a) which shows that first row of ξ1c ,718

i.e. 1, 5, corresponds to the second row of ξ2c , i.e. 4, 6. The same reverse relation719

exists between the second row of ξ1c and the first row of ξ2c . Therefore, rows of720

the second event chain will be resorted by simply interchanging first and second721

rows to initiate the second step, i.e. temporal analysis of the method.722

In the following second step, we use the time sequence, encoded in the order723

of columns in the original event chains, to find the best matching permutation724

and thereby arrive at the final semantic similarity. To this end we will now725

compare columns of resorted ξ2o with that of ξ1o . Note that by contrast to rows,726

columns of event chains are never shuffled unless they represent different types727

of actions. Therefore, the column orders of type-similar event chains have to728

be the same. The comparison procedure of columns is very similar to the one729

for the rows. Since the lengths of the columns are the same, no shift-operator730

is required and columns are directly compared index-wise. Similarity values731

between all columns of ξ1o and ξ2o are stored in a matrix ζtemporal with the size732

of u× v as733

ζtemporal =


θ1,1 θ1,2 · · · θ1,v

θ2,1 θ2,2 · · · θ2,v
...

...
. . .

...

θu,1 θu,2 · · · θu,v

 ,

where u and v are the lengths of columns in ξ1o and ξ2o .734

Once similarities between columns are calculated, we use “Longest Common735

Subsequence, (LCS)” in order to guarantee that the order of columns is the736

same. LCS is generally used to explore the longest sequence existing in both737

input samples sequences. Columns of event chains are used as sequences for this738

task and LCS matching is computed based on similarities in ζtemporal. Since739

the number of sequences is constant, the problem is solvable in polynomial time740

by dynamic programming. Fig. B.15 (b) shows ζtemporal with LCS matchings741

indicated in red circles for the Cutting and Chopping samples ξ1o and ξ2o .742
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The temporal similarity value ψtemporal between the columns of two event743

chains is then calculated by taking the mean value of the similarities given by744

LCS matching Li as745

ψtemporal =
1

u

u∑
i=1

Li , (B.5)

Li =

 100 if θi,j = 100

0 else
, (B.6)

where i and j are the matching column indices between ξ1o and ξ2o .746

Note that due to noisy segmentation and tracking, size of ξ1o and ξ2o can be747

different. Therefore, size differences between event chains are used as a penalty748

to prevent false similarities. The final semantic similarity is then computed as749

ψfinal =
r1c1ψtemporal

r1c1 +
r2c2 − r1c1

ρ

, r1 < r2 and c1 < c2 , (B.7)

where ρ is the penalty value and r1, c1, r2, and c2 are the number of rows and750

columns of ξ1o and ξ2o , respectively. The final ψfinal value between the Cutting751

and Chopping samples in Fig. B.15 is calculated as 78% by using Eqs. (B.7),752

(B.6), and (B.7) with ρ = 1. The best matching permutation is further used for753

categorizing objects as described in [7].754

Appendix C. Model Updating755

Let ξm and ξn be two matrices representing a SEC model and a new SEC756

sample with sizes of p × q and k × l, respectively. The two matrices can be757

written as758
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ξm =


rm1,1 rm1,2 · · · rm1,q

rm2,1 rm2,2 · · · rm2,q
...

...
. . .

...

rmp,1 rmp,2 · · · rmp,q

 and ξn =


rn1,1 rn1,2 · · · rn1,l

rn2,1 rn2,2 · · · rn2,l
...

...
. . .

...

rnk,1 rnk,2 · · · rnk,l

 ,

where ri,j ∈ {A,N, T} is representing the spatial relations between each759

segment pair as described in section 3.3.760

Each model ξm is initially assigned with a set of weights W as761

W = [w1, w2, · · · , wp]T , (C.1)

for representing the appearance frequency of each row, which leads to ex-762

traction of all common rows observed in most of SEC samples. Each weight763

value wi is initialized to 1. We first compare each row of ξn with each row of764

ξm to find identical matches and to further increment the corresponding weight765

values of the matched rows again by 1. This step is required since rows can be766

shuffled in the new observation sample ξn. While comparing rows, we search767

for only equal relational changes rather than temporal lengths of relations as768

explained in Appendix B. In the case of k > p, all novel rows observed in ξn769

will then be appended to ξm with weight values {wp+1, · · · , wk} initialized to 1.770

Common rows are then those with weights higher than |W|2 . Next, the order of771

rows in ξn is resorted considering the order of their best matches with common772

rows in ξm. The sorting process yields the same row numbers in ξn and ξm,773

which is required for analyzing columns as described next.774

The following step covers the temporal information embedded in the columns775

of ξn and ξm, and is similar to the previous approach explained for rows. We776

here assume that each column in an event chain is a state defining one action777

primitive. Hence, we seek for all primitives derived from new observations and778

compute the transition between them. Let Sm be a set of existing states in the779

current model ξm :780
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Sm = {s1, s2, · · · , sq} , (C.2)

where each si = [rmj,i : j ∈ [1, · · · , p]] . We now compare each state, i.e.781

column, in the sorted version of ξn with those in ξm by employing the same782

approach as defined for the temporal analysis in Appendix B. In the case of783

having more states in ξn, i.e. l > q, all novel states are appended to Sm, and784

then transitions between each state are calculated. We assign a probability785

value Pi,j defining the transition from si to sj , which is incremented when two786

states are consecutive, i.e. sj = si+1 in ξn.787

Following state transition calculation, the learned model ξm is refined with788

the new states Ŝm having the maximum transitions between each; that is,789

Ŝm = {sα1 , sα2 , · · · , sαl
} , (C.3)

αt+1 = arg max
j

(Pαt,j) , (C.4)

where α0 = 1 is for the initial state and Pi,j = 0 is the termination condition790

of the state sequence.791

Note that in the process of creating a new model, Ŝm will directly be equal792

to the states of ξn. In the case of merging similar models, i.e. those with high793

semantic similarity, one of the models will be assumed as ξn to employ the same794

refinement procedure explained above. It is also important to note that all SEC795

samples used for updating the same model ξm will be assigned with the same796

cluster label which yields self-clustering of observed SEC samples.797
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[32] A. Abramov, E. E. Aksoy, J. Dörr, K. Pauwels, F. Wörgötter, B. Dellen, 3d905

semantic representation of actions from efficient stereo-image-sequence seg-906

mentation on GPUs, in: 5th International Symposium 3D Data Processing,907

Visualization and Transmission, 2010, pp. 1–8.908

[33] N. Otsu, A Threshold Selection Method from Gray-level Histograms, IEEE909

Transactions on Systems, Man and Cybernetics 9 (1) (1979) 62–66.910

[34] J. Piaget, The Origins of Intelligence in the Child, Routledge, London, New911

York, 1953.912

43



[35] E. E. Aksoy, M. Tamosiunaite, F. Wörgötter, Decomposition of long manip-913

ulation actions (under review), Computer Vision and Image Understanding.914

[36] C. Schuldt, I. Laptev, B. Caputo, Recognizing human actions: a local svm915

approach, in: Pattern Recognition, 2004. ICPR 2004. Proceedings of the916

17th International Conference on, Vol. 3, 2004, pp. 32–36 Vol.3.917

[37] A. Gupta, L. Davis, Objects in action: An approach for combining action918

understanding and object perception, in: Computer Vision and Pattern919

Recognition, 2007. CVPR ’07. IEEE Conference on, 2007, pp. 1–8.920
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Abstract: This paper addresses the detection of geometric edges on 3D shapes. We investigate the use of local point
cloud features and cast the edge detection problem as a learning problem. We show how supervised learning
techniques can be applied to an existing shape description in terms of local feature descriptors. We apply our
approach to several well-known shape descriptors. As an additional contribution, we develop a novel shape de-
scriptor, termed Equivalent Circumference Surface Angle Descriptor or ECSAD, which is particularly suitable
for capturing local surface properties near edges. Our proposed descriptor allows for both fast computation
and fast processing by having a low dimension, while still producing highly reliable edge detections. Lastly,
we use our features in a 3D object recognition application using a well-established benchmark. We show that
our edge features allow for significant speedups while achieving state of the art results.

1 INTRODUCTION

Edge detection in general is a highly investigated
topic in computer vision, mainly due to the possibil-
ity of condensing the input observations with a lim-
ited loss of information. This is beneficial also for 3D
applications, e.g., point cloud enrichment (Gumhold
et al., 2001) and pose estimation (Buch et al., 2013a),
since it can decrease computation times. For these
reasons, 3D edge detection should be fast, and it
should be easy to use for general point clouds, con-
taining noise and varying sampling densities. A 3D
edge detection example is shown in Figure 1.

Several other methods have been proposed to tack-
led the issue, including (Gumhold et al., 2001; Guy
and Medioni, 1997; Pauly et al., 2002; Pauly et al.,
2003). These methods tend to rely on complex hand-
crafted analyses of large local neighborhoods in order
to determine stable edge confidences. For this reasons
they become computationally expensive.

We propose to use a staged approach to produce a
simpler and faster algorithm, as done in 2D by e.g.,
Canny (Canny, 1986), but with very different pro-
cesses since we are dealing with 3D data. We first
estimate the edge direction using a local neighbor-
hood. Then we compute our local ECSAD descriptor
for describing the neighborhood, and then use the de-
scriptor to refine the edge direction estimate. Based
on this descriptor we provide two alternative methods

Figure 1: Left: a scene captured with a laser scanner (Mian
et al., 2006). Right: edge detector response using our
method (red means high confidence).

for finding an edge confidence: 1) directly using a cur-
vature estimate produced by our descriptor or 2) us-
ing machine learning techniques with labeled training
data. Finally, we adopt a non-maximum suppression
technique similar to that of Canny for our 3D edges
to arrive at a more condensed representation of point
clouds, which is desirable for matching tasks in e.g.,
object recognition applications.

We evaluate both our curvature based and learning
based edge detectors against several other methods on
point cloud data from multiple sensor modalities. For
these experiments, we have manually annotated both
training and test data, which provides a benchmark for
comparing 3D edge detectors, and allows for future
extensions. In a final application, we apply our edge



representation to a 3D object recognition and 6D pose
estimation system and show how to achieve both high
recognition rates and significant speedups during this
process.

This paper is structured as follows. We start by
relating our work to other methods for edge detection
in Section 2. Then we present our descriptor which is
used for reliable edge detection in Section 3. We then
show in Section 4 how any descriptor can be used for
learning an edge detector. In Section 5 we present
a simple edge thinning scheme for point clouds. In
Section 6 we provide extensive experiments of vari-
ous edge detectors, and we additionally show how to
use our features for 3D object recognition. Finally,
we make concluding remarks in Section 7.

2 RELATED WORK

The majority of edge detectors have been developed
for 2D images, and one of the most common edge de-
tection algorithms is the Canny edge detector (Canny,
1986), which revolves around semi-global methods in
order to capture more salient features. In (Choi et al.,
2013), Canny based methods were applied to RGB-D
images from a Kinect camera in order to determine
geometric and color based edges in organized point
clouds.

Geometric edge detection in general 3D data
structures has also gained some attention. For in-
stance, (Bähnisch et al., 2009; Monga et al., 1991)
have implemented edge detector in voxel based 3D
images. These methods are largely extensions of the
Canny detector to 3D, with a few modification to re-
duce computation times.

For unorganized point clouds, local point or direc-
tion information has been exploited to detect edges.
In (Guy and Medioni, 1997) a PCA analysis of the
normals is made in order to determine how much the
surface varies. The work in (Pauly et al., 2003) pro-
poses to use the curvature estimates at several differ-
ent scales in order to determine a edge confidence.
Gumhold et al. (Gumhold et al., 2001) propose to use
a more complex combination of eigenvalues, eigen-
vectors and other curvature estimates in order to de-
termine a handcrafted edge confidence. This paper
also proposes to use a minimum spanning tree where
short branches are removed in order to do edge thin-
ning. A final spline fitting provides a smoother visual
representation.

In this work, we address the detection of 3D edges
in unorganized (or unstructured) point clouds. Such
edges often occur at orientation discontinuities where
two planar surfaces coincide. For this task, we have

derived an appropriate local shape descriptor, termed
ECSAD, which can be used for detecting edges, either
directly by a curvature estimate produced by the de-
scriptor or by learning an edge classifier in descriptor
space. To our knowledge, current shape descriptors,
such as e.g., (Johnson and Hebert, 1999; Mian et al.,
2006; Rusu et al., 2009; Tombari et al., 2010), are
focused strictly on the task of describing local shape
patches of arbitrary geometry for use at a later match-
ing stage.

Finally, we motivate the use of our edges and asso-
ciated descriptors in a 3D object recognition applica-
tion, where we also apply our descriptor for matching,
leading to state of the art recognition performance.
We note that, similar to our work, the edges detected
in (Buch et al., 2013a; Choi et al., 2013) were also
applied for object registration, in the latter case based
on point pair features, originally proposed by (Drost
et al., 2010). However, the edge detection method
of (Choi et al., 2013) is restricted to organized RGB-
D images, and not general 3D shapes, which renders
evaluations against our work impossible. We do, how-
ever, compare ourselves with the registration algo-
rithm of (Drost et al., 2010).

3 LOCAL SURFACE
DESCRIPTOR FOR EDGE
DETECTION

We have developed a local descriptor focusing on
edge detection and classification, partly to determine
the direction of the edges, and partly to be used in su-
pervised learning for edge detection. The descriptor
is a vector of relative angles between opposing sides
of the edge, which we have found to provide a good
description for geometric edges caused by orientation
discontinuities. Before descriptor estimation, the in-
put point cloud is down-sampled to a uniform resolu-
tion. The radius of the spherical support (the area that
influences the descriptor) is a free parameter, but we
have consistently used a value of five times the down-
sampling resolution for simplicity.

As will be explained in the following, our descrip-
tor uses a spatial decomposition which gives each spa-
tial bin approximately the same circumference. Con-
trary to other descriptors that use histograms, our uses
simple but stable angle measurements. For these rea-
sons, we term our descriptor Equivalent Circumfer-
ence Surface Angle Descriptors (ECSAD).

Spatial Decomposition Similar to other local sur-
face descriptors, we use a spatial decomposition,



Figure 2: Left: visualization of the computed descriptor at
an edge point with a tangent direction (red) and a surface
normal (blue), please see text for a description how these
are defined. The spatial bins are intersected by a number of
surface points, and the contents of each bin is visualized by
the plane patch spanned by these intersecting surface points.
Right: a cross section showing the tangent plane of the local
support, showing the decomposition used by our descriptor.

which is illustrated in Figure 2 by a cross section
through the spherical region. Our descriptor splits the
local space along the radial and azimuth dimensions,
but not along the elevation as in e.g., (Frome et al.,
2004; Tombari et al., 2010). This choice is justified
by the fact that it is extremely rare that more than one
surface passes through the same azimuth bin at dif-
ferent elevations, thus resulting in a high fraction of
empty bins along the elevation. This again leads to in-
stabilities towards position noise, and we have found
this to produce worse results for edge detection and
description. In Figure 2, left this can be seen as noise
in the elevation of the surface patches.

Instead, we have devised a more sophisticated and
uneven binning of the azimuth dimension (see Fig-
ure 2, right). We start by splitting the local space into
six equiangular azimuth bins of 60◦ through all radial
levels (bold lines). Now, for each of these six azimuth
bins, we increase the number of azimuth splittings by
one for each radial increment, giving a total increase
of six azimuth bins per radial level (thin lines). This
leads to an almost uniform angular coverage of all the
bins in the azimuth dimension, and we have found this
to produce much better performance than simply us-
ing an equal number of azimuth bins at all radial lev-
els. We have tested different numbers of radial lev-
els and found a good compromise between specificity
and robustness for four radial levels (note that only
three radial levels are shown in Figure 2, right).

Reference Frame Estimation and Bin Angles The
first step of the algorithm is to estimate the surface
normal and a tangential edge direction of the center
point which is to be described. This is done by the
eigendecomposition of the scatter matrix of all the
points in the support, giving the direction and normal
along the eigenvectors corresponding to the largest
and smallest eigenvalues, respectively. The local ref-
erence frame (LRF) x- and z-axis is given by these

two vectors, and the y-axis by their cross product.
Then we map each of the supporting points into the
correct spatial bin based on its radial and azimuth co-
ordinates relative to the center point. This is done us-
ing the direction vector from the center point to the
supporting point. The radial component is immedi-
ately given by the norm of this vector, while the az-
imuth component is given by the relative angle be-
tween this vector and the x-axis, measured in the tan-
gent plane of the normal vector. For each bin, we
now compute the relative angle between the surface
normal and the direction vector to each point in the
spatial bin. This angle is then averaged over all points
that fall in the same spatial bin, giving a single an-
gle measurement per spatial bin. After the angles to
the individual bins have been determined, an interpo-
lation strategy is used to assign values to bins with
missing information, i.e., bins which have no points.

The interpolation value of a bin is performed by
averaging the angles of up to five neighbor bins: one
at a lower radial level, two next to the bin at the same
radial level, and the two closest at a higher radial
level. The neighbors at the same and at the higher
radial level are only used if they contain points and
thereby an angle measurement. The interpolation then
starts from the center and moves outwards. At the first
radial level, the bin angle at a lower radial level de-
fined as zero. This ensures a value will be assigned to
every bin.

Description Using Sum of Angles At an edge
point, the x-axis separates two surfaces meeting at the
center point. Our descriptor tries to approximate the
angle between these two surfaces using the individual
angle measurements of the spatial bins. To achieve
this we identify opposing spatial bins, i.e., bins that
have the same radial component but separated by an
azimuth angle of π. We now take the sum of angles of
each opposing bin pair, reducing the number of angle
observations by a factor of two (green lines in Fig-
ure 2, right). Each angle sum approximates the angle
between the coinciding surfaces, but this summation
also makes our descriptor invariant to the sign of the
x-axis, which is desirable, since this direction is am-
biguous.

Reference Frame Refinement and Curvature Esti-
mate A special case occurs in concave regions, i.e.,
at points where the normal vector (z-axis) has an an-
gle of less than π/2 to the two opposing surfaces. This
can easily be measured by checking if the average of
the sum of angles defined above is larger than π. In
such cases, we negate the y- and z-axis of the LRF. Fi-
nally, we perform a refinement of the x-axis by treat-



ing the sum of angle entries as a local 2D map, where
each entry equals the angle measurement weighted
by the radial component. We compute the eigende-
composition of the covariance matrix of this local 2D
map of weighted angle entries, and the edge direc-
tion will now be better approximated by the in-plane
eigenvector of the smallest eigenvalue. We rotate the
LRF around the z-axis to coincide with the updated
x-axis. Using this refined RF, we now recompute all
the sum of angle measurements to get a more robust
descriptor.

As a side effect, the biggest eigenvalue of the lo-
cal 2D map computed above provides a good esti-
mate of the the local curvature around the edge. In
Section 6 we show results of using this measure for
edge detection. In all the experiments, we have used
four radial levels, leading to a descriptor dimension of
(6+12+18+24)/2 = 30

In order to use the descriptor in pose estimation,
it is beneficial to orient the normals to point outwards
from the underlying objects. This is done to improve
correct match rates, since it enables distinction be-
tween convex and concave regions. For scenes, this
is done by rotating the scene normals towards a view-
point. For models it is done based on a technique pro-
posed by (Hoppe et al., 1992).

If the normal signs are changed, the descriptors
are updated, similarly to how concave regions are ori-
ented to produce similar descriptors for concave and
convex regions to simplified edge detection.

4 SUPERVISED LEARNING FOR
EDGE DETECTION

Using our ECSAD descriptors, a random forest (RF)
classifier (Breiman, 2001) was trained in order to de-
termine edge confidences in point clouds containing
structured noise, such as point clouds captured by
range sensors.

The training dataset consists of manually labeled
point clouds, captured by Kinect cameras, stereo cam-
eras and sampled from CAD models. Examples of
labeled point clouds from these different sources are
seen in Figure 3. Here the red lines are positive edge
examples, the blue lines are ignored due to uncer-
tainty of the human annotator, and the rest of the
points are negative examples. We trained using four
CAD models, two stereo scenes, two Kinect scenes
and three Kinect views of different objects. All in all
this provided more than 12500 positive and 285000
negative training examples.

