
Project Acronym: Xperience
Project Type: IP
Project Title: Robots Bootstrapped through Learning from Experience
Contract Number: 270273
Starting Date: 01-01-2011
Ending Date: 31-12-2015

XXPERIENCEPERIENCE..ORGORG

Deliverable Number: D2.2.2
Deliverable Title: Motor Actions with focus on learning from examples encoded

in action graphs
Type (Internal, Restricted, Public): PU
Authors: Tamim Asfour, Aleš Ude, Florentin Wörgötter, Miha Denǐsa,

Mirko Waechter, and Rüdiger Dillmann
Contributing Partners: KIT, JSI, UGOE

Contractual Date of Delivery to the EC: 31-01-2014
Actual Date of Delivery to the EC: 08-02-2014



Contents

1 Summary 3

1.1 General Objective of WP2.2: Motor Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Links to Other Workpackages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Description of Results 5

2.1 Synthesizing Compliant Reaching Movements by Searching a Database of Example Tra-
jectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Action Sequence Reproduction based on Automatic Segmentation and Object-Action Com-
plexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Basic Learning Theory Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2



Chapter 1

Summary

1.1 General Objective of WP2.2: Motor Actions

From the proposal : WP2.2 is primarily concerned with how to learn and obtain complex action sequences
and how to organize and structure the acquired data to 1) generate advanced motor behaviours, e.g.
by blending and sequencing of behaviours in the available data sets, and 2) interact with higher-level
cognitive processes that mainly use discrete representations, thus providing the bridge for planning to
access representations at the sensorimotor level and vice versa.

Methods like imitation learning, reinforcement learning and other exploratory approaches, which have
been shown to be successful at the acquisition of motor knowledge, will be considered for implementation.

1.2 Summary of Results

In deliverable D2.2.1 of Year 2 we investigated the structuring of the database of example trajectories.
More specifically, we studied how to search in a hierarchical database of example movements to discover
new action primitives [2] and how to generate cooperative behaviors using a database of cooperative
trajectories [4]. Based on this previous work, deliverable D2.2.2 addresses the following aspects

• the problem of generating new compliant reaching movements by searching a hierarchical database
of example trajectories [DPAU13], and

• action sequence reproduction, where a higher-level representation, i. e. OACs, is used in the library
[WSA+13] instead of trajectories.

In addition, we included two papers that deal with basic research aspects concerning learning method-
ology. Here we have focused on a scientifically rather novel aspect of investigating the combination of
different learning methods using network technologies. Specifically we have looked into

• a combination of reservoir computing, which is a supervised learning method for implementation
of dynamic memories in networks, with reward modulated Hebbian learning, which allows for the
learning of goal directed behaviors, and

• a combination of reinforcement learning with correlation based learning to reduce the problem of
the “curse of dimensionality” in robotic reinforcement learning by speeding up initial convergence
through the correlation based terms.

In the following we provide a short summary of this research. More details are available in the attached
papers [DPAU13, WSA+13, DWMM13, MKWM13].

3



Xperience 270273 PU

1.3 Links to Other Workpackages

Deliverable D2.2.2 and the earlier deliverable D2.2.1 address theoretical issues in motor learning and
thereby provide the basis for research in other workpackages, especially WP3.1, Structural Bootstrapping
on sensorimotor experience, WP4.1, Cooperative Tasks, and WP5, System Integration and Demonstra-
tion. For example, the work on dynamic movement primitives and action graphs was used as a basis
for structural bootstrapping at sensorimotor level in WP3.1 (see also D3.1.1 and D3.1.2) and for the
investigation and implementation of cooperative behaviors in WP4.1 (see also D4.1.1 and D4.1.2).

4



Chapter 2

Description of Results

2.1 Synthesizing Compliant Reaching Movements by Searching
a Database of Example Trajectories

In this work we address the problem of generating new compliant reaching movements by searching a
structured database of example trajectories. The proposed learning framework is a multi-step process,
where in the first step a human tutor teaches the robot how to perform a set of example reaching move-
ments. In the second step, the recorded motion trajectories are executed with different velocities using
a high gain feedback controller, for the purpose of learning corresponding torque control signals. The
commanded torques are measured and stored together with the trajectory data, which is similar to re-
search described in [4], where trajectories of a human performing the desired task were supplemented with
trajectories of another person cooperating with him. We organized the recorded data in a hierarchical,
graph-like structure, thereby providing the basis to search for new compliant trajectories, which can con-
sist of parts of previously acquired example movements. The proposed approach can construct a complete
representation of newly discovered movements, including the feedforward torque commands. Finally, in
the last step, the motion is executed using a low gain feedback controller and the associated feedforward
torque signal. This ensures sufficient tracking accuracy and at the same time compliant behavior, which
allows smooth interaction with the environment and is safe for cooperative task execution with humans.
The usefulness of the proposed method was shown on Kuka LWR robot. See also the attached paper
[DPAU13].

2.2 Action Sequence Reproduction based on Automatic Seg-
mentation and Object-Action Complexes

In this work we address the problem of automatic segmentation of human actions based on a library
of Object-Action-Complexes (OACs) to provide a robot with the capability to recognize actions, adapt
and reproduce them in new situations based on previously acquired action knowledge. In [WSA+13], we
address the problem by combining the formalism of Object-Action-Complexes ([3]) and Semantic Event
Chains (SEC,[1].

The human demonstrations including a number of involved objects are captured by the optical tracking
system (VICON), and segmented into semantic conclusive sub-actions by detecting relation changes
between the objects and the human hand following the SEC concept. However, instead of using a 3D
vision system, the demonstration was captured by the VICON system and thus the detection of object-
hand relations was not based on color segmentation but on 3D Euclidian distances of the markers attached
to the objects and the human. To detect object-hand relations, markers were grouped by the object they
are attached to. Further, markers and marker groups are labeled for further post-processing. Based on
the change of marker distances, key frames are detected when relations (touching, non-touching) between
objects change. The key frames are used to divide the demonstration into action segments. The relations
represent the world state and are later used for matching between action segments extracted from the
demonstration and actions in the OAC library.

5



Xperience 270273 PU

The OAC library was built in advance to store basic object manipulation and interaction skills enriched
with preconditions and effects which are represented as the world state before and after the execution of
an OAC. For the identification of action segments, a search in the OAC library is performed to find a
matching OAC by comparing the preconditions and effects of all OACs in the library with the pre- and
post-world state of a segmented action.

Finally, an observed sequence of OACs is parametrized for the execution on a humanoid robot (here:
ARMAR-III) while adapting to change of the world state during execution. The feasibility of this ap-
proach is shown in an exemplary kitchen scenario, where the robot has to prepare a dough.

The details of the work are described in [WSA+13].

2.3 Basic Learning Theory Aspects

In this work we address the problem of the ”curse of dimensionality” in robotics’s reinforcement learning
(RL). In general, RL can derive a policy for motor control according to the (delayed) reward signal.
However, for high-dimensional continuous-state systems, using it without any prior knowledge (prede-
fined control parameters), environment or system models, or appropriate guidance often requires long
learning times. According to this, we developed a biologically-inspired learning model that combines
correlation-based learning using input correlation learning (ICO learning) and reward-based learning
within continuous actor-critic RL, thereby working as a dual learner system. This combinatorial learning
framework suggests how a prior knowledge can be provided to RL and how RL can be guided and shaped
for policy improvement including speeding up initial convergence. We preliminary applied the model
to a dynamic motion control problem and a goal-directed behavior control problem [MKWM13]. While
the model improves control policy, it has a difficulty to solve partially observable Markov decision pro-
cess scenarios. Thus, we further investigated and extended the learning model by introducing dynamics
memories (like, temporal memories) into it. Reservoir computing was used to implement the dynamic
memories. Besides, we also introduced reward modulated Hebbian learning into the combinatorial learn-
ing. As a result, the combinatorial learning with reservoir computing and reward modulated Hebbian
Plasticity allows for the effective learning of goal directed behaviors in both fully and partially observable
cases [DWMM13]. The developed learning framework will be applied to, e. g., the Kuka LWR arm or
the humanoid robot ARMAR III for learning of arm pointing and reaching with obstacle avoidance as
goal-directed control problems.

6



References

[1] E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and F. Wörgötter. Learning the semantics of
object-action relations by observation. The International Journal of Robotics Research, 32:951–970,
2011.

[2] M. Denǐsa and A. Ude. Discovering new motor primitives in transition graphs. In Intelligent Au-
tonomous Systems 12, Advances in Intelligent Systems and Computing, vol. 192, pages 219–230.
Springer, 2013.

[3] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter, A. Ude, T. Asfour, D. Kraft,
D. Omrčen, A. Agostini, and R. Dillmann. Object-action complexes: Grounded abstractions of
sensorimotor processes. Robotics and Autonomous Systems, 59:740–757, 2011.

[4] K. Yamane, M. Refvi, and T. Asfour. Synthesizing object receiving motions of humanoid robots with
human motion database. In IEEE International Conference on Robotics and Automation (ICRA),
pages 1629–1636, Karlsruhe, Germany, 2013.

7



Attached Papers

[DPAU13] Miha Denǐsa, Tadej Petrič, Tamim Asfour, and Aleš Ude. Synthesizing compliant reaching
movements by searching a database of example trajectories. In 2013 13th IEEE-RAS Inter-
national Conference on Humanoid Robots (Humanoids), pages 540–546, Atlanta, Georgia,
2013.

[DWMM13] S. Dasgupta, F. Wörgötter, J. Morimoto, and P. Manoonpong. Neural combinatorial learn-
ing of goal-directed behavior with reservoir critic and reward modulated hebbian plastic-
ity. In IEEE International Conference on Systems, Man, and Cybernetics, pages 993–1000,
Manchester, UK, 2013.

[MKWM13] P. Manoonpong, C. Kolodziejski, F. Wörgötter, and J. Morimoto. Combining correlation-
based and reward-based learning in neural control for policy improvement. Advances in
Complex Systems, 16(02n03), 2013.

[WSA+13] Mirko Wächter, Sebastian Schulz, Tamim Asfour, Eren Aksoy, Florentin Wörgötter, and
Rüdiger Dillmann. Action sequence reproduction based on automatic segmentation and
object-action complexes. In 2013 13th IEEE-RAS International Conference on Humanoid
Robots (Humanoids), pages 189–195, Atlanta, Georgia, 2013.

8



Synthesizing Compliant Reaching Movements by Searching a Database

of Example Trajectories

Miha Deniša1, Tadej Petrič1, Tamim Asfour2, and Aleš Ude1,∗

Abstract— We address the problem of generating new com-
pliant reaching movements by searching a structured database
of example trajectories. The proposed control framework is
a multi-step process, where in the first step a human tutor
teaches the robot how to perform a set of example reaching
movements. In the second step, the recorded motion trajectories
are executed with different velocities using a high gain feedback
controller, for the purpose of learning corresponding torque
control signals. The commanded torques are measured and
stored together with the trajectory data. This data is organized
in a hierarchical, graph-like structure, thereby providing the
basis for search for new compliant trajectories, which can
consist of parts of the previously acquired example movements.
The proposed approach can construct a complete representation
for newly discovered movements, including the feedforward
torque commands. Finally, in the last step, the motion is
executed using a low gain feedback controller and the associated
feedforward torque signal. This ensures sufficient tracking
accuracy and at the same time compliant behavior, which
allows smooth interaction with the environment and is safe
for cooperative task execution with humans. The usefulness of
the proposed method was shown on a Kuka LWR robot.

I. INTRODUCTION

A well established approach for dynamic robot control

is the use of inverse dynamic models [1]. However, due

to the increasing complexity of robot mechanisms such as

humanoid robots, the accurate dynamical models are often

difficult to obtain. To fulfil the gap, algorithms for machine

learning were adopted in robotics because of their ability

of learning complex models. Although learning algorithms

became powerful enough to learn even the inverse dynamics

[2], they still require a large amount of data for learning.

As an alternative, different biology inspired methods were

proposed for dynamic robot control. An extensive review of

computational mechanisms for sensorimotor control, which

covers methods from optimal feedback control [3] to the

forward models and predictive control [4], was recently

published by Franklin and Wolpert [5].

Inspired by the human sensorimotor ability, which can

learn arbitrary dynamic tasks, we propose a new control

∗The research leading to these results has received funding from the
European Community’s Seventh Framework Programme FP7/2007-2013
(Specific Programme Cooperation, Theme 3, Information and Communi-
cation Technologies) under grant agreement no. 270273, Xperience, and
from the Slovenian Research Agency under grant agreement no. J2-4284.

1 M. Deniša, T. Petrič, and A. Ude are with the Jožef Stefan Institute, De-
partment of Automatics, Biocybernetics and Robotics, Humanoid and Cog-
nitive Robotics Lab, Ljubljana, Slovenia miha.denisa@ijs.si,
tadej.petric@ijs.si, ales.ude@ijs.si

2 T. Asfour is with the Karlsruhe Institute of Technology, Institute for An-
thropomatics, High Performance Humanoid Technologies Lab, Karlsruhe,
Germany asfour@kit.de

framework that is based on learning a task dependent tra-

jectory with corresponding control signals. The proposed

framework is a multi step process, where in the first step,

human tutor teaches the robot how to perform the desired

task, e. g. a reaching movement. In the second step, the

corresponding task dependent control signals are learned by

executing the movement using a high gain feedback control

loop, which ensures sufficient tracking accuracy. In the last

step, the desired reaching movement is executed using the

feedforward task dependent control signal and low gain feed-

back loop, which ensures compliance and stability. Because

of the feedforward compensation, the robot will perform the

desired task with similar accuracy as in the second step.

Due to the low feedback gain, the robot exhibits a compliant

behavior with low perturbation rejection, therefore it is safer

for humans to work with.

However, just building a database of movements with the

associated control signals might not be an optimal solution.

It is not feasible to obtain all the necessary movement trajec-

tories and their task dependent control signals for the entire

workspace based on user demonstrations only. In this paper

we propose to augment the set of available movement prim-

itives by a hierarchical database search. A set of movement

trajectories, which partly share a similar course of movement,

can be used to discover new movements. Such an approach

can significantly reduce the teaching effort, since a database

that contains various example motions with similar sections

can be used to generate new, not previously demonstrated

movement trajectories. Through the hierarchical database

search, new behaviors can be discovered, generated and

eventually added to the database.

The proposed hierarchical search for new movement prim-

itives is based on the work done mainly in the computer

graphics community, which has long studied how to utilize

large databases of diverse movements. This is in contrast to

most of the work done in robotics, which is primarily focused

on learning from a single demonstration [6] or learning

from multiple demonstrated variations of the same type of

movement [7]. It was shown that by organizing movements

in motion graphs, smooth transitions between interconnected

full-body movements can be found [8]. This approach was

applied by Kovar et al. [9] to generate different styles of

locomotion along arbitrary paths. In robotics, a graph-based

representation similar to motion graphs was used by Yamane

et al. [10]. They combined transition graphs with a binary

tree database in order to generate human body locomotions.

This research was later expanded to plan object receiving

motions [11].

2013 13th IEEE-RAS International Conference on
Humanoid Robots (Humanoids).
October 15 - 17, 2013. Atlanta, GA

978-1-4799-2618-3/13/$31.00 ©2013 IEEE 540



Besides in Yamane et al. [10], movement generation from

trajectory libraries has also been investigated in [12], [13],

[14], [15]. Like in our work, graph search is utilized in [12],

but this work is focused on locomotion. Ude et al. [13] used

variations of the same primitive movement to generate a new

instantiation of a dynamic movement primitive that is optimal

for a given situation. Like in [13], a situation descriptor is

used also in [14] to transfer previously optimized trajectories

to new situations. Mülling et al. [15] studied the problem

of mixing dynamic movement primitives to generate optimal

striking movements. The work described in this paper is most

closely related to [10], [11] because our focus is on how to

generate new dynamic movement primitives from parts of

previously acquired example trajectories.

The rest of the paper is organized as follows. In Section II

an approach for compensating robot dynamics is presented. It

consists of Section II-A describing task trajectory learning,

Section II-B describing learning of torque control signals,

and Section II-C that deals with the learned trajectory

execution. Section III proposes an approach for discovering

new movement primitives thorugh hierarchical graph search.

This is accomplished by building a database (Section III-

A) and then using it to find and synthesize new compliant

movements (Section III-B). The paper concludes with exper-

imental results and conclusions.

II. COMPENSATION OF ROBOT DYNAMICS

To compensate for robot dynamics, we normally apply a

generic approach which is based on inverse dynamical model

of the robot. Assuming that the robot consists of rigid bodies,

the joint space equations of motion are given by

H(qqq)q̈qq+C(qqq, q̇qq)+ggg(qqq)+ εεε(qqq, q̇qq, q̈qq) = τττ , (1)

where qqq, q̇qq and q̈qq are the joint positions, velocities and

accelerations, respectively, H(qqq) is the inertia matrix, C(qqq, q̇qq)
are the Coriolis and centripetal forces, ggg(qqq) are the gravity

forces and εεε(qqq, q̇qq, q̈qq) are the nonlinearities not considered in

the rigid body dynamics, e. g. friction. We denote the inverse

dynamic model of the robot (1) as fdynamic(qqq, q̇qq, q̈qq). Using

the inverse dynamic model, a possible control approach for

tracking the desired joint positions qqqd is given by

τττcmd = K(qqqd −qqq)+D(q̇qq)+ fdynamic(qqq, q̇qq, q̈qq), (2)

where K is the diagonal matrix for stiffness and D(q̇qq) is

the damping term. Note that high values in matrix K stiffen

the robot, which results in better tracking and error rejection

in case of perturbations. On the other hand, if the stiffness

values are low, the robot is compliant but the tracking

accuracy might be poor.

To have both advantageous properties, i. e. accurate track-

ing and compliance, we proposed a new multi-step control

system which includes feedforward torque signal that cor-

responds to the desired trajectory. Essentially, it is a pre-

generated internal model-based control system. However,

instead of using a complete inverse dynamic model for

compensating the robot dynamics as usually, we use a set of

layers based on dynamic movement primitives, which encode

the information of the torque control signals alongside with

the desired path (motion trajectories). The main advantage

of the proposed control system is that is model free, i. e.

the dynamic model of the robot is not needed. Moreover,

since torque signal that corresponds to the desired task are

feedforward during the execution step, the high tracking ac-

curacy and natural compliant behavior are achieved. Natural

compliance is the compliance of the mechanism itself. The

proposed control system ensures that the robot is always

compliant during the execution of the task, thereby ensuring

that the collision contact forces are small and therefore the

robot can perform tasks in unstructured environment and

safely interact with humans.

A. Learning task trajectories

In the first step, the goal is to learn the motion trajecto-

ries (positions) demonstrated by a human teacher. Different

techniques exist for teaching a desired motion to the robot;

one can use kinesthetic guiding [16], haptic interfaces [17],

motion capture systems [18], [19], etc. Kinesthetic guiding

was used in this paper.

To encode motion trajectories, we use Dynamic Movement

Primitives (DMPs). They are summarized in [6]. The equa-

tions below are valid for one degree of freedom (DOF). For

multiple DOFs the equations can be used in parallel. For one

DOF they are defined by the following nonlinear system of

differential equations

τdmpv̇ = αz(βz(g− y)− v)+ f (x), (3)

τdmpẏ = v. (4)

The linear part of Eq. (3) – (4) ensures that y converges to the

desired final configuration, here denoted as g. The nonlinear

part f (x) modifies the shape of the movement and is defined

by a linear combination of radial basis functions

f (x) =
∑N

i=1 wiψi(x)

∑N
i=1 ψi(x)

(5)

ψi(x) = exp(−hi(x− ci)
2), (6)

where ψi defines the basis functions with centers at ci and

widths hi > 0. As seen in Eq. (5), f (x) is not directly time

dependent. Instead, phase variable x defined in Eq. (7), with

initial value x(0) = 1, is used to make the dependency more

implicit:

τdmpẋ =−αxx (7)

The phase is common across all DOFs. By specifying the

time evolution through phase, it becomes easier to stop the

clock in case of external perturbations, which cause the robot

to deviate from the desired trajectory. It can be shown that

– given the properly defined constants αz, βz, τdmp, αx > 0

– the above system is guaranteed to converge to the desired

final configuration g.

We can encode demonstrated trajectories as DMPs by

applying locally weighted regression and learn the target

function defined as

f j(t) = τdmpq̈ j(t)+ τdmpαyq̇ j(t)−αyβy(g−q j(t)), (8)

541



where q j(t) denotes the demonstrated trajectory of the j-th

joint at time t.

B. Learning torque control signals

In the second step we encode corresponding control torque

signals for the kinematic trajectory qqqd , which was learned in

the first step. To obtain the corresponding torque signals, we

employed a high gain feedback controller, which ensured

required tracking accuracy. The feedback control is given by

τττ = K(qqqd −qqq)+D(q̇qq), (9)

Since kinematic trajectory is time invariant and the corre-

sponding control torque signals must be time dependent, we

introduce a task time multiplier κ that defines the duration of

the task. With this in mind, DMP equations (3), (4), and (7)

used for executing the demonstrated task trajectories while

learning torque control signals, can be rewritten as:

κτdmpv̇ = αz(βz(g− y)− v)+ f (x), (10)

κτdmpẏ = v, (11)

κτdmpẋ = −αxx. (12)

The equations for encoding and learning of the torque

control signals are similar as given in section II-A. The main

difference is that instead of learning the kinematic trajectory

qd , we learn the target function given by

f j(t) = κτdmpτ̈ j(t)+κτdmpαyτ̇ j(t)−αyβy(g− τ j(t)) (13)

where τ j is the commanded torque signal for the j-th joint.

By learning the control torque τττ f f , which is produced by the

high gain feedback controller, the system essentially learns

the corresponding inverse dynamics fdynamic(qqq, q̇qq, q̈qq) along the

executed kinematic trajectory qqqd .

C. Executing the desired motion

In this step, the movement trajectory qqqd and the corre-

sponding torque control signal τττ f f is executed, using a low

gain feedback controller. The controller used for executing

the motion is given by

τττ = K(qqqd −qqq)+D(q̇qq,C)+ τττ f f , (14)

where τττ f f is the feedforward torque control signal, which

was learned in the second step (note that feedforward torques

are only active in the movement execution step). According

to the control system analysis from [20], when feedforward

models are used, a low-gain feedback loop is sufficient to

preserve the stability of the system. On the other hand,

without feedback loop the system would inevitably diverge,

regardless of the precision of the feedforward model.

The main advantages of using feedforward models are

the better tracking performance (compared to a system

without feedforward terms) and the possibility to use low-

gain feedback, which enables natural compliant behavior of

the robot. Note that low-gain feedback has little impact on

the mechanical (natural) compliance of the robot.

III. NEW TASK TRAJECTORIES

In the previous section we described how to acquire a set

of desired trajectories with the corresponding torque control

signals associated with the movement executions at different

speeds. At this point the recorded trajectories can be played

back using feedforward torque control signals. In this section

we investigate how to combine the available trajectories to

generate new trajectories with the corresponding feedforward

torque control signals using hierarchical graph search. The

application of hierarchical graph search for the generation of

new robot movements as such is not new, see e. g. [10]. Here

we study how to add the corresponding feedforward torque

control signals to the newly found trajectories.

A. Building the database

To combine two different types of information in a hier-

archical database, we use a similar approach as Yamane et

al. [11]. Instead of storing and relating the motion of two

subjects in an integrated database as in [11], we store and

relate the kinematic trajectories qqqd and the associated torque

control signals τττ f f . The first part of the database thus rep-

resents the kinematic trajectories qqqd obtained by kinesthetic

guiding. We concatenate them in a sample position matrix:

XXX = [xxx1,xxx2, . . . ,xxxn], (15)

where xxxi denotes the state vectors sampled at a given discrete

time interval and n is the total number of all samples

belonging to all learned kinematic trajectories incorporated

into the database. State vectors are defined as

xxxi = [q1i, q̇1i,q2i, q̇2i, . . . ,qdi, q̇di]
T
, (16)

where j-th joint angle and its velocity at time ti are denoted

by q ji and q̇ ji, respectively, and d is the number of the robot

degrees of freedom.

We use the sample joint matrix as a root node of a binary

tree, which represents learned position trajectories. We use k-

means algorithm (with k = 2) to cluster similar state vectors

and thus split the root node into two child nodes. The data in

each of these nodes is then clustered again to gain the nodes

at the next level of the binary tree, as shown in Fig. 1.

