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1 Executive Summary

This deliverable deals with lexicalized grounded conceptual representations, consisting of reusable, predic-
tive, and applicable domain knowledge, structurally bootstrapped from raw text, that serve as the basis
for deliberative planning, and a mechanism for their application in grounded communication between
computational and human agents.

Significant developments that we report in this deliverable are the following:

• We show that spatial relations between domain objects can be inferred from unlabeled text in two
complementary ways, and that such knowledge can be practically deployed to aid a domain planner.

• We show that is is possible to combine pragmatic learning of the “use” of language, based on
reasoning recursively about dialog acts as resulting from planning by goal directed agents, with
Bayesian models of acquisition the “form” of language, of the kind investigated by Kwiatkowski
et al. (2012) and reported under earlier deliverables in WP4.

To address these problems in Structural Bootstrapping for Language and Communication, we first present
work on the semiautomatic extension of ontological domain knowledge for deliberative planners (including
the PKS planner reported under deliverable D3.2.3 for WP3 and the Elexir planner described under
D4.2.3), using large volumes of unlabeled (raw) text. We then discuss pragmatic learning for dialog
planning.

1.1 Text-mining Planning Domain Knowledge

The construction of planning domain knowledge representations for even simple action domains such
as the kitchen demos used in the Xperience project, is tedious, error-prone, typically incomplete, and
nontransferable to other domains. The Xperience project seeks to automate this process on several
fronts, including work reported elsewhere under WP3, D3.2.3 on induction of PDDL planning operators
themselves from observation of change, and on collaborative planning. However, such rule induction
depends on knowledge of a prior ontological representation of the entity types in the domain and the
action types that they afford. The present work addresses the problem of semiautomatic acquisition of
such knowledge from free text available in large quantities on the web.

The first of two attached papers (Kaiser et al. 2014) approaches this problem in two phases. In the
first phase, the English words denoting general types of objects (cups etc.), actions (mixing, etc.), and
relations (in etc.) that are specific to the planning domain are identified, either by hand and observation,
or by extracting them automatically from specialized text (such as cookery manuals). This first level
ontology is typically very incomplete. It is fleshed out in a second more computationally intensive phase
where much larger amounts of general text in the form of the Google n-gram corpus, which contains
500B words as 5-tuples including dependency relations, in several languages, harvested from Google
Books, part of which is examined using templates constructed from the entity types and relation words
discovered in the first phase. From this (noisy, partially observed) data, domain knowledge such as that
milk is often in the fridge, and that pans are often in cupboards, can be identified. The usefulness of this
knowledge extraction can be evaluated via the planner, showing that when supplied with this knowledge
in a standard (PDDL) form, it can achieve plans that it was unable to find unaided.

A number of tasks in this area of knowledge acquisition and knowledge mining remain open at the time
of this report and are the subject of ongoing and future work under the Xperience project:

• A known problem with data-mining knowledge from human-generated text in this way is that some
of the knowledge that is needed for planning by machine is so blindingly obvious to humans that it is
never mentioned, no matter how much text is examined. (For example, the fact that cups are often
in cupboards turns out to be of this banal kind.) Our current and future work seeks to generalize
the mined relations to unseen but plausible relations. (For example, the fact that cups and pans
are rigid containers that can be clustered automatically on the basis of their similar bag-of-words
collocations in text (Lin and Pantel, 2001b; 2001a) in the first phase of knowledge elicitation should
provide a basis for the generalization to their being found in similar locations, such as cupboards.
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• As in the case of domain knowledge arising from observation and action in the world, the relations
that we bootstrap from text about that world are probabilistic. We continue to investigate the use
of probabilistic models in connection with knowledge mined from text, as discussed in D3.2.3.

1.2 Pragmatic Learning

Language users must solve two contradictory problems: to learn, they must work out what words mean
in general (or literally); to speak and understand, they need to figure out what words mean in context
(or pragmatically). For example, the sentence “he ate some of the cookies” is literally true even if he
ate all of the cookies, but would generally be used and interpreted pragmatically in context as implying
that not all of the cookies were eaten. Pragmatic effects can be captured elegantly by Bayesian models
which reason recursively about dialog acts as resulting from planning by goal directed agents – in essence,
the models reason: “If all of the cookies were gone, she could have truthfully said either ‘some’ or ‘all’
were eaten; but she would have preferred to say ‘all’, because it would be more informative; but, she
did not say ‘all’, therefore they must not all have been eaten” (Frank and Goodman 2012; Goodman
and Stuhlm???ler 2013). Furthermore, Bayesian learning models can capture a wide variety of language
learning phenomena ((Kwiatkowski et al. 2012; Frank et al. 2009). However, there are no models which
combine the two, and this turns out to be fundamentally difficult: learning models assume there is an
underlying hidden lexicon in use, which is not true when other agents are using planning rather than
lexicon lookup to select utterances. Combining learning and pragmatics in the same model seems to force
us to either reason about unbounded higher-order beliefs, which are wildly intractable, or else accept
misspecification.