These data, along with the local feature descrip-
tors computed over the full point clouds, were then

Figure 3: Examples of labeled point clouds from various
sources used for training (relative sizes are not preserved
in this figure). Ground truth edges (red) are used as pos-
itive examples, and transition regions between edges and
non-edges (blue) are discarded during training. The rest of
the points are non-edges, which are used as negative exam-
ples. Left: an ideal CAD model, resampled to a point cloud.
Middle: a real scene with projected texture pattern, recon-
structed by a block matching algorithm. Right: a partial
view of a textured object, taken from the RGB-D Dataset
(Lai et al., 2011).

used in order to train the random forests. Based on
multiple runs over different parameters, we found that
a point cloud resolution of 4 mm, a support radius of
20 mm, and an RF with 30 trees and a maximum tree
depth of 15 provided good results. Similar figures
hold for the other methods which we will compare
against in Section 6.

In the test phase, a new point cloud with computed
feature descriptors is fed to the RF classifier. The out-
put edge confidence at a feature point is then simply
given by the number of trees in the RF that classify
the feature as an edge.

A smoothness technique is applied to the edge
confidences, which is beneficial as an extra step be-
fore applying non-maximum edge suppression for
thinning the edge map. This is simply implemented
by determining the ten closest points to the edge point
in question and averaging the edge confidences. After
this step, the cloud is ready for non-maximum edge
suppression.

5 EDGE THINNING

For some applications, e.g., object recognition, a
sparse representation can be desirable. One of the
simplest solutions in our case is to use a non-
maximum edge suppression technique. This is im-
plemented by determining the 20 closest edge points
to a potential edge. Denote the current center point as
pC and a neighbor as pN , both with associated edge
directions dC and dN and edge confidences c(pC) and
c(pN). To determine whether pC suppresses pN , three
criteria are used. First, pC must have the highest edge
confidence:

c(pC)> c(pN) (1)



Figure 4: Left: a table scene from the RGB-D Dataset. Mid-
dle: edge detector responses. Right: remaining edges after
non-maximum suppression.

Figure 5: Edge responses after non-maximum suppression.
Left: A real scene with projected texture pattern, recon-
structed by a block matching algorithm. Right: An ideal
CAD model resampled to a point cloud.

Secondly, we impose the following collinearity con-
straint:

∠(dC, pN− pC)>
3
8
·π (2)

This ensures that points on the same line do not sup-
press each other. Thirdly, we require the following:

∠(dC,dN)<
π

4
(3)

This ensures that orthogonal edges do not suppress
each other. As an optimization, we check (1)–(3)
bidirectionally, i.e., if a neighbor point suppresses the
center point, the center point is discarded. This step is
done to reduce the number of neighborhood searches,
which is computationally expensive in point clouds.

A visualization of this suppression process is
shown for a Kinect scene in Figure 4. We note that
the thinning is an optional step, and in this paper we
use it only in the final object recognition application.
For a fair comparison of edge detectors, it is more ap-
propriate to directly use the output edge confidences,
as we will show in Section 6.1.

Figure 1 and Figure 5 show the edge response af-
ter line thinning for three other point clouds . Here it
is seen that the detector has a decent response for all
data sources, but it should be noted that the response
near borders is poor, partly due to higher noise lev-
els in these areas. In the Kinect point cloud it is also
seen that the responses become poor at the most dis-
tant parts of the scene, where the noise and quantiza-
tion levels are particularly high.

6 EXPERIMENTS

In this section we provide experimental results both
for our edge detection algorithms, and for an object
recognition application. All algorithms were imple-
mented in single-threaded C++ applications, primar-
ily using functionality from the Point Cloud Library1

(Rusu and Cousins, 2011). OpenCV2 was used for its
interface to machine learning algorithms.

The algorithms was evaluated using an Intel core
i3 3217U, 1.8GHz with 4GB RAM. This computer
is roughly equivalent to the one used by Drost et al.
(Drost et al., 2010).

We have tested a range of parameters for our
method, and the performance varies between different
data sources (Kinect, CAD and stereo). A full evalua-
tion of these parameters and their influence on the per-
formance on various data sources is beyond the scope
of this paper. In this section we present results using
the previously mentioned parameter values, providing
good results in general for all data sources.

6.1 Quantitative Evaluation of Edge
Detectors

For the purpose of evaluating the strength of our edge
detector, we have created test data in a similar man-
ner to the training data (see Figure 3). The test set
was generated using two CAD models, two stereo
scenes and two Kinect scenes, providing more than
6000 positive and 170000 negative test examples, re-
spectively. We split the test set into three different
categories (CAD, stereo and Kinect), as we have ob-
served quite a varying performance across the differ-
ent data sources. Note that the training set has not
been split; only one training pass over the full train-
ing set is performed. All training and test data are
publicly available on our web site.3

We train an RF classifier using our ECSAD de-
scriptor. Additionally, we perform the same proce-
dure using two recent shape descriptors, the Signature
Histogram of Orientations (SHOT) (Tombari et al.,
2010) and the Fast Point Feature Histogram (FPFH)
(Rusu et al., 2009). Both features have been widely
used for surface description.

In addition to the RF test, we evaluate the use
of the internal curvature estimate produced by our
descriptor for directly providing an edge confidence.
For comparison, we also include in our test other cur-
vature estimates, namely the total surface variation

1http://pointclouds.org
2http://opencv.org
3https://sites.google.com/site/andersgb1/

projects/3d-edge-detection
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Figure 6: Performance curves in terms of (1 - precision) vs. recall for the CAD (left), stereo (middle) and Kinect (right) test
scenes. The bottom table shows the accumulated detection time for all six point clouds (in total ca. 176000 points) in the test
dataset. For the learned detectors, this includes both descriptor computation and RF classification.

(Pauly et al., 2002) (termed Curvature) and a multi-
scale extension of this algorithm (Pauly et al., 2003)
(termed ScaleCurv). In these two algorithms, the cur-
vature is estimated using the three eigenvalues of the
scatter matrix of the supporting points around a point,
simply by dividing the smallest eigenvalue by the sum
of all three eigenvalues.

In Figure 6 we show results for all three data
sources as (1 - precision) vs. recall curves, which is a
standardized way to evaluate interest point detectors
(Mikolajczyk and Schmid, 2005). For the ideal CAD
models, which have noise-free edges, we observe a
very high performance of the multi-scale curvature as
edge confidence. Our learned detector comes close in
performance, and shows a very high initial precision
at low recall. For the real stereo and Kinect data, the
performance of the curvature based detectors imme-
diately drops, and the learned detectors become su-
perior. For the Kinect data with the highest noise,
the FPFH detector shows the best performance. Our
learned detector shows comparable performance for
all three data sources. In addition to this, our descrip-
tor is computationally efficient–almost twice as fast
as SHOT and FPFH. In addition, the SHOT descrip-
tor has a dimension more than ten times higher than
both FPFH and ECSAD.

6.2 Application: 3D Object Recognition

In order to assess the benefits of edge detection for
another application, we applied a previously proposed
point cloud registration algorithm to our features. The
method is presented in (Buch et al., 2013b) and is
based on RANSAC (Fischler and Bolles, 1981), with
a crucial optimization step used for early rejection of
point samples that are unlikely to produce valid pose
hypotheses. We further improve the method by allow-
ing for multiple feature matches within a predefined

radius in descriptor space. The algorithm is presented
below.

Initialization:
1. The object and scene surfaces are down-sampled

to a voxel size of 3 mm to ensure a uniform point
cloud resolution.

2. Edges are detected within both the object and
scene point clouds using the learned RF detector,
using ECSAD descriptors computed with a sup-
port radius of 15 mm. Non-maximum suppression
is applied to reduce the number of features. The
descriptors are stored for use below.

3. For each object edge feature, we use k-d trees
to search for all matching feature descriptors in
the scene within a radius of one unit in descriptor
space.

Iterate:
1. Three random feature points are sampled on the

object. For each of these points a random scene
correspondence is retrieved from the list of corre-
spondences generated in step 3 of the initializa-
tion.

2. Apply the pre-rejection of (Buch et al., 2013b):
if any of the distances between the three object
points differs more than 10 % from the equivalent
distance between the corresponding scene points,
continue to the next iteration.

3. A pose hypothesis is generated based on the three
matches.

4. The pose is applied to the object point cloud,
and we count the number of inliers supporting
the pose by an Euclidean proximity threshold of
3 mm. Additionally, we require that the aligned



normal vectors have a relative angle less than π/3.
If the number of inliers satisfying both these con-
ditions is higher than 15 % of the number of ob-
ject points, we break out and consider the object
as recognized.

The pre-rejection step makes the search for valid
poses very fast, so we run the algorithm for a max-
imum of 100000 iterations. In case all 100000 itera-
tions are completed without finding a pose with more
than 15 % inliers, the best pose is chosen to ensure
recognition of highly occluded objects. Finally the
determined pose is refined by ten iterations of the iter-
ative closest point algorithm (Besl and McKay, 1992).

As an additional test, we also implemented our
method with the full set of ECSAD features at all
down-sampled surface points, not only at the edge
features. We have tested our algorithms on the well-
known laser scanner dataset by Mian et al. (Mian
et al., 2006), consisting of four complete objects to be
recognized in view-based 50 test scenes.4 For com-
parison, we present previous results for three state
of the art methods: Spin images by Johnson and
Hebert (Johnson and Hebert, 1999), Tensor matching
by Mian et al. (Mian et al., 2006), and finally the
PPF registration by Drost et al. (Drost et al., 2010).
The results are presented as occlusion vs. recognition
rate, similarly to how (Mian et al., 2006) evaluated the
original algorithms on the dataset. Occlusion is the
percentage of the object which is visible, and recog-
nition rate is the relative number of times an object
is recognized in the 50 scenes. An object pose is ac-
cepted if it diverges with less than 12◦ and 5 mm from
the ground truth pose, which is similar to the criterion
used in (Drost et al., 2010).

For our surface-based method, we see a high per-
formance, which indicates a high performance of
the registration algorithm. The edge features, be-
ing more discriminative, show an even higher per-
formance, giving the best recognition results at the
highest occlusion rates. Additionally, we report the
average recognition time per object, which for our al-
gorithm includes both ECSAD computation, edge de-
tection by the classifier and non-maximum suppres-
sion. These numbers clearly show the gain of using
our sparse edge representation, giving a significant
speedup relative to both the surface-based registration
algorithm and the fast PPF registration.

4http://www.csse.uwa.edu.au/˜ajmal/
recognition.html
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Figure 7: Comparison of our surface- and edge-based
recognition systems with other works. The upper figure
shows different pose estimation algorithm performances in
terms of recognition-occlusion curves along with average
running times per object. The bottom figure shows the first
scene of the dataset, also shown in Figure 1. The magenta
objects are the determined poses, so in this scene all objects
have been correctly recognized.

7 CONCLUSION AND FUTURE
WORK

A new edge detection approach for 3D point clouds
from various sources has been developed, focusing
on speed and overall performance. In these aspects
our detector shows superior performance compared to
other methods, even with limited parameter tuning.

A RANSAC based pose estimation algorithm was
developed, which shows that using edges can signif-
icantly improve the runtime of 3D recognition algo-
rithms. Furthermore the simple pose estimation ap-
plication matches the performance of state of the art
recognition systems on an established laser scanner
benchmark, while being significantly faster.

In future work, a robustness study of the local ref-
erence frame compared with other reference frame
estimation algorithms would be highly interesting.
Since the descriptor has the best performance for a
relatively small support radius, it would be interesting
to apply the edges in higher level descriptors to deter-
mine if such an approach can result in a higher match
rate for large noisy scenes. It would also be interest-
ing to investigate the performance of the descriptor
if it was used in a Hough-like voting algorithm in-
stead of a RANSAC based approach. It is doubtful



that this will increase the speed for the tested recogni-
tion dataset, but it may improve the recognition rate in
more complex scenarios, where segmentation is often
performed. In this context it would also be interesting
to investigate if the edges can be used in a point cloud
segmentation algorithm.
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Abstract—We present a fast object recognition system coding
shape by viewpoint invariant geometric relations and appearance
information. In our advanced industrial work-cell, the system
can observe the work space of the robot by three pairs of Kinect
and stereo cameras allowing for reliable and complete object
information. From these sensors, we derive global viewpoint
invariant shape features and robust color features making use of
color normalization techniques.

We show that in such a set-up, our system can achieve high
performance already with a very low number of training samples,
which is crucial for user acceptance and that the use of multiple
views is crucial for performance. This indicates that our approach
can be used in controlled but realistic industrial contexts that
require—besides high reliability—fast processing and an intuitive
and easy use at the end-user side.

I. INTRODUCTION

The task of object recognition in an industrial assembly set-
up (as shown e.g., in Fig. 1) is fundamentally different from
the ’general object recognition problem’ from 2D images as
addressed, for instance, in the Pascal Challenge [1]. It also
differs largely from object recognition problems posed by 3D
datasets such as [2], which have been in particular recently
discussed with the availability of cheap RGBD sensors, such
as the Kinect camera1. The main difference for an industrial
set-up is that the sensors and the number thereof can be
chosen freely as well as the fact that illumination can be
controlled to a large degree by the light sources on the
platform or alternatively, that color can be calibrated by color
normalization techniques. Such a difference has not been
exploited by object recognition systems used in industrial set-
ups such as [3]. A particular challenge is that the goal of
performing large sequences of actions in assembly processes
requires very reliable and also fast object recognition and
localization as well as intuitive use at the end-user side.

In this paper, we address the task of object recognition in
a well-controlled scenario assuming objects occurring only
in the rather restricted work space of the robot as shown
in Fig. 1b. The set-up resembles an ’intelligent work-cell’
in an advanced production scenario. The task at hand is to
determine the presence of objects in the working space covered
by three pairs of Kinect and stereo cameras. In contrast to the

1http://www.xbox.com/kinect

object recognition problem addressed by standard databases
operating on 2D images or 3D depth information extracted
from individual views, in our set-up we can operate on rather
complete 3D data computed by three different views arranged
in a triangle (see Fig. 1a). Our method is then supposed to be
used to trigger other mechanisms such as pose estimation or
manipulation actions (e.g., grasping, peg-in-hole, or screwing
actions) as well as monitoring such processes in the context
of complex assembly operations (see, e.g., [4]).

In this paper, 3D texlets (see Subsect. III-D) serve as
basic visual representations of objects. These texlets are ac-
quired by two different sensors—stereo and Kinect cameras—
simultaneously. From these, viewpoint invariant representa-
tions based on appearance and geometric relations are com-
puted. The use of 3D information is attractive since it allows
us to extract viewpoint invariant features in terms of geometric
relations (such as distance or angle) between 3D entities. The
fact that we operate in a limited and controlled workspace
leads to reliable 3D shape and appearance information. In
our representations, both aspects—shape and color—are repre-
sented separately, allowing us to investigate their relative im-
portance. This space of feature relations (in the following also
called ‘relational space’) can be expressed in (potentially high-
dimensional) histograms providing unique and interpretable
descriptors for specific objects (e.g., the distance between
two parallel surfaces, see Subsect. III-E) which, besides being
viewpoint invariant, is also rather specific for a certain object.
As we will show in this paper, this is useful for efficient
learning because a relatively few object recordings are required
to learn representations for reliable object recognition.

As a classification algorithm, multi-class Random Forest
[5], [6] is applied in this paper. Random Forests (RFs) have
been found to be efficient because they combine the simplicity
of decision trees with the stability of voting methods. The
algorithm is trained with a set of real objects represented by a
combination of their relations and appearance histograms (see
Subsect. III-H).

The main achievements of our work can be summarized as
follows:
• we demonstrate the potential of applying 3D viewpoint

invariant relations by achieving high-performance clas-



sification with very few training samples. The remain-
ing misclassifications are caused mainly by object pairs
with very fine shape and color differences. For these
objects, the sensor resolution simply does not allow for
the required precision for coding the shape and color
differences.

• we can achieve a significant improvement in performance
by using multiple cameras comparing to single—or even
two—cameras. This is due to the fact that significant
aspects of objects are expressed in our representation by
relations, which only manifest themselves with a rather
complete 3D representation only achievable by means of
three views from different perspectives.

• we show that our approach, when applied to Kinect sensor
data, has a much better performance in comparison with
the sensor data extracted by standard stereo cameras.

• we show that, even under varying illumination conditions,
it is possible to derive strong appearance features from
color information when a color normalization step prior
to the classification is performed.

• we show that the combination of color and shape in-
formation leads to higher recognition results, hence both
features are complementary.

• we show how our approach can be used as a trigger for
pose estimation and by that complex scene description in
terms of object identity and object pose can be computed.

This work is based on a representation introduced in a
conference paper [7]. In this journal paper, we however go
significantly beyond the work in [7] in multiple respects: (i) we
apply our approach to a larger and significantly more difficult
object set2; (ii) we investigate the representation in terms of
two crucial parameters connected to binning and smoothing;
(iii) we investigate the effect of color normalization; (iv) in-
stead of using only 1D and 2D histograms, we also make use
of higher dimensional representations; and (v) we combine
our representation with a pose estimation step allowing for
a complete description of complex scenes in terms of object
identity and pose.

This paper is organized as follows: Sect. II discusses the
state of the art. Sect. III describes in details the object
recognition system introduced in this paper. In Sect. IV,
we present a benchmark dataset, describe the experiments
performed on the system and show the results. Sect. V presents
an application scenario in which the object recognition system
is used to trigger a pose estimation task and by that allow for
the interpretation of complex scenes. Finally, a conclusion is
given in Sect. VI

II. STATE OF THE ART

We first discuss the state of the art of the general problem
of object recognition and then we focus on this problem in an
industrial context.
Object recognition and classification learning: The problem
of object recognition and classification has been intensively

2This data set is available at http://caro.sdu.dk/sdu-dataset (we will make
it available by the final submission of this manuscript)

(a)

Robot Base Robot Reach CameraCamera viewWorkspace

(b)

Fig. 1. The set-up. (a) overview of the set-up showing the robot arms and the
camera pairs. The close-up view shows one pair of stereo and Kinect (with a
vibration-inducing motor attached to it). (b) a top-view sketch for the set-up
depicting the workspace.

studied over the last decades. The annual Pascal challenges
(see, e.g., [1], [8]) promote rigorous evaluation and compar-
ison of object recognition algorithms. Although significant
successes have been reported, criticism has been raised that the
typical visual class recognition may learn pose and context-
specific features rather than the object itself. In that context,
notably Nicolas Pinto and colleagues showed that a simple
model of the V1 cortical area of the human brain could
perform well on a typical natural image benchmark [9]. Also,
the generalization of classifiers or detectors learned on a
specific dataset to another, called domain adaptation, remains
a challenge [10]. In contrast to those works, this article is not
concerned with the detection and recognition of objects ”in
the wild”, but rather with the reliable and fast recognition of
objects in a specific industrial set-up, for which we however
cannot assume consistency in context. Also the number of
training examples is supposed to be kept very low since the



requirement of recording a large training set would increase
the complexity of the application of such a system at the end-
user side.

Classification is typically done in two steps, feature extrac-
tion and classification, where the first step extracts or learns
a set of features or parts to describe the objects’ training
samples and a second step which associate an object class
to a new unseen object sample. The features used typically
describe local image patches, often chosen for robustness to
affine transformation, e.g., SIFT [11]. Alternatively, feature
descriptors based on relative shape information, called ‘shape
context’ were proposed by Belongie et al. [12]. The shape
context of a point encodes the relative distribution of other
points on the shape. It has been used as such to perform
point-to-point matching in 2D. In [13], the shape context was
extended to 3D and defined for a local neighborhood.

After feature extraction, classification can be done in
two ways: the first class of methods effectively performs
image retrieval and is based on nearest-neighbor matching
(e.g., [11]); the second makes use of discriminative classi-
fication algorithms (such as Support Vector Machines [14] or
Boosting [15]). Generally, discriminative approaches lead to
higher classification performance, but can suffer from poor
generalization when using weak visual features or when the
variety of the training data is too limited.

Recently, hierarchical approaches such as convolutional
networks have shown high performance (at the price of a
significant computational cost) on such large dataset as Im-
ageNet [16]. Interestingly, it was shown that the hierarchies
learned on this dataset could then perform well when applied
on a different dataset [17], offering some hope for solving
the domain adaptation problem. It is worth noting that these
results are based on very large training data and obtained at
a significant computational cost. Both the computation time
and the necessity to create large training data cause significant
hurdles for the application of such systems in an industrial
context.