Criterion for when to stop splitting the tree nodes is based

on the variability of data contained in the node. We define

the mean distance dk of node k as

dk =
∑

nk
i=1 d(xxxki,ccck)

nk

, (17)

where nk denotes the number of state vectors clustered at

node k. d(xxxki,ccck) is the Euclidean distance between state

vectors xxxki associated with node k and the node’s centroid ccck,

which was calculated by the k-means algorithm. If dk is lower

than a predefined threshold, then state vectors contained in

the node are similar and we stop splitting this node. With

this we avoid the binary tree getting unnecessarily deep while

ensuring the needed precision of the representation. With this

criterion we cluster the data into nodes until we do not have

any nodes left to split. To ensure that all state vectors are

542



L
ev

el
D

ep
th

X

Sample Position
Matrix

Kinematic Trajectories qqqd Torque Control Signal τττ f f

2nd level with TG

3rd level with TG

4th level with TG

κ1

κ1

κ1

κ2

κ2

κ2

κ3

κ3

κ3

Fig. 1. Both parts of the database. The figure shows its structure, with kinematic trajectories represented on the left side and corresponding torque
trajectories on the right. The sample joint matrix X is divided into two child nodes with k-means clustering. Then, the transition graph (TG), which
represents probabilistic transitions between the nodes at this level, is built. The data associated with each node is clustered into child nodes for the 3rd

level, where the TG is build again. We continue this procedure until all nodes fit the stopping criteria. Note that we expand those nodes to the last level and
thus represent all of the data at all levels. The right side represents corresponding torques at different speed of execution i. e. different task time multipliers
κ . At every level of the database, each node in the binary tree, on the left, has one or more (example figure shows three) corresponding torque means and
time durations, on the right.

represented at all levels of the binary tree, every branch is

extended to the last level.

Transition graph, representing all possible transitions be-

tween the nodes, is built at each level of the tree (see

Fig. 1). The edge weights in the transition graph represent the

probability of transition from one node to another. Transition

probability from node k to node l is estimated by

Pkl =
mkl

nk

(18)

where mkl denotes the number of transitions observed in all

trajectories of the original data, i. e. the number of all state

vectors clustered in node k that have a successor in node l.

For further processing it is not necessary to store all state

vectors xxxk at each node of the binary tree. Instead, only

the mean of the corresponding state vectors xxxk is stored

at each node. If the node contains exactly one start/final

configuration, we store it instead of the mean. In this way

we ensure that movements generated by graph search end in

the same end points as the learned position trajectories. In

this step the time component is lost. We explain in Section

III-B how time duration is estimated.

As we are synthesizing new task trajectories consisting

of kinematic trajectories qqqd and control torques τττ f f , the

database must also encode torque control signals. We do not

separately cluster the torque signals, but rather associate the

torques with the corresponding nodes in the transition graph.

This means that for each part of the kinematic trajectories,

represented in a single node through the mean of state

vectors, we store the corresponding means of torque signals

τττ f f and time durations td . We do this multiple times as we

execute the same movements with different time duration,

i. e. with different task time multipliers κ . See Fig. 1 for

example representation of the whole database.

B. Searching for new task trajectories

We start the search for new trajectories by selecting the

desired start and end points on two different trajectories. In

addition, the desired task time multiplier κ is selected. A

binary tree level also needs to be selected. As the level

determines the fidelity of reproduction compared to the

original trajectories, we normally select the last level of the

binary tree. We then try to find a path between the nodes

corresponding to the desired start and end joint position. To

achieve that we employ A* search algorithm in the transition

graph at the desired level. As long as the two trajectories

share a similar enough part, the most probable path is found

and with it a sequence of nodes i. e. mean state vectors.

Based on the selected time multiplier κ , we add the

corresponding mean torques τττ f f to the state vectors xxxk of the

543



Fig. 2. Learning task trajectories by kinesthetically guiding the Kuka LWR
robot arm.

discovered sequence. We enhance this sequence further with

time durations td corresponding to the added torques. Now

we have a sequence of joint positions, torques and their time

durations. The newly discovered sequence can be written as:

{

(xxx1,τττ f f 1,0),

(

xxx2,τττ f f 2,
td1 + td2

2

)

, . . .

. . . ,

(

xxxnp ,τττ f f np ,
td(np−1)+ tdnp

2

)}

, (19)

where np denotes the number of nodes on the trajectory.

We synthesize a trajectory from each discovered sequence

by encoding it as a DMP. The DMPs describing newly

synthesized kinematic trajectories and the corresponding

torque control signals (also encoded as DMPs) can then be

used to execute new, not directly shown, movements while

remaining compliant, as described in Section II-C.

IV. EVALUATION

We evaluated the proposed approach using a Kuka LWR

robot arm. The demonstrator taught the robot several reach-

ing movements while kinesthetically guiding the arm (see

Fig. 2). Two of the learned movements that intersect each

other are shown in Fig. 4. All kinematic trajectories were

encoded as DMPs. They were used in the second step to

obtain corresponding torque control signals, as described

in Section II-B. Each movement was executed three times

with different task time multipliers κ = {1,2,3}. The learned

movement trajectories qd and the corresponding torque con-

trol signals τττ f f were then used to execute the learned

reaching movements using a low-gain feedback controller

(14). Fig. 3 shows an example sum of all joint’s tracking

errors with respect to time

e(t) =
7

∑
j=1

(qa j(t)−q j(t))
2
, (20)

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5
x 10

−3

t [s]

e
(t
)
[r
a
d
2
]

 

 

C
low

C
high

C
low

 + τ
ff

Fig. 3. The sum of all joint’s tracking errors as defined in (20). The
green line represents tracking errors while executing the movement with a
high gain feedback controller (Chigh). Red line represents tracing error while
using a low gain feedback controller (Clow). Finally, the blue line represents
the sum of all joint’s tracking errors while using the proposed controller,
low gain feedback controller and feedforward torque signals (Clow + τ f f ).
We can observe low tracking errors gained by incorporating feed-forward
torque signals. Note that the gain used for feed-back loop controller Clow

was 20 times lower than Chigh.

0.45

0.5

0.55

0.6

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.56

0.58

0.6

0.62

0.64

0.66

y[m]

x[m]

z
[m

]

Fig. 4. The closest demonstrated and newly synthesized kinematic
trajectories in task space. Blue lines represent demonstrated trajectories,
while red lines represent newly synthesized kienmatic trajectories.

where qa j(t) denotes the actual j-th joint position. We can ob-

serve that by using a low-gain feedback loop without the feed

forward torque signal τττ f f in order to achieve compliance,

tracking error escalates greatly (red line) in comparison to

a high-gain feedback loop (green line). However, by adding

the feedforwad torque control, similar compliance can be

achieved, while successfully tracking the desired trajectory

qqqd (blue line). Note that the low gain was 20 times lower

than during the execution with a high-gain feedback loop.

Both the learned kinematic trajectories and the corre-

sponding torque signals were used to build the database,

as described in Section III-A. This database was used to

find new reaching movements as described in section II-

B. A* search algorithm found new sequences of nodes, as

the demonstrated trajectories had parts that were sufficiently

similar. Each new sequence started in the first node of one

of the demonstrated trajectories and ended in the final node

of one of the others. Each new sequence of mean position xxx

was then enhanced with mean torques τττ f f and corresponding

time duration td three times, once per task time multiplier

κ . Using DMPs we found complete representations of new

544



TABLE I

MEAN TRACKING ERRORS AND STANDARD DEVIATIONS FOR EACH JOINT AND THEIR SUMS WHEN EXECUTING REACHING MOVEMENTS. Task1 AND

Task2 DENOTE TWO EXAMPLES OF THE DEMONSTRATED MOVEMENTS, WHILE Task12 AND Task21 DENOTE TWO EXAMPLES OF NEWLY SYNTHESIZED

REACHING MOVEMENTS. ALL VALUES ARE IN [10−5rad2].

Task1 q1 q2 q3 q4 q5 q6 q7 ∑
(κ = 1)

Chigh 0.306 (0.289) 1.18 (1.69) 0.660 (0.491) 1.89 (1.65) 0.696 (1.23) 0.211 (0.292) 0.693 (1.09) 5.64 (6.74)
Clow 112 (101) 69.9 (77.7) 48.7 (28.3) 41.9 (98.0) 27.5 (44.9) 56.9 (145) 7.29 (11.6) 364 (507)

Clow + τ f f 2.51 (1.96) 21.7 (24.9) 1.54 (1.25) 5.49 (6.67) 3.31 (4.90) 1.79 (2.61) 5.55 (9.32) 41.9 (51.7)

Task2 q1 q2 q3 q4 q5 q6 q7 ∑
(κ = 1)

Chigh 0.325 (0.235) 0.617 (0.938) 0.930 (0.989) 0.200 (0.292) 0.191 (0.197) 0.0836 (0.143) 0.405 (0.552) 2.75 (3.35)
Clow 100 (74.8) 48.5 (75.4) 31.3 (25.7) 38.1 (47.8) 9.41 (14.2) 12.3 (22.0) 4.94 (8.46) 245 (268)

Clow + τ f f 2.77 (2.93) 21.7 (26.5) 2.23 (2.53) 4.12 (7.43) 1.58 (1.90) 2.29 (3.38) 2.40 (3.47) 37.1 (48.2)

Task12 q1 q2 q3 q4 q5 q6 q7 ∑
Clow + τ f f

κ = 1 29.3 (44.4) 18.6 (22.6) 14.0 (24.6) 7.12 (9.87) 9.32 (12.5) 2.98 (3.26) 1.31 (2.25) 82.7 (119)
κ = 2 27.2 (61.5) 8.88 (7.04) 3.40 (9.56) 8.01 (12.2) 15.9 (21.8) 4.28 (4.89) 2.07 (2.21) 69.8 (119)
κ = 3 26.7 (68.4) 17.0 (15.7) 3.76 (7.74) 6.49 (8.97) 17.8 (24.6) 3.02 (3.71) 1.23 (1.66) 76.0 (131)

Task21 q1 q2 q3 q4 q5 q6 q7 ∑
Clow + τ f f

κ = 1 7.29 (6.42) 26.4 (19.9) 3.62 (3.30) 7.24 (9.59) 6.82 (11.5) 4.53 (4.60) 1.11 (2.52) 57.0 (57.8)
κ = 2 3.63 (3.86) 10.2 (8.01) 1.02 (1.80) 8.97 (13.7) 8.62 (11.77) 8.90 (3.60) 1.74 (1.67) 43.1 (44.3)
κ = 3 2.16 (3.07) 21.1 (17.0) 1.74 (1.93) 6.97 (11.5) 8.67 (11.8) 5.86 (4.51) 1.21 (1.48) 47.7 (51.3)

0.43 0.45 0.47 0.49 0.51 0.53
0.52

0.53

0.54

0.55

0.56

y [m]

x
[m

]

0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52
0.646

0.651

0.656

0.661

y [m]

z
[m

]

Fig. 5. Sections of the closest demonstrated trajectories and the newly
synthesized trajectories in the task space. These sections represent transitions
of new trajectories, represented with red lines, from one demonstrated
trajectory to the other, represented with dashed blue lines. We can observe
smooth and continuous transitions.

reaching movements trajectories. Two new example position

trajectories in task space can be seen in Fig. 4, marked

with red lines. For clarity, sections of demonstrated and new

kinematic trajectories in two different 2D spaces are shown

in Fig. 5.

All new reaching movements were executed on the robot

as proposed in Section II-C. Fig. 6 shows joint position

tracking errors of three example movements with different

0 2 4 6 8 10 12
0

1

2
x 10

−4

t [s]

e
(t
)
[r
a
d
2
]

 

 

κ
1

κ
2

κ
3

Fig. 6. The sum of all joint’s tracking errors (20) of newly synthesized
tasks. Errors of three example tasks are given. They were executed with
different task time multipliers κ . Even though these movements were never
directly shown, the tracking error remains within a tolerable range.

task time multipliers. Tracking errors are again defined as in

Eq. 20. Tracking errors of newly synthesized tasks remain

similar to those of directly demonstrated tasks.

Table I contains means and standard deviations of tracking

errors (qa j(t)− q j(t))
2 for individual joints j. All values

are in 10−5rad2. First two parts of the table (Task1 and

Task2) show errors with respect to the execution of the two

closest reaching movements. They were both executed with

task time multiplier κ = 1. Errors for this part of the table

were measured by performing reaching movements with high

gain feedback controller (Chigh), low gain feedback controller

(Clow), and low gain feedback controller with feedforward

torque signal (Clow +τ f f ). Low gain used for all movements

was 20 times lower than high gain. We can observe how

the tracking error drastically increases when we apply low

gain instead of high gain. But there is a significant drop in

545



error when we add feedforward torque signals to low gain

feedback control. The last two parts of the table contain

errors measured when executing two examples of the newly

synthesized reaching movements (Task12 and Task21) while

using low gain feedback control with feedforward torque

signals. Each movement was executed for all three task time

multipliers κ . We can immediately observe the consistency

of tracking error over different multipliers κ . Secondly, there

is no significant increase in tracking error even though these

movements were newly synthesized. We can thus conclude

that newly synthesized reaching movements can be executed

using low gain feedback control with feedforward torque

signals.

V. CONCLUSIONS

We proposed and evaluated an approach to discover new

reaching trajectories in a database of example trajectories

and to learn the corresponding dynamics. By feedforwarding

the associated torque control signals, we can execute the

reaching movements with a high tracking accuracy while

exhibiting compliant behavior without using a full dynamic

model. We showed that new reaching movements can be

generated from a library of kinesthetically guided example

movements, as long as they have sufficiently similar partial

trajectories. In our experiments we used the developed ap-

proach to acquire a library of several reaching movements.

Each of the kinesthetically guided movements was executed

at different velocities using high gain controller and the

associated torque control signals were stored in the database

together with the kinematic trajectory. New movements were

found using graph search. Our evaluation showed that newly

synthesized movements maintain the needed tracking ac-

curacy and compliance even though they were built from

parts belonging to different movements. With a sufficient

number of example movements, we could execute any reach-

ing movement with compliant behavior while maintaining

accuracy, without the need for a full dynamical robot model.

REFERENCES

[1] L. Sciavicco and B. Siciliano, Modelling and Control of Robot Ma-

nipulators, ser. Advanced Textbooks in Control and Signal Processing.
London: Springer, 2000.

[2] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a
survey.” Cognitive Processing, vol. 12, no. 4, pp. 319–40, 2011.

[3] C. G. Atkeson and J. M. Hollerbach, “Kinematic features of unre-
strained vertical arm movements.” The Journal of Neuroscience, vol. 5,
no. 9, pp. 2318–30, 1985.

[4] D. M. Wolpert and M. Kawato, “Multiple paired forward and inverse
models for motor control.” Neural Networks, vol. 11, no. 7-8, pp.
1317–29, 1998.

[5] D. W. Franklin and D. M. Wolpert, “Computational mechanisms of
sensorimotor control.” Neuron, vol. 72, no. 3, pp. 425–42, Nov. 2011.

[6] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Dynamical movement
primitives: Learning attractor models for motor behaviors,” Neural

Computation, vol. 25, no. 2, pp. 328–373, 2013.
[7] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dy-

namical systems with Gaussian Mixture Models,” IEEE Transactions

on Robotics, vol. 27, no. 5, pp. 943–957, 2011.
[8] C. Rose, M. Cohen, and B. Bodenheimer, “Verbs and adverbs:

multidimensional motion interpolation,” IEEE Computer Graphics and

Applications, vol. 18, no. 5, pp. 32–40, 1998.
[9] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” ACM Trans-

actions on Graphics, vol. 21, no. 3, July 2002.
[10] K. Yamane, Y. Yamaguchi, and Y. Nakamura, “Human motion

database with a binary tree and node transition graphs,” Autonomous

Robots, vol. 30, no. 1, pp. 87–98, 2010.
[11] K. Yamane, M. Revfi, and T. Asfour, “Synthesizing object receiving

motions of humanoid robots with human motion database,” in IEEE

International Conference on Robotics and Automation (ICRA), Karl-
sruhe, Germany, 2013, pp. 1621–1628.

[12] M. Stolle, H. Tappeiner, J. Chestnutt, and C. G. Atkeson, “Transfer
of policies based on trajectory libraries,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), San Diego, CA,
2007, pp. 2981–2986.

[13] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-Specific Gen-
eralization of Discrete and Periodic Dynamic Movement Primitives,”
IEEE Transactions on Robotics, vol. 26, no. 5, pp. 800–815, 2010.

[14] N. Jetchev and M. Toussaint, “Fast motion planning from experi-
ence: trajectory prediction for speeding up movement generation,”
Autonomous Robots, vol. 34, pp. 111–127, 2013.

[15] K. Mülling, J. Kober, O. Kroemer, and J. Peters, “Learning to select
and generalize striking movements in robot table tennis,” International

Journal of Robotics Research, vol. 23, no. 3, pp. 263–279, 2013.
[16] D. Kushida, M. Nakamura, S. Goto, and N. Kyura, “Human direct

teaching of industrial articulated robot arms based on force-free
control,” Artificial Life and Robotics, vol. 5, no. 1, pp. 26–32, 2001.

[17] P. Evrard, E. Gribovskaya, S. Calinon, A. Billard, and A. Kheddar,
“Teaching physical collaborative tasks: object-lifting case study with
a humanoid,” in 2009 9th IEEE-RAS International Conference on

Humanoid Robots, Paris, France, 2009, pp. 399–404.
[18] A. Ude, C. G. Atkeson, and M. Riley, “Programming full-body move-

ments for humanoid robots by observation,” Robotics and Autonomous

Systems, vol. 47, no. 2-3, pp. 93–108, June 2004.
[19] J. Babic, J. G. Hale, and E. Oztop, “Human sensorimotor learning for

humanoid robot skill synthesis,” Adaptive Behavior, vol. 19, no. 4, pp.
250–263, 2011.

[20] M. W. Spong and M. Vidyasagar, Robot dynamics and control. Wiley,
2008.

546



Action Sequence Reproduction based on Automatic Segmentation and
Object-Action Complexes

Mirko Wächter1, Sebastian Schulz1, Tamim Asfour1,
Eren Aksoy2, Florentin Wörgötter2 and Rüdiger Dillmann1

1Institute for Anthropomatics, Karlsruhe Institute of Technology
Adenauerring 2, 76131 Karlsruhe, Germany

2Bernstein Center for Computational Neuroscience, University of Göttingen
III. Physikalisches Institut, Friedrich-Hund Platz 1, 37077 Göttingen, Germany

{waechter,s.schulz,asfour,dillmann}@kit.edu, {eaksoye,worgott}@physik3.gwdg.de

Abstract— Teaching robots object manipulation skills is a
complex task that involves multimodal perception and knowl-
edge about processing the sensor data. In this paper, we show a
concept for humanoid robots in household environments with a
variety of related objects and actions. Following the paradigms
of Programming by Demonstration (PbD), we provide a flexible
approach that enables a robot to adaptively reproduce an action
sequence demonstrated by a human. The obtained human
motion data with involved objects is segmented into semantic
conclusive sub-actions by the detection of relations between
the objects and the human actor. Matching actions are chosen
from a library of Object-Action Complexes (OACs) using the
preconditions and effects of each sub-action. The resulting
sequence of OACs is parameterized for the execution on a
humanoid robot depending on the observed action sequence
and on the state of the environment during execution. The
feasibility of this approach is shown in an exemplary kitchen
scenario, where the robot has to prepare a dough.

I. INTRODUCTION AND RELATED WORK

Robots already are versatile helpers in structured industrial
applications, and in the future, will they increasingly be sup-
posed to work also in human centered environments. If robots
are expected to interact in an unstructured household instead
of working in a well-known factory environment, problems
become more complex: In order to fulfill requirements of
everyday activities, a wide variety of complex questions have
to be solved. The robot has to cope with unfamiliar situations
and unknown options for interaction so that behavior and
actions have to be highly adaptive. Consequently, common
methods of robot programming are not directly applicable in
the above mentioned scenario.

To address these problems, the concept of Programming
by Demonstration (PbD) has become a common approach.
It has developed rapidly since its origins in the mid-1980s.
The work of Halbert [1], shows how to program a software
system by example. During the 90ies, similar approaches
transferred into the robotics domain were presented [2], [3],
[4]. PbD is a technique that enables teaching a robot new
skills and behaviors by demonstrating actions on concrete
examples. It enables the robot to learn continuously from
human observation in scenes of everyday life. Using parame-
terizable representations of the observed data allows applying
the demonstration to new situations. Ultimately, after setting

up the PbD System, advanced programming skills will be
not any longer needed because also untrained users are able
to teach new skills to the robot by demonstration.

The development of suitable action representations and
algorithms for PbD has been a key research topic for the last
decades. Neuroscientists, computer scientists and engineers
alike have been working on relevant problems concerning
this issue. Schaal et al. [5] discussed imitation learning as
methodology for PbD from a computational point of view.

Ijspeert et al. suggested nonlinear dynamical systems for
the representation of a demonstrated motion [6], called
dynamic movement primitives (DMP). Following this ap-
proach Gams et al. used a two-layered dynamical system
that allows to extract both the frequency and the waveform
of the demonstration signal to learn periodic tasks on a
humanoid [7]. Ernesti et al. enrich these DMP formulation
by extending the canonical system by one dimension using a
two dimensional oscillator, which unifies the representation
of a periodic movement and its transients [8]. Regarding
various perturbations while execution, the basic formulation
can be modified in additional ways. Two exemplary works in
this direction are an approach that enables the generalization
of DMPs to new situations using the available training
movements and the goal of the task [9] and another approach
using nonlinear dynamical systems with gaussian mixture
models, which can respond immediately to perturbations
encountered during the motion [10].

In contrast Ude et al. [11] suggested using b-spline
wavelets as the representation of whole-body motion. Several
approaches make use of Hidden Markov Models to learn and
reproduce demonstrated actions [12], [13], [14].

Besides kinematic representations, further problems have
to be addressed, in order to build a system capable of
interacting in unstructured environments. Among them, the
representation for the manipulation of objects in the en-
vironment is a crucial factor. In order create trajectories
for executing these tasks, position and orientation of the
manipulated object must be determined [15], [16].

Another key question is how to decompose the observed
task into a set of sub-actions. Such a subdivision can then
be utilized to formulate motion primitives for the execution

2013 13th IEEE-RAS International Conference on
Humanoid Robots (Humanoids).
October 15 - 17, 2013. Atlanta, GA

978-1-4799-2618-3/13/$31.00 ©2013 IEEE 189



on the robot [18], [19], [20], [21], or as shown by Kulic
et al. [22] even for incremental learning new templates in
real-time.

An important principle, known as affordance and elemen-
tary for the proposed approach, is the relationship between
objects and particular actions. Each object of a certain type,
has a quality, which allows performing only specific actions
using these objects. A framework for the action-centered
representation of these correlations at different levels of hi-
erarchy is presented by the formulation of the Object-Action
Complex (OAC) concept [17]. OACs describe how a robot
has to perform an action with an object to achieve a given
goal. They take several sensor channels on different levels
into account, ranging from sensorimotor- to semantic level.
Examples of the sensorimotor level are joint angles or forces
acting on the tool center point and, on the semantic level, the
label of an object. Further, all OACs have preconditions and
a prediction function associated with them, that encodes the
belief how actions will impact on the world changes. This
prediction is called the effect of the OAC.

Another preliminary method for our work, called ”seman-
tic event chain” (SEC) [23], [24], employs the spatial relation
between objects for the subdivision of the demonstrated task.
This approach makes use of the visual perception, more
precisely, stereo and optical flow information. Hence, it is
limited to demonstrations which can be reliable captured
by image processing, in particular fulfill the conditions of
image segmentation. The basic idea of the SEC is to extract
the change of contact relations, i.e. all moments (keyframes)
when any object comes into contact or loses contact with
another object. Analogous to OACs, the method is based on
the affordance principle, in particular the linking of objects
and object relations to actions. Therefore, the linking of both
methods is evident.

II. OVERVIEW

In this paper, a novel concept for the automatic adaptive
reproduction of human demonstration on a robot is pre-
sented. The goal is to enable the reproduction of beforehand
completely unknown complex tasks with multiple object
interaction. Knowledge about these tasks is acquired by
observation of the human demonstration and the involved
objects. This observation is further processed to determine
distinct sub-actions and object relations. These sub-actions
are associated with Object-Action Complexes (OACs) [17],
which are organized in a prior known library. These OACs
represent basic object manipulation and interaction skills.
The association is done by utilizing the observed world states
to select OACs with matching preconditions and effects.
Using these associations the robot can reproduce the before
unknown action sequence.

III. OUR APPROACH

In this section, we will present in detail the components of
the proposed system for automatic adaptive action sequence
reproduction. The proposed system mainly consists of three
components (see Fig. 1): demonstration, representation and

execution. The demonstration component is responsible for
the acquisition and segmentation of motion data. The rep-
resentation component contains the object-action complex
library and the association of the segmentation with specific
object-action complexes. The execution component provides
the adaptive reproduction of the observed action sequence
on a robot.