Smith et al. (2013) (attached) propose a particular misspecified model in which each agent assumes,
incorrectly, that there is an underlying literal lexicon which the other agents know (the “social anxiety”
assumption), and then tries to learn what this is. The resulting model is the first to capture a wide
variety of both learning and pragmatic phenomena within a single framework. It is also, we believe, the
first learning model that can learn both by listening to what more knowledgeable speakers say, and also
by speaking to more knowledgeable listeners and observing how they react, and generalize from one to
the other. And, it is the first model we know of that can infer underlying literal meanings while observing
pragmatically strengthed uses in context, even when these differ.

In addition, we find that when two of our agents interact, even if they both start out ignorant about the
lexicon (because there simply is no language in prior use), they quickly converge on a shared lexicon.
What is more, they turn out to have a systematic bias towards converging on those lexicons which
are most useful for the current task (for example, ones which use short/cheap messages for referring to
common entities). This work thus demonstrates a possible route by which local, task-adapted multi-agent
norms can be bootstrapped using pure structural learning mechanisms.

A number of tasks in this area of pragmatic and semantic language acquisition remain open at the time
of this report and are the subject of ongoing and future work under the Xperience project:

• This work complements work using reward adaptive planning by Valtazanos (2014), reported under
D3.2.3, and we seek in future work to combine these approaches with a view to scaling both in
combination with deliberative dialog planning.
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2 Attached Papers

Kaiser et al. (2014) Extracting Common Sense Knowledge from Text for Robot Planning, Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), (to appear)

Autonomous robots often require domain knowledge to act intelligently in their environment. This is
particularly true for robots that use automated planning techniques, which require symbolic representa-
tions of the operating environment and the robots capabilities. However, the task of specifying domain
knowledge by hand is tedious and prone to error. As a result, we aim to automate the process of acquiring
general common sense knowledge of objects, relations, and actions, by extracting such information from
large amounts of natural language text, written by humans for human readers. We present two methods
for knowledge acquisition, requiring only limited human input, which focus on the inference of spatial
relations from text. Although our approach is applicable to a range of domains and information, we only
consider one type of knowledge here, namely object locations in a kitchen environment. As a proof of
concept, we test our approach using an automated planner and show how the addition of common sense
knowledge can improve the quality of the generated plans.

Smith et al. (2013) Learning and using language via recursive pragmatic reasoning about other agents,
Advances in Neural Information Processing Systems, 3039-3047.

Language users are remarkably good at making inferences about speakers intentions in context, and
children learning their native language also display substantial skill in acquiring the meanings of unknown
words. These two cases are deeply related: Language users invent new terms in conversation, and language
learners learn the literal meanings of words based on their pragmatic inferences about how those words
are used. While pragmatic inference and word learning have both been independently characterized in
probabilistic terms, no current work unifies these two. We describe a model in which language learners
assume that they jointly approximate a shared, external lexicon and reason recursively about the goals of
others in using this lexicon. This model captures phenomena in word learning and pragmatic inference;
it additionally leads to insights about the emergence of communicative systems in conversation and the
mechanisms by which pragmatic inferences become incorporated into word meanings.
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Extracting Common Sense Knowledge from Text for Robot Planning

Peter Kaiser1 Mike Lewis2 Ronald P. A. Petrick2 Tamim Asfour1 Mark Steedman2

Abstract— Autonomous robots often require domain knowl-
edge to act intelligently in their environment. This is particu-
larly true for robots that use automated planning techniques,
which require symbolic representations of the operating en-
vironment and the robot’s capabilities. However, the task of
specifying domain knowledge by hand is tedious and prone to
error. As a result, we aim to automate the process of acquiring
general common sense knowledge of objects, relations, and
actions, by extracting such information from large amounts of
natural language text, written by humans for human readers.