The approach used in this work differs in particular in two
aspects from the approaches to object recognition discussed
above: First, the system is based on a multi-view set-up that
is specific to an industrial scenario, aiming at high level
recognition performance; Second, this set-up allows us to
develop a feature describing the objects’ 3D-shape in a pose-
invariant fashion allowing the robust use of discriminative
classification methods. As a consequence, a small amount of
training data is required to achieve good performance.
Object recognition in industrial setup: Object recognition
has been used in industrial production set-ups mainly for
the identification of a small set of objects (mostly less than
five objects) and is in general used as a prior step for pose
estimation. Such approaches are nowadays part of standard
vision softwares such as Cognex3, Scorpion Vision4 and
Matrox5. These systems mostly provide 2D approaches. This

3http://www.cognex.com
4http://scorpionvision.co.uk
5http://www.matrox.com

necessarily leads to a larger complexity in using these systems,
since the projective map need to be accounted for in the set-
up of cameras. This requires covering all possible viewpoint
and appearance changes by the training set as well as handling
quite a number of parameters in the software that need to be
adapted. Recently, also approaches using 3D data have evolved
[3], but such approaches have not, to our knowledge, been used
on industrial vision systems for object recognition tasks.

Although vision gradually enters production units, state-
ments from end-users and even robot integrators such as
”vision does not work” are not uncommon. Such statements
are usually caused by the fact that the use of the applied
vision software requires at least some expert knowledge about
the involved visual processes and the camera geometry. As
argued above, the use of 3D vision approaches—as done in
our work—can facilitate the application of vision algorithms
in industrial scenarios by reducing the complexity introduced
by viewpoint changes caused by the projective map, or in other
words, by allowing the end-user to operate in the more intuitive
Euclidean space.

Another advantage in an industrial context compared to the
general object recognition problem discussed above is that the
actual camera set-up can be freely chosen. This opens the
possibility to increase robustness by using multiple cameras.
In addition, due to relatively short distances between camera
and object, 3D sensors such as Kinect like cameras can be
used. The novelty of our approach lies in the explicit use of
multiple simultaneously recorded views, utilizing viewpoint
invariant relations that can only be generated based on the
combination of all three views.

Another aspect of our approach is that due to the pose in-
variant representation only few training examples are required
to achieve a high recognition performance. This facilitates the
often quite sophisticated training that is in general required
for view based systems (see, e.g., [2]).

In Subsect. IV-D, we will show that we can achieve with
very few training samples high object recognition performance
in a controlled—but, from a point of view of industrial pro-
duction, realistic—environment for a recognition task which is
much harder than it usually occurs in an industrial setting. This
allows systems to perform object recognition for assembly
processes with some complexity in an industrial context based
on visual information.

III. OBJECT INSTANCE RECOGNITION SYSTEM

In this section, we describe in details the components of the
object recognition system introduced in this article.

A. System overview

Fig. 2 shows the system components. The system operates
on the robot platform described in Subsect. III-B in which
three views are captured by three sensors (Kinect or stereo).
For a single view, the process starts with applying colorimetric
camera calibration on images as explained in Subsect. III-C.
This is followed by scene preprocessing for table removal and
object segmentation as a prior step for object recognition.



Fig. 2. Object instance recognition: block diagram of the different compo-
nents. The three layers on top shows the components that process the sensory
data from each single camera. The lower components are the ones process the
3D combined data where the relational representation of objects is obtained to
form the object signature, which is then passed to the supervised classification
algorithm.

The table removal is applied using a RANSAC-based plane
detection whereas the segmentation is performed using 3D
Euclidean clustering. All this is performed in the 3D point
cloud data using PCL library [18].

For a segmented object, the 3D texlets features described in
Subsect. III-D are then extracted forming a single 3D view of
the object. Using the relative camera transformations, which
are estimated through external camera calibration, the three
views are combined in the 3D space. These combined features
form the 3D representation of objects from which the relational
representation is computed.

The relational representation is a pose-invariant object de-
scription obtained by computing shape and color relations
from pairs of 3D features, see Subsect. III-E for details.
The different relations are then binned in multi-dimension
(ND) histograms to form the object signature (Subsect. III-F).
Optionally, histograms are processed by means of spatial
filtering for noise reduction (Subsect. III-G). The resulting
object signature is finally passed to a classifier; Random Forest
(Subsect. III-H) is used here. During the training phase, which
is performed in a supervised manner, a classification model of
decision trees is created from the training data. The model is
used to predict the object ID (with an associated conference
value) during execution (i.e., prediction phase).

B. Multi-view sensors (set-up)

The environment in which we want to solve the object
recognition task is a robot work-cell (which can be used
e.g., in industrial assembly processes as in [19]). Fig. 1a
shows an overview of the set-up and camera pairs in use. The
work-cell consists of two robot arms performing manipulation
tasks with a variety of objects. Three pairs of Kinect and
stereo cameras are mounted in a close to equilateral triangular
configuration. By combining the three views of this set-up,
we obtain a complete (except for the surface in contact with
table) representation of the objects’ 3D shape. Note that a
vibration-inducing motor is attached to each Kinect to reduce
the interference effects occurring when multiple Kinects with
overlapping views are simultaneously used [20].

Fig. 1b is a sketch (plan view) of the set-up, showing
the field of view of each camera and the area of reach
of the main robot arm. The yellow-shaded area depicts the
workspace in which our system operates. The workspace is
defined by the intersection of the three fields of view and
the area of reach. The requirement that all cameras cover
the area is strictly limiting the usable workspace. On the
other hand, for complicated manipulation tasks, such as the
ones this set-up is intended for, high performance of object
recognition and pose estimation is needed. In this paper,
we show that having multiple views enhances performance
significantly by providing a complete 3D representation, which
allows for encoding a rich set of relations unavailable from
single views (e.g., opposite surfaces). Furthermore, such a
multi-view approach also increases the system’s robustness
against occlusion.

C. Colorimetric camera calibration

One way to increase color robustness is to apply col-
orimetric camera calibration (see Fig. 3). By doing so, we
minimize two effects causing instability of color features. First,
the variation in illumination due to having different lighting
conditions. The second effect is the variation in the color
representation that may occur due to different sensors. On
the system level, this process leads to a more robust object
instance recognition based on color (see Subsect. IV-C).

Essentially, the process involves reading reference color
values obtained from the image and do the correction based
on their true values. These reference colors are presented in
a color checker6 lying within the sensor’s field of view. The
color checker contains 24 color patches representing natural
and gray-scale colors, which was first introduced by [21].

The method implemented here consists of two steps [22]:
color normalization and color transformation. The normaliza-
tion step is applied to make sure that intensity values of the
image falls within [m, 255−m]. Note that m, which is set to
10, is a margin added to the standard image range of [0, 255]
to lower the risk of exceeding that range after performing the
color transformation.

From the original image I , the normalized image In is
obtained by:

In = sI + t (1)

where s = (256 − 2m)/(wo − bo) and t = m − bo, which
are scaling and translation factors. wo and bo are the gray-
scale values (averaged RGB values) of the reference white and
black colors, which are also given by the color checker. Note
that images are stored in matrices where the columns and the
rows represent the pixels and their corresponding RGB values,
respectively.

The next step is the color transformation by which the color-
calibrated image Ic is obtained:

Ic = MIn (2)

6We use the standard x-rite color checker, see http://xritephoto.com/
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Fig. 3. Colorimetric camera calibration under varying lighting conditions.
Object samples (images from one of the Kinect sensors) and their correspond-
ing 2D histogram of hue and saturation are shown for: (a) before applying the
calibration and (b) after. The x-rite color checker used to get reference color
values is shown at the bottom of each image. This figure should be viewed
in color.

M is a 3x3 matrix calculated as the least-square solution of
the transformation of the 24 reference color values (in RGB
space) relative to their ground truth values.

D. 3D Texlets

As visual descriptors of objects, 3D texlets are extracted
from both stereo and Kinect sensors. Fig. 4 shows the extrac-
tion process. 3D texlets (the top level in the figure) represent
small, flat local surface patches in the Euclidean space. A
3D texlet is constructed by fitting a plane to a cloud of 3D
points surrounding the 3D position that corresponds to the 2D
position of a 2D texlet, which is a primitive feature extracted
through local filtering of images [23]. The 3D reconstruction
is performed using the depth image for Kinect and the dense
disparity map (OpenCV implementation of the semi-global
block matching algorithm [24]) for the stereo cameras. In
the following, we provide a brief description of 3D texlets
attributes used in this paper—for full description, the reader
is referred to [23].

We define as T the space of all texlets and the 3D texlet,
ΠT

i ∈ T , is formalized as:

ΠT
i = (pi,ni, ci) (3)

where the index i is used to identify the texlet ΠT
i , pi is the

texlet’s 3D position and ni its orientation (given by the normal
vector). In addition to the above geometric attributes, the 3D

Fig. 4. The hierarchical representation of the texlets. Example images from
Kinect and stereo cameras are shown at the bottom. In the middle, 2D texlets
are extracted after filtering operations. On top are the extracted 3D texlets
from different cameras. This figure is best viewed in color.

texlets also encode color information in RGB format: ci =
(ri, gi, bi). The number of the extracted 3D texlets depends
on the kind of sensor used, the properties of the objects in the
scene (mainly size, texture and reflectiveness). The extraction
rate depends on the number of texlets and the use of parallel
processing. When operated in GPU, 3D texlets extraction using
Kinect can be achieved with approximately 5 Hz (frame per
second) [23].

E. Relations

The 3D texlets introduced in the previous section provide
absolute features (relative to an external reference frame) of
objects in the 3D space. One limitation when representing
shapes, with e.g., bags of features [14], is that this represen-
tation may vary drastically depending on viewpoint. For this
reason, we propose to represent objects’ shapes as distributions
of relations between features, that are intrinsically pose-
invariant. Pose-invariance is necessary for efficient learning
of object classes.

Shape relations are similar to the 3D shape context intro-
duced as local descriptors by [13], however, they are used here
as global descriptors of objects. Having combined multiple 3D
views of objects allows the global descriptors to be robust and
rich representations for fast learning. We also use the term
color relations to refer to color descriptors, which provide a
more robust appearance descriptors compared to the absolute
color. This section gives a detailed description of how the
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Fig. 5. Texlet’s shape relations. (a) definition of shape relations between texlet
ΠT

i and texlet ΠT
j ; Euclidean distance Rd(ΠT

i ,Π
T
j ), angle Ra(ΠT

i ,Π
T
j )

and normal distance Rnd(ΠT
i ,Π

T
j ). (b) example of an object and its extracted

texlets as seen from different views (c) shape relation histograms of all pairs
of texlets extracted from object shown in (b), 1D histograms on top and 2D
histograms at the bottom.

different relations are computed.
To describe an object, we compute a set of relations from

all pairs of texlets in the object. Formally, a pairwise relation
Rk between texlets is defined as:

Rk : T × T −→ R (4)

Hence, a shape described by a set of N texlets S =
{ΠT

1 ,Π
T
2 , . . . ,Π

T
N} will then be described by N × (N − 1)

values for a given relation. For convenience, we will note the
set of those values as Rk(S) ∈ RN×(N−1), where

Rk(S) =
{
Rx(ΠT

i ,Π
T
j ) : i, j ∈ [1, N ], i 6= j

}
(5)

and Rx(ΠT
i ,Π

T
j ) is the inter-texlet relation between ΠT

i and
ΠT

j .
One important aspect is that the relation transforms an

absolute pose-dependent representation in S into a relative
pose-independent one inRk. For instance, the distance relation
Rd transforms texlets’ positions into inter-texlet distances.
Because this kind of relations involves pairs of texlets, we
refer to it as ’second-order’ relations.

In the following, we describe all the texlets relations used
in this paper.

Shape relations

The first class of relations that we will consider are Shape
relations, which are defined to encode the objects’ geometric
information. This section introduces three shape relations used
in this paper. Later, we will investigate which and how to com-
bine those relations for best performance (see Subsect. IV-C).

It is important to note that for instance recognition, our
shape representation should be scale-variant, i.e., object size
matters and shall be encoded. Additionally, to characterize the
different shape variations, we need to encode the deviation in
orientation, i.e., curvature in a global context. Therefore, our
set of relations shall address those two aspects. In this paper,
we introduce the following relations(illustrated in Fig. 5a):
Angle relation: It is defined as the angle between the two
texlets’ normals.

Ra(ΠT
i ,Π

T
j ) = ](ni,nj) ∈ [0◦, 180◦]

The angle relation is important to describe the shape variations.
For instance, a flat surface will be dominated by 0◦ angle
relations, whereas a sphere will have a set of relations that are
uniformly distributed within the range (0◦, 180◦].
Distance relation: It is defined as the Euclidean distance
between two texlets in the 3D space.

Rd(ΠT
i ,Π

T
j ) = ||pi − pj ||

The distance relation describes how texlets are distributed
relative to each other. Note that, we don’t apply scale nor-
malization to keep the size encoded.
Normal distance relation: The normal distance relation is
defined by:

Rnd(ΠT
i ,Π

T
j ) = min

(
Rndi(Π

T
i ,Π

T
j ), Rndj (ΠT

i ,Π
T
j )
)

where

Rndi
(ΠT

i ,Π
T
j ) = (pj − pi) · ni

and

Rndj
(ΠT

i ,Π
T
j ) = (pi − pj) · nj

For an object with two parallel surfaces, the normal distance
describes the distance between those surfaces, and therefore,
explicitly encodes the object’s dimensions. Additionally, this
relation encodes whether two surfaces are pointing inward
(toward each other) or outward; specifically, positive value for
inward distance and negative value for outward. This allows
for explicit characterization of certain object properties such
as openness and closeness (see Subsect. III-F).

Note that, the two requirements of describing the geometric
variation and being scale-variance can be well-fulfilled by
combining the angle relation with either the Euclidean distance
relation or the normal distance relations.



Color relations
The second class of relation describe the object’s appearance

using color. The color relations are computed from color
channels of HSV and CIELAB (or Lab) spaces. Those two
spaces are commonly used for color indexing [25] because
they provide a color coding that is more stable under changing
lighting conditions than RGB . They both separate the lighting
information, luma, from the color information, chroma. More
specifically, in HSV, the chroma is represented by the Hue (H)
and the Saturation (S) whereas the luma is represented by the
value (V ). In CIELAB, the luma is the lighting (L) component
and the chroma is the a and b components. This allows for the
presentation of color with two values, when luma is undesired.

The inter-texlet relation of a certain color channel, c, is
computed as:

Rc(Π
T
i ,Π

T
j ) =

〈
c(ΠT

i ), c(ΠT
j )
〉

where the symbol 〈〉 denotes averaging operation. Using the
average as color relation maintains the distinctiveness of color
as a feature for objects with uniform colors whereas the
difference of colors as used in, e.g., [26], would be close to
zero. That would mean that homogeneously colored objects
of different colors would not be distinguishable. Furthermore,
averaging smooths out the noise and hence enhances the color
robustness. In practice, experiments on our dataset showed that
recognition performance was reduced by nearly 50% when
using color difference rather than color average.

For the three color channels of HSV space, the average inter-
texlet relations are referred to as Rh(ΠT

i ,Π
T
j ), Rs(Π

T
i ,Π

T
j )

and Rv(ΠT
i ,Π

T
j ). For CIELAB, they are Rl(Π

T
i ,Π

T
j ),

Ra(ΠT
i ,Π

T
j ) and Rb(Π

T
i ,Π

T
j ).

The transformation from the RGB space, which is the
default space in 3D texlets, is implemented using the standard
formulae7. Note that sRGB is the RGB standard used by the
sensors, hence, the sRGB corresponding white point reference
is used to convert to CIELAB space.

F. Multi-dimensional histograms

In the previous section, we introduced a set of relations
between texlets. Although individual texlets carry implicit
information about objects’ shape and appearance, overall
statistics over different relations between texlets forming an
object do provide pose-invariant and rich description of the
objects. This statistical representation is implemented by bin-
ning relations in multi-dimensional histograms, which model
their distributions as fixed-sized vectors.

For instance, angle and distance relations are mapped into a
2D histogram and color relations formed from the three color
channels are mapped into a 3D histogram. In the following,
we will show that such a representation of objects is naturally
pose-invariant.

For a set of D relations, denoted as V = {Rx1, ..,RxD},
the D-dimensional histogram is defined as:

H(V, b) = {h1(V ), ..., hbD (V )} (6)

7See e.g.,http://brucelindbloom.com

where b is the number of bins that is, for simplicity, kept
constant along all dimensions (relations) and hi(V ) is the
number of relations that fall jointly within the boundary of
the ith bin. This means that the total number of the bins
in this multi-dimensional histogram (i.e., the size of the
corresponding feature vector) is equal to bD. The optimal value
of b is experimentally determined for all kind of relations in
different ways of grouping (see Subsect. IV-C). All bins of the
multi-dimensional histograms can then be used as a fixed size
feature vector, f , describing the object’s shape and appearance.

Fig. 6 shows 2D histograms for different objects. In this
figure (a) and (b) represent the same box with two different
poses and appearances; (c) is a similar box, but with an empty
cavity in the front side; and (d) is a cylindrical box. First,
note that the shape histograms in (a) and (b) are very similar,
despite the object being in a different pose. This demonstrates
the invariance of the relation statistics as a feature descriptor.
For those two objects, the 2D histograms of shape (on the left)
illustrate characteristics of the object’s shape: the peak visible
for normal distance of zero and angle of zero encodes all
coplanar texlets. Then, two peaks are visible for angle of 180
degrees and normal distance of -150 and -270 that correspond
to the parallel sides of the box. Finally, the area around 90
degrees correspond to orthogonal surfaces.

Second, in (c) we can see the representation for an open
box. In this case, the color histogram (right) is similar to (b),
but it also shows additional peaks for the inside color. In the
shape histogram, we also see additional peaks illustrating the
parallel surfaces from the inside and outside of the box. For
the cylindric object in (d), the shape histogram as well the
appearance histogram are significantly different from the rest.

In summary, the above examples demonstrates three charac-
teristics of the shape relations: pose-invariance, distinctiveness
and interpretability.

G. Histogram processing

In previous sections, we showed how histograms of relations
provide a rich description of objects. In such a high level
representation, reducing noise will enhance recognition. The
noise is a result of error propagated from lower processes
such as 3D reconstruction, relative camera calibration, texlet
sampling, uncompensated variation in color, and histogram
binning.

We use Gaussian smoothing filter to perform noise reduc-
tion by convolving the histogram with a Gaussian (normal
distribution) function. Gaussian filter is a low-pass filter that
reduces the noise and only attenuates the high-frequency
components because it does not have a sharp cut-off frequency.
The filter is widely used in image processing applications
(e.g., Canny edge detector [27]) where the information is
contained in the high-frequency components. This also applies
to our histograms – shape and color information are high-
frequency. Let H́(V, b) be the histogram after smoothing,
which is computed by:

H́(V, b) = H(V, b) ∗K(σ) (7)
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Fig. 6. Four different scene configurations and corresponding histograms. The histogram blocks for each scene consists of the following components: (top
row, left) 2D histogram of angle Ra(ΠT

i ,Π
T
j ) and normal distance Rnd(ΠT

i ,Π
T
j ) for all possible pairs of texlets. (top row, right) 2D appearance histogram

representing the hue (H) and the saturation color information. (bottom row, right) overview of the object in the scene. (bottom row, left) the extracted 3D
texlets of the object.

R
n
d
(Π

T i
,Π

T j
)

Ra(ΠT
i ,Π

T
j )

(a)

R
n
d
(Π

T i
,Π

T j
)

Ra(ΠT
i ,Π

T
j )

(b)

Fig. 7. Histogram filtering. (a) the original histogram (b) the histogram after
filtering with σ = 2.

where K(σ) is a D-dimensional Gaussian kernel and σ is
its standard deviation, which will be chosen empirically in
Subsect. IV-C. In the implementation, we make use of the
separability property of the Gaussian kernel. Therefore, the
D-dimensional convolution is performed by a series of D
consecutive convolutions using 1D kernel. The kernel size is
determined using the 3-sigma rule (k = 10/3(2σ−1) ), which
implies that the kernel covers 99.7% of the Gaussian function.