Representation

Demonstration

Marker-based 
Motion Capture

Automatic Action 
Segmentation

Keyframe 
Extraction

World State ii

OAC Constraints

World State i World State n… …

World State ↔ Constraint 
Evaluation

OAC Sequence

OAC Parameterization

Execution

Vision System

Force-Torque-Sensors

Kinematic System OAC Execution

Object Library

OAC Library

Fig. 1. System overview: The system consists of 3 components: demon-
stration, representation and execution.

A. Acquisition and segmentation of motion data

First, the human demonstration needs to be captured. The
demonstrations are usually complex tasks like preparing a
dough, which consist of several sub-actions. The trajectories
of all components of the demonstrations need to be recorded.
There are several ways to capture this data like inertial
motion capture [25], marker-based motion capture with
several cameras [26] or even 3D-based markerless motion
capture [27]. Since this is a intensively researched field itself
and outside the scope of this paper, a robust and precise
marker-based motion capture system has been chosen in our
experiments.

190



In order to extract the required trajectories of all com-
ponents with this motion capture system, the agent and
all involved objects have markers attached to them (see
Fig. 2). To distinguish between the markers in the post-
processing all markers are grouped by the object they are
attached to. Further, the groups and the markers themselves
are labeled. The labeling is important for the selection and
parameterization of the object-action complexes, which are
discussed in section III-B.

To segment the recorded action sequence we employ a
method similar to the method presented in [23] by Aksoy et
al. However, the main strategy remains the same. Instead of
using a 3D vision system the demonstrated task is observed
by an marker-based motion capture system. Consequently,
the calculation of the object relations is not based on color
segmentation but on the 3D Euclidian distance of objects
over time. In this work, we call the resulting system for task
segmentation Automatic Action Segmentation (AAS).

The environment is represented at any time for our ap-
proach as object relations. All object relations at a keyframe
are considered as the world state. Contact changes between
objects lead to a different world state. When the world state
changes, there has been a change on the object relations,
which in turn means that an action with an specific effect
has happened. Thus, we are detecting actions by their effects
on the environment. This approach is therefore model free in
case of the actions and requires a simple spatial representa-
tion and a label for later processing for the objects. However,
semantic information is not necessary.

The stated object relation is only of one kind at the
moment: an object touches another object. One object can
touch a set of other object, including the empty set. In
contrast to the related work of Aksoy et al., we utilize the
object distances to determine the keyframes instead of an
exact graph-matching algorithm that extracts the main graphs
of a sequence of graphs.

Further, Aksoy et al. use visual color segmentation and
overlapping of color regions to detect changes of the ob-
ject touching-relations. While this approach is flexible and
does not require any prior knowledge about the objects,
it lacks in robustness and precision. Therefore, we use
marker trajectories from motion capture data to detect object
touching-relations. All touching-relations at one frame are

Fig. 2. Left: Human demonstrator with markers attached to him and all
objects while wiping a tray. Right: The same frame of the demonstration as
the 3D view of the reconstructed marker groups (different colors).

called the world state. The marker positions are the basis
for all calculations. These markers are placed on the objects
such that they are visible at all time. However, they do
not represent the shape of the object. Thus, the distance
calculations on the markers only may not detect all touching-
relations between objects.

For calculation of the keyframes we use the markers
mG∈M,k={1...|G|},i={1...l} ∈ R3 and the following con-
straints, where M is the set of marker group sets and l is
the length of the trajectory:

Whenever
i) a marker mG1,k,i is sufficiently close enough to a

marker of another object mG2,j,i,
ii) and the change of distance |mG1,k,i−mG2,j,i|′ of two

markers is sufficiently small for a minimum number
of frames n,

the transition non-touching → touching is made:

|mG1,k,i −mG2,j,i| < d
∧ |mG1,k,i −mG2,j,i|′ < v

∃n0 ∈ {1 . . . N}
∀i ∈ {n0 . . . n0 + n} ,

(1)
where n0 is the frame with the non-touching → touching
transition, constant d is the distance threshold, constant v is
the distance-change threshold

The two markers are labeled as ”touching” from frame
n0 on until one of the previous conditions is false in the
following n frames:

|mG1,k,i −mG2,j,i| > d
∨ |mG1,k,i −mG2,j,i|′ > v

∃n1 ∈ {1 . . . N}
∀i ∈ {n1 . . . n1 + n} ,

(2)
where n1 marks the frame of the end of the touching-relation.

This way, passing other markers does not lead to touching-
relations and noise in the data does not break up touching
relations for a short time (see Fig. 3). At this point, for
every change of the world state a new keyframe will be

0

100

200

300

400

500

0 50 100 150 200 250 300 350 400 450

M
a
rk

e
r 

d
is

ta
n

ce
 (

m
m

)

Frame number

blue cup ↔ liquid
blue cup ↔ right hand

bowl ↔ liquid
liquid ↔ right hand

grasping pouring placing

Fig. 3. Simple example of the AAS: depiction of the used measures (marker
distance and change of distance) for the AAS. The black horizontal dotted
line shows the distance threshold (d=150mm). The black vertical dotted
lines show the resulting keyframes for the actions: grasping, pouring and
placing.

191



inserted. However, this leads to oversegmentation of the
action sequence with misleading keyframes. Some of these
keyframes are separated by a relatively small number of
frames, e.g. if an object is dropped onto another object. Since
the demonstrated sub-actions in the scope of demonstrations
for a robot always have a certain duration, these keyframes
do not represent the desired segmentation. This can be solved
by merging keyframes with only a few frames between them
into one single keyframe. To achieve the merge the last
keyframe of this group of keyframes and its relations are
used. The previous keyframes of the group are discarded. A
keyframe belongs to a group if the time difference to any
other keyframe of the group is below a threshold. Proper
chosing of this threshold is crucial for a correct segmentation.
Too high and too low thresholds can both lead to additional
false segments or missing segments depending on whether a
touching relation started or ended.

With this segmentation method, the keyframes for the
complete trajectory are calculated. In every keyframe, at least
one object relation changes from touching to non-touching or
vice versa. The corresponding object relations are stored for
every keyframe and represent the current world state. In Fig.
3 the method’s results are demonstrated in a simple example.

B. Object-Action Complex (OAC) Library

After applying the automatic action segmentation (see III-
A), the demonstrated action sequence is subdivided into sev-
eral sub-actions. However, the robot has no knowledge from
the observation about how to reproduce the action sequence
or any of the sub-actions. Although the trajectories of the
markers and the involved objects are known, simply imitating
the human demonstrator does not work. This is because
the kinematics of the human and the robot usually are not
interchangeable and because the objects are represented only
by their attached markers. The robot has no knowledge about
the shape of the objects and how to interact with them from
motion capture data. Additionally, the used motion capture
data does not contain any information about other perception
channels, like the force applied during the demonstration. To
enable the robot to reproduce the observed tasks a manually
designed library of OACs is used. Though, only basic actions
are stored in the library and complex tasks are observed.

The next step is to merge the gained information from
the automatic action segmentation with the OAC library.
The segmentation divides the action sequence in sub-actions,
though, there is no association between the sub-actions
and the OACs yet. Fortunately, the segmentation provides
naturally for each sub-action a keyframe at the beginning
and the end of the sub-action. At these keyframes, the current
world state is stored. An OAC usually does not depend on the
entire world state. Thus, a subset of the world states of the
two keyframes is used as the preconditions and the effects
of a sub-action.

There is a difference between the preconditions and effects
of the OACs and two consecutive keyframes. The keyframes
always contain instances of an object in the object relations,
while on the other hand the OACs may contain variable terms

in some or all the preconditions and effects, depending on
the selected OAC. For instance, the grasping OAC has the
following preconditions and effects:

Pre : hand↔ nothing
Effect : hand↔ object ∈ Graspable Objects

, (3)

where ↔ denotes a touching relation. Thus, to find the
matching OAC, the object instances of the keyframes have
to be validated against the compatibility with the OAC in
question.

The world states of the segmented sub-action are utilized
to perform a search within the OAC library to find a matching
OAC by compairing the preconditions and effects of all
OACs in the library with the previous and next world state
of the segmented sub-action. It is important to notice, that
OACs usually only depend on a small part of the world
state and the remainder object relations are irrelevant. Hence,
the object classes of the preconditions and effects of the
OACs are checked against the specific object instances of the
world states of the segmented sub-action for compatibility.
If all preconditions and effects of an OAC are part of the
segmented sub-action’s world state, a link between the sub-
action and the OAC is created and stored.

With the sequence of OACs it is possible to generate a new
OAC that contains this sequence. The needed preconditions
and effects of this new OAC can be calculated from the
OAC preconditions and effects in the sequence. The complete
method for this is shown in algorithm 1. The algorithm is
divided into two parts: the calculation of the preconditions
and the effects. The preconditions of sub-OACs are precon-
ditions of the new OAC, if they are not effects of previous
sub-OACs. The effects of the new OAC are the changes of
the world state before the new OAC to the world state after
it.

IV. EXPERIMENTS

In this section, we will explain the experimental setup for
the complete system and present an exemplary scenario for
the application of the system.

A. Experimental Setup

The system for reproduction of the action sequence consist
of two major hardware components. In this section, first the
motion capture system and the second the humanoid robot,
will be explained

1) Marker-based motion capture system: For motion cap-
turing, we are using a multi-camera system with 10 cameras
equipped with infrared lights and infrared filters. The human
demonstrator has reflective markers attached to the torso, the
arms and hands, and the head. On every object,at least three
markers are asymmetrically placed to correct identify the
pose and avoid instabilities in the assignment of markers.

2) Humanoid robot Armar-III: For the reproduction of the
action sequence, we are using the humanoid robot ARMAR-
III [28]. The kinematic chain of the robot consists of the
following subsystems: As a base, it has a holonomic platform
with three omniwheels. On this platform, a torso with three

192



Input:
oacs := list of (p:preconditions, e:effects)
ws := world state before new OAC
we := world state after new OAC

Result: list of preconditions and list of effects for new
OAC

foreach oac ocurrent in sequence do
o← ocurrent
preconditionRequired← true
foreach oac ocurrent in sequence before o do

ob ← ocurrent
if ob.e ∩ o.p 6= {∅} then

preconditionRequired← false
end

end
if preconditionRequired = true then

add o.p to pnew
end

end
foreach object os in ws do

foreach object oe in we do
if os = oe then

add (oe.relations \ os.relations) to enew
end

end
end
return pnew and enew

Algorithm 1: Calculation of preconditions and effects of
new OAC

degrees of freedom (DOF) is placed. Like a human, it has
two arms. Each of them consists of seven joints and has a five
finger pneumatic hand attached to it. The head kinematics is
divided into the neck joints with 3 DOF and the two eyes
with a common tilt joint and independent pan joints, resulting
in 10 DoF in total. The visual perception of the robot is
accomplished with a foveal and a peripheral stereo vision
system.

The robot is equipped with a 6D-force-torque-sensor in
both wrists to measure the force applied to the hand. This
sensor is used in most OACs as a state trigger, trajectory
modifier to reduce applied forces or merely as a trigger for
aborting the OAC as a safety precaution.

3) Environment: The experiment was conducted in a
kitchen environment. The robot is standing at a table with
several objects on it: two cups of different color, one mixing
bowl and a mixer. The cups are in the demonstration filled
with a big marker to symbolize the liquid. For the reproduc-
tion a robot friendly liquid replacement, i.e. small balls, are
used.

B. Exemplary Scenario

Analogously to the environment, we chose a task that
belongs to the kitchen scenario: preparing a dough. This
a complex task consisting of several OACs with multiple
objects involved. It requires and shows all the components
of our approach.

The execution of the task by an human demonstrator while

being observed by the motion capture system is realized by
the following sequence of commands:

1) Pour the liquid one into the orange bowl
2) Pour the liquid two into the orange bowl
3) Use the electric mixer for mixing the dough

This is one possible description for the OAC sequence that
probably would be sufficient for most humans. It is written
in a way that some important data for the execution is not
explicitly described. A human infers the missing data from
the context. However, a robot cannot execute this plan since
it has a different view on the actions pouring and mixing.
The OACs used with this system focus on moments when
objects touch each other or stop touching. Thus, the AAS
extracts the segmentation that is shown in Fig. 4. The figure
shows the whole process of reproduction of action sequence
of the described exemplary scenario. The left column shows
the demonstration by a human at the keyframes that are
extracted by the AAS. The graphs in the middle column
represent the world state at each keyframe. Each node of
the graph depicts an object and the connections illustrate the
touching-relations between objects. Black connection lines
depict already existing relations, while red solid lines stand
for a new touch-relation, and dotted lines for fading touching-
relations. The grey boxes in the right column show the
selected OAC with the matching constraints. The wildcards
in the OAC constraints are filled with the specific instances
for this action sequence, which result from the previous and
next world state as illustrated with the black arrows. The
pictures on the far right show the robot while executing the
action sequence.

During the reproduction of the dough preparation the robot
needed four different OACs, some of them multiple times:
Grasping, pouring, placing and mixing. This led to a new
OAC with the following preconditions:
• Left hand↔ Nothing
• Right hand↔ Nothing
• Liquid One↔ Red cup
• Liquid Two↔ Green cup

and the resulting effects:
• Right hand↔Mixer
• Liquid One↔ Orange bowl
• Liquid Two↔ Orange bowl
• Mixer ↔ Orange bowl

The new OAC is inserted into the OAC library and available
for future executions.

V. CONCLUSION

In this paper, we presented a system that first enables
robots to observe human interaction with objects in unstruc-
tured environments. It then decomposes demonstrated tasks
into sub-actions that can be mapped onto the entries of an
action library. Finally, action sequences are parameterized for
the current situation and can be reproduced on a robot. The
feasibility was shown in an exemplary scenario for preparing
a dough.

193



It can be summarized that our approach performs well in
the chosen scenario, which covers frequent actions in the
kitchen domain. The following desirable features that are
circumvented or just not supported by other approaches are
natively supported by our approach: Due to the fact that AAS
relies on world states instead of commonly used agent poses
we achieved time-invariance and pose-invariance. Further-
more, it is invariant to the kinematics of the demonstrator.

These features empower our approach to reproduce tasks
that were previously completely unknown to the robot by au-
tomatically splitting them up in known sub-actions. However,
these sub-actions need to be known beforehand and are the
backbone of this approach. Learning these sub-actions only
from observation is, even for a human, a challenging task.
Humans usually need to evaluate them before achieving com-
plete comprehension and take at least the haptic perception
into account as well. To teach the robot these sub-actions,
more specialized approaches might be required, for instance
a multimodal approach integrating several sensor channels.

Future work could concentrate on integrating an interactive
sequence completion for unknown sub-actions, where the
robot signals that he could not comprehend a demonstrated
sub-action and asks for user interaction to help him under-
standing it. The segmentation algorithm, in particular the
keyframe merging, could be extended through automatic
adaptation of the hyperparameters to reduce the dependency
on correct parameterization.

ACKNOWLEDGMENT
The research leading to these results has received fund-

ing from the European Union Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement No 270273
(Xperience).

REFERENCES

[1] D. C. Halbert, “Programming by example,” Ph.D. dissertation, Uni-
versity of California, Berkeley, 1984.

[2] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Learning by watching:
Extracting reusable task knowledge from visual observation of hu-
man performance,” IEEE Transactions on Robotics and Automation,
vol. 10, pp. 799–822, 1994.

[3] S. Muench, J. Kreuziger, M. Kaiser, and R. Dillmann, “Robot pro-
gramming be demonstration (rpd) – using machine learning and user
interaction methods for the development of easy and comfortable
robot programming systems,” in Proc. International Symposium on
Industrial Robots (ISIR), 1994, pp. 685–693.

[4] H. Friedrich, S. Münch, R. Dillmann, S. Bocionek, and M. Sassin,
“Robot programming by demonstration (rpd): supporting the induction
by human interaction,” Mach. Learn., vol. 23, no. 2-3, pp. 163–189,
1996.

[5] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches to
motor learning by imitation,” Philosophical Transactions of the Royal
Society of London: Series B, Biological Science, vol. 358, no. 1431,
pp. 537–547, 2003.

[6] A. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in In IEEE Inter-
national Conference on Robotics and Automation (ICRA2002), 2002,
pp. 1398–1403.

[7] A. Gams, M. Do, A. Ude, T. Asfour, and R. Dillmann, “On-Line
periodic movement and force-profile learning for adaptation to new
surfaces,” Nashville, USA, December 2010.

[8] J. Ernesti, L. Righetti, M. Do, T. Asfour, and S. Schaal, “Encoding
of periodic and their transient motions by a single dynamic move-
ment primitive,” in IEEE/RAS International Conference on Humanoid
Robots (Humanoids), 2012, pp. 57–64.

[9] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific gen-
eralization of discrete and periodic dynamic movement primitives,”
Robotics, IEEE Transactions on, vol. 26, no. 5, pp. 800–815, 2010.

[10] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear
dynamical systems with gaussian mixture models,” Robotics, IEEE
Transactions on, vol. 27, no. 5, pp. 943–957, 2011.

[11] A. Ude, C. G. Atkeson, and M. Riley, “Programming full-body move-
ments for humanoid robots by observation,” Robotics and Autonomous
Systems, vol. 47, pp. 93–108, 2004.

[12] S. Calinon, F. Guenter, and A. Billard, “Goal-directed imitation in
a humanoid robot,” in Robotics and Automation, 2005. ICRA 2005.
Proceedings of the 2005 IEEE International Conference on. IEEE,
2005, pp. 299–304.

[13] S. Calinon and A. Billard, “Recognition and reproduction of gestures
using a probabilistic framework combining pca, ica and hmm,” in Pro-
ceedings of the 22nd international conference on Machine learning.
ACM, 2005, pp. 105–112.

[14] T. Asfour, P. Azad, F. Gyarfas, and R. Dillmann, “Imitation learning
of dual-arm manipulation tasks in humanoid robots,” International
Journal of Humanoid Robotics, vol. 5, no. 2, pp. 183–202, December
2008.

[15] A. Ude, “Trajectory generation from noisy positions of object features
for teaching robot paths,” Robotics and Autonomous Systems, vol. 11,
no. 2, pp. 113–127, 1993.

[16] A. Ude, D. Omrčen, and G. Cheng, “Making object learning and
recognition an active process,” International Journal of Humanoid
Robotics, vol. 5, no. 2, pp. 267–286, 2008.

[17] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter,
A. Ude, T. Asfour, D. Kraft, D. Omrcene, A. Agostinig, and R. Dill-
mann, “Object-action complexes: Grounded abstractions of sensori-
motor processes,” Robotics and Autonomous Systems, 2011.

[18] J. Barbic, A. Safonova, J. Y. Pan, C. Faloutsos, J. K. Hodgins, and N. S.
Pollard, “Segmenting motion capture data into distinct behaviors,” in
GI ’04: Proceedings of Graphics Interface 2004. School of Computer
Science, University of Waterloo, Waterloo, Ontario, Canada: Canadian
Human-Computer Communications Society, 2004, pp. 185–194.

[19] D. Kulic and Y. Nakamura, “Incremental learning of human behaviors
using hierarchical hidden markov models,” in Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE,
2010, pp. 4649–4655.

[20] K. Yamane, M. Revfi, and T. Asfour, “Planning object receiving
motions of humanoid robots with human motion database,” in ICRA,
2013.

[21] M. Denisa and A. Ude, “Discovering new motor primitives in transi-
tion graphs,” in Intelligent Autonomous Systems 12, ser. Advances in
Intelligent Systems and Computing, S. Lee, H. Cho, K.-J. Yoon, and
J. Lee, Eds. Springer Berlin Heidelberg, 2013, vol. 193, pp. 219–230.

[22] D. Kulic, W. Takano, and Y. Nakamura, “Online segmentation and
clustering from continuous observation of whole body motions,”
Robotics, IEEE Transactions on, vol. 25, no. 5, pp. 1158–1166, 2009.

[23] E. E. Aksoy, A. Abramov, J. Dörr, N. Kejun, B. Dellen, and
F. Wörgötter, “Learning the semantics of object-action relations by
observation,” The International Journal of Robotics Research (IJRR),
2011.

[24] E. E. Aksoy, A. Abramov, F. Wörgötter, and B. Dellen, “Categorizing
object-action relations from semantic scene graphs,” in ICRA, 2010,
pp. 398–405.

[25] D. Vlasic, R. Adelsberger, G. Vannucci, J. Barnwell, M. Gross,
W. Matusik, and J. Popović, “Practical motion capture in everyday
surroundings,” ACM Transactions on Graphics (TOG), vol. 26, no. 3,
p. 35, 2007.

[26] J. Lee, J. Chai, P. S. Reitsma, J. K. Hodgins, and N. S. Pollard,
“Interactive control of avatars animated with human motion data,” in
ACM Transactions on Graphics (TOG), vol. 21, no. 3. ACM, 2002,
pp. 491–500.

[27] P. Azad, Visual Perception for Manipulation and Imitation in Hu-
manoid Robots. Springer, 2009, vol. 4.

[28] T. Asfour, K. Regenstein, P. Azad, J. Schröder, and R. Dillmann,
“ARMAR-III: a humanoid platform for perception-action integration,”
in Proc., International Workshop on Human-Centered Robotic Systems
(HCRS), Munich, 2006, pp. 51–56.

194



Fig. 4. Demonstrated action sequence at the detected keyframes (left column), the extracted world state at each keyframe (middle column), and the
selected OACs from the two corresponding world states, which are executed on the robot (right column).

195



Neural Combinatorial Learning of Goal-directed
Behavior with Reservoir Critic and Reward

Modulated Hebbian Plasticity
Sakyasingha Dasgupta†, Florentin Wörgötter†, Jun Morimoto‡ and Poramate Manoonpong†

†Bernstein Center for Computational Neuroscience (BCCN), Georg-August-Universität,

Friedrich Hund Platz 1, 37077, Göttingen, Germany

dasgupta@physik3.gwdg.de
‡ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan

Abstract—Learning of goal-directed behaviors in biological
systems is broadly based on associations between conditional and
unconditional stimuli. This can be further classified as classical
conditioning (correlation-based learning) and operant condition-
ing (reward-based learning). Although traditionally modeled as
separate learning systems in artificial agents, numerous animal
experiments point towards their co-operative role in behavioral
learning. Based on this concept, the recently introduced frame-
work of neural combinatorial learning combines the two systems
where both the systems run in parallel to guide the overall
learned behavior. Such a combinatorial learning demonstrates a
faster and efficient learner. In this work, we further improve the
framework by applying a reservoir computing network (RC) as
an adaptive critic unit and reward modulated Hebbian plasticity.
Using a mobile robot system for goal-directed behavior learning,
we clearly demonstrate that the reservoir critic outperforms
traditional radial basis function (RBF) critics in terms of stability
of convergence and learning time. Furthermore the temporal
memory in RC allows the system to learn partially observable
markov decision process scenario, in contrast to a memoryless
RBF critic.