We present two methods for knowledge acquisition, requiring
only limited human input, which focus on the inference of
spatial relations from text. Although our approach is applicable
to a range of domains and information, we only consider one
type of knowledge here, namely object locations in a kitchen
environment. As a proof of concept, we test our approach using
an automated planner and show how the addition of common
sense knowledge can improve the quality of the generated plans.

I. INTRODUCTION AND RELATED WORK

Autonomous robots that use automated planning to make
decisions about how to act in the world require symbolic
representations of the robot’s environment and the actions
the robot is able to perform. Such models can be aided by the
presence of common sense knowledge, which may help guide
the planner to build higher quality plans, compared with the
absence of such information. In particular, knowledge about
default locations of objects (the juice is in the refrigerator)
or the most suitable tool for an action (knives are used for
cutting) could help the planner make decisions on which
actions are more appropriate in a given context.

For example, if a robot needs a certain object for a task, it
can typically employ one of two strategies in the absence of
prior domain knowledge: the robot can ask a human for the
location of the object, or the robot can search the domain
in an attempt to locate the object itself. Both techniques
are potentially time consuming and prevent the immediate
deployment of autonomous robots in unknown environments.
By contrast, the techniques proposed in this paper allow the
robot to consider likely locations for an object, informed by
common sense knowledge. This potentially improves plan
quality, by avoiding exhaustive search, and does not require
the aid of a human either to inform the robot directly or to
encode the necessary domain knowledge a priori.

While it is not possible to automatically generate all
the domain knowledge that could possibly be required,
we propose two methods for learning useful elements of

1Institute for Anthropomatics and Robotics, Karlsruhe Institute of Tech-
nology, Karlsruhe, Germany {peter.kaiser, asfour}@kit.edu

2School of Informatics, University of Edinburgh, Edinburgh,
Scotland, United Kingdom {mike.lewis, rpetrick,
steedman}@inf.ed.ac.uk

Fig. 1: The humanoid robots ARMAR-IIIa (left) and
ARMAR-IIIb working in a kitchen environment ([5], [6]).

domain knowledge based on information gathered from
natural language texts. These methods will provide the set
of object and action types for the domain, as well as certain
relations between entities of these types, of the kind that
are commonly used in planning. As an evaluation, we build
a domain for a robot working in a kitchen environment
(see Fig. 1) and infer spatial relations between objects in
this domain. We then show how the induced knowledge can
be used by an automated planning system. (The generated
symbols will not be grounded in the robot’s internal model;
however, approaches to establish these links given names of
objects or actions are available (e.g., [1], [2], [3] and [4]).)

The extraction of spatial relations from natural language
has been studied in the context of understanding commands
and directions given to robots in natural language (e.g.,
[7], [8], [9]). In contrast to approaches based on annotated
corpora of command executions or route instructions, or the
use of knowledge bases like Open Mind Common Sense
[10] explicitly created for artificial intelligence applications,
we extract relevant relations from large amounts of text
written by humans for humans. The text mining techniques
used in [11], [12], [13] to extract action-tool relations to
disambiguate visual interpretations of kitchen actions are
related. In [14], spatial relations are inferred based on search
engine queries and common sense databases.

In the following, we describe a process for learning
domain ontologies (Section II) and for extracting relations
(Section III). The last two sections evaluate both methods
(Section IV) and describe how the resulting knowledge can
be used in an automated planning system (Section V).

II. AUTOMATIC DOMAIN ONTOLOGY LEARNING

In this section, we propose a method for automatically
learning a domain ontology D—a set of symbols that refer to
a robot’s environment or capabilities—with very little human
input. The method can be configured to learn a domain



of objects or actions. With robotic planning in mind, it is
crucial that in either of these cases, the contained symbols
are not too abstract. In terms of a kitchen environment,
interesting objects might be saucepan, refrigerator or apple,
while abstract terms like minute or temperature that do not
directly refer to objects are avoided. Similarly, we focus on
actions that are directly applied to objects like knead, open
or screw, and ignore more abstract actions like have or think.