H. Classification (Random forests)

The quality and invariance properties of the histogram rep-
resentation presented in the previous section makes it attractive

for the purpose of object recognition. Supervised classification
is a field that is well explored in machine learning (e.g.,
[28], [29]). In this work, we make use of Random Forest
classification [5], [6]. The reasons for this choice are multiple:
first, RF can be trained efficiently and are very fast at clas-
sification time, even for large input dimensions; second, RF
are intrinsically multi-class allowing for an efficient learning
in contrast to 1 vs. all approaches; third, RF have shown to
reach very high level of performance on a variety of tasks
(notably [30], [31]); finally, RFs effectively perform a form
of dimension selection and which makes the resulting models
interpretable.

Random forests learn a collection of randomized decision
trees from different random subsets of the available training
data, in a manner similar to Bagging [32].

Formally, if we consider a dataset D = (fj , yj)j∈[1..|D|],
where fj is an observation represented by the feature vector
f presented in Subsect. III-F and yj ∈ [1..C] is a class
label and |D| denotes the number of samples in D, then we
draw M random subsets Di ⊂ D, ∀i ∈ [1..M ] from the
data (M = 100 here) and train a population of M decision
trees P = Ti,i∈[1..M ] such that Ti is trained from the subset
Di. Typically, the subsets Di are drawn randomly such that
|Di| = γ|D| (we used a common value of γ = 0.5).



From each subset Di, we train a Randomized Classification
Tree (RCT). RCT are binary trees, where each node n splits the
input space (and thereby the dataset such that Dl∪Dr = Dn)
recursively in order to maximize class purity in all partitions
and sending the samples that fall on each side of the partition
to each child node. The recursion stops when a node receives
too few samples to split (|Dn| < 5 here) or reaches a
maximum depth (depth(n) > 10 here)—such nodes are called
leaf nodes and label the corresponding region according to the
majority label in the available samples.

The split operation is traditionally done along a hyperplane,
by applying a threshold operation to one input dimension.
The randomization of the decision trees is done by selecting
randomly a subset of input dimensions (computed to be
the first integer less than log2|f | + 1, [6]) for each non-
leaf node and optimizing amongst those the dimension and
threshold defining the split which minimizes all partitions’
class impurity, using the so–called Gini coefficient G(Dn):

G(Dn) = 1−
C∑

k=1

|Dn|∑
j=1

Ik(yj)

|Dn|

2

, (8)

where Ik(yj) is an indicator function that returns 1 if yj = k
and 0 otherwise.

Finally, the RF prediction P (f) for an input vector is
obtained by calculating the class with the largest amount of
votes amongst all RCTs Ti, i.e.,:

P (f) = arg max
k∈[1..C]

∑
i∈[1..M ]

Ik(Ti(f)) (9)

hlwhereas the associated confidence is computed as the ratio
of the number of votes (of the predicted class) to the number
of RCTs.

The hierarchical greedy search for splits allows for a high
performance classification, while the randomization and re-
dundancy provided by the bagging reduces the model’s over-
fitting, increasing generalization and robustness.

IV. DATASET AND EXPERIMENTS

In this section, we present the benchmark dataset and the
different experiments performed to evaluate the system. First,
the multi-view object dataset is introduced in Subsect. IV-A.
This is followed by describing how the experiments are set up
in Subsect. IV-B. In Subsect. IV-C, we investigate how to form
the optimal description of an object by separately considering
the color and shape representations. Using multiple camera
views versus single view is compared in Subsect. IV-D. In
Subsect. IV-E, we show the performance obtained through
Kinect data in comparison with stereo data. In Subsect. IV-F,
we do error analysis by discussing the cases in which the
system performs relatively low.

A. Multi-view object dataset

To benchmark our system, a dataset of 100 objects was
created8(see Fig. 8). The selection of objects cover a wide
range including industrial and household objects, some of
them taken from the KIT dataset [33]. The dataset contains
RGBD and stereo images from the three Kinects and stereo
pairs presented in Subsect. III-B, along with the relative
transformations of the sensors (calibrated). For each sample,
we extract 3D texlets (as discussed in Subsect. III-D) from
all views. Texlets from different views are then combined (in
3D space) using the camera transformations. This allows for
having a rather complete 3D visual representation of objects
(see Fig. 5b).

There is a total of 30 different samples (random poses) for
each object captured under three defined lighting conditions
(see Fig. 2a): ’standard’, ’dark’ and ’bright’ with 10 samples
each. The variation in lightning is created to test the robustness
of the system in light-changing conditions and to study the
impact of the colorimetric calibration. Fig. 3 shows samples
of the different lighting conditions. Objects were selected such
that the set has objects with the same shape and different
appearances and vice versa (see Fig. 8). The reason for this
is to test the use of shape and color both individually and in
combination.

B. Experiment setup

In the following experiments, unless otherwise specified, the
3D texlets from three Kinects (colorimetrically calibrated) are
used. In each experiment, the dataset is divided into training
and test subsets. The test subset is taken from one lighting
condition (10 samples per object) whereas the training subset
is taken from the other two (20 samples per object). The test
set is used to evaluate the system performance in terms of
recognition accuracy, which is defined as the trace mean of
the confusion matrix.

To quantify the robustness of color information associated to
the texlets, the experiment is executed in three different modes.
For each mode, the test subset is taken from a different lighting
condition and the experiment is iterated 5 times where the RF
is differently seeded each time. This results in 15 iterations
from which the average accuracy and the standard deviation
are computed.

Here, we want to point out that a big advantage of our
our approach is that good recognition performance is already
possible with very few object instances stored (see Sub-
sect. IV-D) due to the high degree of pose invariance of the
representation as well as the color normalization procedure.
This allows for a fast teaching of objects by putting them
into the field of view of the camera system and record data
for very few standard poses (e.g., two for a cylindric object
corresponding to standing and lying). This fast teaching is
particularly important in an industrial context.

8http://caro.sdu.dk/sdu-dataset (we will make it available by the final
submission of this manuscript)



Fig. 8. Multi-view dataset of 100 objects shown in thumbnails. The set contains RGBD and stereo images: 30 samples each object from three camera
views. The data were captured under three lighting conditions. The dataset is available at http://caro.sdu.dk/sdu-dataset (we will make it available by the final
submission of this manuscript).

C. Optimal representation for color and shape

In this section, various experiments have been conducted
to find the best combination of color and shape relations and
to determine histogram and filtering settings. The process has
been performed for color and shape relations separately, such
that they can later be combined in one representation. When-
ever color is involved, the use of the colorimetric calibration
is also evaluated. The results presented in this section address
the following aspects:
Set of relations: Here, we aim at selecting the best set of
relations encoding shape and color, from the ones defined in
Subsect. III-E.
Histogram binning: To determine the optimal bin size of his-
tograms. For simplicity, the bin size is fixed across dimensions.
Filtering: To determine the value of σ (Gaussian filtering of
histograms) that yields the best recognition.
Relational dimensionality: To determine the construction of
relations into ND histograms, i.e., the best composition of the
feature vector f defined in Subsect. III-E. For instance, three
relations can be arranged in three 1D histograms, two 2D
histograms or one 3D histogram. The optimal color and shape
representations are separately determined by investigating the
above aspects. The overall object representation is then defined
by the combination of the two representations.

Color

Fig. 9 shows the classification accuracy over varying
number of bins using different color relations derived from
CIELAB space. Generally, the figure shows that the per-
formance increases to a maximum value before it starts to
decrease again. The decrease is steeper for histograms of
higher dimensions – this is particularly clear for the 3D
histogram. This can be interpreted as a result of data sparsity
in feature space, which is exponentially proportional to the
number of dimensions. Moreover, the higher the number of
bins, the higher the number of features involved in learning
(see Subsect. III-F). This makes learning slower and more
prone to over-fitting.

From the figure, we find that the optimal number of bins
is 10, 6 and 4 for 1D, 2D and 3D histograms, respectively.

Fig. 9. Color histograms binning. The histogram binning of CIELAB color
relations: a, b and L are 1D histograms of the color space components; a-b,
a-L and b-L are 2D histograms; and a-b-L is a 3D histogram.

The number of bins corresponds to a resolution of 10% of the
color space in 1D histograms, 16.7% in 2D histograms and
25% in 3D histograms.

Based on the optimal bin numbers, we investigated the effect
of filtering under varying values of σ. We found that σ = 1
yields the highest performance. This value of σ corresponds to
5% of the color space in 1D histograms, 8% in 2D histograms
and 12.5% in 3D histograms.

In Fig. 10, the HSV and CIELAB color spaces are compared
in terms of the system classification accuracy when color rela-
tions are used. In this figure, color relations from the different
components binned in ND histograms are shown. The figure
also demonstrates the effect of the colorimetric calibration in
each case. We can observe a significant improvement with
calibration in all cases except for the L component of the
CIELAB and the value component of the HSV. Although
the Kinect sensor automatically performs exposure adjustment
resulting in stabilizing luma components, which L and value
represent, the result shows that luma is not a strong feature
for recognition under changing lighting conditions. The figure



Fig. 10. CIELAB Vs HSV. a, b and L are 1D histograms of CIELAB components; a-b, a-L and b-L are 2D histograms; and a-b-L is a 3D histogram. Hue,
Saturation and Value are 1D histograms of HSV components; Hue-Saturation, Hue-Value and Saturation-Value are 2D histograms; and Hue-Saturation-Value
is a 3D histogram.

shows that, in all cases, the colorimetric calibration accounts
for smaller standard deviation, i.e., higher stability. It also
shows that CIELAB outperforms HSV as a color space when
color is used for recognition.

Fig. 11. Color relation dimensionality. a+b+L is the combined 1D histograms
of CIELAB components; a-b+a-L, a-L+b-L and a-b+b-L are two combined
2D histograms each; and a-b-L is one 3D histogram

In Fig. 11, we show the classification accuracy when the
three components of CIELAB arranged in different dimen-
sionalities: three 1D histograms, two 2D histograms and one
3D histogram, hence it shows all the possible arrangements
in which the three color components can be combined. In
determining the overall color representation, we find that 1D
histograms (1D histograms of L relations, a relations and b
relations) slightly outperform the 2D histograms. Additionally,
the figure also emphasizes the advantage of filtering and the
colorimetric calibration.

Shape

Similar to color, we first aim at determining the optimal
number of bins for the different shape relations discussed in
Subsect. III-E as shown in Fig. 12. We can see the same pattern
occurring: the performance reaches a maximum value before
it starts to decrease and that it has a steeper slope for higher
dimensions. From the figure, we find that the optimal number
of bins is 50 for distance and 19 for angle in 1D histograms,
12 in 2D histograms and 8 in 3D histograms. The number of
bins corresponds to a resolution of 2% of the shape relations

Fig. 12. Shape histograms binning. The histogram binning of the shape
relations: Angle, Distance and NormalDistance are 1D histograms; Angle-
Distance, Angle-NormalDistance and Distance-NormalDistance are 2D his-
tograms; and Angle-Distance-NormalDistance is a 3D histogram.

spaces in 1D histograms, 8.3% in 2D histograms and 12.5%
in 3D histograms. Note that the distance ranges from 0 to
300mm and the angle ranges from 0 to 180◦.

Based on the optimal bin numbers, we investigated the effect
of filtering under varying values of σ. We found that σ = 0.5
yields the highest performance. This value of σ corresponds
to 1.2% of the shape spaces in 1D histograms, 2.1% in 2D
histograms and 3% in 3D histograms.

When the shape relations are arranged in different dimen-
sionalities, we found that the 2D histogram of angle and
distance yields the best performance. Moreoever, as opposed
to color, we found that filtering in shape relations does not
achieve significant improvement.

Combined shape and color
Based on the above findings, we show how the system

performs when the optimal color and shape representations are
combined. This is demonstrated in Fig. 13 and also compared



Fig. 13. The optimal representations of color and shape separately and
combined.

with the separate representations of color and shape. The figure
shows that a classification accuracy of 94% is achieved, which
is significantly higher than 81% for shape alone and 74% for
color alone. We can also see that the colorimetric calibration
contributes with improving the accuracy as well as the stability
(i.e., smaller standard deviation).

D. Performance depending on number of views and samples

In this experiment, we show the system performance in
two aspects: the number of training samples per class and
the number of camera views used to capture objects. For
each experiment, the number of samples per class is fixed
to 10 samples in the test subset and changed from 1 to 20
in the training subset. Fig. 14 shows three learning curves
for three cases: three views, two views and one view. Note
that, in contrary to previous experiments, for both subsets, the
samples are randomly selected across all lighting conditions.
This explains the slightly higher performance for three views
with 20 samples per class in training (96% compared with
94% as in Fig. 13).

The figure highlights important features of the our system.
First, the learning efficiency by which high performance is
achieved with a few training samples. We can observe that with
already 1 sample per class we get 60 % and above 90 % with
5 samples. Secondly, the figure shows the advantage of having
multiple views. This is evident in terms of performance (about
17% improvement compared with one view, 5% compared
with two views). It is also evident by obtaining faster learning
with more views, i.e., less number of samples is needed to
reach the ’steady-state’ of accuracy (it is about 18, 15 and 10
for one, two and three views respectively).

E. Kinect vs stereo cameras

Fig. 15 shows the classification accuracy of the system when
the stereo cameras are used compared with the Kinect sensors.
The figure shows that the system performed significantly better
with Kinect data (26% higher) on our dataset. Contrary to
Kinect data extraction, dense stereo algorithms generally fails
on non-textured objects. Having many objects in the dataset
that fall in this category explains the lower performance of
the stereo data. Non-textured objects are widely available

Fig. 14. Learning curve for object instance recognition. Three cases are
compared depending on the number of camera views: singe view, two views
and three views.

Fig. 15. System performance on stereo versus Kinect data.

especially in industrial platforms and that limits the reliability
of the stereo sensory data.

F. Misclassification analysis

The maximum classification accuracy the system reaches
is 96% (Fig. 14). In Fig. 16, the 3 objects with the lowest
classification accuracy are presented together with their top
confusing objects. The figure is derived from the average
confusion matrices computed within the same experiment
discussed in Subsect. IV-D.

The confused objects, as shown in the figure, are very
similar in shape or color. The two objects on the left and
the center are confused with objects that have the same shape,
which suggests that the system fails to detect differences in
their color representations. The object on the right is confused
with an object with the same color and a only slightly different
shape. Given that the two objects are relatively small, such
geometric differences are beyond the limit of the sensor
(Kinect in this case) to extract any distinctive 3D information.

The system accuracy discussed above considers only the RF
top prediction, i.e., the prediction with the highest confidence
(or the majority of tree votes). If we allow predictions with
confidence values that are above a certain threshold, we
will obtain, instead of single prediction, a list of recognition
candidates per test instance. In order to find the accuracy limit
the system can reach by possibly including a process capable
of finding the correct prediction from this list. To do this, a
test instance is considered correctly recognized if it is in the



list. The confidence threshold is set to 25% allowing for a
maximum of 4 candidates. By applying the same settings as
in Subsect. IV-D, we reach an average accuracy of 99.76%
with a standard deviation of 6×10−3.

Fig. 16. The three least classified objects and the objects they are confused
with. Note that the objects on the left have different color (top: dark gray,
below: dark green). The thumbnails are resized for better visualization and
they don’t necessarily reflect their actual relative sizes.

V. APPLICATION FOR POSE ESTIMATION

We have tested our system in the more application-oriented
scenario of free-form recognition and full 6D pose estimation.
In this application, we assume a typical tabletop setting where
multiple objects are observed in a scene (see Fig. 18). The
task is to perform instance recognition and pose estimation
of all objects present for further processing, e.g. robotic
manipulation. To facilitate the use of our representation in
the recognition process, we assume spatial separability of the
objects, which allows us to preprocess and segment the scene
(see Subsect. III-A) and then recognize all the clusters. Note
that such a separation is straightforward to achieve in an
industrial setting, by, e.g., any feeders.

Our algorithm for recognition and pose estimation works as
follows:

1) Cluster recognition: the RF classifier is now run on
each of the clusters separately. If the classifier returns a
prediction confidence below 0.25 for a cluster, the cluster
is rejected as an unknown object.

2) Nearest training instance search: the RF classifier is
designed in such a way that it generalizes over the training
instances for identification of an object in novel views.
The RF output of a cluster is thus the ID of the object
producing the highest prediction confidence. For pose
estimation, however, we wish to perform a 3D alignment
between the identified object and the scene cluster. To this
end, we do a search for the concrete three view training
instance of the object showing the highest degree of
similarity with the cluster and use this model to compute
the relative pose. This information is not available in
the RF output, so we perform a linear search within the
training set for the nearest matching view using the global
histogram descriptors.

3) Pose estimation: the recognized object is now aligned
with the scene cluster using the identified training in-
stance. Here we use an optimized RANSAC-based algo-
rithm presented in our prior work [34]. This algorithm

injects a prerejection step to quickly discard samples
that are unlikely to produce a correct alignment, making
the search for the pose much faster. The best pose is
determined by the number supporting inliers, given by the
number of aligned object points that lie within 5 mm of
the nearest scene point. The output pose of the RANSAC
algorithm is finally refined using the ICP algorithm [35]
to get a more accurate pose.

The above procedure is repeated for all clusters in the scene for
which the RF classifier returns a high enough confidence. A
block diagram is shown in Fig. 17 and the procedure is used
as a direct addition to the recognition procedure in Fig. 2.
The whole pose estimation process for each object, including
pose refinement, takes on average less than 500 ms, due to the
prerejective nature of the modified RANSAC algorithm.

In Fig. 18, we show pose estimation results for several
different scenes of varying difficulty. During these tests, we
experienced a very high amount of accuracy, as long as the
objects were clearly visible in the scene

VI. CONCLUSION

We presented an object instance recognition system for an
industrial work-cell with multiple vision sensors. Our system
represents objects with viewpoint invariant 3D shape features
as well as robust color features. The system was evaluated on a
dataset of 100 objects recorded under three lighting conditions.

The results show that our system is able to achieve high
performance (in terms of classification accuracy) with a few
training samples. The results also shows that the system
performance using multi-view representation of objects, i.e.,
combined representations of multiple cameras, is significantly
higher compared to single view. Regarding color encoding,
the result shows that color normalization, which aims at com-
pensating for variation in lighting, enhances the performance.
Therefore, the use of multi-view object representation for
shape combined with applying color normalization is crucial
for a reliable recognition system operating in this set-up.
This high reliability allows for using the system to trigger
other processes such as pose estimation, which we have also
demonstrated in several complex scenes.
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Physical Interaction for Segmentation of Unknown Textured and
Non-textured Rigid Objects

David Schiebener, Aleš Ude and Tamim Asfour

Abstract— We present an approach for autonomous inter-
active object segmentation by a humanoid robot. The visual
segmentation of unknown objects in a complex scene is an
important prerequisite for e.g. object learning or grasping, but
extremely difficult to achieve through passive observation only.
Our approach uses the manipulative capabilities of humanoid
robots to induce motion on the object and thus integrates
the robots manipulation and sensing capabilities to segment
previously unknown objects. We show that this is possible
without any human guidance or pre-programmed knowledge,
and that the resulting motion allows for reliable and complete
segmentation of new objects in an unknown and cluttered
environment.

We extend our previous work, which was restricted to
textured objects, by devising new methods for the generation
of object hypotheses and the estimation of their motion after
being pushed by the robot. These methods are mainly based on
the analysis of motion of color annotated 3D points obtained
from stereo vision, and allow the segmentation of textured
as well as non-textured rigid objects. In order to evaluate
the quality of the obtained segmentations, they are used to
train a simple object recognizer. The approach has been
implemented and tested on the humanoid robot ARMAR-III,
and the experimental results confirm its applicability on a wide
variety of objects even in highly cluttered scenes.

I. INTRODUCTION AND RELATED WORK
The ability of a humanoid robot to adapt to situations

that it has not explicitly been programmed for is crucial
for its usefulness in future assistive tasks in human-centered
environments. Many of these not-yet-experienced situations
for a robot will arise due to the appearance of objects that
it has not encountered before but now needs to deal with.
In such situations, the robot needs to autonomously make
itself familiar with these new objects. The first two crucial
steps in this process, whatever outcome may be expected,
are to locate and segment the new objects. Once they are
segmented, a visual descriptor can be learned that allows
later recognition, and essential information for grasping and
manipulation is provided.

The focus of this work is to present our approach for
the autonomous, interactive discovery and segmentation of
textured and non-textured unknown objects in a cluttered
environment by a humanoid robot. To demonstrate its use-
fulness, we use the obtained segmentations to learn visual
descriptors of the new objects and show that they allow
reliable recognition.