Keywords—Re-inforcement learning, Reservoir networks, Corre-
lation learning, Temporal memory

I. INTRODUCTION

Operant conditioning (or reinforcement learning) and clas-
sical conditioning (or correlation-based learning) form the
two classes of conditioning for associative learning in bio-
logical systems. Several animal experiments provide evidence
of effective learning when these two classes are combined
together [14]. Inspired by this in [8] the neural combinatorial
learning framework was introduced. This combined the input
correlation learning (ICO) [13] and actor-critic reinforcement
learning (RL) [1] for controlling artificial agents in continuous
time. The learning performance of the combined system clearly
outperforms the individual mechanisms for both standard
benchmark learning problems as well as complex goal-directed
behavior problems. However, the actor-critic learner was mod-
elled in a traditional manner, using a feedforward radial basis
function (RBF) critic network [9]. Although this works well
for most standard memoryless markovian learning tasks, it fails
to approximate the value function in case of non-markovian or
partially observable markov decision problems (POMDP).The
role of the critic within the actor-critic learning paradigm is

crucial as it needs to approximate the expected cumulative
future reward (value function) such that the temporal difference
(TD) error can be minimised. This TD-error in turn drives the
policy of the actor and guides the behavior of the controlled
agent. In case of highly non-linear environments where the
agent has only partial sensory capabilities, a critic with tem-
poral memory is required. As such in this paper, we replace
the previous RBF based critic with a new recurrent neural
network based adaptive critic of the reservoir computing (RC)
type. RC networks [4][5] make use of a randomly connected
dynamic reservoir with delayed temporal memory capacity [2].
Using a recursive least squares algorithm, this type of critic
can be trained very fast in an online setup. Furthermore due
to internal feedback connections, the short term memory of
incoming sensory information can be used to solve POMDP
learning problems. The RC based critic enhances the actor-
critic based learner. In order to combine it with the ICO
learning component of the combinatorial framework, learning
of the connection weights between the two systems (Fig. 1)
is very important. We solve this problem by introducing a
new learning rule based on a biologically plausible mechanism
called reward modulated Hebbian plasticity (RMHP) [6]. The
RMHP rule updates the connection weights between ICO and
actor-critic RL by checking for correlations between a constant
reward signal and the deviation from the mean output level
of the respective learning mechanisms. As such depending on
the learner which drives the agent towards the correct goal
(i.e. positively reinforced), the weight adaptation proceeds to
finally find a suitable combination between the two learning
systems.
Previously in [10][11] an application of the echo-state network
(specific RC network) as an adaptive critic for reinforcement
learning was presented. Although the authors implemented
an online learner, the training and testing data for the RC
network were carried out by manually controlling a wheeled
robot. Moreover these implementations were designed with the
purpose of minimizing a specific utility function for obstacle
avoidance, door-passing scenario or very simple learning to
reach a single goal. In contrast we implement a completely
continuous learner where the reservoir critic learns online with-
out any initial manual control of the robot. Furthermore, to the
best of our knowledge, this is the very first implementation that
combines correlation learning with reservoir based actor-critic
learning and reward modulated Hebbian learning to succesfully

2013 IEEE International Conference on Systems, Man, and Cybernetics

978-1-4799-0652-9/13 $31.00 © 2013 IEEE

DOI 

993

2013 IEEE International Conference on Systems, Man, and Cybernetics

978-1-4799-0652-9/13 $31.00 © 2013 IEEE

DOI 10.1109/SMC.2013.174

993

2013 IEEE International Conference on Systems, Man, and Cybernetics

978-1-4799-0652-9/13 $31.00 © 2013 IEEE

DOI 10.1109/SMC.2013.174

993



demonstrate a more efficient and fast learner. In addition, the
RMHP learning rule is both biologically plausible and an
effective mechanism to learn the contribution of competing
systems modulated by constant reward signal. As proposed in
our previous work [2] self-adaptation of the reservoir neurons
non-linearity is carried out using a general intrinsic plasticity
mechanism based on the Weibull probability distribution.
We test our combined network on a complex goal-directed
behavior task with a simulated wheeled robot for both fully
and partially observable scenarios. The RC based adaptive
critic clearly outperforms feedforward critic networks based
on RBF kernels, both in terms of stability of performance as
well as the learning time. Moreover the RMHP based weight
adaptation rule, by working on a very slow timescale is able
to accurately combine the two learning systems in an adap-
tive manner. Specifically this type of a neural combinatorial
learning framework based on reservoir critics can be used
to solve complex control problems as well as to solve tasks
with delayed reward or partially observable state space, in
continuous time.
This article is organized as follows. Section II introduces the
neural combinatorial learning framework in greater detail with
descriptions of the new reservoir based actor-critic learner
(section II A) and the reward modulated Hebbian plasticity rule
(section II B). Section III presents the experimental setup with
the discussion of results. This is followed by the conclusion
in Section IV.

II. NEURAL COMBINATORIAL LEARNING FRAMEWORK

In this section we briefly describe the neural combinatorial
learning framework (CLF), as introduced in our previous work
[8]. The CLF combines two classes of associative learning,
namely classical conditioning and operant conditioning, as a
dual learning system. It is used for goal directed behaviors in
continuous state-action spaces. Classical conditioning involves
the presentation of two different stimuli often termed as a
conditional stimulus (CS) and an unconditional stimulus (US),
leading to corresponding responses. The agent learns the
association between the US and CS such that after learning
completes, it now responds to the CS rather than the original
unconditioned response (an innate reflex action) to the US.
In general the CS acts as a predictor signal (occuring earlier
in time) for the US, e.g. the famous Pavlovian dog [12]
initially salivates (unconditioned response) at the sight of
food (US) and after learning salivates at the ring of a bell
(CS) much prior to the sight of food. However this type of
learning occurs in the absence of any explicit future positive
or negative feedback (other than the immediate reflex signal)
for a particular action. In contrast, Operant conditioning based
learning involves an explicit reinforcer or reward signal that
provides positive or negative feedback to the agent for every
corresponding action. Over time the agent learns to respond
with the desired action such that it maximises (for the positive
case) the total accumulated reward. As such this type of
conditioning is popularly termed as Reinforcement learning
(RL).
Although these two mechanisms are distinct from each other
they seem to occur in combination as suggested from several
animal behavioral studies. For a more clearer understanding let
us consider the example of Pavlov’s dog once again. Say, once
the bell is rung, the dog is now required to perform a specific

Neural ICO learning

     Neural actor-critic

 reinforcement learning
  

Agent

Feedback

O
ICO

Oac

O
COM Behavior

Environment

Disturbances

(Combined controller)

(Control signals) (Controlled 
    system)

Fig. 1. Combinatorial learning framework with parallel combination of
ICO learning and actor-critic reinforcement learning. Individual learning
mechanisms adapt their weights independantly and then their final weighted
outputs (Oico and Oac) are combined into Ocom using a reward modulated
Hebbian plasticity rule (dotted arrows represent plastic synapses). Ocom

controls the agent behavior (policy) while sensory feedback from the agent is
sent back to both the learning mechanisms in parallel.

task (e.g. stand on two legs) and only then it receives food. In
this slightly modified scenario, the bell is still the conditional
stimulus; however, now the food acts as the reinforcer or
reward signal. The dog learns to associate the sound of bell
and food and starts to salivate based on classical conditioning.
Interestingly after sufficient repetitions, the dog would learn to
perform the desired action of standing on two legs as soon as
it hears the bell and expect to receive the food as reward. Thus
the overall behaviour is shaped through a combined learning
system.
Inspired by such biological systems the CLF acts as a neural
learning system that succesfully combines classical conditional
(CC) with operant or reward based conditioning. Input cor-
relation learning (ICO)1 [13] was implemented as an exam-
ple of CC, while a continuous actor-critic learner [1] was
implemented as an example of reward based conditioning.
Taking advantage of the individual learning mechanisms, the
combined framework can learn the appropiate control policy
for the agent in a fast and robust manner outperforming the
singular implementation of the individual components.

The input correlation learning (ICO) and actor-critic RL
subsystems can either be combined in series or in parallel. Pre-
viously in [7] serial combination was presented, where the ICO
learner was used for reward related feature space extraction and
provide prior knowledge to the actor-critic learner. Although
this considerably improved the performance of the combined
learning system, it suffered from the drawback of technical
inconvinience of running the learning systems separately. This
is also biologically less plausible. We extended this to a
parallel combination in [8], however with a memoryless radial
basis function critic network. Furthermore the subsystems were
combined with equally weighted contribution in a non-adaptive
manner to control the overall action of the Agent. As such in
this work, we start with a parallel combination (Fig. 1) of
the two individual learning systems. The actor-critic reward
based learner is extended with a dynamic adaptive reservoir
based critic with delay temporal memory capability [2] that can
handle partially observable markov decision process problems
(POMDP) in continuous time. Furthermore we implement a
new reward modulated hebbian plasticity rule that learns the
degree of contribution of the two learning systems.
The learning goal of the ICO learning system is to use a
predictive signal (CS) in order to predict the occurence of the

1ICO learning is implemented as a differntial Hebbian learner. For more
details refer to [8]

994994994



reflex signal (US). This in general enables the agent to react
earlier and avoid the reflex altogether. Here the synaptic adap-
tation takes place by changes via heterosynaptic interactions
as a consequence of the order of the arriving inputs. If the
predictive inputs (agents sensory signals) are followed by the
reflex input, the plastic synapses of the predictive inputs get
strengthened and if the order is reveresed, it weakens based
on a differential Hebbian learning method. For further details
of the ICO learning system, the reader is refered to [13] [16].

A. Actor-critic Learning with Dynamic Reservoir
The continuous actor-critic reinforcement learning scheme

is particularly suited for complex continuous state-action prob-
lems while at the same time being based on a biological
learning model [3]. The basic learning model can be divided
into two sub-mechanisms popularly termed as the actor and
the adaptive critic (Fig. 2). The actor behaves as the main
controller of an agent, while the critic provides an evaluative
feedback or reinforcement signal to the actor by observing the
consequences of its behaviour in the environment (controlled
system). This evaluative feedback in general acts as a measure
of goodness of behaviour i.e. overtime the agent learns to
anticipate reinforcing events.
Inspired by the reservoir computing framework, here we use
a large recurrent neural network (dynamic reservoir) as the
critic. This provides a dynamic network with a large repertoire
of reservoir signals that can be used to approximate the
value function v(t). It approximates the accumulated sum of
the future rewards r(t) with the discount factor γ where,
0 ≤ γ < 1.

v(t) =

∞
∑

i=1

γi−1r(t+ i). (1)

The primary goal of the critic is to predict v(t) such that the
temporal-difference error δ (TD-error) is minimized over time.
The TD-error δ is computed from the predictions as follows:

δ(t) = r(t) + γv(t)− v(t− 1). (2)

The reservoir network (Fig. 2 bottom) is constructed as
a random RNN with N internal neurons and fixed synaptic
connectivity. The recurrent neural activity within the dynamic
reservoir varies as a function of it’s previous activity and the
current driving input signal. As such, the discrete time state
dynamics of reservoir neurons is given as:

x(t+1) = (1−λ)x(t)+λfsys(Winu(t+1)+Wsysx(t)), (3)

y(t) = fout(Woutx(t)), (4)

where x(t) is the N dimensional vector of reservoir state
activations, u(t) is the input to the reservoir, consisting of the
agent’s states (sensory inputs) and y(t) is the vector of output
neurons. Here the predicted value function v(t) = y(t). The
reservoir time scale is controlled by the parameter λ, where
0 < λ ≤ 1. Win and Wsys are the input to reservoir weights
and the internal reservoir recurrent connection weights,
respectively.
The output weights Wout are calculated using the recursive

Fig. 2. The Neural circuit of actor-critic RL based on TD learning. (Top)
The actor modeled as a stochastic neural network. (Below) The critic modeled
using a dynamic reservoir network (details in text).

least squares (RLS) algorithm at each time step, while the
training inputs u(t) are being fed into the reservoir. Wout are
calculated such that the overall TD-error is minimized. We
implement the RLS algorithm using a fixed forgetting factor
(λRLS < 1) as follows:

RLS algorithm for self-adaptive reservoir training:
Initialize: Wout = 0, exponential forgetting factor (λRLS) is
set to a value less than 1 (we use 0.85) and the auto-correlation
matrix ρ is initialized as ρ(0) = I/β, where I is unit matrix
and β is a small constant.

Repeat: At time step t
Step 1: For each input signal u(t), the reservoir state x(t) and
network output y(t) are calculated using Eq. 3 and Eq. 4.

Step 2: Online error e(t) calculated as:
e(t)← δ(t)

Step 3: Gain vector K(t) is updated as:

K(t)← ρ(t−1)x(t)
λRLS+xT (t)ρ(t−1)x(t)

Step 4: Update the auto-correlation matrix ρ(t)

ρ(t)← 1
λRLS

[

ρ(t− 1)−K(t)xT (t)ρ(t− 1)
]

995995995



Step 5: Update the instantaneous output weights Wout(t)
Wout(t)←Wout(t− 1) +K(t)e(t)

Step 6: t← t+ 1

Until: Maximum number of time steps is reached.
As proposed in [15][2] we also implement a generic

intrinsic plasticity mechanism based on the Weibull
distribution for unsupervised adaptation of the reservoir neuron
nonlinearity. This allows the reservoir to homoeostatically
maintain a stable firing rate while at the same time prevent
unwanted chaotic neural activity. The reservoir neurons
and the output neurons are updated using a tanh nonlinear
activation function i.e. fsys = fout = tanh.

The actor is designed as a stochastic unit, such that for a
one dimensional action setup the output (Oac) is given as:

oac(t) = ε(t) +
K
∑

i=1

wi(t)ui(t) (5)

where K denotes the number of sensory inputs (u(t) =
u1(t), u2(t), .., uK(t)) to the agent being controlled. wi repre-
sent the synaptic weights for the different sensory inputs. ε(t)
is the exploration quantity updated at every time step such that
the agent should explore the environment more if the expected
cummulative future reward v is suboptimal and decrease the
exploration as v is maximised. As a result one should expect
the exploration to tend towards zero as the agent starts to learn
the desired behavior. Using a gaussian white noise σ (zero
mean and standard deviation one) bounded by the minimum
and maximum limits of the value function (vmin and vmax),
the exploration term is modulated as follows (Ω is constant
scale factor):

ε(t) = Ωσ(t)
[

min
[

0.5, max
(

0,
vmax − v(t)

vmax − vmin

)]]

(6)

The actor learns by an online adaptation (Fig. 2 above) of
its synaptic weights wi at each time step modulated by the TD-
error δ(t) from the Critic network (Equation (2)) as follows:

Δwi(t) = αδ(t)ui(t)ε(t) (7)

Where α is the learning rate such that 0 < α < 1.
Instead of using direct reward to update the actor weights,
using TD-error (i.e. error of an internal reward) allows the
system to handle even delayed reward control problems. In
general once the agent learns the desired behavior, the explo-
ration term (ε(t)) should become zero, as a result of which
no further weight change (Eq. (7)) occurs and oac(t) gives the
desired action without any noise. The reservoir network being
an input driven dynamical system, endows the critic with long
temporal memory in contrast to traditional feedforward critic
networks (RBF kernels). Specifically in order to solve POMDP
scenarios, temporal memory is crucial to propagate the knowl-
edge of previously visited state space (sensory signals) for
expected reward in the future. As a result unlike RBF based
critics our network can effectively deal with such problems in
continuous time.

B. Combinatorial learning with reward modulated Hebbian
plasticity

In the previous subsections we provided an overview of the
combinatorial learning framework along with the description
of the new dynamic reservoir based actor-critic reinforce-
ment learning network. We now elaborate on the parallel
combination of the correlation-based learner (ICO) and the
reward-based learner (actor-critic) as depicted in Fig. 1. The
system works as a dual learner where the individual learning
mechanisms run in parallel to guide the behavior of the agent.
Both the systems adapt their weights independently while
receiving sensory feedback from the agent (system state) in
parallel. The final action that drives the agent is calculated as
a weighted sum of the individual components. This can be
described as follows:

ocom(t) = ξicooico(t) + ξacoac(t) (8)

where, oico(t) and oac(t) are the t time step outputs of
the input correlation-based learner and the actor-critic learner,
respectively. ocom(t) represents the t time step combinatorial
action. The important parameter here is the weights of the
individual components (ξico and ξac) that govern their degree
of influence on the net action of the agent. A simple and
straight forward approach [8] is to provide equal contribution
(ξico = ξac = 0.5) for controlling the agent. Although this
leads to successful solutions, they are sub-optimal. Intuitively
for associative learning problems with immediate rewards
the ICO system learns quickly as compared to distal reward
based goal-directed problems where the ICO learner provides
guidance to actor-critic learner. In general depending on the
type of problem, the interaction between the two learning
systems differs and needs to be taken into account. We solve
this problem by introducing a new plasticity rule called reward
modulated hebbian plasticity [6] in order to learn the individual
synaptic weights. Based on this plasticity rule the ICO and
actor-critic RL weights are learnt at each time step as follows
:

Δξico(t) = ηr(t)(oico(t)− ōico(t))oac(t), (9)

Δξac(t) = ηr(t)(oac(t)− ōac(t))oico(t). (10)

Here r(t) is the current time step reward signal received
by the agent, while ōico(t) and ōac(t) denote the low-pass
filtered version (ōico,ac(t) = 0.9ōico,ac(t − 1) + 0.1oico,ac(t))
of the output from the ICO learner and the actor-critic learner,
respectively. The plasticity model used here is based on the
assumption that the net policy performance (agents behavior)
is influenced by a single global neuromodulatory signal. The
learning rule measures correlations between the reward signal
and the deviations of the ICO and actor-critic learner outputs
from their mean values and accordingly adjusts the respective
weights. In order to prevent uncontrolled divergence in the
learnt weights (ξico and ξac), synaptic normalization is intro-
duced by dividing the individual weights by the total sum of
weights. This ensures that the weights always add up to one
and 0 < ξico, ξac < 1. In general this plasticty rule occurs
on a slow time scale which is governed by the learning rate
parameter η. Typically η is set much less compared to the
learning rate of the two individual learning systems (ICO and
actor-critic).

996996996



U

D

IR

B

B

B

Blue

steering

(a)

G

G

Green

IR

IR

IR

IR

IR

IR

IR

 Object

+

-

+

-

Direction of motion

0 deg

 Object
IR

IR

IR

IR

IRIR

IR

IR
IR

D
G

180 deg

-180 deg

Wheeled robot

    Green object 
(posi

    Blue object 
(negative    reward)

-45 deg

45 deg

Starting or reset position

+1

-1

G

B

    Reinforcement 
 Zone

tive reward)

-45 deg

45 deg

Starting or reset position

+1

-1

G

B

c)

 

    Observable zone

 DG,B < 0.6

Boundary

    unobservable

(c)(b)

    Observer
    Observer

Fig. 3. Simulated mobile robot system for goal-directed behavior task. (a) (Top) The mobile robot NIMM4 with different types of sensors. The relative
orientation sensor φ is used as state information for the robot. (Bottom) Variation of the relative orientation φG to the green goal. (b) Environmental setup for
the fully observable case. The robot continuously senses its relative orientation to both the green and blue objects. Only whithin the reinforcement zone (shaded
circle) the robot receives positive reward when near the green goal and negative reward when near the blue goal. (c) Environmental setup for the partially
observable case. The robot can sense its relative orientation to the goals only when within the observable zone (outer dotted circles). Reinforcement is received
similar to the fully observable case. Here the orange object represents an external observer.

III. EXPERIMENTS AND RESULTS

In order to test the performance of the combinatorial learn-
ing framework with a reservoir critic and reward modulated
Hebbian plasticity, we employ a goal-directed behavior control
task using a simulated wheeled robot system (Fig. 3 (a)).
The task is to let the wheeled robot NIMM4 learn to steer
itself towards a desired goal (green ball, Figs. 3(b) and (c))
within a given time. As the robot approaches the desired goal,
it receives positive reinforcement. Additionally an undesired
goal (blue spherical ball) with negative reinforcement was
also placed within the same arena. NIMM4 is provided with
two relative orientation sensors (φG - green ball, φB - blue
ball) that can measure angle of deviations from the two goals.
They can take values in the interval [−180o,180o] with the
φG,B = 0o when the respective goal is directly in front of
the robot. In addition NIMM4 also consists of two relative
position sensors (DG,B) that can calculate it’s relative distance
to a goal in the interval [0,1] with the respective sensor
reading tending to zero, as the robot gets closer to a goal.
The task is further divided into fully and partially obervable
scenarios. In the first case, the robot can continuously sense its
angle of deviation to the two goals with φG,B always active.
For the later case, the robot cannot sense direction to either
of the goals (φG,B inactive) untill it reaches the half way
distance to either of the goals i.e. DG,B < 0.6. In both the
cases when the robot gets very close to either of the goals,
within a distance of (DG,B = 0.2) it receives a positive or
negative reward. Within this boundary for the green goal it
receives a continuous reward of +1 at every time step and a
continuous reward of -1 in case of the blue goal, respectively.
This distance is also used as the zone of reflex to trigger
a reflex signal for the ICO learner. It is important to note
that only the relative orientation sensory data is used as state
input for both the ICO learner and the actor-critic learner.
Furthermore as φG,B signals overlap with each other (i.e., the
robot simultaneously senses its relative orientation to both the
goals in the whole arena). NIMM4 is also supplied with eight
infra-red sensors that are used only to reset it to the starting
location if it hits a boundary before reaching either of the

Fully Observable Partially Observable
0

20

40

60

80

100

120

140

160

L
e
a
rn

in
g

 t
im

e
 a

t 
s
u

c
c
e
s
s
 (

tr
ia

ls
)

 

 
Reservoir Critic RBF Critic

Fully Observable Partially Observable
0

10

20

30

40

50

60

70

80

90

100

S
u

c
c

e
s

s
 r

a
te

 %

 

 

Reservoir Critic RBF Critic

(a)

(b)
98 %

92 % 94 %

48 %

Fig. 4. Performance comparison between a reservoir based critic and RBF
based critic for the fully observable and partialy observable cases (ICO and
actor components remained the same). (a) Average learning time (trials)
needed to succesfully complete the task, calculated over 50 experiments (error
bars indicate standard deviation for 95 % confidence interval). (b) Success rate
in percentage. Here ”success” indicates the robots ability to correctly navigate
to the green goal.

997997997



-100 0 100 200 300 400 500 600 700
-600

-400

-200

0

200

400

600

 

 

-40

-30

-20

-10

0

10

20

30

40

-100 0 100 200 300 400 500 600 700
-600

-400

-200

0

200

400

600

 

 

-40

-30

-20

-10

0

10

20

30

0 0.5 1 1.5 2 2.5 3

x 10
5

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.5 1 1.5 2 2.5 3

x 10
5

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

 

0 5 10 15
0.44

0.46

0.48

0.5

0.52

0.54

0.56
 

0 5 10 15

x 10
4

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

 

ICO output weight

Actor-critic output weight

x 10
4Time steps Time steps

 

ICO output weight

Actor-critic output weight

(a) (b)

(c) (d)

(e) (f)

G

B

G

B

Fig. 5. (a) Estimation of the value function v(t) using reservoir based critic. The v(t) estimate is plotted with respect to local co-ordinates of the robot and
an observer located directly opposite to the robot starting position. Colormap indicates the changing v(t) values. The black ball indicates the starting position
of the robot with random orientation and the curvature of the plot is resultant of the shape of view from the observer. (b) Estimation of value function v(t)
for the same task using the static RBF based critic. (c) Convergence of exploration term ε(t) using reservoir critic. (d) Convergence of exploration term using
RBF critic. (e) Adaptation of ICO weights ξico and actor-critic weights ξac using the RMHP rule for Combined learner with reservoir critic. (f) Adaptation of
ICO weights ξico and actor-critic weights ξac using the RMHP rule for Combined learner with RBF critic. The continuous change in the learned weights even
after successful learning of task is due to the Hebbian nature of the adaptation rule. This can be easily controlled by introducing additional synaptic scaling
mechanism or in this case stop the weight updation once exploration (ε(t)) becomes zero. All the plots were generated for the same goal-directed behavior task
of reaching the green goal. The plots indicate the best performance case for each setup.