Automatic domain ontology learning is based on a
domain-defining corpus CD, which contains texts concerning
the environment that the domain should model. For example,
a compilation of recipes is a good domain-defining corpus
for a kitchen environment. Note that these texts have been
written by humans for human readers, and no efforts are
taken to make them more suitable for CD. However, CD
needs to be part-of-speech (POS) tagged and possibly parsed
if compound nouns are to be appropriately recognized.1

The domain-defining corpus CD is used to retrieve an
initial vocabulary V which is then filtered for abstract sym-
bols. Depending on the type of symbol that this vocabulary
is meant to model, only nouns or verbs are included in
V . In the first step, CD is analyzed for word frequency
and the k most frequent words are extracted (see Alg. 1).
Only words with a part-of-speech-tag (POS-tag) equal to
p ∈ {noun, verb} are considered. The resulting vocabulary
V is then filtered according to the score Θ(w, p) which
expresses the concreteness of a word w.

Algorithm 1: learnDomainOntology(CD, p, k,Θmin)

1 V ← mostFrequentWords(CD, p, k)
2 D ← {w ∈ D : Θ(w, p) ≥ Θmin}
3 return D

Fig. 2 gives an overview of the domain ontology learning
process. Additionally, it shows details about the relation
extraction procedure that will be discussed below, and the
interoperability between the two methods. In the following
section, we discuss the concreteness score Θ in detail.

A. The Concreteness Θ

Having a measure of concreteness is necessary for fil-
tering symbols that are too abstract to play a role in our
target domain. In particular, the score Θ(w, p) resembles the
concreteness of a word w with POS-tag p using the lexical
database WordNet ([16], [17]). For nouns, WordNet features
an ontology that differs between physical and abstract en-
tities. However, a word can have different meanings, some
of which could be abstract and others not. WordNet solves
this issue by working on word-senses rather than on words.
For a word w with a sense2 s from the set S(w) of possible
senses of w, we can compute a Boolean indicator cw,s that

1We use the Stanford Parser [15] to do this.
2WordNet numbers the different word-senses, so S(w) ⊂ N.

Fig. 2: The process of domain ontology learning (left) and
relation extraction (right). The ontology resulting from the
first method can be used as input to relation extraction.

tells us if s is a physical meaning of w:

cw,s =

{
1, if s is a physical meaning of w
0, otherwise.

(1)

WordNet also features a frequency measure fw,s that indi-
cates how often a word w was encountered in the sense of s,
based on a reference corpus. As we are not doing semantic
parsing on CD, we do not know which of the possible senses
of w is true. However, we can compute a weighted average
of the concreteness of the different meanings of w, weighing
each word-sense with its likeliness:

Θ(w) =

∑
s∈S(w) fw,s · cw,s∑

s∈S(w) fw,s
. (2)

As a byproduct, Θ can only have nonzero values for words
that are contained in WordNet, which filters out misspelled
words or parsing errors.

As there is no suitable differentiation in WordNet’s on-
tology for verbs, we can not apply the exact same approach
here. However, WordNet features a rough clustering of verbs
that we use to define the filter. We set cw,s to 1, if the
verb w with sense s is in one of the following categories:
verb.change, verb.contact, verb.creation or verb.motion.

III. RELATION EXTRACTION

The second technique we propose for information acquisi-
tion deals with relations between symbols, defined using syn-
tactic patterns. Such patterns capture the syntactic contexts
that describe the relevant relations as well as the relations’
arguments. For example, the pattern

(
(#object, noun), (in, prep), (#location, noun)

)
(3)

describes a prepositional relation between two nouns using
the preposition in. The pattern also defines two classes,3

#object and #location, which stand for the two arguments
of the relation. Given the above syntactic pattern, two types
of questions are relevant in this work:

3In examples we use a hash to indicate a classname.



Fig. 3: A dependency path for the fragment milk in refrig-
erator contains the words, their respective POS-tag and the
syntactic relation between them.4

• Class inference: Is a symbol w more likely an object or
a location?

• Relation inference: What is the most likely location for
a symbol w?

The acquisition of relational information is interesting for
endowing a robot with initial knowledge of its environment.
Our main application for this method is the extraction of
spatial relations in a kitchen setting, such as the location
of common objects. However, the proposed method is not
constrained to objects and locations, and we will show
different use cases in the evaluation in Section IV-C.

The relation extraction process works in two phases:
• In the crawling phase, the text sources are searched for

predefined syntactic patterns. Words falling into classes
defined in the patterns are counted. The counts are
compiled to a set of distributions.

• In the query phase, information can be queried from the
distributions computed in the crawling phase. Different
kinds of queries are possible.