D. Schiebener and T. Asfour are with the Institute for Anthropomatics and
Robotics, High Performance Humanoid Technologies Lab (H2T), Karlsruhe
Institute of Technology (KIT), Karlsruhe, Germany. A. Ude is with the
Humanoid and Cognitive Robotics Lab, Jožef Stefan Institute, Ljubljana,
Slovenia.
schiebener@kit.edu, asfour@kit.edu, ales.ude@ijs.si

The segmentation of unknown objects from a complex
unknown background has turned out to be very difficult, if
not impossible, if a robot is restrained to passive observation.
On the other hand, individual motion of an object is a strong
cue that usually dissolves any visual ambiguities, manifests
clear object borders and thus vastly facilitates segmentation.
Usually, such helpful motion does not happen on its own
when needed, therefore the robot has to create it itself. This
fundamental idea has been pioneered by the authors of [1]
who detect the sudden spread of optical flow from the hand
of a robot when it touches and starts to move another object.
The pushing motion is pre-programmed, and the obtained
segmentation is not used for anything.

In [3], an articulated object is pushed to explore its
kinematic properties, i.e. joints and solid parts, exploiting
the observed relative 2D motion of local visual features.
Again, the robot motion is pre-programmed. In [4], an object
is pushed and segmented, which allows for the learning
of a visual descriptor. Yet this approach is restricted to
symmetric objects in simple scenes. [5] focuses on the
singulation of individual objects from a pile by pushing
them systematically, and [6] sorts colored bricks from clutter,
strongly leveraging physical interaction for separating them.
In [7] and [5] heuristics are proposed for systematically
pushing clusters of objects in order to separate them.

Fig. 1: Interactive object segmentation performed by the hu-
manoid robot ARMAR-III [2]. By pushing unknown objects,
they can be segmented from the environment based on the
induced motion.



In our previous work (see [8], [9], [10], [11]) we used local
visual features (SIFT[12] and later also color MSER[13]) to
create initial object hypotheses. Those features are grouped
based on their lying on a common regular geometric 3D
structure (planes, later cylinders and spheres) as well as
spatial proximity. One of these hypothetical objects is then
pushed, and by observing the 3D motion of the local visual
features, an object hypothesis can be verified by checking if
it moves as a rigid body. This also permits to analyze each
single local feature for concurrent motion and thus verify
the individual features of the hypothesis. Other features that
move consistently with the hypothesis are added and thus
after two or three pushes a complete object segmentation
in terms of the contained local features is achieved. We
also demonstrated that this allows for the creation of object
descriptors for recognition. In [14], we extended this concept
by using the obtained object detection and segmentation to
initialize a reactive grasping approach that enables the robot
to grasp the formerly unknown object using tactile and haptic
feedback without the need for a good 3D model for grasp
planning.

While these results are very encouraging, our approach
was always restricted to objects which have a sufficiently
textured surface that offers enough distinctive local visual
features to relocalize the object after it has been pushed.
Most of the related approaches are also based on local
visual features, with the exception of [15], where unicolored
cylinder- and box-shaped objects are segmented interactively,
tracking their edges in the image and depth data obtained
from a Kinect sensor.

Based on the idea of interactive segmentation that we
followed in our earlier work, we have now developed a
different approach that enables the segmentation of textured
as well as non-textured rigid objects, which we present in this
paper. The only remaining restrictions are that the object can
be moved by the robot, that it is not completely transparent
or looks exactly like the background, and of course that it
has an appropriate size with relation to the field of view and
resolution of the cameras of the robot.

The following section will give an overview of our ap-
proach, which will be explained in detail in sections III and
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Fig. 2: System overview: Our approach can be divided into
two main phases. First, the robot generates object hypotheses
and tries to verify one of them by moving it. If an object has
been discovered, the segmentation is improved and different
views can be learned in the course of several further pushes.

IV. In section V we present the results of our experiments on
the humanoid robot ARMAR-III, and section VI concludes
the paper.

II. PHYSICAL INTERACTION FOR
SEGMENTATION

Physical interaction enables a humanoid robot to overcome
the problems that usually arise if an unknown object is to be
segmented in a complex scene that causes visual ambiguities.
If the robot is e.g. confronted with a heap of unknown
objects, there is probably no certain and infallible criterion
to tell two objects apart that can be analyzed by observation
only (at least none has been discovered yet). However, if
an object moves, it can in principle be distinguished clearly
from its environment.

To cause such helpful motion, the robot needs to induce it
on the object somehow. The most simple and foolproof way
to do so is to carefully push the object. This requires an idea
about the existence and location of the object, which we can
not take for granted when dealing with unknown objects in an
unknown local environment. Consequently, the robot needs
the ability to discover possible objects and estimate their lo-
cation before being able to examine them. Our approach for
generating object hypotheses is described in section III-A.

When such an object candidate has been pushed by the
robot, there are two possible outcomes: If it moved, the
robot can segment it, learn its appearance and examine it
further. If it did not move, we have to assume that the
robot did not actually push an object but something else that
does not move. Thus, we implicitly define an ”object” as a
physical entity that can be moved (and seen) by the robot.
The problem of determining the motion of the object after
it has been pushed is not trivial and has only been solved
for special cases until now; we present our new and more
general solution in section IV-A.

When the motion of the object has been determined, it can
be exploited to acquire a complete and certain segmentation
of the object in the camera image. We showed in our previous
work [9] that if the object motion is known, it is simple to
check for each local visual feature if it moved concurrently.
But we do not want to rely on the existence of local features
(i.e. texture), and we want an actual segmentation that tells
for each pixel of the camera images whether it belongs to the
object or not. Section IV-B describes how this is achieved.

III. INITIAL OBJECT DISCOVERY

A. Generation of object hypotheses

The first step in our approach for interactive segmentation
is to create object hypotheses, i.e. to analyze the camera
images of the robot for possible unknown objects. One of
these hypotheses is then chosen for pushing and subsequent
verification. A criterion for finding object candidates that
has proven to be useful in our previous work is grouping
of local features that lie on a common regular geometric
structure like a plane, cylinder or sphere. Such a structure
frequently indicates an underlying object. Another indica-
tion for promising candidates are unicolored regions of a



Fig. 3: A relatively simple and a confusing scene with their
respective saliency images. As can be seen, the algorithm
for saliency computation is not of much use in scenes
where objects and background are equally rich in colors and
contrasts.

size within the dimensions we would expect an object to
have (about 5-50 cm in diameter). While these two criteria
are certainly useful, we want to be able to detect objects
independently of their appearance, therefore we complement
these criteria with the generic concept of visual saliency.

Saliency is a bottom-up trigger for attention, a psycho-
logical concept that has been applied in computer vision to
support other tasks by restraining the analysis of images
to regions that ”stand out” in a certain respect (cf. [16]
[17]). We use the saliency detector proposed in [18] to
calculate a saliency map for the whole camera image. In
that work, saliency is defined as the difference of an image
region to its neighborhood, which is calculated at different
scales using band-pass filters. The filters are realized using a
Difference of Gaussian (DoG) filter G(x, y, σj)−G(x, y, σk)
with σj > σk. Summing up all edge images at different
scales is equivalent to using a filter that is the sum of all
filters, which can be simplified as follows:
N∑

n=1

G(x, y, σn)−G(x, y, σn+1) = G(x, y, σ1)−G(x, y, σN )

Thus the resulting saliency image is calculated as S =
|G(σ1) ∗ Img −G(σN ) ∗ Img|, i.e. the difference of the
image after being filtered with a Gaussian kernel with the
lowest and highest desired standard deviation. This is done
for all three color channels of the RGB image, and the
results are added. We choose σ1 = 80px which limits the
size of detected regions to a size that corresponds to the
maximal extent we expect objects to have in the image,
and σN = 10px which smooths out the fine textures that
are already accounted for by the hypotheses generation for
textured objects.

The resulting salient image regions that are not yet
occupied by object hypotheses from the first two criteria
(unicolored regions, and local features lying on a regular
geometric structure) are used to generate additional object
hypotheses. In practice, the first two criteria covered most of
the objects we tried, but for those which do not clearly fall
into one of the two categories the saliency detection turned
out to be a useful complement.

Figure 3 shows the saliency map calculated for different
images. As can be seen, in simple scenes it does indeed
yield the regions occupied by actual objects. In contrast, if
the scene has a rather confusing background, the saliency
detection is clearly overburdened and not helpful anymore.
The two criteria based on local features and unicolored
regions also return very many hypotheses in such a scene.
In general, in a nontrivial image the separate use of all three
criteria will usually yield a large number of initial object
hypotheses.

This is not a fatal problem, as the robot could just
systematically try all hypotheses, including those that result
e.g. from the tablecloth. But it would save a lot of time to
filter the hypotheses beforehand. As we are only interested
in things that can be pushed, an additional criterion can be
applied in order to keep only those hypotheses that seem to
allow pushing. A simple heuristic for estimating if this is
the case is to check whether a candidate object is higher
than its direct neighborhood. We calculate a dense depth
map from the stereo camera images of the robot using semi-
global block matching (SGBM) [19]. The resulting 3D points
are transformed into world coordinates. The camera image
is subdivided into regular bins for which we calculate the
average height of the contained points and compare them
to their eight direct neighbor cells. Doing this at different
scales and adding up the results, we obtain a map that gives
a value for the relative local height of the image regions.
This map is used to filter the object hypotheses and keep
only those that lie in a region which is higher than its direct
surroundings. Figure 4 illustrates this relative local height
map and its effect on the hypothesis generation.

As we do not want to rely on the existence of local
visual features, we use color and shape to describe the object
hypotheses. To this end, we calculate a dense depth map
from the stereo camera images and annotate the resulting 3D
points with their color in the image. This kind of point cloud
is usually referred to as RGBD (RGB+depth) data. After the
initial object hypotheses have been generated, each one is
represented by the RGBD points in the image region that
it occupies. These point clouds will be used throughout the
rest of the paper.

B. Pushing for Verification

One of the initial hypotheses is chosen to be pushed in
order to verify that it is indeed an object and, in case of
success, to segment it. We choose the hypothesis that is
closest to an optimal location in front of the robot that allows
flexible manipulation by both arms, has at least a minimal
size, and is higher than its direct surroundings. This is a



Fig. 4: Suppression of object hypotheses that do not lie in a region that is higher than its direct surroundings. The first image
shows a complex scene that leads to the creation of very many initial object hypotheses. The second image displays the
map quantifying the relative local height of the image regions. The third image demonstrates the selective effect of applying
this criterion: the original image has been multiplied with the height map, thus the high regions are highlighted while lower
regions appear dark. The right image shows the remaining initial hypotheses that lie in high regions.

pragmatical choice if the robot does not have any other
intention than exploring the objects in front of it. If the object
is to be grasped later, it is particularly reasonable to choose
one that is higher than its local neighborhood. If the robot
is interested in a specific kind of object, other criteria may
be appropriate.

The push is planned in such a way that the object is kept
in front of the robot and within the camera images. To this
end, a central point in front of the robot is defined towards
which the object is pushed over a fixed distance to ensure
sufficient motion. The motion has to be significant enough
to be distinguishable from noise, and as the object extent is
unknown, the actual outcome is hard to predict. Therefore
the intended motion length should not be too small: values
in the range of 10-20 cm turned out to work reliably.

The arm that is better suited to execute this push is chosen
based on a reachability analysis [20]. The hand approaches
the object on a trajectory significantly above it to avoid
collisions with other objects. It is then lowered besides the
object, and the force-torque sensor in the wrist is used to
react to unplanned collisions during that phase (for details
see [14] or [11]). The object is pushed, the hand is lifted
again and moved out of sight. Afterwards, we analyze if the
object has moved and determine its translation and rotation.

C. Detection and Analysis of Change in the Scene

Now we have to find the object that moved by comparing
the point clouds before and after the push, which is the most
important and most difficult subtask within our segmentation
approach. This is due to the fact that (besides the general
difficulty of the matching of point cloud subsets) we do not
know which part of the point cloud is the object, neither for
the cloud before nor the one after the push. Thus, we have
to use the difference between them to determine both the
subset constituting the object and the transformation that it
underwent.

As a first step, we determine which part of the point cloud
changed due to the push. This can easily be achieved by
comparing the old and new camera images and calculating
the difference image. Yet that is only possible if the camera

pose before and after pushing is virtually the same. On our
robot ARMAR-III, the precision and repeat accuracy of the
joints is high enough to allow that; we only need to shift
the new image by up to four pixels in all directions when
comparing it with the old one, and choose the modified
position that causes a minimal difference. On other robots
such a precise motion might not be possible, in which case
an alternative is to align the two point clouds and find the
points that are far away from their nearest neighbor or have
a different color. Both methods yield comparable results and
enable us to divide the old and new point cloud into a part
that is unchanged and a part where a change occurred.

A first result we get immediately from this difference is an
answer to the question if anything happened at all. If nothing
changed in the scene, the robot was evidently unable to move
the potential object or did not hit anything at all. In this case,
the robot tries pushing another object candidate. If a change
in the scene is detected, all initial object hypotheses are
analyzed on whether they lie in image regions that changed.
Each object hypothesis is represented by a set of RGBD
points, and if more than half of them lie in a region that
changed due to the push, the hypothesis will be analyzed
for having moved; otherwise it is discarded. In addition to
the initial hypotheses, we create new ones from the points
that changed. This is done by determining 2-5 clusters1

amongst these points using x-means, a variant of k-means
that automatically chooses the number of clusters [21]. These
new hypotheses frequently match the actual object better than
the initial ones, although usually not perfectly either.

IV. OBJECT SEGMENTATION

A. Estimation of the Object Motion

All the hypotheses that lie in parts of the scene which
changed may correspond to the object (or one of several
objects) that moved, and therefore they are examined further.

1There have to be at least two clusters, as a moving object causes change
in the image regions of its old and new position (which may overlap though).
More clusters may be appropriate if several objects move, or if there are
false foreground regions due to errors in the background subtraction.



Each hypothesis consists of a set of 3D points with associated
color information from the point cloud recorded before the
push and has to be relocalized within the new point cloud.
The probably most popular approach for matching (also
referred to as registration) of 3D point clouds is the Iterative
Closest Point (ICP) algorithm [22]. To register a point cloud
with another, two steps are repeated iteratively:

• The nearest neighbor of every point of the first point
cloud is determined in the second point cloud

• Based on these correspondences, the 3D transformation
that minimizes the mean squared distance between all
the pairs is calculated and applied to the first point cloud

These two steps are repeated iteratively until the improve-
ment, i.e. the relative reduction of the mean square distance,
lies below a threshold, or a maximal number of iterations
has been executed. The algorithm reduces the mean square
distance between the point sets in each step and converges
to a local minimum.

In our implementation, we define the distance between two
points as the weighted sum of their cartesian distance and
their distance in normalized RGB space. The weighting is
such that the maximal possible color distance is equivalent
to a cartesian distance of 10 cm.2 As we use both shape
and color information, we avoid the problem of mismatching
in case of similar shapes which would otherwise occur
frequently, as the shapes of artificial household objects are
mostly dominated by planar surfaces.

When trying to determine the transformation that a hy-
pothetical object underwent during the push, we first try to
register the hypothesis with the new point cloud by initializ-
ing ICP with its original pose ( = position and orientation).
If a good match is found, i.e. the resulting (cartesian + RGB)
distance is small and the determined transformation indicates
that the hypothesis did not move significantly, we consider it
to be unchanged. If the determined transformation indicates
that the object has moved, or only a bad match was found,
it has to be relocalized. The one serious disadvantage of
ICP is that it converges to a local optimum, therefore its
initialization is decisive for finding the correct match of the
object hypothesis after a push. Starting the registration at
the original position frequently fails in complex scenes if
the object moved over a large distance.

Thus, we execute ICP several times with different initial
estimates of the new object pose, and keep the resulting
transformation that yields the best match. As the object
may have been moved over a large distance, finding it
again requires an appropriate choice of the initial poses for
ICP. To this end, we detect image regions that resemble
the hypothesis in terms of color histogram similarity and
initialize the alignment there. If the object surface contains
stable local visual features, those can be used to get an

2This parameter allows to balance the relative importance of color and
shape matching. The weight of the color component should not be too small
to avoid mismatching due to similar shapes. If it is set too high, the risk of
mismatches due to similar color rises. Empirically, values between 5 and
30 cm produced reasonable behavior. The choice may also depend on the
precision of the 3D sensor and the sampling density.

initial estimation of the motion, too. The necessary number
of different initial positions can be reduced by taking into
account the direction of the push, which must not be done
in a too restrictive manner as the caused object motion is
rather unpredictable.

The best transformation returned by the differently initial-
ized registration attempts is refined by another execution of
ICP on a reduced point set where all those points are left out
that still have a large distance to their nearest neighbor. The
resulting final transformation is used to decide whether the
estimated object motion is accepted, and if this is the case,
to determine the object segmentation.

B. Verification, Correction and Extension of the Segmenta-
tion

After the motion of an object hypothesis has been esti-
mated, the robot needs to decide whether the determined
match and transformation are plausible. A hypothesis is only
accepted, i.e. considered to correspond to an actual object,
if it meets the following three criteria: First, the estimated
motion has to be large enough to be sure that it is not
due to noise or a slight mismatching3. Secondly, the match
must be good, i.e. the average distance of the hypothesis
points to their respective nearest neighbors in cartesian and
normalized RGB space must be below a threshold. Thirdly,
the relocalized hypothesis must lie mostly in image regions
that have changed. This removes mismatches where by pure
chance a good alignment to some part of the scene could
be found, e.g. a part of the table surface that was matched
to another part of the table after the object has been moved
onto it.

The remaining hypotheses do most likely belong to an
actual object that has been moved by the robot. But of course
we must assume that they do not cover the object completely,
and that they also contain points that do not belong to the
object. We remove the latter ones by checking each point of
the hypothesis: After applying the estimated object motion,
a point must match its nearest neighbor in the scene point
cloud well with respect to cartesian and color distance. It
also has to lie in a region that changed due to the push. If
both of these criteria are met, the point is considered to be
verified, otherwise it is removed from the hypothesis.

After removing the false points, we try to extend the
hypothesis to cover the whole object. To this end, we add all
those points to it as candidates that lie close to the verified
points and within the image region that changed. By pushing
the object again and repeating the steps described before,
these new candidate points can be verified or discarded, and
new candidates can be added. Depending on the object size
and the quality of the initial hypothesis, it usually takes two
or three pushes until the whole object is contained in the
hypothesis and thus segmented completely.

Usually, more than one object hypothesis is verified by
the first push and the subsequent analysis. This happens

3Given the precision of our stereo calibration and a distance of 50-80 cm
between camera and object, a threshold of 3 cm turned out to be definitely
safe.



Fig. 5: Examples of object segmentations in different scenes.
The first image in each row shows the initial object hypothe-
ses, the second to fourth images show the verified hypothesis
after one, two and three pushes.

in particular when several actual objects are moved. We
choose the hypothesis containing the maximal number of
confirmed points for the second push. After that, we discard
the hypotheses that did not move again, and from the
remaining ones we keep only the one with the maximal
number of confirmed points and continue examining it as
long as desired. If the robot did indeed move several objects,
all of them can be segmented, but for the sake of simplicity
we only observed one in our experiments. As long as the
objects undergo different 3D transformation, they can easily
be separated based on their different motion. It may happen
though that two objects move exactly alike, in which case
they are subsumed in one hypothesis. Most likely they are
separated when pushed several times from different direc-
tions. Heuristics for systematical pushing to this end have
been proposed in [5] and [7]. When two objects contained
in one hypothesis are separated, the hypothesis will follow
the object that is matched better after the motion, which is
usually the bigger one.

Pushing an object several times will reveal different sides
of it, thus the creation of a multi-view object descriptor
is possible, although some sides will probably never be
observed. In section V-D we demonstrate that the obtained
segmentations are well suited to train an object descriptor
that allows for reliable recognition.

V. EXPERIMENTAL EVALUATION

A. System Setup

We have implemented and tested our approach on the
humanoid robot ARMAR-III [2]. The video accompanying
this paper shows an interactive object segmentation executed
by it. The robot has an active stereo camera system in its
head, and its arms have seven degrees of freedom each and
are equipped with force-torque sensors in the wrists. The
cameras provide color images with a resolution of 640×480
pixels. About 85% of the stereo images overlap, and after
calculating the dense depth map we use only every second
pixel in x and y direction for the point cloud, thus we obtain
around 65000 RGBD points that we work with.