998998998



goal

o
b
s
e
rv

e
r

robot

undesired goal

Fig. 6. Simulation screenshots showing the actual behavior of the robot after succesfully learning the task. Upon learning, it continuously steers towards the
green goal and avoids movements towards the blue ball. For video of a complete learning sequence, please visit http://www.manoonpong.com/rcrl/rcrl.wmv .

goals. Keeping the ICO learner fixed for the combinatorial
setup, we tested both the scenarios (Figs. 3(b) and (c)) for
a reservoir based critic and a feedforward RBF critic. The
combinatorial learning mechanism learns to steer the robot
towards the desired goal (green object). Without control, the
robot randomly moved around. The robot always starts from
the same location, however with random orientation. 50 runs
were carried out with each setup for both fully observable
and partially-observable scenarios. Each run consisted of a
maximum of 200 trials (robot resets). The robot was reset if
it reached either of the goals or if it hit a boundary wall or if
the maximum simulation time of 15s was reached.
ICO learning was setup as follows: φG,B were used as predic-
tive signals. Two independent reflex signals were configured
with one for blue ball and the other for the green ball. The
reflex signal was designed to elicit a turn towards a ball once
the robot comes close enough to it (inside the dotted circle in
Figs. 3(b) and (c)). Irrespective of the kind of goal (desired or
undesired) the reflex signal drives the robot towards it with a
turn proportional to the deviations defined by φG,B i.e large
deviations cause sharper turns. The green and the blue ball
were placed such that there was no overlap between the reflex
areas, hence only one reflex signal got triggered at a time. In
other words, the goal of the ICO learner is simply to learn to
drive towards a goal location without any knowledge of their
worth (positive or negative reward).
The actor-critic learner was setup as follows: The inputs to
the critic and actor networks (Fig. 2) consisted of the two
relative orientation sensor data φG and φB . The reservoir
network for the critic consisted of N = 100 neurons and one
ouput neuron that estimates the value function v(t) (Eq. (1)).
Reservoir input weights Win were drawn from an uniform
distribution [−0.5, 0.5] while the reservoir recurrent weights
Wsys were drawn from the uniform distribution [−1, 1]. Wsys

was subsequently scaled to a spectral radius of 0.9 with only
10% internal connectivity. The reward signal r(t) (Eq. (2))
was set to +1 when the robot comes close to the green
ball and to -1 when it comes close to the blue ball. A
RBF feedforward network was used for comparison with the
reservoir based critic. The RBF critic size was varied from
16 to 100 hidden neurons. All other combinatorial network
parameters are summarised in Table 1.
The performance of the reservoir based critic as compared to
the RBF critic (keeping all other components of the combi-
natorial learning framework the same) is compared in Fig. 4
with respect to the fully and the partially observable scenarios

of the same task. As observed from Fig. 4(b), the reservoir
based critic clearly outperforms the RBF critic. Moreover the
difference in performance is highly significant in the POMDP
scenario, where the reservoir network outperforms the RBF
critic by a success rate greater than 50%. Temporal memory
of incoming agent state information available to the reservoir
critic is crucial for solving complex non-markovian prob-
lems, as compared to memoryless feedforward critic networks.
Furthermore although both the implementations have almost
similar success rate for the fully observable case, the reservoir
based system converges to a solution (learned behavior of
driving the robot to the green goal) faster (less than 50 trials),
as observed in Fig. 4(a). However, expectedly the POMDP
scenario takes longer time to learn the correct behavior, owing
to the reduction in the total sensory information available to the
system. Upon successfully learning the task the weights of the
actor (Eq. 7) converge such that the robot gets pulled towards
the desired green goal. It should be noted that although linear
actors (Eq. 5) were used in this setup, the POMDP scenario is
effectively solved due to the inherent trace of previous inputs
in the reservoir critic. In contrast the memoryless RBF critic
system works on chance and hence learns the POMDP task
with less than 50% success rate.
In Figs. 5 (a) and (b) we compare the performance of the
reservoir based critic with a RBF critic network in terms
of the value function estimation curves for the same goal-
directed behavior task (i.e. the fully observable task). It is
clearly observed that the reservoir critic successfully enables
the mobile robot to learn to drive towards the green goal while
avoiding the blue goal. Furthermore unlike the RBF critic (Fig.
5(b)), the value function curve in Fig. 5(a) displays a strong
gradient of the estimated value of v(t) with high positive
values towards the correct goal (green object). In contrast the
memory less RBF critic estimates v(t) to values closer to
zero in most locations except for regions within the zone of
reward. As a result our modified critic learns the task faster
as indicated by the fast convergence of the exploration term
ε(t) in Figs. 5 (c) and (d). In Figs. 5(e) and (f) we plot the
development of the ICO ξico and actor-critic weights ξac via
the RMHP learning rule (Eqs. (9) and (10)). In case of the
reservoir critic, the actor-critic learner component is seen to
dominate over the ICO learner. In contrast when the RBF critic
was used for the same task, the learnt behavior is dominated
by the ICO component. This can be explained in terms of
the memory of sensory state present in the reservoir network
that successfully guides the agents behavior in contrast to the

999999999



TABLE I.

The List of combinatorial network parameters

Reservoir critic size (neurons) 100
RBF critic size (neurons) 16 - 100
Reservoir leak rate (λ) 0.3

RLS learning constant (β) 10−2

Discount factor (γ) 0.95
Scale factor (Ω) 5
Maximum value (vmax) 50.0
Minimum value (vmin) -50.0
Neuron non-linearity (fsys,fout) tanh
RLS learning rate (λRLS ) 0.85
Actor learning rate (α) 0.001
RMHP learning rate (η) 0.0005

memoryless RBF network. In general the weight adaptation
should occur in a task dependent manner. The actual behavior
of the robot NIMM4 after succesfully learning the task of
navigating towards the green goal, is depicted via screenshots
of the simulation in Fig. 6.

IV. CONCLUSION

In this work we have successfully extended the neural
combinatorial learning framework (CLF) using a reservoir
network based adaptive critic, while using a stochastic linear
actor unit and a basic implementation of input correlation
learning. The resultant network effectively solves goal directed
behavioral problems and outperforms the CLF with traditional
radial basis function ( feed-forward network) based critics
both in terms of rate of success and the overall learning
time. Furthermore due to the inherent temporal memory of
reservoir networks, our modified critic enables the CLF to
solve partially observable scenarios. In addition we imple-
ment a new biologically plausible reward modulated Hebbian
plasticity rule which enables the CLF to learn the degree of
influence of the ICO learner as compared to the actor-critic
learner. This allows automatic weight adaptation between the
two components working on a very slow time scale. As a future
direction we plan to extend the linear actor units to reservoir
based nonlinear actors which would work in conjunction with
the reservoir critic. This would enable the controlled agent
with memory capabilities in the action domain and thereby
solve more complex goal-directed behavioral tasks like delayed
reward maze navigation. Moreover behavioral analysis of the
RMHP rule for evaluating the stability of learning against
changing metaparameters (E.g. individual learning rates) with
task independent evaluation measures will be carried out as
further extension of our current work.

ACKNOWLEDGMENT

This research was supported by the Emmy Noether Program
(DFG, MA4464/3-1), the Federal Ministry of Education and
Research (BMBF) by a grant to the Bernstein Center for Com-
putational Neuroscience II Göttingen (01GQ1005A, project
D1), the Strategic Japanese-German Cooperative Program on
Computational Neuroscience (JST-DFG, WO388/11-1), Euro-
pean Community’s Seventh Framework Programme FP7/2007-
2013 (Specific Programme Cooperation, Theme 3, Information
and Communication Technologies) under grant agreement no.
270273 (Xperience).

REFERENCES

[1] Doya, K. (2000) Reinforcement Learning In Continuous Time and Space.
Neural Computation, 12, 219-245.

[2] Dasgupta, S., Wörgötter, F., and Manoonpong, P. (2013) Information
Dynamics based Self-adaptive Reservoir for Delay Temporal Memory
Tasks. Evolving Systems, doi: 10.1007/s12530-013-9080-y.

[3] Frémaux, N., Sprekeler, H., Gerstner, W. (2013), Reinforcement Learning
Using a Continuous Time Actor-Critic Framework with Spiking Neurons.
PLoS Comput Biol 9(4): e1003024. doi:10.1371/journal.pcbi.1003024.

[4] Jaeger, H., and Haas., H. (2004): Harnessing Nonlinearity: Predicting
Chaotic Systems and Saving Energy in Wireless Communication. Sci-
ence, 304(5667), 78-80.

[5] Maass, W., Natschlger, T., and Markram, H. (2002), Real-time computing
without stable states: a new framework for neural computation based on
perturbations. Neural Computation. 14 (11): 253160.

[6] Legenstein, R., Chase, S.M., Schwartz, A.B., and Maass, W. (2010)
A reward-modulated hebbian learning rule can explain experimentally
observed network reorganization in a brain control task. J Neurosci
30:84008410.

[7] Manoonpong, P., Wörgötter, F., and Morimoto, J. (2010) Extraction of
Reward-Related Feature Space Using Correlation-Based and Reward-
Based Learning Methods. In Proc. 17th International Conference on
Neural Information Processing, Sydney, Australia, November 22-25
(ICONIP’10),Part I, LNCS 6443, pp. 414-421.

[8] Manoonpong, P., Kolodziejski, C., Wörgötter, F., and Morimoto J. (2013)
Combining Correlation-Based and Reward-Based Learning in Neural
Control for Policy Improvement. Advances in Complex Systems, doi:
10.1142/S021952591350015X.

[9] Morimoto, J., and Kenji, Doya. (1998) Reinforcement learning of
dynamic motor sequence: Learning to stand up. In Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems, Vol. 3.
IEEE.

[10] Oubbati, M., Kchele, M., Koprinkova-Hristova, P., and Palm, G. (2011),
Anticipating Rewards in Continuous Time and Space with Echo State
Networks and Actor-Critic Design. In Proc. 19th European Symposium
on Artificial Neural Networks (ESANN).

[11] Koprinkova-Hristova, P., Oubbati, M., and Palm, G. (2010). Adaptive
critic design with echo state network. In Proc. IEEE International
Conference on Systems, Man, and Cybernetics, 1010-1015.

[12] Pavlov, I., Conditioned reflexes (Oxford University Press, Oxford, UK,
1927)

[13] Porr, B., and Wörgötter, F. (2006), Strongly improved stability and faster
convergence of temporal sequence learning by utilising input correlations
only. Neural computation 18, 1380-1412.

[14] Skinner, B., The Behavior of Organisms: An Experimental Analysis
(Appleton Century Croft, New York,1938)

[15] Triesch, J. (2007), Synergies between Intrinsic and Synaptic Plasticity
Mechanisms. Neural Computation 4, 885-909.

[16] Wörgötter, F., and Porr, B. (2004) Temporal sequence learning, pre-
diction and control - a review of different models and their relation to
biological mechanism. Neural Computation. 17, 245-319.

100010001000



3rd Reading

April 23, 2013 15:15 WSPC/S0219-5259 169-ACS 1350015

Advances in Complex Systems
Vol. 16 (2013) 1350015 (38 pages)
c⃝ World Scientific Publishing Company
DOI: 10.1142/S021952591350015X

COMBINING CORRELATION-BASED
AND REWARD-BASED LEARNING IN NEURAL

CONTROL FOR POLICY IMPROVEMENT

PORAMATE MANOONPONG∗,†,‡, CHRISTOPH KOLODZIEJSKI∗,§

FLORENTIN WÖRGÖTTER∗,¶ and JUN MORIMOTO∗,†,∥

∗Bernstein Center for Computational Neuroscience,
The Third Institute of Physics,

University of Göttingen, Göttingen 37077, Germany
†ATR Computational Neuroscience Laboratories,

2-2-2 Hikaridai Seika-cho,
Soraku-gun, Kyoto 619-0288, Japan

‡poramate@physik3.gwdg.de
§kolo@physik3.gwdg.de

¶worgott@physik3.gwdg.de
∥xmorimo@atr.jp

Received 21 February 2012
Revised 6 February 2013

Accepted 20 February 2013
Published 24 April 2013

Classical conditioning (conventionally modeled as correlation-based learning) and
operant conditioning (conventionally modeled as reinforcement learning or reward-
based learning) have been found in biological systems. Evidence shows that these two
mechanisms strongly involve learning about associations. Based on these biological find-
ings, we propose a new learning model to achieve successful control policies for artificial
systems. This model combines correlation-based learning using input correlation learning
(ICO learning) and reward-based learning using continuous actor–critic reinforcement
learning (RL), thereby working as a dual learner system. The model performance is eval-
uated by simulations of a cart-pole system as a dynamic motion control problem and a
mobile robot system as a goal-directed behavior control problem. Results show that the
model can strongly improve pole balancing control policy, i.e., it allows the controller
to learn stabilizing the pole in the largest domain of initial conditions compared to the
results obtained when using a single learning mechanism. This model can also find a
successful control policy for goal-directed behavior, i.e., the robot can effectively learn
to approach a given goal compared to its individual components. Thus, the study pur-
sued here sharpens our understanding of how two different learning mechanisms can be
combined and complement each other for solving complex tasks.

Keywords: Classical conditioning; operant conditioning; associative learning; reinforce-
ment learning; pole balancing; goal-directed behavior.

1350015-1

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S021952591350015X


3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.

1. Introduction

In biological systems, two classes of conditioning for associative learning are known
[5]. One is classical conditioning [50] involving presentations of a conditional
stimulus (CS) along with a significant or unconditional stimulus (US). The US
generally drives an unconditional response (UCR), usually a reflex (e.g., salivation
in dogs when they encounter food). Once the US and CS become associated, ani-
mals begin to perform a behavioral response to the CS rather than the US where
this response is called a conditional response (CR). This modification basically
happens only if the CS is a predictor for the US [56]. Thus, the CS normally pre-
cedes the US ([50, 70], but see Ref. [5] for detailed clarification). Another type of
conditioning is operant or instrumental conditioning [59, 63]. It mainly involves
a reinforcer (i.e., a US) associated with behavior modification instead of another
stimulus. The probability of a specific behavior is increased or decreased through
positive or negative reinforcement at each time that the reinforcement is generated.

Although these conditioning or learning mechanisms are different from each
other, a number of studies on animal leaning suggest that they may act in com-
bination [5, 15, 35, 47, 55], rather than separately or alternatively, to obtain an
appropriate behavior. Experiments that have supported this idea were presented
in, e.g., Refs. [11, 39, 68]. Williams and Williams [68] observed a pigeon pecking
at an illuminated key in a Skinner box. The results suggest that the desired key-
pecking behavior CR may be shaped by not only operant conditioninga but also by
classical conditioning; since imposing an omission schedule on the key-light, key-
peck association did little to revoke the conditional pecking response. Hence, it
seems that the existing occasional pairing of the key-light CS with the food US was
adequate to drive the pecking behavior (CR), which thus emerged from classical
conditioning. Lovibond [39] performed experiments in rabbits by providing sepa-
rately trained conditional stimuli during reinforced operant responding. His results
showed that the strength of an operant response can be influenced by simultaneously
presenting a classically CS. Brembs and Heisenberg [11] conducted experiments in
the fruit flies (Drosophila). Their results showed that there is a situation where
both operant and classical predictors play their roles at the same time, such that
the situation can be more easily learned than in the separate case.

In animal training, evidence also reveals that many animals including rodents,
dogs, pigeons, dolphins, seals, and whales, can effectively learn to do some sophis-
ticated tasks when they are trained using a combination of these mechanisms [25].
For instance, marine animal trainers use a whistle as predictive information to “tell”
their animals that a reward (e.g., food) is forthcoming. Thus, marine animals learn
to associate the sound of whistle and food (i.e., learning via classical conditioning).
When the animals perform a desired behavior (e.g., come, jump, flip, etc.), they

aIn this situation, the animal was induced to respond to the key in association with a reward (i.e.,
food). This procedure is also called autoshaping.

1350015-2

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

Combining Correlation-Based and Reward-Based Learning

first hear the sound indicating that they have performed appropriately and then
they receive food (i.e., learning via operant conditioning). After several repetitions,
the animals will perform a certain behavior as soon as they hear the sound where
they expect to receive food afterwards.

Classical conditioning is often modeled as a form of correlation-based (differen-
tial Hebbian) learning [32, 37, 52, 70] in computational neuroscience. This approach
uses the correlations between external stimuli (i.e., the US and CS) for synaptic
plasticity leading to an anticipatory action (see Sec. 2 for more details). Operant
conditioning is often modeled as reward-based learning or reinforcement learning
(RL, e.g., temporal difference (TD)-learning [7, 62, 67]) in computer science. This
approach uses predefined rewards and punishments in the environment as eval-
uation allowing an agent to maximize or optimize its own expected cumulative
future reward (or expected return). As a consequence, this leads to a corresponding
behavior (see Sec. 3 for more details).

These two conditioning concepts or learning mechanisms have been widely
applied to artificial agents (robots) for solving various tasks including the gen-
eration of self-organizing behavior and autonomous systems [8]. Generally, much
research has separately used them to enable agents to learn solving their tasks
[7, 10, 20, 38, 40, 42, 51, 53, 62]. In this study, we point out that these two learning
frameworks can complement each other leading to policy improvement. Correlation-
based learning can quickly find a correlation between a state and an unwanted
condition (i.e., reflex or failure recognized by an immediate reflex signal), but can-
not evaluate whether a given state or weight change predicts something “good” or
“bad” which will happen many steps away in the future. Consequently, it cannot
properly learn solving some difficult tasks (e.g., delayed reward tasks) and cannot
explicitly derive a goal-directed policy. On the other hand, reward-based learning
can derive a policy according to the (delayed) reward signal but using it without any
prior knowledge (predefined control parameters), environment or system models, or
appropriate guidance generally takes many learning trials to improve the control
performance. Therefore, we combine correlation-based learning (using input corre-
lation learning (ICO learning) [52]) and RL (using continuous actor–critic RL [19])
in parallel to let ICO learning extract important features directly used to guide
the learning strategy of continuous actor–critic RL. If we can extract important or
proper features for the task, a model of the policy can be simple and the policy can
be easily improved.

To investigate this hypothesis, to show how these two biologically-inspired learn-
ing mechanisms can be combined as a neural learning system, and to present its
performance, we chose pole balancing and goal-directed behavior control problems
as two different case studies or testbeds. Generally, we are not interested in solving
these two tasks per se. Instead, we would like to show that the proposed combi-
nation can solve model-free control problems and is not limited to a specific task.
Additionally, we would like to suggest that this combination can be an advanta-
geous but simple way (i.e., only combining them in parallel without modifying their

1350015-3

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.

learning mechanisms) to solve (dynamic) sensorimotor control problems with con-
tinuous signals. Through the performed experiments we hope that this model may
help to better understand interactions between the two learning mechanisms. To a
certain extent, the model might be related to neural learning in biological systems
and it may provide a computationally oriented perspective on animal learning.
Finally, we would like to emphasize that this combinatorial learning framework
suggests how a prior knowledge can be provided to RL and how RL can be guided
and shaped for policy improvement. To our knowledge, this kind of combinatorial
learning method (which is simple, partially related to neural learning mechanisms
in the brain — see the Discussion and Conclusion section below — and leads to
policy improve) has not been investigated and presented so far.

This paper is organized as follows. In Sec. 2 we present the neural circuit of ICO
learning while the neural circuit of continuous actor–critic RL is given in Sec. 3. In
Sec. 4, we introduce our learning model which combines both learning mechanisms
inspired by biological findings. This model will lead to policy improvement. In Sec. 5,
we demonstrate its performance using the pole balancing and goal-directed behavior
control problems and provide a comparison of different learning mechanisms. This
paper finishes in Sec. 6 with discussion and conclusions.

2. Correlation-Based Learning

For correlation-based learning, we used ICO rule [52] (see Fig. 1) since this learn-
ing rule allows implementation of fast and stable learning and it has been also
successfully applied to real robots for obtaining adaptive behavior [40, 42, 53].

Reflex
signal

O

Predictive
  signals

  Neural ICO learning

x

x

x

x
x

x

d/dt d/dt d/dt

x

1

2

N

0

0

1

2

N

ICO

= 1.0

Plastic synapse

Excitatory synapse

Fig. 1. Neural circuit of ICO learning for the multiple plastic synapses of predictive inputs. The
learning rule is derived from differential Hebbian learning. Here, the output neuron (or learner
neuron) was modeled as a simple linear neuron (see text for details). It generates a continuous
signal for controlling a system.

1350015-4

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

Combining Correlation-Based and Reward-Based Learning

ICO learning is a form of online unsupervised learning where its rule for synaptic
adaptation is based on the cross-correlation of the two types of input signals: Mul-
tiple predictive signals (here considered as CS) which are earlier occurring stimuli
and a single reflex signal (here considered as a US) which arrives later with cer-
tain delays and drives an unwanted response (or reflex). The learning goal of ICO
learning is to use a predictive signal ((observable) state of the system) to predict
the occurrence of a reflex signal (some exogenous immediate feedback, e.g., reach-
ing a failure state), thereby allowing an agent to react earlier. In other words, this
learning mechanism enables the agent to learn to perform an anticipatory action
to avoid the reflex. For example, heat radiation (predictive signal) precedes a pain
signal (reflex signal) when touching a hot surface. Thus, we learn an anticipatory
action to avoid the late unwanted stimulus (i.e., avoiding to touch the hot surface).

Normally, the synaptic adaptation of ICO learning changes through heterosy-
naptic interactions [27] as a consequence of the order of the arriving inputs. If the
predictive inputs are followed by the reflex input, the plastic synapses of the predic-
tive inputs get strengthened but they get weakened if the order is reversed. Hence,
this form of plasticity depends on the timing of correlated neural signals. Formally,
we have

OICO(t) = ρ0x0(t) +
N
∑

k=1

ρk(t)xk(t) (1)

as the output neuron (OICO) driven by a linear combination of the reflex input
(x0) and the multiple predictive inputs (xk). N denotes the number of predictive
inputs. ρ0 is the synaptic strength of the reflex input. This synaptic strength is set
to a positive value, e.g., 1.0, and remains unchanged, like an innate reflex. During
learning, the plastic synapses (ρk) get changed by differential Hebbian learning
[32, 37] using the cross-correlation between both inputs (i.e., x0 and xk). This is
expressed as:

dρk(t)
dt

= µxk(t)
dx0(t)

dt
, k = 1, . . . , N. (2)

µ is the learning rate which defines how fast a system can learn. It is generally set
to a value smaller than 1.0. This learning mechanism leads to weight stabilization
as soon as x0 = 0 [52], meaning that the reflex has been successfully avoided. As
a result, we obtain behavioral and synaptic stability at the same time without any
additional weight-control mechanisms.

Due to the learning rule, ICO learning can be considered as a model-free method
since its does not require a system or environment model. However, one should note
that ICO learning requires the proper design of a reflex into the system from the
beginning. This means that we have to set up a feedback system which has a desired
state and an error signal (x0 → 0) which drives learning. If the tasks become more
complex where a reflex cannot be properly designed or no correlation between a
reflex signal and a predictive signal exists at all, ICO learning will fail.

1350015-5

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.

3. Reward-Based Learning

For reward-based learning, we used continuous actor–critic RL [19] (see Fig. 2)
since it is capable of generating (multidimensional) continuous actions thus provid-
ing a smooth control performance. It is also practical for continuous state-action
problems [19], like dynamic motion control [20, 46]. In addition, it is based on a
biological learning model [70] where its learning rule for synaptic adaptation con-
siders an association between stimuli and/or actions with the reinforcement that
an agent receives. Formally, the reinforcement is a reward or a punishment which
is “evaluative feedback” defined by the designers of a system. Thus, this kind of

Neural actor-critic reinforcement learning 

x

Sensory
 signals

R

Reward
  signal

V (t)

V (t- )

Criticx
y

RBF

x

x

x

x
x1

N

2

x

x

M

y2

y1

xN

x2

x1

M

2

1

O

w

w

w

Actor

RL

N

2

1

Sensory
 signals

x

x

x1

N

2

Plastic synapse

Excitatory synapse

Inhibitory synapse

H

H

M

2

H1

Fig. 2. Neural circuit of continuous actor–critic RL. The learning mechanisms of the actor and
critic are based on TD learning. The actor component was modeled as a stochastic neural network
while the critic unit was modeled as a radial basis function (RBF) neural network (see text for
details). Note that in this framework, the actor provides a continuous output signal for controlling
a system.

1350015-6

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

Combining Correlation-Based and Reward-Based Learning

learning mechanism is minimally supervised because an agent is not told explicitly
what actions to take in a particular situation. Rather it must work this out for itself
on the basis of the reinforcement.

Continuous actor–critic RL is divided into two sub-mechanisms: The learning
of an action function (actor) and the learning of an evaluation function (critic).
The action part is the controller of an agent. In this study, it was designed as a
stochastic unit proposed in Ref. [24]. If we consider one-dimensional output, its
output (ORL) is specified by:

ORL(t) = ε(t) +
N
∑

k=1

wk(t)xk(t), (3)

where N denotes the number of sensory inputs (xk) which, here, are comparable
to the predictive inputs of ICO learning. ε is an exploration term. According to
Ref. [19], it is varied based on a modulation schemeb given by:

ε(t) = ξσ(t) · min
[

1, max
[

0,
Vmax − V (x(t))

Vmax − Vmin

]]

. (4)

σ is the Gaussian distributed noise with zero mean and standard deviation of one. V
is a value function (see its equation below) that estimates the expected cumulative
future reward or the expected return where the reward is used to estimate how good
it is for an agent to be in a given state. Vmax and Vmin are the maximal and minimal
values of V . This way, the exploration is large if V is close to Vmin. On the other
hand, the exploration is small (close to zero) if it is close to Vmax meaning that
learning shows good prediction or the performance is improved. ξ is an additional
scale factor. It is introduced in order to be able to amplify the exploration level.

The stochastic unit is related to two biological learning concepts, called behavior
oscillation [26] and successive approximation [59] (see also Ref. [24] for more details).
During learning, the synaptic weights (wk) of the actor change over time. They are
basically changed by a stochastic RL algorithm [24]. Instead of using the error of
a direct reward, which is one of the learning parameters and originally used in
the stochastic RL algorithm, here we used the TD error [7, 19] (i.e., the error of
an internal reward [7]). By doing so, delayed reward control problems can also be
solved [7, 19]. The equation of the weight adaptation is described by:

dwk(t)
dt

= αδ(t)xk(t)ε(t), k = 1, . . . , N, (5)

where α is the learning rate and generally set to a value smaller than 1.0. δ is
an approximation to the TD error in continuous time described as an internal
reinforcement signal provided by the critic (see below).

bThe scheme follows the intuition that an agent should explore a lot if its expected cumulative
future reward V is small (close to Vmin). This means that it has a poor control policy. On the other
hand, it should exploit or follow the control policy if V is close to Vmax. However, this normally
works if Vmin and Vmax could be estimated.

1350015-7

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.

For the critic network, according to Ref. [45] we used a radial basis function
(RBF) neural network as a function approximator which attempts to construct the
approximation of the value function V . It is governed by:

V (x(t)) =
M
∑

j=1

vj(t)yj(x(t)), (6)

where yj are the outputs from the normalized Gaussian basis functions given by:

yj(x(t)) =
aj(x(t))

∑M
l=1 al(x(t))

, aj(x(t)) = e−∥sT
j (x(t)−cj)∥2

. (7)

The vectors cj and x define the center and the input feature, respectively. sj is
the diagonal matrix of the inverse covariance of the RBF neural network. M is the
number of hidden neurons. According to Ref. [19], vj are synaptic weights which
are updated by:

dvj(t)
dt

= λδ(t)yj(x(t)), j = 1, . . . , M, (8)

where λ is the learning rate. It is generally set to a value smaller than 1.0. According
to Ref. [19], the TD-error δ is basically computed from the prediction as follows:

δ(t) = R(t) − 1
τ
V (x(t)) + V̇ (x(t)), (9)

where R is an external reinforcement signal provided by designers. τ is the time
constant of a discount factor. V is the value function [see Eq. (6)] and V̇ is its
derivative with respect to time. Note that using the Euler discretization, the TD
error in continuous time is compatible to the conventional TD error [62]: δ(t) =
R(t) + γV (x(t)) − V (x(t − 1)) where γ = 1 − ∆t

τ is the discount factor and ∆t is
the time step of the Euler differentiation.

4. Combining Correlation-Based and Reward-Based Learning

In the previous sections we have presented ICO learning and continuous actor–
critic RL. It is known that ICO learning can quickly learn a correlation between
a failure state recognized by an immediate reflex signal and a failure avoidance
behavior (or also called reflex avoidance behavior) controlled by predictive signals
[52]. However, it cannot evaluate whether a given state or weight change predicts
something “good” or “bad” which will happen many steps away in the future. As a
consequence, this makes it difficult for the controller to properly learn solving some
difficult tasks (see Sec. 5). On the other hand, continuous actor–critic RL can make
predictions through its evaluation process such that it can solve the tasks but in
general it is slower than ICO learning (see Sec. 5). In addition, due to its stochastic
process it requires several learning repetitions to ensure that a successful control
policy has been achieved.

Thus, in this section, we introduce a combinatorial learning model. It makes use
of the advantage of each learning mechanism, resulting in an appropriate acquisition

1350015-8

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

Combining Correlation-Based and Reward-Based Learning

 AgentNeural ICO learning      Neural actor-critic
 reinforcement learning

 Agent

Learned weights

FeedbackFeedback

Fig. 3. Sequential combination model. ICO learning first learns to find a solution controlling
a system without any prior knowledge. Afterwards the learned weights from ICO learning are
provided to continuous actor–critic RL for initialization. Finally, continuous actor–critic RL serves
as an add-on learning process to enhance the performance of a controller (see Ref. [43] for more
details).

of the control policy that outperforms either ICO learning or continuous actor–critic
RL alone (see Sec. 5). Basically, there are two ways of combining ICO learning and
continuous actor–critic RL: sequential or parallel.

Sequential combination (see Fig. 3), which we investigated previously [43], is
achieved by initially using ICO learning to extract reward-related features for con-
tinuous actor–critic RL. Afterwards continuous actor–critic RL uses the extracted
features as priors (i.e., initial control parameters) to improve the control policy of
the system. However, the drawback of this learning scheme is that it is technically
inconvenient since we need to let the ICO learning mechanism learn the whole
feature space first such that reward-related features are properly extracted.

In contrast, the parallel combination, proposed in this study and later called
here combinatorial learning (see Fig. 4), is technically more convenient since it
allows these two learning mechanisms to simultaneously learn, thereby working as
a dual learner system. By doing so, they receive sensory feedback from the agent
in parallel and adapt their weights accordingly. Their output signal contributes
equally to the control of the agent. Thus, the final output (OCOM) is described as:

OCOM(t) = ζ · (OICO(t) + ORL(t)), (10)

Neural ICO learning

     Neural actor-critic
 reinforcement learning

Agent

Feedback

OICO

ORL

OCOM

Fig. 4. Combinatorial learning model. It combines ICO learning and continuous actor–critic RL
in a parallel manner for controlling an agent. In this learning scheme, each learning mechanism
develops its weights independently, but they are coupled by sensory feedback. This way, they
basically coadapt the control parameters (i.e., weights) leading to the improvement of the control
policy.

1350015-9

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.

where OICO and ORL are the outputs of ICO learning and continuous actor–critic
RL, respectively. ζ is a scale factor which is introduced to ensure that the sum
is a valid control signal. The complete algorithm of combinatorial leaning with
pseudocode is shown in Table 1.

In this learning scheme, ICO learning and continuous actor–critic RL can com-
plement each other due to their learning principles. ICO learning [see Eq. (2)]
relies on the predefined reflex signal, while continuous actor–critic RL [see Eq. (5)]
depends on the TD error (δ) based on the estimated value function and the reward.
As a consequence of the reflex avoidance learning principle, weight adaptation of
ICO learning is initially more relevant than that from continuous actor–critic RL
(until the value function is properly estimated). Thus, in some situations, like a pole
balancing task (see Sec. 5.1), ICO learning quickly updates weights (i.e., control

Table 1. Combinatorial learning algorithm.

Initialize ρk , wk, and vj to 0.0; ε = Gaussian random number
Repeat:
At time step t
(1) observe reflex signal x0 and sensory signals xk which are the state x
(2) compute control output

OICO ← ρ0x0 +
NX

k=1

ρkxk

ORL ← ε +
NX

k=1

wkxk

OCOM ← ζ · (OICO + ORL)

(3) perform action
(4) observe reward R, new state x′ and new reflex signal x′

0

(5) obtain value function by computing

aj ← e−∥sT
j (x−cj )∥2

yj ←
ajPM
l=1 al

V ←
MX

j=1

vjyj

(6) compute ε← ξσ · min
h
1, max

h
0, Vmax−V (x)

Vmax−Vmin

ii

(7) compute δ ← R + γV (x′)− V (x)
(8) update control parameters

ρk ← ρk + µxk(x′
0 − x0)

wk ← wk + αδxkε

vj ← vj + λδyj

Until: Successful control policy is found or the maximum number of trials
is reached.

1350015-10

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

Combining Correlation-Based and Reward-Based Learning

parameters) to enhance or guide the entire learning process that includes continuous
actor–critic RL. At the same time, ICO learning also utilizes the exploration strat-
egy of continuous actor–critic RL to indirectly adapt its weights. In other situations,
like a goal-directed behavior task (see Sec. 5.2), ICO learning plays roles on guid-
ing continuous actor–critic RL to receive a reward and shaping a control policy.
However, if reflex signal and TD error disagree, ICO learning may interfere with
continuous actor–critic RL (see also Sec. 6 for more discussion on this).

Beside this, one important property of our approach is that we directly use
sensory inputs as the state of a system (i.e., continuous state) without resorting
to the explicit discretization of states and actions. Thus, this approach is capable
of generating a continuous action leading to smooth control performance. It is
also practical for continuous state-action problems (e.g., pole balancing and goal-
directed behavior shown below) in particular in the domain of model-free control
problems because of the learning rules (i.e., correlation-based learning and reward-
based learning) which do not require a system or environment model.

5. Experiments and Results

We tested the performance of our combinatorial learning in two different tasks:
A dynamic motion control task using a simulated cart-pole system and a goal-
directed behavior control task using a simulated mobile robot system. In each of
them we compared the performance of three control schemes: ICO learning, contin-
uous actor–critic RL, and combinatorial learning. In addition, we also investigated
interactions between ICO learning and continuous actor–critic RL by observing
learning curves in order to understand their roles in combinatorial learning. It is
important to note that the aim of this study is not to claim that the combination
outperforms other/older methods for solving the tasks or model-free optimal control
problems. Thus, comparing our combinatorial learning with other baseline meth-
ods (like, dynamic programming) will go beyond the scope of this work. Instead,
we emphasize here that a combination is better than its individual components by
utilizing the learning properties of ICO learning and continuous actor–critic RL.

5.1. Dynamic motion control

In this section, we demonstrate the performance of combinatorial learning (see
Fig. 4) applied to a pole balancing problem [7] (see Fig. 5). The task was to bal-
ance an inverted pendulum, which is mounted on a cart moving freely in a one-
dimensional interval, and to simultaneously avoid the interval boundaries. This
cart-pole system was simulated on a desktop PC and updated by using a fourth-
order Runge–Kutta method with a time step of 0.01 s. It provides four state vari-
ables: The angle of the pole with the vertical (θ), the pole angular velocity (θ̇), the
position of the cart on the track (x), and the cart velocity (ẋ). Similar to Ref. [7],
the cart was bound to move in the interval −2.4 ≤ x ≤ 2.4 [m] and the angle was

1350015-11

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.

F
Gain

Feedback X X( ,  ,   ,  )

X = 0

X

Cart-pole system

  Neural
 learning

Fig. 5. Cart-pole system for a dynamic motion control task (see text for details).

allowed to vary in the interval −12 ≤ θ ≤ 12 [◦]. The dynamics of the cart-pole
system is modeled by:

θ̈ =

g sin θ + cos θ

(

−F − mlθ̇2 sin θ + µcsgn(ẋ)
M + m

)

− µpθ̇

ml

l

(

4
3
− m cos2 θ

M + m

) , (11)

ẍ =
F + ml(θ̇2 sin θ − θ̈ cos θ) − µcsgn(ẋ)

M + m
, (12)

where g = 9.8m/s2 denotes gravitational acceleration, M = 1.0 kg and m = 0.1 kg
are mass of the cart and pole, respectively. l = 0.5m is half of the pole length.
µc = 5.0 × 10−4 and µp = 2.0 × 10−6 are friction coefficient of the cart and pole,
respectively. F is a continuous force applied to the cart which is directly derived
from the output of learning mechanisms with an amplifier gain of 10.0. Note that
all these parameters and the cart-pole equations are generally used [7, 49].

In fact, this task is difficult in its own right due to the limited boundaries of
the pole angle and in particular the cart position. The boundaries are used as a
standard benchmark setup in most control studies [7, 49]. In addition, its vertical
upright equilibrium point to be balanced is inherently unstable (i.e., as any small
disturbance may cause the pole to fall on the either side). From this setup, balancing
the pole at critical initial conditions (e.g., θ = 11deg, x = 2.1m) close to the
boundaries is already difficult to find successful control policies by using a simple
reward function.

In this setup, the four state variables (x, ẋ, θ, θ̇) of the system were used as
sensory feedback (x1,2,3,4) to ICO learning [see Eq. (1)] and continuous actor–critic
RL [see Eqs. (3) and (7)]. For ICO learning, these state variables were scaled onto
the interval [−1, 1] similar to Ref. [49] and the reflex signal [x0, see Eq. (1)] was
given just before the system failed. The signal shows a positive activation (+1.0) if
x < −2.35m or θ > 11.5◦, a negative activation (−1.0) if x > 2.35m or θ < −11.5◦,

1350015-12

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

Combining Correlation-Based and Reward-Based Learning

and 0 otherwise. Here, we set the learning rate [µ, see Eq. (2)] of ICO learning to
0.1. Note that the weights [ρ1,2,3,4, see Eq. (2)] are changed only for the positive
derivatives of the reflex signal, otherwise they remain unchanged. This is to avoid
negative correlations resulting in poor performance.

For continuous actor–critic RL, we allocated three bases for x, three for ẋ, six
for θ, and three for θ̇ according to a boxes approach (see Ref. [7] for more details).
This leads to 3×3×6×3 = 162 bases employed as the centers of the critic network.
Thus, the network has in total 162 hidden neurons [M = 162, see Eqs. (6) and (7)]
which cover the state space of the system. The size or width of the Gaussian basis
functions was simply set to twice the distance between its center and the center
of its nearest neighbor. The reward signal [R, see Eq. (9)] was set to −1 at failure
(i.e., cart hits the boundaries or pole falls to ± 12 deg) and 0 otherwise [7]. Here,
Vmax and Vmin of the modulation scheme controlling the level of the exploration [ε,
see Eq. (4)] were set to 0 and −1, respectively. In this setup, we set the scale factor
(ξ) of the exploration to 5.0. This is to obtain a better performance. Thus, large
changes of the weights of continuous actor–critic can occur. The control parameters
α [see Eq. (5)], λ [see Eq. (8)], τ [see Eq. (9)], and ζ [see Eq. (10)] were set to 0.5,
0.5, 0.2, and 0.5, respectively.

We let the combinatorial learning mechanism learn to balance the pole on 25×49
initial conditions (θ, x) while θ̇ and ẋ were initially set to small random values using
a Gaussian distribution with zero mean and a standard deviation of 0.1% of signal
ranges which represents the system noise. Note that the control parameters (i.e.,
synaptic weights) of ICO learning and continuous actor–critic RL were initially set
to 0.0. During a run each trial started with a given initial state and ended either in
“success” (which occurs when the pole is kept in balance for at least 5 × 104 time
steps or 500 s) or “failure” (which occurs when the pole falls 12deg to either side or
the cart moves 2.4m to either side). Runs at each initial condition were terminated
on failure or when a successful trial was achieved or the maximum number of trials
was reached (here 1000 trials). The system was reset to the same initial state at
failure. We repeated this for 25 experiments at each initial condition.

The performance of combinatorial learning is shown in Fig. 6(a). It can be seen
that this learning mechanism was able to find successful control policies which can
balance the pole and avoid the ends of the interval in a very large (x, θ)–domain of
initial conditions [see Fig. 6(a)]. The system was successfully stabilized for ≈ 96%
of all initial conditions. This is because, on one hand, ICO learning utilizes the
exploration strategy of continuous actor–critic RL to explore its parameter space
such that a proper weight combination is obtained. At the same time continuous
actor–critic RL is also guided by the built-in reflex of ICO learning to adapt its
weights in a proper way. The remaining part (black areas), at which learning failed,
is because of physical limitation. For example, if the system stands close to the right
wall and the pole falls to the right, the cart momentum cannot be high enough to
support the pole. Thus, it crashes into the wall before. The results we obtained
here are comparable to the ones shown in Ref. [49] where this work employed

1350015-13

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.

deg

X
 [m

]

-10 -5 0 5 10

2
1.5

1
0.5

0
-0.5

-1
-1.5

-2
0
10
20
30
40
50
60
70
80
90

100

Success 
rate %Combinatorial learning

~ ~   96%

deg
X

 [m
]

-10 -5 0 5 10

2
1.5

1
0.5

0
-0.5

-1
-1.5

-2
0
10
20
30
40
50
60
70
80
90
100

Success 
rate %Continuous actor-critic RL

~ ~   91%

(a) (b)

deg

X
 [m

]

-10 -5 0 5 10

2
1.5

1
0.5

0
-0.5

-1
-1.5

-2
0
10
20
30
40
50
60
70
80
90
100

Success 
rate %ICO learning

~ ~   75%

(c)

Fig. 6. Performance of three learning mechanisms for the pole balancing problem. (a) Successful
control area (≈ 96%) of combinatorial learning on benchmark initial conditions. (b) Successful
control area (≈ 91%) of continuous actor–critic RL. (c) Successful control area (≈ 75%) of ICO
learning. Black areas represent a domain in which learning failed to solve the problem (i.e., it
cannot learn to stabilize the system). A gray scale bar presents the success rate, i.e., the percentage
of success from 25 experiments. Recall that “success” means the pole is kept in balance for at
least 500 s.

similar linear control with four inputs but used an evolutionary algorithm for weight
adaptation.

When only ICO learning or continuous actor–critic RL alone was applied, sta-
bilizing the system was accomplished in smaller domains. For ICO learning alone,
the system was balanced for ≈ 75% of all initial conditions [see Fig. 6(c)]. This is
because ICO learning cannot explore the entire parameter space due to the lack of
an exploration mechanism and it even cannot predict many steps into the future.
It basically develops its weights (i.e., control parameters) with respect to an imme-
diate correlation between predictive and reflex signals. In this setup, the built-in
reflex occurs only at the last moment that the pole falls or the cart hits the wall.

1350015-14

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

Combining Correlation-Based and Reward-Based Learning

Therefore, at initial conditions in which the system fails, the reflex signal cannot
produce a strong cart momentum to turn the pole into an upright position or keep
it balance for a certain period of time (i.e., avoiding the reflex). Thus, ICO learn-
ing cannot obtain a proper correlation between the predictive and reflex signals to
achieve a proper weight combination. For continuous actor–critic RL alone, due to
the lack of a prior knowledge, the system was balanced for ≈ 91% of all initial condi-
tions [see Fig. 6(b)]. This experimental result shows that, among the three learning
mechanisms, combinatorial learning, which combines ICO learning and continuous
actor–critic RL, was the best approach with respect to the success rate.

Note that, due mainly to the stochastic process of continuous actor–critic RL
and partly to the introduced system noise which can easily destabilize the system,
combinatorial learning and continuous actor–critic RL alone sometimes had diffi-
culty or failed to find successful control policies in a given number of trials at, e.g.,
x = −2.0m, θ = 12deg and around x = 0.0m, θ = 0 deg, respectively. In contrast,
ICO learning alone was almost 100% success at these initial conditions and even
showed the very clear boundary between white and black areas [see Fig. 6(c)] since
it is deterministic control where no exploration is involved.

To compare the learning speed of these three learning mechanisms in general
cases, we observed their performance at a noncritical initial condition (e.g., x =
1.0m, θ = −1 deg), where they all can find successful control policies, and at a
critical initial condition (e.g., x = −1.8m, θ = −5 deg) where combinatorial learning
and continuous actor–critic RL can find the policies but ICO learning cannot. The
result is shown in Fig. 7.

At the noncritical initial condition ICO learning was fastest, combinatorial learn-
ing was slower, and continuous actor–critic RL was the slowest [see Fig. 7(a)]. At the
critical initial condition ICO learning failed while continuous actor–critic RL suc-
ceeded but required more learning trials compared to combinatorial learning. This
experiment suggests that the fast convergence property of combinatorial learning
is generally derived from ICO learning which can quickly learn to find a solution
for a task but cannot properly learn solving a difficult task (i.e., here, stabilizing
the system at a critical initial condition). Furthermore, the capability for solving
a difficult task is basically obtained from continuous actor–critic RL which learns
the task but usually takes many learning trials.

To better understand why the combined mechanism outperforms either ICO
learning or continuous actor–critic RL alone, we also observed learning curves at
a critical initial condition (e.g., x = 2.1m, θ = 11deg) at which its individual
components failed. Figure 8 shows that control parameters (i.e., synaptic weights)
converged to fixed values when combinatorial learning was used [see thick lines in
Figs. 8(a) and 8(b)]. This is because ICO learning and continuous actor–critic RL
tried to find a proper weight combination such that a proper force is generated to
push the cart for balancing the pole. This proper combination can be seen when the
weight for one input in ICO learning increased and that in continuous actor–critic
RL network decreased (e.g., ρx, wx in Fig. 8).

1350015-15

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.

0 100 200 300 400 500

0

20

40

60

80

100

S
uc

ce
ss

 ra
te

 %

Total learning trials

Combinatorial 
learning

Continuous
actor-critic RL

ICO learning

0 100 200 300 400 500

0

20

40

60

80

100

S
uc

ce
ss

 ra
te

 %

Total learning trials

Combinatorial 
learning

Continuous
actor-critic RL

ICO learning

(a) (b)

Fig. 7. (Color online) Comparison of the performance of three learning mechanisms. (a) Success
rate according to total learning trials at the noncritical initial condition (x = 1.0 m, θ = −1 deg).
(b) Success rate according to total learning trials at the critical initial condition (x = −1.8 m,
θ = −5 deg). At this critical initial condition, ICO learning failed because during learning its
weights grew more and more. Thus, the output of ICO learning, applied to the cart-pole system,
also strongly increased. As a result, the output disturbed the system rather than balancing it.
Note that we did not limit the output. Recall that success rate is calculated from the percentage
of success in the total 25 experiments after a certain number of trials where “success” means the
pole is kept in balance for at least 500 s. Dashed lines indicate the average of the total learning
trials at success.

The behavior of the system controlled by all converged weights is shown in
Fig. 9. Due to the proper weight combination, at the beginning a proper positive
force was generated to push the cart to the right such that the pole could swing to
the left to obtain an upward position. Afterwards, a negative force was generated to
balance the pole and push the cart to the center. Finally, the system was stabilized
at the center where all inputs were converged to zero values, thereby no force was
generated. As a result, the pole was successfully balanced. If the converged weights
of the ICO learning module were only used to control the system while the weights
of the continuous actor–critic RL module were set to 0.0, the controller produced
a very strong positive force to the cart at an early state. As a consequence, the
pole fell to −12deg (see Fig. 10). On the other hand, if the converged weights of
the continuous actor–critic RL module were only used to control the system while
the weights of the ICO learning module were set to 0.0, the controller produced a
very strong negative force at an early state, thereby making the pole quickly fall to
12 deg (see Fig. 11). For these two cases, the system could not be stabilized since
the forces were not properly generated.

When ICO learning alone [see transparent lines in Fig. 8(a)] was used to learn to
balance the pole at the critical initial condition (x = 2.1m, θ = 11deg), its control
parameters diverged since the reflex signal cannot be avoided (i.e., the pole always
fell). Although ICO learning is designed to learn to avoid a reflex signal, in this pole
balancing setup the built-in reflex occurs only at the last moment that the pole falls

1350015-16

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

Combining Correlation-Based and Reward-Based Learning

W
ei

gh
ts

 (I
C

O
 le

ar
ni

ng
)

x

0 2000 4000 6000 8000

Time [steps]

0

3

6

9

x

(a)

W
ei

gh
ts

 (a
ct

or
-c

rit
ic

 R
L)

0 2000 4000 6000 8000

Time [steps]

Wx

W

Wx

W

-4

-2

0

2

4

(b)

Fig. 8. (Color online) Learning curves at a critical initial condition (x = 2.1m, θ = 11deg).
(a) Weight changes in ICO learning. (b) Weight changes in continuous actor–critic RL. Thick lines
present the weight changes in each learning mechanism in the combinatorial learning framework
while transparent lines show the weight changes when only ICO learning or continuous actor–
critic RL was used. Using combinatorial learning, the weights became stable after around 6500
time steps (or 70 trials) meaning that the system was successfully stabilized. In contrast, the
weights diverged when only ICO learning [see (a)] was used while they changed a lot in the case of
continuous actor–critic RL alone [see (b)]. Note that sudden change in wx occurred (e.g., around
4400 steps) because there was a high correlation between the TD error and the input (x) while
there were low correlations between the other inputs and the TD error. Here, ρx = ρ1, ρẋ = ρ2,
ρθ = ρ3, ρθ̇ = ρ4, wx = w1, wẋ = w2, wθ = w3, wθ̇ = w4.

or the cart hits the wall. Therefore, in this difficult situation, a reflex signal cannot
produce a strong cart momentum to turn the pole into an upright position or keep it
balance for a certain period. Thus, ICO learning cannot obtain a proper correlation
between the predictive and reflex signals; thereby its weights just increased more
and more to try to find any proper weight combination. However, in this situation
such a combination leading to a proper force cannot be achieved. While the weights
were increasing, the output of ICO learning, applied to the cart-pole system, also

1350015-17

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.

a b c d

c dba

Fo
rc

e[
N

]

Time [steps]

[d
eg

/s
]

[d
eg

]
X

 [m
/s

]
X

 [m
]

0
1
2

-1
0
1

0

10

-100
-50

0

0 300 600 900 1200

0
20

Fig. 9. States of the cart-pole system (x, ẋ, θ, θ̇) and the force under control of the learned
weights (ρx ≈ 8.0774, ρẋ ≈ 1.8395, ρθ ≈ 4.2815, ρθ̇ ≈ 3.0069, wx ≈ −2.5790, wẋ ≈ 1.9225,
wθ ≈ 2.4527, wθ̇ ≈ 3.2216, see e.g., Fig. 8) for the critical initial condition x = 2.1 m, θ = 11 deg.
A series of photos visualizing the cart-pole behavior at particular points is shown above.

increased. As a result, at some point the output disturbed the system rather than
balancing it. In the case of continuous actor–critic RL alone [see transparent lines
in Fig. 8(b)], the control parameters changed a lot due to the stochastic process
employed which tried to search for a successful control policy. Note that at the early
state of learning the weights of the ICO learning module in combinatorial learning
became larger than the weights of ICO learning alone due to the stochastic process
of the continuous actor–critic RL module in combinatorial learning. It can easily
destabilize the system. Thus, the pole can often fall at the early state. This leads
to the triggering of a reflex signal. On the other hand, in the case of ICO learning
alone the pole fell less often at the early state such that the weights grew slower.