The computational effort is dominated by the relocal-
ization of the object hypotheses using the ICP algorithm,
in which the computational complexity is proportional to
n log(m), with n being the number of points of the object
hypothesis and m the overall number of points in the scene.
On a 3 year old standard PC with a quadcore processor, the
computations after each push took between 2 and 5 seconds,
depending on the size and number of moved objects.

An important aspect in comparison to some related work
is that in our case the robot itself executes the object pushing,
and we do not use an artificial setup where the camera always
has an undisturbed view of the object. This is the reason
why we do not try to track the object during the push, as the
robot’s hand frequently occludes large parts of it.

B. General Observations

Our approach aims at making it possible to segment rigid
objects independently of their appearance or shape, thus we



tested it with a large variety of items. They can roughly
be classified by their visual appearance as being strongly
textured, sparsely or partially textured, multicolored but
(almost) non-textured, unicolored, reflective (e.g. polished
metallic objects or mirrors), or transparent. As far as we
know, the related work in this field (including ours) has so
far either depended on local features, i.e. texturedness, on
unicoloredness, or on a certain shape.

It turned out that our segmentation approach works very
well for all kinds of objects except the very reflective and
the transparent ones. This is due to the fact that they appear
to change their color when moved, and also tend to cause
problems when trying to obtain depth information. All other
objects were segmented successfully by our approach; for
the transparent and reflective ones a special treatment might
be necessary. Although we were able to tune the parameters
of the background subtraction and the matching so that the
segmentation worked for most of them, it does not function
reliably and the chosen parameters depend strongly on the
lighting conditions, thus we do not claim that our approach
can handle this kind of objects.

In contrast, the shape of the examined objects did not seem
to make an observable difference. While distinctive shape
features are necessary for algorithms that match point clouds
solely based on 3D data, the fact that we use color helps
to overcome ambiguities that might arise otherwise. The
combined use of shape and color information usually allows
a good alignment of the object hypothesis with the object
after it has been pushed. An exception here are symmetric
unicolored objects, but in that case it actually does not
matter if the orientation around the axis of symmetry is met
correctly as long as the match is good. The only case in
which problems occurred was when a flat, unicolored object
was placed on a table of the same color.

C. Assessing the Segmentation Quality

We examined the performance of our interactive segmenta-
tion approach by testing it with 30 objects of different shape,
size and visual appearance type (as defined above), which
have been segmented twice each. To measure the quality
of the obtained segmentations, two metrics are determined:
First, the object should be segmented as completely as
possible, i.e. in an optimal case the point cloud forming the
object hypothesis should fully cover the object. The second
metric is the size of the falsely segmented area, i.e. the part
of the scene that is segmented but does not belong to the
object. This happens when the object hypothesis includes
points that belong to the background or other objects.

Figure 6 shows these two values depending on the number
of pushes executed. As can be seen, after the first push
the object is usually not covered completely, but already
to a large part. After two to three pushes, the hypothesis
contains almost the complete object, with the exception of
small patches that newly appeared due to object rotation or
that were discarded from the hypothesis due to a change in
their appearance (e.g. reflections or bad depth estimation).
After four or more pushes, the coverage does not improve
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Fig. 6: The average segmentation quality depending on the
number of pushes that were executed. The red line shows the
segmentation ratio, i.e. the percentage of the object that is
included in the segmentation. The dashed green line depicts
the false positive rate, i.e. the fraction of the segmentation
that does not belong to the actual object.

further, but different parts of the object may become visible,
thus more information can still be gained.

The ratio of falsely segmented image regions compared
to the whole object is always quite small. It seems to grow
a bit from the first to the second push, but not any further
afterwards. Such false positives occur when the shadow cast
by the object leads to neighboring image regions being
considered to have changed, and some of them look alike
before and after the push, which frequently happens on
unicolored table surfaces. In this case, the part of the table
on which the object casts a shadow appears to belong to the
object itself. We are not sure whether there is a theoretically
sound solution for this specific ambiguity; it is probably
necessary to grasp and lift the object to dissolve it.

D. Learning of an Object Descriptor

To demonstrate that the obtained segmentations are suffi-
ciently complete and correct, we use them to train a simple
object recognition system. The available information we can
use are the image region that contains the object hypothesis,
i.e. the segmentation, as well as the 3D and color information
contained in the hypothesis point cloud itself. After each
push, the object hypothesis and thus the segmentation are
different, therefore we could generate several descriptors
for each object from different perspectives. For the sake of
simplicity, we just use the segmentation obtained after the
second push for each object, which usually yields a good
coverage, and generate only one descriptor.

To detect the learned objects in new images, we train a
color histogram based descriptor using the image region that
is occupied by the object hypothesis. The descriptor uses
Receptive Field Cooccurrence Histogram (RFCH) features
[23], [24] which are based on histograms of the colors and
their first and second derivatives in the segmented image
area.

These features allow to find image regions that have the
same color distribution as the learned object. We then try to



TABLE I: Object recognition rates.

similar point
of view

different point
of view

partly
occluded

false positive
rate

98.5 % 70.6 % 67.2 % 3.8 %

match the learned RGBD point cloud in those areas using
Iterative Closest Point (ICP) as in the motion estimation step
of our segmentation approach. The localization is accepted
if the resulting average point distance in Cartesian and color
space is below an equivalent of 1 cm (with the maximal pos-
sible color distance being equivalent to 10 cm in Cartesian
space).

Table I displays the recognition results for our set of
autonomously learned objects. They are placed in potentially
confusing scenes comparable to those shown in figure 5.
When the object is seen from approximately the same point
of view as during learning, the recognition rate is almost
100%. If the object has a significantly different orientation
with relation to the camera, or if it is partly occluded by
other objects, the recognition rate drops to around 70%. This
can be improved by using object descriptors generated from
different views, as we did in [11]. The false positive rate
is about 4%, which is entirely due to two small unicolored
objects in our test set that are sometimes fitted into blobs
of similar color. These solid recognition results demonstrate
the usefulness and quality of the segmentations obtained by
the robot following our approach.

VI. CONCLUSIONS
We have presented a new approach for interactive object

segmentation exploiting the manipulation capabilities of a
humanoid robot. The proposed method enables it to discover
and segment unknown rigid objects in an unknown, complex
scene by pushing them and analyzing the motion of color-
annotated 3D points obtained from the robot’s stereo vision
system. We have demonstrated that the provided segmenta-
tion results are of excellent quality and allow to train a well
performing object recognition system. As already shown in
[14], it is also possible to subsequently grasp the discovered
objects for further examination or manipulation.

In contrast to our previous work in this direction, the
approach proposed here works with almost any kind of rigid
object except those which are transparent, highly reflective or
impossible for the robot to move. We therefore believe that
it is a small but important step for increasing the adaptability
and autonomy of humanoid robots that will frequently have
to deal with new, unknown objects in realistic scenarios.
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Visual Collision Detection for Corrective Movements during
Grasping on a Humanoid Robot

David Schiebener, Nikolaus Vahrenkamp and Tamim Asfour

Abstract— We present an approach for visually detecting
collisions between a robot’s hand and an object during grasping.
This allows to detect unintended premature collisions between
parts of the hand and the object which might lead to failure
of the grasp if they went unnoticed. Our approach is based on
visually perceiving that the object starts to move, and is thus a
good complement for force-based contact detection which fails
e.g. in the case of grasping light objects that don’t resist the
applied force but are just pushed away.

Our visual collision detection approach tracks the hand in
the robot’s camera images and analyzes the optical flow in its
vicinity. When a collision is perceived, the most probable part
of the hand to have caused it is estimated, and a corrective
motion is executed. We evaluate the detection together with
different reaction strategies on the humanoid robot ARMAR-
III. The results show that the detection of failures during grasp
execution and their correction allow the robot to successfully
finish the grasp attempts in almost all of the cases in which it
would otherwise have failed.

I. INTRODUCTION AND RELATED WORK

Grasping objects is an indispensable competence for hu-
manoid robots. While grasp planning is a challenging prob-
lem that (for good reason) received and still receives a lot
of attention, the actual execution of the planned grasps on
a real robot frequently poses serious problems too. Those
difficulties are due to imprecision in object localization,
hand-eye calibration and execution of the planned grasping
motion, as well as the planned grasps themselves which
may sometimes be inappropriate. The authors in [1] and [2]
have actually showed that the currently used grasp quality
measurements often lead the grasp planners to solutions that
are not reliable in the real world despite seeming good in the
used mathematical models. The problem of grasp plans that
are not or only approximately suitable arises in particular
when no precise object model is available or an unknown
object is to be grasped based on heuristics (like e.g. in [3]
and [4]).

Visual servoing [5] is an important technique that helps to
greatly reduce the effects of imprecise hand-eye calibration
and inexact arm motion by localizing both hand and object in
the same camera images. The position and orientation (pose)
of the hand relative to the object is thus determined visually
in the camera frame, and as long as the kinematic model is
good enough to allow for an approximately correct motion,
the hand can be visually guided towards the intended pose

D. Schiebener, N. Vahrenkamp and T. Asfour are with the Institute for
Anthropomatics and Robotics, High Performance Humanoid Technologies
Lab (H2T), at the Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany. schiebener@kit.edu, vahrenkamp@kit.edu,
asfour@kit.edu

Fig. 1: The humanoid robot ARMAR-III grasping an object.

by continuous correction [6]. The degree of exactness that
can be achieved using visual servoing is essentially limited
by the precision of the perception components.

Thus, when we apply visual servoing, the remaining
causes of imprecision are the object localization algorithm,
the limited resolution of the vision system, the configuration
of the fingers, and the grasp planner, especially when no
perfect object model is available. In reality, these errors may
be small but will always be present, and a frequent result is
that the hand prematurely touches the object and moves it,
which may cause the grasping to fail. Therefore, whenever
the required accuracy of the grasp can not be guaranteed
by the planning, perception and kinematic components, the
robot should be aware of possible errors during the grasp
execution and be able to detect and correct them.

Collision detection during grasp attempts has mostly been
applied in the context of blind or reactive grasping, e.g. in
[7], where objects from a box are grasped blindly. The torque
detected by a force-torque sensor in the wrist of the robot
arm is used to determine which finger touched the object
and to correct the hand position accordingly. In [8], we
reactively grasp unknown objects that have previously been
segmented by vision and pushing actions. There, we use a
force-torque sensor in the wrist, tactile pads in the fingers and
the palm, and finger joint angle measurements to determine
the contact location during the grasping approach and correct
the hand position if necessary. In [9], tactile sensors in fingers
and palm are used to adapt the hand position and finger
configuration to the object pose and shape during the grasp



execution. In [10], the tactile sensors in the fingers are used
to reactively adapt the finger configuration while closing the
hand during grasp execution.

However, all approaches based on force or tactile feedback
require that the object resists the robot hand sufficiently so
that a force can actually be measured. For top-down grasps,
this is usually unproblematic as long as the object is not too
easily deformable, but when light objects are grasped from
the side, the sensitivity of the currently available sensors is
far from being sufficient. One way to circumvent this is to
use proximity sensors as in [11], another way is to use visual
information, which is what we propose in this work.

To the best of our knowledge, the only other attempt to
visually detect collisions in the context of grasping is [12].
They obtain an RGBD point cloud from a static depth camera
observing the scene which consists of a table surface with
only the object on it and the robot arm, of which a geometric
model is available. The arm is tracked in the depth image
and the object is segmented by removing the table surface.
When the object moves while the arm is near it, a collision
is assumed to have occurred. The most probable part of
the hand to have caused the collision is determined based
on the geometric model. This information would allow to
implement a reaction strategy, although this has not been
done yet in that paper. It is not obvious though how this
approach could be generalized to more complex scenes and
a non-static camera.

Our approach is related to [12] in the sense that it is also
based on the idea of visually detecting the motion of the
object when a collision occurs. We took some inspiration
from [13], where a static camera observes a scene in which
the robot arm approaches an object and, in the moment it
collides with it, causes a sudden spread of optical flow in the
image area occupied by the object. In our case the situation
is more complex though, as the camera is located in the robot
head and moves during the execution of the grasp.

II. OVERVIEW

The execution of a grasp in general comprises the mo-
tion of the robot’s arm, hand and fingers from an initial
pose to a configuration in which the object is held firmly
inside the hand. Collision-free motion planning in this high-
dimensional space is challenging [14]. A common approach
is to separate the grasp and the motion planning step by using
precomputed grasp tables which are applied on localized
object poses in order to allow for efficient processing. Such
grasping pipelines (see e.g. [15] or [16]) usually comprise
a motion execution component which is responsible for
moving the end effector along a planned path.

Within this work, we assume that a grasping pose pg to-
gether with a corresponding pre-grasp pose ppre are available
for the target object. Further, we assume that the straight
trajectory between ppre and pg is collision-free. For our
experiments, ppre and pg were defined manually, but in
general this approach can seamlessly be integrated as a grasp
execution module within the robot’s grasping pipeline. In
that case, the grasping poses will be computed by grasp
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Fig. 2: Schematic overview of grasping with collision detec-
tion and correction: First, the robot moves the hand to a pre-
grasp pose relative to the object. Then the actual grasp pose
is approached while continuously checking for collisions. If
a collision is detected, a corrective movement is executed
and the grasp pose adapted. When the grasp pose is reached,
the fingers are closed.

planning components, and the pre-grasp pose is equivalent to
a point on the approach trajectory. Fig. 2 shows a schematic
overview of the proposed grasp execution procedure. During
the critical last part of the approach, we continuously check
for collisions and if one is detected, a corrective reaction is
performed.

Fig. 3 shows the processes running during the critical
approach phase. The hand is guided towards the grasp pose
by visual servoing. At the same time, our visual collision
detection continuously checks for indications that the hand
has unintendedly collided with the object, in which case the
approach is interrupted.

The details of the collision detection algorithm are ex-
plained in the following section III, and the different reaction
strategies we implemented are described in section IV. The
detection and the different strategies are tested on our robot
and quantitatively evaluated in section V.

III. VISUAL COLLISION DETECTION

The main idea of our approach is to detect the motion of
the object that is caused by the unintended collision with the
hand. To this end, we track the hand in the camera images
and observe the optical flow next to it in the direction in

Localize hand Localize object 
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motion control 
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Fig. 3: Visual servoing with collision detection: The intended
grasping pose relative to the object is approached using
visual servoing, i.e. the robot continuously localizes object
and hand visually, calculates the required relative motion
of the hand in Cartesian space and an appropriate joint
motion to realize it using inverse kinematics. Concurrently,
it checks for collisions, and if one is detected, the approach
is interrupted and a correction initiated.



which it is moving. The individual components are described
in the following subsections.

A. Hand Tracking

Visual tracking of the robot’s hand is necessary for both
the visual servoing and the collision detection. For the
visual servoing, we use a simple and very fast method in
which we localize the red spherical marker fixed to the
robot’s wrist which can be seen in fig. 1 (see [6]). The
orientation is obtained from the forward kinematics. For
collision detection, we use a tracking algorithm based on
the particle filter approach [17] which estimates the position,
orientation and finger configuration of the hand. This com-
prehensive information is particularly important when trying
to determine which part of the hand has collided with the
object.

The end effector of our humanoid robot ARMAR-III [18]
is a five-finger hand which is pneumatically actuated (i.e.
with air pressure), has two DoF in each finger and one in
the palm. Tactile sensor pads are installed in each finger
tip and the palm, and a force-torque sensor in the wrist.
However, these sensors are not used in this work1. The head
is equipped with a stereo camera system.

The particle filter estimates the position and orientation
of the hand, and a reduced set of the finger DoF, which
results in a 12-dimensional state space. The particles are
initialized with the position from the localization of the
spherical marker, the orientation from forward kinematics,
and the measured finger joint angles. In each iteration of the
particle filter algorithm, the particles are perturbed by adding
random Gaussian noise, and then the plausibility of the hand
configurations defined by the particles is evaluated based on
the current camera images. In the next iteration, particles
are redrawn with a probability proportional to their rating,
the relative hand motion since the last iteration is applied
to them, random noise is added and they are evaluated
again. Robustness of the tracking is enforced by only al-
lowing particle configurations that are within an empirically
determined interval around the configuration obtained from
forward kinematics and joint value sensor readings.

The key component of the particle filter is the rating
function which estimates for each particle si the conditional
probability p(z|si) that the input z (the camera images)
was caused by the hand configuration defined by si. This
probability is calculated based on five different cues, which
are each determined in both of the stereo camera images. The
first cue is q1(si) = 1/d, where d is the distance between
the positions of the red spherical hand marker in the model
and in the camera images. The other four cues are based
on the blue fingertips: They are projected into the images
given the hand configuration of particle si. The cue q2(si)
gives a rating proportional to the number of pixels in the
area covered by the fingertips that have the correct color,
q3(si) rewards if a large part of the area has the correct

1We used these sensors for reactive top-down grasping of unknown
objects in [8].

color2. The cue q4(si) checks for intensity edges in the
image that correspond to those of the projected fingertip, and
q5(si) takes the edge directions into account. The conditional
probability of a given particle si is then

p(z|si) = ϑ e
∑5

j=1 ωj qj(si)

where ϑ is a scaling factor and the ωj are weights for the
different cues.

On each pair of stereo camera images, two iterations of
simulated annealing are performed to enhance the precision
of the final localization result, which is the average of all
particles weighted with their probability.

B. Optical Flow

Concurrently with the hand localization, we calculate the
optical flow between the current camera image and the
one taken at the last iteration of the collision check. The
optical flow is determined using the algorithm proposed by
[19] which is implemented in OpenCV. The idea of the
algorithm is to approximate the neighborhood of each pixel
by a quadratic function. If a quadratic function undergoes
a translation, the displacement can be determined in closed
form. By iteratively determining these translations first on
a coarse and then on increasingly finer scales, larger dis-
placements that exceed the direct neighborhood of the pixel
can also be determined and refined. The algorithm provides
a dense estimation of the optical flow between two images,
although in larger monotone image regions it does not return
any values. This is not a problem in our case, as we are
interested in the image region around hand and object which
offers enough visual information for the algorithm.

C. Collision Detection

In [13], the moment of the collision between robot arm
and object is recognized by the fact that an area of significant
optical flow appears next to the hand. In our case, the
cameras are on the robot and moving with it during the
grasp, and consequently there is optical flow throughout the
whole image. Therefore we have to solve the more general
problem of discovering if an object next to the hand moves
in a way that is inconsistent with the rest of the scene. Note
that for the static part of the scene, its projected motion is
not equal throughout the image but depends on the distance
to the camera.

To overcome this problem, we cluster the pixels of the
camera image by their optical flow values. To this end,
we apply x-means, a variant of k-means that automatically
determines an appropriate number of clusters given a param-
eter that balances the number of clusters and their in-class
variance [20]. The idea is to detect if there is a cluster of
similar optical flow next to the hand which is different from
the optical flow in the rest of the scene, which would indicate
that an object is being moved by the hand.

2This way, we assure that the rating is not too good if the projected
fingertips are extremely small or large, which would be the case if only one
of the two criteria was used.



Fig. 4: Visual collision detection in the moment when the robot’s hand touches the object: The left column shows the scene
from the robot’s cameras immediately before and after the collision. The central column visualizes the optical flow, the
right column the clusters of similar optical flow, where each cluster has been marked with a distinct color. The darker area
is occupied by hand and arm and therefore ignored. The white box marks the area next to the hand where we expect a
possible collision to occur. If we find a cluster of optical flow that exists mostly within this area but not outside of it, this
observation indicates that the hand collided with an object and caused it to move.

The image area that is checked for such an outstanding
cluster is determined by taking the hand position, adding a
translation into the direction into which the hand is currently
moving, and projecting this point into the image. A quadratic
area around that point which has roughly the size of the
object is then analyzed3. For each cluster of similar optical
flow ci, we count the number ni of pixels belonging to it in
the whole image, and the number ai of pixels belonging to
it in the area in front of the hand. If for one of the clusters
the ratio ai

ni
is more than 0.5, i.e. most of the pixels of the

cluster occur inside that small area, this is a strong indication
that this unique motion has been caused by an object that is
being moved by the robot hand.

It is very probable (yet not certain) that the object will
move in a similar way as the robot’s hand and parts of its
arm. Therefore the image area covered by hand and arm,
which is determined based on the results of the hand tracking,
is not taken into account when the values ni and ai are
determined. Fig. 4 visualizes the optical flow, its clustering
and the relevant image regions just before and during a
collision.