Finally, we investigated interactions between these two learning mechanisms.
We first started one learning mechanism and then after a number of learning trials
(e.g., 100 trials) we activated the other one (see Fig. 12). This is to observe two
effects: (i) Can a later activated learning mechanism assist an earlier activated
learning mechanism for policy improvement? and (ii) Can the earlier one provide

1350015-18

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

Combining Correlation-Based and Reward-Based Learning

Fo
rc

e[
N

]

Time [steps]

[d
eg

/s
]

[d
eg

]
X

 [m
/s

]
X

 [m
]

2.0
2.2
2.4

0
2
4

-12

0

12

-300
-150

0

0 1 2 3 4 5 6 7 8 9 10 11
0

20
40
60

Fig. 10. States of the cart-pole system (x, ẋ, θ, θ̇) and the force under control of the learned
weights (ρx ≈ 8.0774, ρẋ ≈ 1.8395, ρθ ≈ 4.2815, ρθ̇ ≈ 3.0069, [see Fig. 8(a)] for the critical initial
condition x = 2.1 m, θ = 11 deg. We set wx, wẋ, wθ, and wθ̇ to 0.0.

an appropriate developed control policy to the later one such that a successful
control policy can still be achieved at the end?

Figures 12(a) and 12(b) show learning curves when continuous actor–critic RL
was first started and followed by ICO learning after 100 trials [see dashed line in
Fig. 12(a)]. It can be observed that after around 5500 time steps (or 130 trials),
where ICO learning was already activated, the weight (wx) of continuous actor–
critic RL started to gradually change its growing direction into a different way
[see e.g., thick line in Fig. 8(b)]. A similar effect also appears for the weight (wẋ)
after around 9000 time steps (or 190 trials). This is because ICO learning can
quickly find a correlation between a state and an unwanted condition (i.e., pole
falls) and additionally generates the proper action when the pole falls through its
built-in reflex. Thus, it can extract important featuresc serving to guide the learning
strategy of continuous actor–critic RL. As a result, the weights of continuous actor–
critic RL (e.g., wx, wẋ) gradually changed to their appropriate directions but they
did not change considerable compared to continuous actor–critic RL alone [see
transparent lines in Fig. 8(b)].

cBy feature we mean the combination between the weights and input signals.

1350015-19

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.
Fo

rc
e[

N
]

Time [steps]

[d
eg

/s
]

[d
eg

]
X

 [m
/s

]
X

 [m
]

2.08

2.09

2.10

-0.8

-0.4

0.0

11.0

11.5

12.0

0
20
40
60

0 1 2 3 4
-30
-20
-10

0

Fig. 11. States of the cart-pole system (x, ẋ, θ, θ̇) and the force under control of the learned
weights (wx ≈ −2.5790, wẋ ≈ 1.9225, wθ ≈ 2.4527, wθ̇ ≈ 3.2216, [see Fig. 8(b)]) for the critical
initial condition x = 2.1 m, θ = 11deg. We set ρx, ρẋ, ρθ , and ρθ̇ to 0.0.

Another interesting effect of the interaction is shown in Figs. 12(c) and 12(d)
where ICO learning was first started and followed by continuous actor–critic RL
after 100 trials [see dashed line in Fig. 12(d)]. After 115 trials (or around 2500 time
steps), the pole did not fall anymore leading to reflex avoidance. As a consequence,
the weights of ICO learning converged. However, the weights of continuous actor–
critic RL still slightly changed due to the TD error. They finally converged (i.e.,
TD error ≈ 0) after around 17,600 time steps. This experiment shows that, on the
one hand, continuous actor–critic RL seems to highly influence ICO learning such
that the weights of ICO learning became stable shortly after continuous actor–critic
RL was activated. On the other hand, ICO learning seems to provide an adequate
control policy or an important feature to continuous actor–critic RL such that it
can quickly adapt its weights to appropriate directions leading to convergence.

5.2. Goal-directed behavior control

Next, we present the performance of combinatorial learning (see Fig. 4) on a dif-
ferent task. Here, we employed it to a goal-directed behavior control problem. The
task was to steer a wheeled mobile robot to move toward and finally approach a
desired object (i.e., its goal) in a given time. In this scenario, we put the robot in

1350015-20

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

Combining Correlation-Based and Reward-Based Learning

0

3

6

9

12

-2

-1

0

1

2

x

x

Wx

W

W

Wx

Time [steps]
0 5 10 15 20x10

W
ei

gh
ts

 (I
C

O
 le

ar
ni

ng
)

W
ei

gh
ts

 (a
ct

or
-c

rit
ic

 R
L)

-14

-7

0

7

14
0

6

12

18

24

30

Time [steps]
0 5 10 15 20 25 30x103

W
ei

gh
ts

 (I
C

O
 le

ar
ni

ng
)

W
ei

gh
ts

 (a
ct

or
-c

rit
ic

 R
L)

3

x

x

Wx

W

W

Wx

Fig. 12. (Color online) Learning curves at a critical initial condition (x = 2.1m, θ = 11 deg)
when ICO learning and continuous actor–critic RL were not activated at the same time. (a), (b)
Weight changes of ICO learning and continuous actor–critic RL in the combinatorial learning
framework. In this experiment, ICO learning was activated after 100 trials (dashed line). (c), (d)
Weight changes of ICO learning and continuous actor–critic RL where here continuous actor–critic
RL was activated after 100 trials (dashed line).

a square area where one desired green object and one undesired blue object were
provided. We used the physics simulator LPZROBOTSd to simulate the robot and
its environment (see Fig. 13). The simulator was implemented on a desktop PC
with an update time step of 0.01 s.

The mobile robot system provides four state variables, which are two relative
orientations (φG,B) and two relative positions (DG,B) of the robot to the locations of
the green (G) and blue (B) objects, and additional eight state variables of infrared
(IR) sensors for boundary detection (see Fig. 13). φG,B provide information of
how much the robot’s direction deviates from the objects. They vary in the interval
[−180◦, 180◦] [see Fig. 13(b)] and show continuous values. If the objects are directly
in front of the robot, φG,B show 0. If they are to the left-hand side of the robot,
φG,B show negative values. If they are to the right-hand side of the robot, φG,B have
positive values [see e.g., Fig. 13(b)]. DG,B provide information of how close the robot
is to the objects. They are mapped onto the interval [0, 1], with 0 representing near,
and +1 representing far. If the robot comes close to an object in a certain range
[i.e., DG,B > 0.7, see dashed areas in Fig. 13(c)], a reward is given for continuous

dIt is based on the open dynamics engine (ODE) for more details of the LPZROBOTS simulator
see http://robot.informatik.uni-leipzig.de/software/.

1350015-21

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.

Fig. 13. (Color online) Simulated mobile robot system for a goal-directed behavior control task.
(a) The mobile robot with different types of sensors (i.e., relative orientation φ and position D
sensors and infrared IR sensors). (b) The variation of the relative orientation φG of the robot to
the green object. (c) The environmental setup of the robot. The black dot represents the starting
or reset position where the robot was initially started or reset after it hit a boundary or reached
one of the objects. Dashed circles show areas where a positive (+1) or negative reward (−1) was
given for continuous actor–critic RL and reflex signals were triggered for ICO learning (see text
for details).

actor–critic RL and a reflex signal is triggered for ICO learning. The IR sensory
signals are mapped onto the interval [−1, +1], with −1 representing no boundary
detection, and +1 representing hitting a boundary. This IR information was only
used to reset the robot position on hitting a boundary.

It is important to note that in this setup, only φG,B were used as inputs (i.e.,
the state) to the control policy while DG,B were used only to generate reward and
reflex signals for learning and to reset the robot position when approaching an
object (i.e., DG,B > 0.95). Thus, the robot has insufficient sensor data for reliably
identifying its state in the environment. Furthermore, φG,B overlap with each other,
i.e., the robot simultaneously senses its relative orientation to the locations of both
objects in the whole area. Thus, both sensor signals try to steer the robot toward
the corresponding objects once their synaptic weights have been developed.

Here, for ICO learning, φG,B were used as predictive signals [x1,2, see Eq. (1)].
Two independent reflex signals were configured: One was for the green object [x0G ,
see Eq. (1)] and the other for the blue one [x0B , see Eq. (1)]. They depend on the
orientations (φG,B) and the positions (DG,B) of the robot to the objects. The reflex
signals are triggered as soon as the robot comes close to the objects [i.e., entering
areas inside the dashed circles as shown in Fig. 13(c)], and 0 otherwise. In fact,
the reflex signals elicit a turn which is proportional to the deviations defined by
φG,B, i.e., the larger the deviations, the sharper the turn. Thereby, they turn the
robot toward the objects. In other words, ICO learning tries to control the heading
direction of the robot to align with an object. This way, it can implicitly optimize

1350015-22

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

Combining Correlation-Based and Reward-Based Learning

the behavior over the entire path. Since the green and blue objects are far from
each other, the reflex areas do not overlap. Thus, the two reflex signals cannot be
triggered at the same time. We set the learning rate [µ, see Eq. (2)] of ICO learning
to 0.005. The weights [ρ1,2, see Eq. (2)] were initially set to 0.0. They change only if
the positive derivatives of the reflex signals are higher than a threshold, otherwise
they remain unchanged. For example, when the robot comes close to the green
object and the reflex signal is triggered, the weight (ρ1) of the orientation signal
with respect to the green object increases while the weight (ρ2) of the blue one
remains unaffected and vice versa when the robot comes close to the blue object.

For continuous actor–critic RL, we allocated four bases for φG and φB each.
This leads to 4 × 4 = 16 bases employed as the centers of the critic network.
Thus, the network has in total 16 hidden neurons [M = 16, see Eqs. (6) and (7)]
which cover the state space of the system. The size or width of the Gaussian basis
functions was simply set to twice the distance between its center and the center
of its nearest neighbor. The reward signal [R, see Eq. (9)] was set to +1 when
the robot came close to the green object (desired object or goal) and −1 to the
blue object (undesired object). In order to promote exploration, we used low-pass
filtered noise for low-frequency probing which was appropriate for the robot. We
also used the modulation scheme for controlling the exploration level where ξ, Vmax

and Vmin were here set to 5.0, 50 and 0, respectively. In addition to this scheme, the
exploration term was exponentially reduced as soon as the performance improved
(i.e., the robot frequently approached the goal). The control parameters α [see
Eq. (5)], λ [see Eq. (8)], τ [see Eq. (9)], and ζ [see Eq. (10)] were set to 0.001, 0.7,
0.2, and 0.5, respectively. The weights [w1,2, see Eq. (3)] were initially set to 0.0
and changed by Eq. (5).

We let the combinatorial learning mechanism learn to steer the robot to
approach the desired goal (i.e., the green object). Without control, the robot ran-
domly moved around. During a run in each trial, the robot started at a specific
location [i.e., the black dot shown in Fig. 13(c)]. A run was terminated when the
robot approached one of the objects or hit a boundary as well as when simulation
time was above 15 s. After termination, the robot was reset to the same start-
ing location with a random orientation in the interval [−45◦, 45◦]. We repeated
this 50 experiments where each experiment was terminated after 200 trials. The
performance of combinatorial learning compared to ICO learning and continuous
actor–critic alone is shown in Fig. 14.

As can be seen, combinatorial learning had the highest success rate, continuous
actor–critic RL a lower one, and ICO learning the lowest. With respect to the num-
ber of learning trials, combinatorial learning and ICO learning were not significantly
different. However, they were substantially faster than continuous actor–critic RL.
Among these learning mechanisms, combinatorial learning was the best approach,
showing highest success rate with the lowest number of learning trials.

To better understand why the combinatorial learning mechanism outperforms
its individual components in this task, we also plotted learning curves. Figure 15

1350015-23

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.

0

20

40

60

80

100

46 %

76 %

S
uc

ce
ss

 ra
te

 %

94 %

ICO learningContinuous
actor-critic RL

Combinatorial 
learning

0

20

40

60

80

100

120

140 Error bars represent
the 95% confidence interval

120 trials

83 trials

To
ta

l l
ea

rn
in

g 
tri

al
s 

at
 s

uc
ce

ss

73 trials

ICO learningContinuous
actor-critic RL

Combinatorial 
learning

(a) (b)

Fig. 14. Comparison of the performance of three learning mechanisms. (a) Success rate in a total
of 50 experiments. Here, “success” means that the robot can approach the green object from the
starting position with different random orientations in the interval [−45◦, 45◦] [see e.g., Fig. 13(c)].
(b) Average of the total learning trials at success.

exemplifies the learning curves showing the changes of the control parameters (i.e.,
synaptic weights) of ICO learning and continuous actor–critic RL in combinatorial
learning. The weights converged to fixed values [see thick lines in Figs. 15(a)
and 15(b)] resulting in a goal-directed behavior. The input and output signals
during this learning experiment and the behavior of the system after the weights
converged are shown in Fig. 16.

When only ICO learning was used, the weights sometimes converged to other
fixed values [see transparent lines in Fig. 15(a)] producing an undesired behavior;
i.e., the robot moved toward the undesired blue object instead of the desired green
object. When only continuous actor–critic RL was used, the weights sometimes
changed a lot to negative values [see transparent lines in Fig. 15(b)]. As a conse-
quence, the robot moved away from the objects. However, they will finally converge
but this will require a lot of learning trials, e.g., > 600 trials.

In principle, ICO learning can recognize a correlation only between its inputs
(i.e., predictive and reflex signals, see e.g., Fig. 1) without recognizing a goal (i.e.,
reward or punishment). Thus, for this task it can only generate an anticipatory
reaction towards objects, rather than a goal-directed behavior. On the other hand,
continuous actor–critic RL can achieve this in most cases but requires more learning
trials than ICO learning. By contrast, combinatorial learning allows ICO learning
and continuous actor–critic RL to complement each other leading to control policy
improvement (high success rate and fast convergence [see Fig. 14]). This is because
continuous actor–critic RL tries to drive a robot toward a goal with a certain degree
of exploration. At the same time, ICO learning tries to limit the exploration area
(i.e., guiding) since it tries to drive the robot toward the point of interest (green
or blue object) defined by a prior knowledge. Without ICO learning, due to the
exploration, the robot sometimes has difficulties to go back to the goal or it requires

1350015-24

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

Combining Correlation-Based and Reward-Based Learning

0.00

0.03

0.06

0.09

0.12

W
ei

gh
ts

 (I
C

O
 le

ar
ni

ng
)

G

B

Time [steps]

0 5 10 15 20 25 30 x104

(a)

-0.10

-0.05

0.00

0.05

0.10

W
ei

gh
ts

 (a
ct

or
-c

rit
ic

 R
L)

Time [steps]

W
G

B
W

0 5 10 15 20 25 30 x104

(b)

Fig. 15. (Color online) Learning curves of a goal-directed behavior. (a) Weight changes in ICO
learning. (b) Weight changes in continuous actor–critic RL. Thick lines present the weight changes
in each learning mechanism in the combinatorial learning framework while transparent lines show
the weight changes when only ICO learning or continuous actor–critic RL was used. Using com-
binatorial learning, the weights became finally stable after around 75,000 time steps (or 50 trials)
meaning that the robot can successfully approach the goal. In contrast, the weights sometimes
converged to other fixed values in the case of ICO learning alone [see (a)] producing an undesired
behavior (i.e., the robot went to a blue object) while they sometimes changed a lot in the case
of continuous actor–critic RL alone [see (b)]. Note that here ρφG

= ρ1, ρφB
= ρ2, wφG

= w1,
wφB

= w2.

more trials. In addition ICO learning can also shape the learning process such that
the robot can approach the goal on a short path (see below).

To see the guiding and shaping effects from ICO learning, we took the devel-
oped weights of ICO learning and continuous actor–critic RL before convergence
occurred to control the robot and observed its behavior. Then, we compared the
behavior to the one controlled by only the developed weights of continuous actor–
critic RL, i.e., we set the weights of ICO learning to 0.0 while the weights of contin-
uous actor–critic RL remained unchanged. Interestingly, we found three different
behaviors (I, II, III, see Figs. 17–19). Recall that in these goal-directed behav-
ior experiments, the two relative orientations (φG,B) overlap with each other, i.e.,

1350015-25

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.

O
ut

pu
t

  [
de

g]

-180
-90

0
90

180

-1.0
-0.5
0.0
0.5
1.0

Time [steps]

-180
-90

0
90

180

1050 15 20 25 30

  [
de

g]
B

G

x10
4

(a)

(b)

Fig. 16. (Color online) (a) States of the mobile robot system (φG,B) and the output (OCOM)
during learning. Learning curves belonging to these signals are shown in Fig. 15 (see thick lines).
(b) Robot trajectories observed from around 28 × 104 to 30 × 104 time steps [see gray area in
(a)]. Positive and negative values of the output means turning right and left, respectively. At
the beginning the robot explored a lot (i.e., large amplitude of the output signal). After learning
converged, the robot did not turn much (i.e., small amplitude of the output signal). It only turned
if it deviated from the goal. As a result, it always approached the goal (green object). In other
words, the learned control policy drove the robot toward the goal and kept it away from the blue
object; thereby, φB shows most of the time negative values above 90 deg (i.e., heading away from
the blue object) while φG shows most of the time positive values around 90 deg (i.e., turning
towards the goal).

1350015-26

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

Combining Correlation-Based and Reward-Based Learning

the robot simultaneously sensed its relative orientations to the locations of both
objects in the whole area. In addition, for continuous actor–critic RL a positive
reward (+1) was given when the robot got into the circle around the green object
while a negative reward (−1) was given when the robot got into the circle around
the blue object [see Fig. 13(c)]. Thus, during learning as long as the exploration
term and the TD error existed, the weights of both signals simultaneously changed,
no matter where the robot was.

Figure 17 shows the first behavior I where we took the developed weights at
around 3× 104 time steps [see dashed line in Figs. 17(a) and 17(b)], slightly before
the weights of continuous actor–critic RL became stable, to test the robot. It can be
seen that the robot always moved toward the desired green object [see Fig. 17(c)]
when the developed weights of ICO learning and continuous actor–critic RL were
used. On the other hand, it sometimes moved to the undesired blue object or went
straight when only the developed weights of continuous actor–critic RL were used
[see Fig. 17(d)] because of exploration as well as a large weight wφB . Note that ρφB

Time [steps]

W
ei

gh
ts

 (I
C

O
 le

ar
ni

ng
)

G

B

B

G

W
ei

gh
ts

 (a
ct

or
-c

rit
ic

 R
L)

0 10 20 30 40 50 x10
4

Time [steps]

-0.10

-0.05

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 10 20 30 40 50 x10
4

W

W

Fig. 17. (Color online) Learning curves and robot behaviors I. (a), (b) Weight changes of ICO
learning and continuous actor–critic RL in the combinatorial learning framework. Dashed line
shows the point (i.e., around 3 × 104 time steps or 300 s) where the weights of ICO leaning
and continuous actor–critic RL were used to test the robot. (c) Trajectories of the robot from the
starting position with different random orientations in the interval [−45◦, 45◦]. (d) The trajectories
when ICO learning control policy was switched off, i.e., we set the weights of ICO learning to 0.0
while the weights of continuous actor–critic RL remained unchanged. Note that during the test
we removed the exploration term from the controller in order to clearly see the trajectories.

1350015-27

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.

did not become large since when the robot approached the blue object it did not
deviate much from the object. Thus, the positive derivative of the reflex signal was
smaller than threshold, thereby ρφB remained unchanged. This experimental result
shows that ICO learning complemented continuous actor–critic RL leading to goal-
directed behavior. In other words, ICO learning guided a learning strategy enabling
continuous actor–critic RL to exploit more the positive reward. As a consequence,
convergence finally occurred.

Figure 18 shows the second behavior II where we took the developed weights at
around 20×104 time steps [see dashed line in Figs. 18(a) and 18(b)], slightly before
the weights of continuous actor–critic RL reversed their growing directions, to test
the robot. At this point, it can be seen that when the developed weights of ICO
learning and continuous actor–critic RL were used the robot always approached the
undesired blue object [see Fig. 18(c)] where the negative reward (−1) was given.
Thus continuous actor–critic RL could use this reward signal to correct its cur-
rent control policy. This effect can be observed from the weights of continuous

Time [steps]
0 10 20 30 40 50 x10

4

B

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-0.4

-0.2

0.0

0.2

0.4

60

Time [steps]
0 10 20 30 40 50 x10

4
60

B

G

W
G

W

Fig. 18. (Color online) Learning curves and robot behaviors II. (a), (b) Weight changes of ICO
learning and continuous actor–critic RL in the combinatorial learning framework. Dashed line
shows the point (i.e., around 20 × 104 time steps or 2000 s) where the weights of ICO leaning
and continuous actor–critic RL were used to test the robot. (c) Trajectories of the robot from the
starting position with different random orientations in the interval [−45◦, 45◦]. (d) The trajectories
when the ICO learning control policy was switched off, i.e., we set the weights of ICO learning
to 0.0 while the weights of continuous actor–critic RL remained unchanged. Note that during the
test we removed the exploration term from the controller in order to clearly see the trajectories.

1350015-28

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

Combining Correlation-Based and Reward-Based Learning

actor–critic RL which significantly reversed their growing directions at around
20 × 104 time steps or 2000 s. On the other hand, when only the developed weights
of continuous actor–critic RL were used, the robot always moved away from the
objects [see Fig. 18(d)]. Therefore, in this situation continuous actor–critic RL had
difficulty to obtain any reward signal to correct its current control policy. Due to the
stochastic process employed, which tried to search for a successful control policy,
the weights might change to a large degree [see transparent lines in Fig. 15(b)]. As a
result, continuous actor–critic RL might fail to solve the task in a given number of
trials (here, maximal 200 trials). This result suggests that ICO learning shaped or
guided the learning strategy of continuous actor–critic RL such that it can receive
a reward (i.e., here a negative one). Then it used this reward to correct the current
control policy. As a consequence, convergence finally occurred.

Figure 19 shows the third behavior III where we took the developed weights
at two states to test the robot. The early state was around 75 × 103 time steps
where only the weights of continuous actor–critic RL became stable [see dashed
line State I in Figs. 19(a) and 19(b)]. They were stable since the exploration term

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Time [steps]

0.00

0.05

0.10

0.15

0.20

0.25

W
ei

gh
ts

 (I
C

O
 le

ar
ni

ng
) G

B

B

G

W
ei

gh
ts

 (a
ct

or
-c

rit
ic

 R
L)

0 10 20 30 40 50 x10
4

0 10 20 30 40 50 x10
4

Time [steps]

State I State II

State I

W

W

State II

Fig. 19. (Color online) Learning curves and robot behaviors III. (a), (b) Weight changes of ICO
learning and continuous actor–critic RL in the combinatorial learning framework. Dashed lines
show two states where the weights of ICO leaning and continuous actor–critic RL were used to
test the robot. State I was around 75×103 time steps or 750 s and state II was around 50×104 or
5000 s. (c) Trajectories of the robot from the starting position with different random orientations
in the interval [−45◦, 45◦] at state I. (d) The trajectories at state II. Note that during the test
we removed the exploration term from the controller in order to clearly see the trajectories.

1350015-29

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.

was zero. Recall that the exploration term was exponentially reduced as soon as the
performance improved (i.e., the robot frequently approached the goal). The later
state was around 50×104 time steps where the weights of ICO leaning became also
stable [see dashed line State II in Figs. 19(a) and 19(b)]. It can be seen that the
robot moved toward the goal in long trajectories [see Fig. 19(c)] when the control
policy at the early state was used. In contrast, it moved on shorter trajectories
when the control policy at the later state was used [see Fig. 19(d)]. This suggests
that although continuous actor–critic RL was stopped due to the inhibition of its
exploration term, ICO learning still shaped the control policy. This is because the
reflex signal was not completely avoided since the robot still had large deviations to
the goal when it came close to it. As a consequence, ICO learning improved robot
performance by making it head directly to the goal, thereby leading to shorter
trajectories.

It is important to note that although the resulting weights of the experiments
shown in Figs. 15 and 17–19 converged to different values, they generally con-
verged to almost the same weight ratio ( ρφG

+ wφG
ρφB

+ wφB
) of 2.9 ± 0.6. This shows that in

combinatorial learning the combination of the weights of these two modules is nec-
essary to successfully solve the task. Using all learned weights even yields a better
result (i.e., the robot moved on the shortest trajectories) compared to using only
the learned weights of either the ICO learning module or the continuous actor–
critic RL module (see Fig. 20). In addition, the weight ratio also suggests that
the positive reward attracts the system approximately three times larger than the
negative reward repulses it.

(a) (b) (c)

Fig. 20. (Color online) Robot behaviors at three different control parameter setups of combi-
natorial learning. For our investigation here, we used the learned weights from the experiment
shown in Fig. 19, i.e., the weights at State II. (a) All learned weights were used, i.e., ρφG

≈ 0.245,
ρφB

≈ 0.036, wφG
≈ 0.224, wφB

≈ 0.117. (b) Only learned weights of the ICO learning module
were used while the weights of the continuous actor–critic RL modules were set to 0.0. (c) Only
learned weights of the continuous actor–critic RL module were used while the weights of the ICO
learning module were set to 0.0. Note that in each test the robot started from the starting posi-
tion with different random orientations in the interval [−45◦, 45◦] and we removed the exploration
term from the controller in order to clearly see the trajectories.

1350015-30

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

Combining Correlation-Based and Reward-Based Learning

6. Conclusion

In the following, we will discuss some remaining issues while other relevant discus-
sion points have been treated alongside the experimental section above.

In this study, we introduced a neural combinatorial learning model for policy
improvement. The learning model combines ICO learning and continuous actor–
critic RL in a parallel manner where the ICO learning output and the continuous
actor–critic RL output are equally weighted to control the agent. The equal contri-
bution used here is a simple and straightforward strategy for combining them [see
Eq. (10)]. In general, ICO learning alone can quickly learn to solve tasks but has
limitations for more difficult tasks (i.e., here, balancing the pole in critical initial
conditions as well as goal-directed behavior). On the other hand, pure continuous
actor–critic RL can often solve the tasks but learns slowly.

Mainly we found that the performance of the controller can be strongly improved
when the combinatorial learning model was applied. To make this model work prop-
erly we need to design a proper reflex for ICO learning as well as an appropriate
correlation between predictive and reflex signals. For example, in the pole balanc-
ing task we configured ICO learning such that the weights were changed only for
the positive derivatives of the reflex signal, otherwise they remained unchanged.
This is to avoid a negative correlation resulting in poor learning performance or
even failure. Another condition which would make the current form of the model
problematic is a strong conflict between the reward function and the reflex. Some
problematic cases would be:

(i) The first case is if continuous actor–critic RL moves the agent toward a target
due to the reward function, while ICO learning tries to move it away from it
due to the built-in reflex.

(ii) Another case is robot navigation in an environment with obstacles when ICO
learning is used to generate a negative tropism behavior (e.g., avoiding obsta-
cles) while continuous actor–critic RL is used to generate a positive tropism
behavior (e.g., approaching a goal). In this scenario, a conflict will occur when
the goal is behind an obstacle or directly close to it.

(iii) The last case is a dynamic motion control task like balancing a humanoid
robot (many degrees of freedom system) against an external disturbance (push-
ing) where ICO learning controls the robot to avoid pushing (e.g., leaning
action) while continuous actor–critic RL wants to keep it balance (e.g., upright
position).

However, these complex tasks might also be solved but this will require a mod-
ification of the model or an improvement by:

(i) Properly designing the reward function of continuous actor–critic RL and the
reflex of ICO learning,

(ii) Using more appropriate sensory signals or predictive signals,

1350015-31

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.

(iii) Transforming the low-dimensional input of the actor part into a higher-
dimensional one by using nonlinear functions (e.g., an RBF network [46]) or
using a decoder [7],

(iv) Using an adaptive critic network or another type of a critic network (e.g., a
self-adaptive reservoir computing network [14] having high-dimensional non-
linear dynamics and internal memory) for a better approximation of the value
function. These issues (i–iv) are still under investigation and go beyond the
scope of this paper.

Besides our approach, there are a number of investigations on combining con-
ventional RL with other (learning) mechanisms or applying other adaptive methods
to it in order to enhance learning capability, reduce learning time, or counteract the
curse of dimensionality. For example, Price and Boutilier [54] developed an imitation
model called “implicit imitation” and integrated it into RL. It basically combines its
own experience with its observations of the behavior of an expert mentor for learn-
ing. Doya [18] proposed hybrid RL based on the “actor-tutor” framework, which
uses a model of the system dynamics as the tutor part. There, the actor (or con-
troller) is trained by supervised learning to minimize the difference between its out-
put and the tutor’s output (desired output). This framework, basically resembling
“feedback error learning” [23], was applied to nonlinear control tasks. Centina [12]
introduced a supervised reinforcement learning (SRL) architecture for robot control
problems with high-dimensional state spaces. There, a behavior model learned from
examples is used to dynamically reduce the set of actions available from each state
during the early RL process. In addition to these, other efforts have been made by
developing advanced RL techniques [21, 31, 58] like hierarchical RL [3, 6, 9, 17, 66],
by employing adaptive state representation [28, 34, 57], by using different explo-
ration/exploitation techniques [4, 44, 60, 64], and by introducing algorithms for
shaping rewards [2, 16, 48]. While all these advanced methods can successfully solve
several (robot) tasks and are effective in their own right, they are quite difficult to
match to biological neural learning and conditioning paradigms.

Only a few works have developed different types of learning models for robot
control where the models mimic principles of these learning or conditioning mech-
anisms of animal leaning [1, 13, 65]. Alonso et al. [1] introduced the associative
learning based approach (called the Pavlovian and Instrumental Q-learning frame-
work) to deal with generalization in Q-learning. This approach improves RL (i.e.,
Q-learning) by applying the Rescorla-Wagner model [56] as a part of the control
scheme for stimulus-stimulus associations. Its performance was tested in a grid simu-
lator where agents have to approach or avoid appetitive and aversive stimuli. Chang
and Gaudiano [13] presented a neural network based on operant and classical con-
ditioning. It was tested on mobile robots. As a consequence, it allows the robots to
simultaneously learn to approach light sources and avoid obstacles. Touretzky and
Saksida [65] developed a model of operant conditioning that incorporates aspects
of chaining in which behavioral routines are built up from smaller action segments.

1350015-32

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

Combining Correlation-Based and Reward-Based Learning

The model was implemented on a mobile robot for solving the delay match to sample
task (i.e., the task that involves behavioral sequences). Although all these learning
models [1, 13, 65] employed learning and conditioning aspects of animal learning,
they did not show or provided an understanding of how different mechanisms inter-
act or complement each other, resulting in successful control policies. Instead, they
were developed for improving conventional RL models or solving particular robotic
tasks (i.e., goal-directed behavior control). Therefore, it is still unclear whether
these models can also deal with qualitatively different tasks, like dynamic motion
control.

Compared to many of these approaches just summarized, our combinatorial
learning model applied the principles of classical and operant conditioning of ani-
mal learning. It was developed using ICO learning (a simplified model of classical
conditioning) and continuous actor–critic RL (a simplified model of operant con-
ditioning). They were implemented based on artificial neural networks; thereby,
making them conceptually closer to biological systems compared to any other solu-
tion. Furthermore, ICO learning and continuous actor–critic RL are partially related
to neural learning mechanisms in the brain. Specifically, ICO learning implements
plain heterosynaptic plasticity associated with modulatory processes found in the
brain [27] and continuous actor–critic RL uses TD learning which is related to
dopaminergic responses in the brain. Especially, some cells in the substantia nigra
and ventral tegmental area (VTA) show a behavior similar to representing the error
of TD-learning [61], which we use for weight adaptation in actor and critic networks.
We demonstrated the capability of this model in solving two different tasks: Pole
balancing and goal-directed behavior control. This shows that the learning model
is not limited to a specific task.

In addition to this, our model can be considered as a model-free method since its
learning rules do not require a system or environment model. Instead, ICO learning
requires only a built-in reflex as a self-supervised mechanism to quickly find the
correlations between a state and an unwanted condition (i.e., reflex action), while
continuous actor–critic RL uses its prediction mechanism including its own experi-
ences and some exploration to obtain a good control policy. Although our models
use a fixed state representation in the critic, one could also extend the critic to
adaptive state partitioning [45] since the actor and critic are independently con-
structed. Our work also shares a connection to Kolter and Ng [33] where they
presented a policy gradient method called the “Signed Derivative” approximation.
The general concept of this approach is similar to our model in the sense that it is a
model-free method which uses intuition to guess the direction where control inputs
affect future state variables. This intuition is used to construct the signed deriva-
tive approximation which is directly applied to the update rule of RL. Generally
speaking, the signed derivative approximation can be viewed as an instance of the
built-in reflex of ICO learning. However, in our model the built-in reflex indirectly
affects RL through ICO learning since it is used to guide and shape learning.

1350015-33

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.

In summary, the study pursued here sharpens our understanding of how different
learning mechanisms (i.e., correlation-based learning and RL) can be appropriately
combined and how they complement each other leading to policy improvement.
This study also suggests that correlation-based learning, on the one hand, can be
used to speed up the learning process of RL. On the other hand, it can shape and
correctly guide RL for searching an optimal policy. While the proposed combina-
tion of these two learning mechanisms can improve the performance of the systems,
they are still combined in a simple way [see Eq. (10)]. Thus, for future work, we
will investigate adaptive combinations. One possible option is to employ a learning
mechanism based on a correlation between a direct reward signal and the outputs of
ICO learning and continuous actor–critic RL for adapting their output weights. This
way, an active output will have a high correlation with the reward signal, thereby
strengthening its weight. The output weights will finally determine the behavior
of the agent. Another option is to use a hierarchical RL framework [46] to find an
optimal combination. Furthermore, we will also apply the combinatorial learning
mechanism to more complex tasks, like the double-pendulum scenario [22, 29, 30],
including ones with high dimensional states and actions (e.g., helicopter control [36]
and octopus arm problems [69]). We also aim to use it as online learning for real
robotic tasks, e.g., adaptive walking of hexapod robots [41], dynamic motion con-
trol of biped robots, and real robot navigation in complex environments. However,
solving such tasks may require a modification of some components, e.g., using a
nonlinear actor and/or an adaptive critic network, which could be easily done due
to the modularity of the framework.

Acknowledgments

This research was supported by Emmy Noether grant MA4464/3-1 of the
Deutsche Forschungsgemeinschaft (DFG), Bernstein Center for Computational
Neuroscience II Göttingen (BCCN grant 01GQ1005A, project D1), Japan Society
for the Promotion of Science (JSPS), European Communitys Seventh Framework
Programme FP7/2007-2013 (Theme 3, Information and Communication Technolo-
gies) under grant agreement 270273, Xperience, and a part of this research was
supported by “Brain Machine Interface Development” SRPBS, MEXT, MEXT
KAKENHI 23120004 and Strategic International Cooperative Program, JST. P.M.
would like to thank NICT for its support within the JAPAN TRUST International
Research Cooperation Program. We thank Tomas Kulvicius for critical discussions
and Martin Biehl and Frank Hesse for technical advice.

References

[1] Alonso, E., Mondragon, E. and Kjäll-Ohlsson, N., Pavlovian and instrumental
Q-learning: A Rescorla and Wagner-based approach to generalization in Q-learning,
in Proc. Adaptation in Artificial and Biological Systems (2006), pp. 23–29.

1350015-34

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

Combining Correlation-Based and Reward-Based Learning

[2] Asmuth, J., Littman, M. L. and Zinkov, R., Potential-based shaping in model-
based reinforcement learning, in Proc. 23rd National Conf. Artificial Intelligence
(AAAI’08 ) (2008), pp. 604–609.

[3] Bakker, B. and Schmidhuber, J., Hierarchical reinforcement learning based on subgoal
discovery and subpolicy specialization, in Proc. 8th Conf. Intelligent Autonomous
Systems (2004), pp. 438–445.

[4] Banerjee, B. and Kraemer, L., Action discovery for single and multi-agent reinforce-
ment learning, Adv. Complex Syst. 14 (2011) 279–305.

[5] Barnard, C., Animal Behavior : Mechanism, Development, Function, and Evolution
(Pearson Education, 2004).

[6] Barto, A. G. and Mahadevan, S., Recent advances in hierarchical reinforcement learn-
ing, Discrete Event Dyn. Syst. 13 (2003) 41–77.

[7] Barto, A. G., Sutton, R. S. and Anderson, C. W., Neuron-like adaptive elements
that can solve difficult learning control problems, IEEE Trans. Syst. Man, Cybern.
13 (1983) 834–846.

[8] Bekey, G., Autonomous Robots From Biological Inspiration to Implementation and
Control (MIT Press, Cambridge, 2005).

[9] Botvinick, M. M., Niv, Y. and Barto, A. C., Hierarchically organized behavior and
its neural foundations: A reinforcement learning perspective, Cognition 113 (2009)
262–280.

[10] Bovet, S., Robots with self-developing brains, Ph.D. thesis, University of Zurich
(2007).

[11] Brembs, B. and Heisenberg, M., The operant and the classical in conditioned orien-
tation in drosophila melanogaster at the flight simulator, Learn. Memory 7 (2000)
104–115.

[12] Cetina, V. U., Supervised reinforcement learning using behavior models, in Proc.
Sixth Int. Conf. Machine Learning and Applications (ICMLA 2007 ) (2007), pp. 336–
341.

[13] Chang, C. and Gaudiano, P., Application of biological learning theories to mobile
robot avoidance and approach behaviors, Adv. Complex Syst. 1 (1998) 79–114.

[14] Dasgupta, S., Wörgötter, F. and Manoonpong, P., Information theoretic self-
organised adaptation in reservoirs for temporal memory tasks, in Proc. 13th Int.
Conf. Engineering Applications of Neural Networks (EANN 2012 ) (2012), pp. 31–40.

[15] Dayan, P. and Balleine, B., Reward, motivation, and reinforcement learning, Neuron
36 (2002) 285–298.

[16] Devlin, S., Kudenko, D. and Grzes, M., An empirical study of potential-based reward
shaping and advice in complex, multi-agent systems, Adv. Complex Syst. 14 (2011)
251–278.

[17] Dietterich, T. G., Hierarchical reinforcement learning with the MAXQ value function
decomposition, J. Artif. Intell. Res. 13 (2000) 227–303.

[18] Doya, K., Efficient nonlinear control with actor-tutor architecture, in Advances in
Neural Information Processing Systems (1997), pp. 1012–1018.

[19] Doya, K., Reinforcement learning in continuous time and space, Neural Comput. 12
(2000) 219–245.

[20] Endo, G., Morimoto, J., Matsubara, T., Nakanish, J. and Cheng, G., Learning CPG-
based biped locomotion with a policy gradient method: Application to a humanoid
robot, Int. J. Robot. Res. 27 (2008) 213–228.

[21] Fischer, J., A Modulatory Learning Rule for Neural Learning and Metalearning in
Real World Robots with Many Degees of Freedom (Shaker Verlag GmbH, 2003).

1350015-35

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.

[22] Gomez, F., Schmidhuber, J. and Miikkulainen., R., Accelerated neural evolution
through cooperatively coevolved synapses, J. Mach. Lear. Res. 9 (2008) 937–965.

[23] Gomi, H. and Kawato, M., Neural network control for a closed-loop system using
feedback-error-learning, Neural Netw. 6 (1993) 933–946.

[24] Gullapalli, V., A stochastic reinforcement learning algorithm for learning real-valued
functions, Neural Netw. 3 (1990) 671–692.

[25] Howery, L. D., Why do animals behave the way they do?, Backyards and Beyond :
Rural Living in Arizona 3 (2007) 17–18.

[26] Hull, C. L., A Behavior System: An Introduction to Behavior Theory Concerning the
Individual Organism (Yale University Press, New Haven, CT, 1952).

[27] Humeau, Y., Shaban, H., Bissiere, S. and Lüthi, A., Presynaptic induction of
heterosynaptic associative plasticity in the mammalian brain, Nature 426 (2003)
841–845.

[28] Iida, S., Kuwayama, K., Kanoh, M., Kato, S. and Itoh, H., A dynamic allocation
method of basis functions in reinforcement learning, in Proc. 17th Australian Joint
Conf. Artificial Intelligence (2004), pp. 71–73.

[29] Kassahun, Y., de Gea, J., Edgington, M., Metzen, J. H. and Kirchner, F., Acceler-
ating neuroevolutionary methods using a kalman filter, in Proc. 10th Genetic and
Evolutionary Computation Conf. (GECCO-2008 ) (2008), pp. 1397–1404.

[30] Kassahun, Y., Wöhrle, H., Fabisch, A. and Tabie, M., Learning parameters of lin-
ear models in compressed parameter space, in Proc. Artificial Neural Networks and
Machine Learning (ICANN2012 ) (2012), pp. 108–115.

[31] Kawarai, N. and Kobayashi, Y., Learning of whole arm manipulation with constraint
of contact mode maintaining, J. Robot. Mechatron. 22 (2010) 542–550.

[32] Klopf, A. H., A neuronal model of classical conditioning, Psychobiology 16 (1988)
85–123.

[33] Kolter, J. and Ng, A., Policy search via the signed derivative, in Proc. Robotics:
Science and Systems (RSS) (2009), pp. 27, Online.

[34] Kondo, T. and Ito, K., A reinforcement learning with adaptive state space recruit-
ment strategy for real autonomous mobile robots, in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (2002), pp. 897–902.

[35] Konorski, J., Integrative Activity of the Brain (University of Chicago Press, Chicago,
1967).

[36] Koppejan, R. and Whiteson, S., Neuroevolutionary reinforcement learning for gen-
eralized helicopter control, in GECCO 2009 : Proc. Genetic and Evolutionary Com-
putation Conf. (2009), pp. 145–152.

[37] Kosco, B., Differential hebbian learning, in Proc. Neural Networks for Computing :
AIP, Vol. 151 (1986), pp. 277–282.

[38] Lee, H., Shen, Y., Yu, C., Singh, G. and Ng, A., Quadruped robot obstacle negotiation
via reinforcement learning, in Proc. IEEE Int. Conf. Robotics and Automation (2006),
pp. 3003–3010.

[39] Lovibond, P. F., Facilitation of instrumental behavior by a pavlovian appetitive con-
ditioned stimulus, J. Exp. Psychol. Anim. B 9 (1983) 225–247.

[40] Manoonpong, P., Geng, T., Kulvicius, T., Porr, B. and Wörgötter, F., Adaptive, fast
walking in a biped robot under neuronal control and learning, PLoS Comput. Biol.
3 (2007) e134.

[41] Manoonpong, P., Parlitz, U. and Wörgötter, F., Neural control and adaptive neural
forward models for insect-like, energy-efficient, and adaptable locomotion of walking
machines, Front. Neural Circuits 7 (2013). Doi: 10.3389/fncir.2013.00012.

1350015-36

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

Combining Correlation-Based and Reward-Based Learning

[42] Manoonpong, P. and Wörgötter, F., Adaptive sensor-driven neural control for learn-
ing in walking machines, in Neural Information Processing, LNCS (2009), pp. 47–55.

[43] Manoonpong, P., Wörgötter, F. and Morimoto, J., Extraction of reward-related fea-
ture space using correlation-based and reward-based learning methods, in Neural
Information Processing, LNCS (2010), pp. 414–421.

[44] Morihiro, K., Matsui, N., and Nishimura, H., Effects of chaotic exploration on rein-
forcement maze learning, in Knowledge Based Intelligent Information and Engineer-
ing Systems (2004), pp. 833–839.

[45] Morimoto, J. and Doya, K., Reinforcement learning of dynamic motor sequence:
Learning to stand up, in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems
(1998), pp. 1721–1726.

[46] Morimoto, J. and Doya, K., Acquisition of stand-up behavior by a real robot using
hierarchical reinforcement learning, Robot. Auton. Syst. 36 (2001) 37–51.

[47] Mowrer, O., Learning Theory and Behavior (New York, Wiley, 1960).
[48] Ng, A. Y., Harada, D. and Russell, S. J., Policy invariance under reward transforma-

tions: Theory and application to reward shaping, in Proc. 16th Int. Conf. Machine
Learning (1999), pp. 278–287.

[49] Pasemann, F., Evolving neurocontrollers for balancing an inverted pendulum,
Network-Comp. Neural 9 (1998) 495–511.

[50] Pavlov, I., Conditioned Reflexes (Oxford University Press, Oxford, UK, 1927).
[51] Phon-Amnuaisuk, S., Learning cooperative behaviours in multiagent reinforcement

learning, in Neural Information Processing, LNCS (2009), pp. 570–579.
[52] Porr, B. and Wörgötter, F., Strongly improved stability and faster convergence of

temporal sequence learning by using input correlations only, Neural Comput. 18
(2006) 1380–1412.

[53] Porr, B. and Wörgötter, F., Fast heterosynaptic learning in a robot food retrieval
task inspired by the limbic system, Biosystems 89 (2007) 294–299.

[54] Price, B. and Boutilier, C., Accelerating reinforcement learning through implicit imi-
tation, J. Artif. Intell. Res. 19 (2003) 569–629.

[55] Rescorla, R. and Solomon, R., Two process learning theory: Relationship between
pavlovian conditioning and instrumental learning, Psychol. Rev. 88 (1967) 151–182.

[56] Rescorla, R. and Wagner, A., A theory of pavlovian conditioning: Variations in the
effectiveness of reinforcement and nonreinforcement, in Classical Conditioning II :
Current Research and Theory (1972) 64–99.

[57] Sherstov, A. and Stone, P., Function approximation via tile coding: Automating
parameter choice, in Proc. Symp. Abstraction, Reformulation, and Approximation
(SARA-05 ) (2005), pp. 194-205.

[58] Shibata, K., Nishino, T. and Okabe, Y., Active perception and recoginition learning
system based on Actor-Q architecture, Syst. Comput. Jpn. 33 (2002) 12–22.

[59] Skinner, B., The Behavior of Organisms: An Experimental Analysis (Appleton Cen-
tury Croft, New York, 1938).

[60] Smith, S. C. and Herrmann, J. M., Homeokinetic reinforcement learning, in First
IAPR TC3 Workshop, PSL 2011, LNCS (2012), pp. 82–91.

[61] Suri, R. E., Bargas, J. and Arbib, M. A., Modeling functions of striatal dopamine
modulation in learning and planning, Neuroscience 103 (2001) 65–85.

[62] Sutton, R. and Barto, A., Reinforcement Learning : An Introduction (MIT Press,
Cambridge, 1998).

[63] Thorndike, E., Animal intelligence: An experimental study of the associative process
in animals, Psychol. Rev. Monogr. Suppl. 8 (1898) 68–72.

1350015-37

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

April 22, 2013 10:38 WSPC/S0219-5259 169-ACS 1350015

P. Manoonpong et al.

[64] Tokic, M., Adaptive ϵ-greedy exploration in reinforcement learning based on value
differences, in Proc. KI 2010 : Advances in Artificial Intelligence (2010), pp. 203–210.

[65] Touretzky, D. and Saksida, L., Operant conditioning in skinnerbots, Adapt. Behav.
5 (1997) 219–247.

[66] van Dijk, S. G. and Polani, D., Grounding subgoals in information transitions, in
Proc. IEEE Symp. Adaptive Dynamic Programming and Reinforcement Learning
(Paris, France, 2011), pp. 105–111.

[67] Watkins, C. J. C. H., Learning from delayed rewards, Ph.D. thesis, University of
Cambridge (1989).

[68] Williams, D. and Williams, H., Auto — maintenance in the pigeon: Sustained pecking
despite contingent non-reinforcement, J. Exp. Anal. Behav. 12 (1969) 511–520.

[69] Woolley, B. G. and Stanley, K. O., Evolving a single scalable controller for an octopus
arm with a variable number of segments, in Parallel Problem Solving from Nature,
Lecture Notes in Computer Science (2010), pp. 270–279.

[70] Wörgötter, F. and Porr, B., Temporal sequence learning, prediction and control —
A review of different models and their relation to biological mechanisms, Neural
Comp. 17 (2005) 245–319.

1350015-38

A
dv

s. 
Co

m
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 W
SP

C 
on

 0
6/

06
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.


	Summary
	General Objective of WP2.2: Motor Actions
	Summary of Results
	Links to Other Workpackages

	Description of Results
	Synthesizing Compliant Reaching Movements by Searching a Database of Example Trajectories
	Action Sequence Reproduction based on Automatic Segmentation and Object-Action Complexes
	Basic Learning Theory Aspects

	Manoonpong2013.pdf
	Summary
	General Objective of WP2.2: Motor Actions
	Summary of Results
	Links to Other Workpackages

	Description of Results
	Synthesizing Compliant Reaching Movements by Searching a Database of Example Trajectories
	Action Sequence Reproduction based on Automatic Segmentation and Object-Action Complexes
	Basic learning theory aspects