Note that due to the restricted area in which we expect
collisions to happen, individual motion in the background
(which most of the time moves as a whole due to the
camera’s motion) can theoretically cause false collision de-

3The size of the object in the image can be estimated from its model and
the distance to the camera.

tections, but only when it occurs within the image area next
to the hand in the direction into which it is moving as
described above.

IV. CORRECTIVE REACTION

When the robot detects an unintended collision during
the grasp execution, it should react in a way that allows
to successfully complete the grasp. Optimally, the robot
would have all relevant information about shape and pose
of the hand and the object and could just re-plan a collision-
free grasp trajectory. But obviously this information is not
available, otherwise the collision wouldn’t have occurred in
the first place. Thus we have to use robust heuristics that can
deal with incomplete and uncertain information and create a
reaction that has a good chance of correcting the execution
error that the robot committed.

A. Collision Localization

One piece of information that is necessary for a reasonable
corrective reaction is which part of the hand collided with the
object. A random change of the hand pose may sometimes be
successful, but as shown in our experiments in section V the
informed reaction strategies are clearly superior to random
modifications of the grasp.

The information which part of the hand touched the object
is immediately available when one uses tactile sensors, but
if the collision was detected visually it has to be determined
in another way. Although this depends on the kind of hand



that is used, one can assume that for a majority of grasping
motions the fingers and in particular the fingertips are the
primary causer of premature collisions. In the case of the
conducted experiments, they are virtually always caused by
the fingertips. We therefore obtain their positions from the
hand localization and check which fingertip is closest to the
object. This measurement is of course subject to errors in
the perception of hand and object, but seemed to be always
correct in our experiments.

B. Reaction Strategies

We implemented and evaluated different reaction strate-
gies to correct the hand pose in the case of a premature
collision. We limited ourselves to modifying the position and
orientation of the whole hand, although we are aware that
there are cases in which it would be necessary to correct the
configuration of individual fingers.

The general reaction scheme is the same for all our
proposed strategies: When a collision is detected, the hand
retreats 2 cm into the direction that it came from with
an absolutely straight motion to avoid disturbing the ob-
ject any more. A corrective offset for the hand pose is
calculated according to the respective strategy. The hand
retreats another 2 cm during which half of the corrective
offset is already applied, to make sure that the reaction has
already taken effect before approaching the object again. The
corrective offset is then permanently applied to the grasp
pose definition. From that point on, the robot moves towards
the intended grasping pose again as usual.

If the robot collides with the object again, another correc-
tive reaction takes places. Thus, the corrective offsets add
up, and the robot repeatedly tries to grasp and corrects the
hand pose as often as necessary until the grasp is successful.
In practice it would probably make sense that if the grasp
doesn’t succeed after a certain number of corrections, a
totally different grasp is planned.

Within our reaction scheme, the key to a helpful correction
is to determine an appropriate corrective offset. As a baseline,
we implemented a strategy where the orientation of the
hand is modified by a small random rotation. Such a purely
exploratory approach would probably be the only possibility
if there were no further information available about the
collision, and there is a certain chance that the grasp will
eventually succeed after one or more random modifications
of the hand pose.

As in our case the information which finger collided with
the object is available, we can determine a more constructive
correction offset. The obviously useful kinds of motion are
to either translate the hand into the direction of the finger
that caused the collision, thus aligning the palm with the
closest part of the object, or to rotate the hand such that the
finger is turned away from the object, or a combination of
both. We implemented all three variants and comparatively
evaluate them in section V.

In the case of the hand of ARMAR-III, the thumb opposes
the four other fingers, therefore we only need to distinguish
whether the thumb or one of the other fingers collided with

TABLE I: Collision detection rate depending on the distance
that the object has moved

2 mm 5 mm 10 mm

76 % 92 % 96 %

TABLE II: Collision detection rate depending on the angle
between image plane and direction of movement (over a
distance of 5 mm)

0◦ 45◦ 70◦ 90◦

92 % 96 % 84 % 72 %

the object. Thus, our results can directly be transferred to
simple grippers or precision grasps with two fingers. For
more general hand configurations the reaction strategies have
to be adapted to the individual hand geometry following the
above principles.

V. EXPERIMENTAL EVALUATION

We evaluated our approach on the humanoid robot
ARMAR-III [18]. First, we tested the sensitivity of our visual
collision detector by manually moving the object over a fixed
distance while the robot hand was close to it. Table I shows
the detection rate for the object to have moved, depending
on the distance over which it moved. As can be seen, even if
the object was shifted only by 2 mm, this is already detected
most of the times, and when the translation is 5 mm or more
the detection rate is clearly over 90%. The rare cases in
which the object motion is still not detected when it moved
more than 5 mm occur when less than half of the object lies
within the observed area in front of the hand (see section III-
C). We did not observe significant differences in the detection
rate between the robot head being static or in motion, or
when people were moving in the background.

One concern we had about our approach was whether it
would be able to detect the object motion when it occured
in the direction perpendicular to the image plane. As we
are using optical flow, motions within the two dimensions
spanned by the image plane should create the clearest signal,
while e.g. a motion straight away from the camera would
only cause the object to shrink in the image. Therefore,
we tested moving the object by 5 mm in different angles
relative to the image plane. The results can be found in
table II, the experiment at an angle of approximately 0◦

is identical to the one for 5mm in table I. At 45◦ there
seemed to be no difference, at an angle of around 70◦ the
detection rate dropped slightly to 84%. This is the biggest
angle that may occur in practice on our robot, as the tables
etc. on which objects might be placed are lower than the
cameras, therefore a motion on the table plane can never
be exactly perpendicular to the image plane when the robot
looks approximately towards the object. For the sake of
completeness, we also tested a motion exactly into the depth
direction and still obtained a reasonable detection rate of
72%.



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1  2  3  4

a
c
c
u
m

u
la

te
d
 g

ra
s
p
 s

u
c
c
e
s
s
 (

%
)

number of correction movements

Position correction
Orientation correction

Position + orientation correction
Random rotation

Fig. 5: Percentage of successful grasps after a certain number
of correction movements, depending on the applied strategy.
E.g., for the orientation correction strategy, in 56% of the
cases one corrective motion was enough, another 36% of
the grasps were successful after two corrections, and the
remaining 8% of the attempts required three corrective
movements.

In the actual grasping experiments, we had virtually no
problems with undetected collisions. However, although the
experiments above suggest that a very small motion is
sufficient to detect the collision between hand and object,
the objects were usually pushed a few centimeters. The
two reasons for that are that our detection algorithm runs
only at 2-3 frames per second on a standard PC due to the
relatively high computational intensity of hand localization,
optical flow calculation and clustering. More importantly,
when a collision is detected, it takes some time until the hand
actually stops moving forward. For these reasons, depending
on the speed of the arm motion, the objects were usually
pushed over 1-4 cm. Therefore, when for some reason the
impact on the object position has to be kept minimal, the
approach speed would need to be relatively slow, depending
on the responsiveness of the used robot arm and, when this
is very good, also on the available computational capacity.

Finally, we tested the performance of the overall system
with the collision detection and the different reaction strate-
gies we proposed in section IV-B4. We used five different
test objects, and for each of them manually defined a grasp
that seemed reasonable but failed in the real world when
executed on the robot. We evaluated every reaction strategy
by placing each of the five objects at five different reachable
poses in front of the robot. We ignored grasp attempts that
were immediately successful, so every strategy was tested
with 25 grasps during which at least one collision with the
object occurred.

Fig. 5 depicts the results of these trials. It shows how many
of the grasping attempts had succeeded after a given maximal
number of corrections. The baseline strategy where after a
collision the hand hand pose was modified by a random
rotation of 25◦ performs rather badly, as was to be expected.

4A video of the experiment is submitted with the paper, a high quality ver-
sion can be found on https://www.youtube.com/watch?v=MkNIFWth5D4.

In only one case a single correction movement lead to a
successful grasp, and another attempt succeeded after three
and four corrections respectively.

The proposed strategies that take into account which finger
seems to have caused the collision perform significantly
better. The one where the position is modified by a translation
of 25 mm towards the finger that caused the collision
manages to successfully grasp the object after one correction
in 16% of the cases, and in another 24% two corrective
movements are sufficient. In 32% of the attempts three
corrections were necessary. The overall success rate after
at most four corrections is 88%, which is already quite an
achievement regarding the fact that without the reactions all
those grasps would have failed. In two of the remaining three
cases the object was still grasped after further correction
movements, but in one case it was finally pushed out of
reach of the robot.

However, the two reactive strategies where the orientation
of the hand was changed by 25◦ to turn the colliding finger
away from the object, or the orientation changed by 15◦ and
the position by 10 mm, turned out to be very successful.
Both managed to grasp the object after one correction in
about 60% of the attempts, and had an overall success rate
of around 90% after one or two and 100% after at most three
corrective movements.

We believe that the reason why the strategies that apply
a rotational correction are so much more effective than the
one that corrects only the position is that in our implemen-
tation of visual servoing, only the position of the hand is
visually corrected, but its orientation is obtained from the
forward kinematics of the robot. Thus, the orientation error
during execution is much bigger than the position error.
Additionally, when localizing an object, its position is usually
determined more reliably than its orientation. Therefore, it
is entirely possible that on other robotic platforms, or when
the visual servoing can also correct the hand orientation,
the comparison between the three strategies might turn out
differently.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an approach for visually detecting
undesired premature collisions between a robot’s hand and
the object that is being grasped. The detection is based on
analyzing the optical flow next to the hand in the direction
into which it is moving, and detecting when the optical flow
there is different from the rest of the scene, which indicates
that the robot has caused the object to move.

We also proposed different strategies how to react to such
a collision, which take into account an estimation of which
finger has caused it and correct the hand position and/or
orientation appropriately. Experimentally we showed that the
detection works very reliably and that the proposed reaction
strategies allow to correct a failed grasp attempt and virtually
always conclude it successfully.

As the next step, we plan to complement this visual
collision detector with classical tactile and force feedback
sensors to cover both the cases in which the object is moved

https://www.youtube.com/watch?v=MkNIFWth5D4


Convexity based object partitioning for robot applications

Simon Christoph Stein, Florentin Wörgötter, Markus Schoeler, Jeremie Papon and Tomas Kulvicius

Abstract— The idea that connected convex surfaces, sepa-
rated by concave boundaries, play an important role for the per-
ception of objects and their decomposition into parts has been
discussed for a long time. Based on this idea, we present a new
bottom-up approach for the segmentation of 3D point clouds
into object parts. The algorithm approximates a scene using an
adjacency-graph of spatially connected surface patches. Edges
in the graph are then classified as either convex or concave using
a novel, strictly local criterion. Region growing is employed to
identify locally convex connected subgraphs, which represent
the object parts. We show quantitatively that our algorithm,
although conceptually easy to graph and fast to compute,
produces results that are comparable to far more complex state-
of-the-art methods which use classification, learning and model
fitting. This suggests that convexity/concavity is a powerful
feature for object partitioning using 3D data. Furthermore we
demonstrate that for many objects a natural decomposition into
“handle and body” emerges when employing our method. We
exploit this property in a robotic application enabling a robot
to automatically grasp objects by their handles.

I. INTRODUCTION

Robots must be able to interact with and manipulate
objects. However, what is an object? As early as 1000 AD
the first notions arose that shape/object perception relies
on convexity and concavity information. In the first known
book on visual science, written by the Arab scholar Alhazen
(Ibn al-Haytham), 965 - ca. 1040 AD [1] he stated that
connected convex surfaces lead to the perception of a solid
object (“if the body has a convex surface that bulges towards
the eye [...] then if sight perceives the convexity of the
surface it will perceive the body’s solidity”; [2], p. 169). A
substantial body of psychophysical and theoretical literature
exists that has tried to substantiate this claim for human
perception, but almost exclusively dealing with 2D shapes
[3]–[8]. In addition a few early studies in computer vision
have used this concept to distinguish objects from each other
also in 3D [9]–[11]. These older studies, however, suffered
from a lack of good 3D-data, which only now has become
readily available through the use of RGB-D sensors (like the
“Kinect”). Thus, only recently the aspect of shape perception
relying on convexity and concavity has become used in
technical systems [12]–[14], with variable success. Why is
object segmentation so difficult? One reason for this is that
most objects are composed of parts, which can have their
own functional semantics (very often: body and handle).
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cation Technologies) under grant agreement no. 270273, Xperience.
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Neuroscience, Friedrich-Hund Platz 1, DE-37077 Göttingen, Germany
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Thus, data driven, bottom up whole-object segmentation is
an ill-posed problem if not considering parts (and their
combinations) early on.

In this study we address this problem by the use of a well-
designed concave-convex criterion on point cloud data and
show that this is exceedingly powerful for the data-driven
finding of parts of objects. The main novelty of our approach
lies in the definition of this strictly local 3D-partitioning cri-
terion and its combination with a region-growing algorithm
working on surface patches. This largely mirrors human
perception and thereby creates object parts from the point
cloud data in a natural, human-like way. Specifically, from
such a partitioning we can demonstrate that the notion of
“handle versus body” genuinely emerges for many objects,
which is very useful for robotic grasping. This paper is
organized as follow: First, in Section II we present our
segmentation algorithm, for which technical details are given
in the Appendix. In Section III we evaluate our method and
benchmark it against other approaches. After that, we show
one demonstrative example of a robotic application: Grasping
objects by their handles. Finally in Section IV we discuss the
results and compare them to the state of the art. The method
source code is freely distributed as part of the Point Cloud
Library (PCL)1.

II. METHODS

A. Method overview and basic definitions

The basic assumption of our segmentation is that object
parts are usually separated from each other by concave
boundaries. Early on we note that single-part objects are just
a special case of this. Based on this hypothesis, the goal
of the algorithm is to segment scenes by merging convex
areas enclosed by concave boundaries. Convex is defined
here in the usual way (Fig. 1 C, left): Two touching surfaces
of an object form a convex configuration if a straight line,
which connects one point on one surface with another point
on the other surface, cuts through (the solid part of) the
object. Accordingly, a concave configuration is given when
the connecting line travels through “free space” (Fig. 1 C,
right). However, there exist configurations where the ob-
served surface is locally discontinuous and the classification
into convex and concave does not make sense (Fig. 1 D ).
Hence, just applying the concave-convex criterion as such
can lead to wrong decisions and thus a wrong segmentation.
A main contribution of this study is to address this problem
using some simple geometric criteria.

1http://www.pointclouds.org



Fig. 1. Flow diagram of the segmentation algorithm. Two example cases are shown: single-object case (upper panels) and two-objects case (lower panels).
Illustration of A) RGB images corresponding to the point clouds (not shown) of the scenes, which serve as an input to the segmentation algorithm. B)
Graph of connected supervoxels (linear patches). For clarity, the displayed patches are bigger than the ones used for segmentation. C) Convexity criterion
and D) sanity criterion for the classification of graph edges. E) Model depicting the classified graph. Black lines denote convex connections, red lines
concave/invalid ones. F) Resulting Segmentation; object labels are shown by different colors. G) Magnification of noisy region in the segmented image
which is due to over-smoothed normals. H) The final segmentation result after noise filtering.

B. Method flow-diagram

The flow diagram of the Locally Convex Connected
Patches (LCCP) segmentation algorithm is presented in
Fig. 1. To explain our algorithm we have designed two simple
objects using wooden cubes: an object that a human observer
would consider as consisting of a single-part (upper row) and
another one from two parts (bottom row). In the following
we will give a general overview of the implementation of
our algorithm. Details are given in the Appendix.

Our method is based on the segmentation of 3D point
clouds recorded with a Kinect sensor, which serves as input
to our algorithm (RGB images shown in Fig. 1 A). As we
concentrate on geometric criteria, we omit the RGB data and
use the depth data alone.

First, we build a graph of connected linear patches (Step
1, panel B) as an approximation of the observed surfaces in
the point cloud. This is done using the Supervoxel algorithm
of [15], which is an edge preserving oversegmentation, where
each supervoxel in an adjacency graph is taken as a linear
patch (e.g. a patch with zero curvature) and its normal
vector is calculated. The main advantage of this step is that
it reduces noise and thereby increases the stability of the
convexity decision. Additionally a substantial data-reduction
is achieved, making the algorithm faster.

Afterwards, we create a convexity graph (Step 2, panel
E) by classifying edges of the linear patch graph. To decide
whether a connection between patches is convex or concave
we use two criteria, convexity and sanity (Fig. 1 C, D).
Convexity is defined as described above, but connections
between patches whose normals differ less than a small angle

threshold βThresh are always treated as convex. This thresh-
old compensates for inaccuracies in the normal estimation
and allows merging of small, spurious concavities. The sanity
criterion is used to identify and invalidate connections where
patches are only connected in a singular point making the
convexity decision ambiguous.

Finally, in Step 3, we segment the obtained convexity
graph in order to find all components connected by convex
edges (Fig. 1 F). We achieve this by a region growing
process. Starting from any seed-patch, region growing prop-
agates the seed-label over those patches that have convex
edges until a concavity is reached, for which the region
cannot “grow around” and the process starts with a new
seed (see Appendix for details). This can best be understood
comparing panels F. In the upper panel only one object is
labeled. The corresponding convexity graph (panel E) shows
why this happens. Although a concave boundary exists for
this object, region growing finds enough convex-connected
patches such that the label can grow around the concave
edge. A different arrangement is presented in the bottom
panels. In this case the object splits into two separate parts
(panel F). This is due to the fact that the front part of the
structure is not a single plane anymore but shows a step-like
structure. This discontinuity leads to an enclosing concave
boundary which cuts the convexity graph (panel E) into two
parts that cannot be bridged by region growing. As a result,
the algorithm interprets this scene as two touching objects.

In the resulting segmented images (panels F) one can see
small segments at the edge. This happens due to the gradual
transition of the normals at the edge (Fig. 1 G), because



Fig. 2. Examples of segmentation: A) images from OSD dataset and B) images from our data set. Top and bottom panels show original and segmented
images, respectively. Points beyond a distance of 1.3 m were cropped for visualization.

normals are estimated using a local neighborhood. Because
of this, a group of normals may seem to have a concave
connection to both surfaces leading to unwanted segments.
As these patches are usually very small, they can be removed
with filters in a post-processing step (Step 4, Fig. 1 H).

C. Benchmarking and Measures

This section provides a short overview of the benchmarks
and measures that were used for quantitative evaluation. In
addition to publicly available benchmarks we also use a set of
self recorded scenes for examples and qualitative evaluation.

1) Object Segmentation Database (OSD): For quantitative
analysis we used the Object Segmentation Database (OSD-
v0.2) which was proposed by Richtsfeld et al. [12] in 2012.
It consists of 111 scenes showing objects placed on a table.
All scenes contain multiple objects, which have mostly
box-like or cylindrical shape and are recorded in various
positions. The data set includes scenes with partial and full
occlusions and also cluttered scenes (in 2D as well as 3D).
An important property of the data set is that most objects
are not composed of parts. This makes the ground-truth data
relatively non-ambiguous. Ground-truth images were created
from the points in the labeled point clouds available on the
OSD website2. Example scenes from the OSD dataset can
be found in Fig. 2 A.

2) Measures: The first measure that we used for evalua-
tion of our algorithm is Weighted Overlap (WOv) proposed
by [16] and [17], which is a simple region based measure
that is computed from the view of the ground-truth partition.
The other measures we used are false negative (fn) and false
positive (fp) scores from [13] and over- (Fos) and under-
segmentation (Fus) scores from [12]. Definitions for these
measures are given in the Appendix.

III. RESULTS

One strength of the LCCP algorithm is its robustness to
parameter variations. For all segmentation images shown in
this work, the parameters of the algorithm remained the same
(parameter set P1, see Appendix Tab. II, with βThresh = 10◦),
except for one aspect of the robot application (Fig. 5 B),
where object parts are intentionally merged.

2http://users.acin.tuwien.ac.at/arichtsfeld/?site=4

A. Segmentation Examples
Some examples of results of our segmentation algorithm

are presented in Fig. 2, where we show the segmentation of
images from the OSD as well as our data set (panels A,B;
resp.). In the OSD data set “single-part” objects dominate.
Therefore, we selected images from our data set (with
“multiple-parts”) in order to show that our algorithm is not
only able to perform object segmentation but also object
partitioning. One can see that in both cases our algorithm
performs very well and is able to segment objects as well
as objects’ parts. Hollow objects (bowls, etc.) will show
multiple segments inside as surface normals on this concave
surface change very strongly. This could be changed (to
getting a single segment) by a different parameter set but
this segment will always be different from the one that
represents the outside of the object, as they are not connected
in 3D space due to occlusion. Note that if point clouds
from multiple viewpoints are used, bowls turn into single
segments.

Fig. 3. Example segmentation of a point cloud combined from multiple
views showing a foam hand broom. The input point cloud and segmentation
result from different view points are shown in the top and bottom images
respectively (also see supplementary video).

We would also like to stress that our method allows
performing segmentation of point clouds taken from multiple
views. An example is shown in Fig 3, where eight views of
the same object were recorded using a turn table and their
point clouds merged. To get a correct surface orientation, the
normals are calculated for each cloud individually before
they are combined. Normals of points inside a voxel are



then averaged. Segmentation of clouds combining multiple
views requires a method rigorously working in 3D space
instead of the image plane, and is often not achievable in
other approaches.

B. Method Evaluation, Statistics and Run-time

We evaluated the performance of our algorithm on the
OSD data set and compared it to two state-of-the-art meth-
ods. Note that benchmarking 3D segmentation is in itself
non-trivial as the ground truth often contains inaccuracies
(see Appendix for ”Evaluation Problems”).

Performance of our algorithm is quantified in Fig. 4 giving
average scores on the OSD dataset for different βThresh and
two supervoxel sizes (P1=small and P2=large, see Appendix
Table II). For small βThresh (region R1), noise in the normal
estimation influences the segmentation, resulting in high
oversegmentation (high false negatives). When the merging
angle is increased, oversegmentation is reduced and a stable
plateau is visible (R2). For large merging thresholds (R3),
undersegmentation occurs (high false positives). Differences
between supervoxel sizes do not matter much for small
βThresh (regions R1, R2) but larger supervoxels improve
results for large βThresh (region R3).

A comparison to two other state-of-the-art methods using
model fitting together with machine learning [12] or prob-
abilistic reasoning [13] is presented in Table 1. It can be
seen that, although simpler, our method can compete with
the state-of-the-art methods. Oversegmentation (fn, Fos) is
slightly higher with our method. This is due to two factors:
we do not use model fitting (which helps against noise),
and we sometimes detect parts (e.g. handles of bowls and
cups) which is an oversegmentation according to the full-
object ground truth labeling. We should note that the latter
of which is not an error for our purposes. In terms of
undersegmentation (fp, Fus), we perform better than [12]
and slightly worse than [13].
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Fig. 4. Statistics obtained from segmentation of scenes from the OSD
dataset using our method. Average results are shown. LCCPP1 and
LCCPP2 stand for the different parameter sets with small (solid lines)
and large (dashed lines) supervoxels respectively.

The average run-time on the OSD dataset using parameter
set P1 (P2) was 549 ms (370 ms) with 518 ms (365 ms)
spent computing the supervoxels and 31 ms (5 ms) for the

segmentation using a Intel Core i7 3.2 GHz processor. Note,
supervoxel calculation is currently not parallelized using
GPUs, which should lead to a more than 10-fold speed-up.

C. Robotic application

Finally, we applied our algorithm to a robot scenario where
a KUKA LWR robot-arm [18] was used to grasp some
objects. Several aspects, such as object recognition [19],
robot grasping control [20], [21], and movement execution
[22], rely on published work and will not be described here
in detail.

The task for the robot was to identify eight different
objects in a scene (Fig. 5 D) and grasp some of them by
their handle to lift them above the table. In addition to
segmentation, this task also requires object classification.
General object classification, a difficult problem in its own
right, is outside the scope of this paper. Here we have
restricted the problem to only those eight classes and we
could, thus, use an established classification algorithm [19]
to recognize them.

The flow diagram of the implementation is presented in
Fig. 5. As input to the robot-system we used the point clouds
obtained from Kinect data (for segmentation) as well as a
high resolution DSLR image (for object recognition). We
enhanced our segmentation algorithm by an initial ground
plane separation step (using PCL) and used the overall
setup for two aspects required to solve this problem: 1)
object-segmentation from the background (Fig. 5 B) and 2)
partitioning the individual parts of a given object (Fig. 5 C).
Parameters for (1) and (2) are necessarily different. Ground
plane subtraction is necessary because the object-to-table and
handle-to-object-body transitions are geometrically similar
(90◦ edge) and the object-segmentation can thus not be
solved by LCCP segmentation. As an additional benefit, it
helps to segment very thin objects like the knife, which can
hardly be (geometrically) distinguished from the supporting
surface when laying on the side, because of the limited
resolution and accuracy of the Kinect. For object and handle
recognition we used the classification algorithm from [19],
which is based on a combination of SIFT-features [23],
CyColor-features and a radial orientation scheme [19]. We
used a two layer architecture. The first layer consists of a
classifier which is trained on all eight complete objects in the
scene (see Fig. 5 A). This classifier finds the desired object(s)
in the scene using the DSLR image on the eight possible
object candidates, segmented by the object-segmentation step
(Fig. 5 B). Here it detects the heat gun (Fig. 5 D). The
second layer consists of several binary classifiers (one for
each object), which classify a part, segmented by the part
partitioning step (Fig. 5 C), as being “handle” or “body”.
Thus, for handle classification we trained eight classifiers on
handles vs. body of the respective object. Here it splits the
heat gun into body and handle as required (Fig. 5 E) and the
same happens for all objects in the scene.

For action execution we used the library of manipulation
actions from [21], which is based on Semantic Event Chains
(SECs) [20] and Modified Dynamic Movement Primitives



TABLE I
COMPARISON OF DIFFERENT SEGMENTATION METHODS.

WOv tp fp fn Fos Fus

Mean Mean SD Mean SD Mean SD Mean Mean
LCCPP1 (βThresh = 10◦) 87.0% 90.7% 8.7% 4.3% 2.5% 9.3% 8.7% 8.4% 3.9%
Richtsfeld et al. [12] - - - - - - - 4.5% 7.9%
Ückermann et al. [13] - 92.2% 7.3% 1.9% 3.3% 7.8% 7.3% - -

Fig. 5. Flow diagram of robotic application: A) Original image of the scene, B, C) object/part segmentation, D, E) object/part classification and F) action
execution – robot grasping a heatgun by its handle. LCCP segmentation was applied after an initial ground plane subtraction. While part segmentation uses
the usual parameters (P1, βTresh = 10◦), they are necessarily different for object segmentation: (v = 0.75 cm, s = 2 cm, βThresh = 180◦, nfilter = 2).

(MDMPs) [22]. Here, specifically, we used a pick-and-place
action, where the pose of the handle was calculated from its
3D shape obtained from the part partitioning algorithm. Note
that in this case we have predefined grasps (grasp from top or
grasp from side depending on the orientation of the handle)
for specific objects. In Fig. 5 F we demonstrate a successful
grasp on the handle for the heat gun (see supplementary
video for grasping of other objects).

IV. DISCUSSION

In this paper we presented a novel algorithm for the
segmentation of 3D point clouds that can be used to partition
objects into parts or to segment different objects from each
other. The latter is a special case of the former. We demon-
strated that our quite simple approach can compete with
more complex state-of-the-art partitioning methods and that
it performs equally well. We also presented an application of
our algorithm in a robot scenario where the task of the robot
was to grasp objects by their handle. In the following we
will discuss our approach and relate it to existing methods.

A. State of the Art

In general there exist several bottom-up, data-driven as
well as top-down, model-based approaches. Several bottom-
up approaches have recently been reported [24]–[26], which,
however, do not reach the same level of performance com-
pared to the method presented here. Most similar to our
segmentation algorithm is the method from Moosmann et al.
[11] sharing our thought to exploit convexities/concavities

for segmentation using LIDAR data. The relatively noise-
free LIDAR measurements allow direct use of 3D-points,
different from RGB-D data. Our approach makes use of
supervoxels [15] and a different set of criteria to gain
robustness, which is not possible with the methods of Moos-
mann et al.. Recent top-down methods [12], [13], [16], [27]
sometimes perform exceedingly well on similar benchmarks,
but usually require quite a complex machinery to achieve the
segmentation. It is, thus, remarkable that our very simple
data-driven approach can compete with that of Richtsfeld
et al. [12] as well as Ückermann et al. [13]. We take this
as an indication of just how powerful the feature of local
convexity is and suggest that it should also be considered
as an important feature for future top-down approaches. In
addition, our part partitioning bears a high similarity to the
way a human would “describe” the parts of an object. We
suggest that this might be a better starting point for “defining
an object” (by composition from its parts) as compared to
more arbitrary geometrical and surface model assumptions
often found in the existing top-down approaches.

B. A compositional view on affordances and objects
Why does our algorithm easily segment handles from the

body of the object? The reason lies in the fact that almost all
handles are designed so as to lead to a concave discontinuity
relative to the body and this holds true also for many other
handles, which we considered in our experiments (data not
shown). Arguably the same is true for other manipulation-
relevant parts like knobs, buttons, lids, etc., although the
concavity might be hard to detect in RBG-D data using



current cameras, which have quite a low resolution. There
is no proof for this, but “looking around” seems to strongly
support this speculation: most human-made manipulation-
relevant parts seem to form a concave connection to the ob-
ject body. Thus, the here presented algorithm will for all such
cases produce a good guess for detecting the manipulation-
relevant parts for a robot. The approach demonstrated in
our robot experiments is, thus, a novel and efficient way to
arrive at manipulation affordances for an artificial agent. In
addition, parts as defined by our algorithm will many times
form a convex figure and this figure will usually take a simple
geometrical shape (cylinder, sphere, cube, torus, pyramid,
etc.) which may be somewhat distorted and/or curved. Still,
it should be possible to train classifiers for these object parts
and thereby arrive at a compositional, generative approach
for the (de-)construction and the understanding of complex
object geometries. This is work in progress and we hope to
be able to report on this in the near future.

APPENDIX

A. Formalism of the Segmentation Algorithm

Let us define local convexity and concavity for two neigh-
boring surface patches as follows (see also Fig. 6 A). A
convex connection of two linear surface patches is given
when a straight line joining the patch centroids travels
through regions that are inside the object, according to the
direction of the patch normals. A concave connection is
given when the line segment joining the patch centroids
travels through free space, i.e., regions that are outside. In the
following all steps of the algorithm are presented in detail.

1) Building a Linear Patch Graph: We build a linear
patch graph using an approximation of the point cloud
by finite linear patches with a neighborhood relation. An
effective way to construct such an approximation is using
a Supervoxel adjacency graph G(V,E) [15], where each
supervoxel ~pi = (~xi, ~ni, . . . ), ~pi ∈ V is taken as a linear
patch. In the following the centroid of patch ~pi will be
denoted as ~xi and its normal vector as ~ni. Supervoxels allow
feature specific weights to be set to respect boundaries in
different features (e.g. color, normal direction). As we are
interested only in geometric features, we set all weights
to zero except the spatial weight ws = 1 and the normal
direction weight wn = 4. Two parameter settings for the
voxel size v and supervoxel size s were used (see Tab. II).

2) Building a Convexity Graph: Afterwards, we create a
segmented graph model by classifying edges of the linear
patch graph. To decide whether the connection e = (~pi, ~pj)
between two patches is convex or concave/invalid we present
one criterion for the basic convexity decision and an addi-
tional criterion increasing the robustness of the decision.

Convexity Criterion (CC): Consider two adjacent linear
patches with centroids at the positions ~x1, ~x2 and normals
~n1, ~n2 as depicted in Fig. 6 A. Whether the connection
between these patches is convex or concave can be inferred
from the relation of the surface normals to the vector joining
the two patch centroids.

Fig. 6. A) Illustration of convex and concave connections between two
linear patches. B,C) Illustration of the sanity criterion: B) A singular
connection can be obtained by measuring the angle ϑ between the line of
intersection ~s of the two planes represented by the patches and the vector
~d, which connects the centroids of the patches. C) Change of the angle ϑ
when the relative position of the patches is changed. The shared boundary
is reduced by decreasing ϑ, until a singular configuration is reached.

The angle of the patch normals to the vector ~d = ~x1 −
~x2 joining the centroids can be calculated easily using the
identity for the dot product ~a · ~b = |~a| · |~b| · cos(α) with
α = ](~a,~b). One can see in Fig. 6 A, that α1 is smaller
than α2 for convex connections. This can be expressed as:

α1 < α2 ⇒ cos(α1)− cos(α2) > 0⇔ ~n1 · d̂− ~n2 · d̂ > 0,

where d̂ = ~x1− ~x2

|| ~x1− ~x2|| . Similarly, for a concave connection we
get:

α1 > α2 ⇔ ~n1 · d̂− ~n2 · d̂ < 0.

Note that the choice which patch is ~x1, i.e. in which direction
the vector ~d points, is arbitrary and does not change the
result. Also the criterion is still valid if the ~xi are displaced,
as long as they stay in the area of the patch.

To compensate for the noise in the RGB-D data, a bias
is introduced to treat concave connections with very similar
normals, that is

β = ](~n1, ~n2) = |α1 − α2| = cos−1( ~n1 · ~n2) < βThresh ,

as convex, since those usually represent flat surfaces. De-
pending on the value of the threshold, concave surfaces with



low curvature are seen as convex and thus merged in the
segmentation. This behavior may be desired to ignore small
concavities. This results in the definition of the convexity
criterion CC:

CC(~pi, ~pj) :=

{
true ( ~n1 − ~n2) · d̂ > 0 ∨ (β < βThresh)
false otherwise.

(1)

We also experimented using local convexity as defined by
Moosmann et al. [11] instead, but achieved lower perfor-
mance, presumably because their criterion is susceptible to
the noise present in the Kinect point clouds.

Sanity criterion (SC): In certain cases, the classification
of the connection of two linear patches into convex or
concave does not make sense. If the surface is discontinuous
this is evidence for a geometric boundary. This means that
the corresponding (originally potentially convex) connections
should be identified and invalidated.

The vector ~d connecting the patch centroids and the line of
intersection ~s of the planes represented by the linear patches
can be calculated using ~d(~x1, ~x2) = ~x1−~x2 and ~s(~n1, ~n2) =
~n1 × ~n2. As illustrated in Fig. 6 B, singular configurations
can be identified by looking at the angle ϑ between ~d and ~s.
For two patches sharing one side of their boundary, the two
directions are orthogonal. If the directions are parallel, the
situation is clearly singular. Because the orientation of ~s is
arbitrary, we define ϑ to be the minimum angle between the
two directions, that is:

ϑ(~p1, ~p2) = min(](~d,~s),](~d,−~s))
= min(](~d,~s), 180◦ − ](~d,~s)) (2)

The angle ϑ changes with the relative positions of the patches
(see Fig. 6 C). If we start at a valid configuration where both
patches have a common boundary edge (ϑ = 90◦) and slide
one patch along the boundary of the other, it can be seen that
ϑ is decreased. Singular configurations occur for small values
of ϑ and can thus be handled by introducing the threshold
ϑThresh. For ϑ < ϑThresh the connection must be invalidated.
Similar to the convexity criterion, this condition has to be
relaxed for patches with very similar normals, to compensate
for sensor noise. This is done by setting ϑThresh(](~n1, ~n2))
to a sigmoid function of the angle between normals:

ϑThresh(β) = ϑmax
Thresh · (1 + exp [−a · (β − βoff) ] )

−1
, (3)

where β = ](~n1, ~n2) is the angle between normals. We use
the experimentally derived values ϑmax

Thresh = 60◦, βoff = 25◦

and a = 0.25.
The sanity criterion SC is then defined as

SC(~pi, ~pj) :=

{
true ϑ(~pi, ~pj) > ϑThresh(β(~n1, ~n2))
false otherwise

(4)

Note that the criterion is most effective if the aspect ratio of
the considered patches does not deviate too much from one.

3) Convex connected components: The previously pre-
sented criteria are combined to the overall predicate

TABLE II
PARAMETER SETS USED FOR PART SEGMENTATION.

Parameter set v s nfilter

P1 0.5 cm 2 cm 3
P2 0.75 cm 6 cm 1

conv(~pi, ~pj) defining local convexity:

conv(~pi, ~pj) :=

{
true CC(~pi, ~pj) ∧ SC(~pi, ~pj)
false otherwise (5)

The last step of the segmentation is to find all compo-
nents connected by convex edges (defined by the convexity
predicate). This can be achieved by region growing. In the
beginning, an arbitrary seed supervoxel is chosen as a start
point. The segment label 1 is assigned to this supervoxel and
this label is propagated over the graph with a depth search
that is only allowed to grow over convex edges. Once no new
supervoxel can be assigned to the segment, we increment
the assigned label by 1 and choose a new seed supervoxel
that has not been processed yet. We then propagate the new
label in the same way as before and repeat the process until
segment labels have been assigned to all supervoxels. Note
that all our criteria are commutative, so the output of the
region growing does not depend on the choice of the seeds.

4) Noise filtering: Concave boundaries are more reliably
detected if the merging threshold βThresh in the convexity
criterion (CC) is low. For low thresholds, the segmentation
will however suffer from small isolated patches that are
created from noise present in the normal estimation. In these
cases a post-processing step filtering the noise patches may
improve quality. We implement a simple filter using the user
selected filter size nfilter ∈ N+. For every segment Si of
the segmentation, we check if it consists of at least nfilter
supervoxels. If a segment’s size |Si| is smaller or equal to the
filter size, we merge it with the largest neighboring segment.
Filtering continues until no segments (that have neighbors)
smaller than the filter size are present in the image.

B. Definition of Measures

We define the ground-truth partition G =
{G1, G2, . . . , GM} as a set of human annotated regions Gi

and the segmentation S = {S1, S2, . . . , SN} as a set of
pixel regions Sj of the same image. Furthermore NG := |G|
is the number of ground-truth regions.

1) Maximum Overlap: For every object represented by
a ground-truth region, the segment with the greatest over-
lap is taken as the best estimator. Thus, we define the
maximum overlap for ground-truth region Gi as Ovi =
maxSj (|Gi ∩ Sj |/|Gi ∪ Sj |). The overall score, Weighted
Overlap (WOv), is computed as a weighted average with
respect to the size of the regions [16], [17]:

WOv =
1∑
i |Gi|

∑
i

|Gi| · Ovi. (6)

Values range from 0 to 1, where 1 is considered the perfect
segmentation with identical segmentation and ground-truth



partition.
2) True- and False-positive Scores: Let us define true

positive (correctly segmented) points TPi = Gi ∩ Si as
overlap of both sets. Then we can define false positive points
FPi = Si \TPi and false negative points FNi = Gi \TPi,
which are exclusively assigned to one of the ground truth
sets. Finally, average scores are defined as follows [13]:

tp =
1

NG

∑
i

|TPi|
|Gi|

, fp =
1

NG

∑
i

|FPi|
|Si|

,

fn =
1

NG

∑
i

|FNi|
|Gi|

. (7)

3) Over- and Under-segmentation: Over-segmentation Fos

is the number of correctly assigned object pixels normal-
ized by the number of all object pixels, whereas under-
segmentation Fus is the number of incorrectly assigned
pixels normalized by the number of all object pixels [12]:

Fos = 1− Ntrue

Nall
, Fus =

Nfalse

Nall
. (8)

C. Evaluation problems
It seems necessary to point out to the community that

some problems arise when benchmarking 3D point cloud
segmentation. In general, one wants to evaluate how good
a segmentation algorithm performs in continuous 3D point
cloud space. Since currently there are no evaluation methods
for 3D data available, one has to fall back on conventional 2D
methods. However, this leads to evaluation problems, which
are mainly due to the way the ground-truth partition was
created. 3D ground-truth data is usually simply constructed
by transferring the labels from the RGB camera (2D image).
An example of such a case is shown in Fig. 7 where a scene
(panel A), its ground-truth (panel B) from the OSD data set
and the segmentation result of our algorithm (panel C) are
presented. Due to mismatches in the calibration between the
depth and rgb sensor, the ground truth is inconsistent with the
3D geometry of the scene (this is the case for all scenes).
Despite being virtually perfect from the view of the point
cloud, the pictured segmentation achieves only a weighted
overlap of WOv = 91.3%. These problems should be kept
in mind when interpreting the absolute values in Fig 4.

Fig. 7. A) Original image, B) ground-truth from point cloud perspective
from the OSD dataset and C) segmentation result of our method.
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by the push and in which it resists it. How to combine these
different sources in a constructive way to faster and more
reliably detect collisions, and to determine the part of the
hand that caused them, will be the central question here.
This is of particular interest when executing more complex
grasps or manipulative actions.
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