The foundation for relation extraction is the domain-
independent corpus CI . In contrast to the domain-defining
corpus CD, CI contains unrestricted text. Because it is rare
for common sense information to be explicitly expressed,
the size of CI is crucial. We assume that the domain-
independent corpus is dependency parsed, i.e., consists of
syntactic dependency paths of the kind shown in Fig. 3. A
further discussion of CI is given in Section IV-C.

In the following sections, we give a formal definition of a
syntactic pattern and explain the two phases in further detail.
Fig. 2 gives an overview of relation extraction.

A. Syntactic Patterns

The goal of the crawling phase is to search large amounts
of texts for syntactic patterns predefined by the user. These
patterns are designed to specify a relation between classes of
words. For example, pattern (3) describes a spatial relation
between the two classes #object and #location. The fragment
milk in refrigerator would match the pattern and would result
in the assignments #object=milk and #location=refrigerator.

Formally, a syntactic pattern is defined as a sequence of
tuples containing a symbol si and a POS-tag pi:

Π =
(
(s1, p1), · · · , (sk, pk)

)
. (4)

When matching the pattern to a sequence of words, the tuples
will match exactly one word of the sequence. The condition
for a match depends on the symbol si:

4NN - noun, IN - preposition
dobj - direct object, prep - preposition, pobj - prepositional object

• If si is a word, the i-th tuple matches to this exact word
with POS-tag pi.

• If si is a classname, the i-th tuple matches to all words
from D having the POS-tag pi.

We will use the predicates isclass(si) and isword(si) to differ
between the two possible meanings of the symbol si.

The search for matches happens on word-sequences. Such
sequences can represent sentences or, as is the case for
our corpus CI , dependency paths. A word-sequence contains
words wi together with their respective POS-tag ti:

Σ =
(
(w1, t1), · · · , (wn, tn)

)
, (5)

Alg. 2 decides if an element (s, p) from a syntactic pattern
matches an element (w, t) from a word-sequence. If the
symbol s is a class, it only checks if the word w is part
of the domain ontology Dp that contains the valid words
with POS-tag p. If s is a word, it must equal w. In both
cases, the POS-tags p and t have to match.

Algorithm 2: match((s, p), (w, t),D)

1 if isclass(s) then
2 return p = t ∧ w ∈ Dp

3 end
4 else if isword(s) then
5 return p = t ∧ s = w
6 end

Alg. 3 describes the matching process for a complete
syntactic pattern (using Alg. 2). If a match is found, the class
configuration is returned as a set of class assignments, i.e.,
class-word pairs. For example, using pattern (3), the fragment
milk in refrigerator results in the class configuration:

K =
{

(#object,milk), (#location, refrigerator)
}
. (6)

Algorithm 3: configuration(Σ,Π,D)

1 for i = 1, · · · , |Σ| − |Π|+ 1 do
2 I ← {0, · · · , |Π| − 1}
3 if match(Πj+1,Σi+j ,D) ∀j ∈ I then
4 return {(sj+1, wi+j) : j ∈ I, isclass(sj+1)}
5 end
6 end
7 return ∅

B. The Crawling Phase

In the crawling phase, CI is searched for pattern matches
using Alg. 2 and Alg. 3. Two different distributions are then
computed based on the resulting class configurations:
• The Relation Distribution DR counts the occurrences

of class configurations (e.g., (6)). DR is suitable for
answering the question: How likely is a class configu-
ration for the relation induced by pattern Π?



• The Class Distribution DC counts the occurrences of
individual class assignments. It is suitable for answering
the question: How likely is a class for a given word?

Alg. 4 shows how DR and DC are computed given a set of
dependency paths S and a syntactic pattern Π.

Algorithm 4: computeDistribution(S,Π,D)

1 DR ← Empty Relation Distribution
2 DC ← Empty Class Distribution
3 foreach Σ = ((w1, t1), · · · , (wn, tn)) ∈ S do
4 K ← configuration(Σ,Π,D)
5 if K 6= ∅ then
6 DR[K]← DR[K] + 1
7 foreach (c, w) ∈ K do
8 DC [(c, w)]← DC [(c, w)] + 1
9 end

10 end
11 end
12 return (DR, DC)

C. The Query Phase

The query phase uses the distributions DR and DC to
compute pseudo-probabilities for class assignments.

A class query γ(c, w) approximates the probability of a
word w falling into a class c. If Γ = {c1, · · · , cl} is the set
of defined classes, the class query can be formulated as:

γ(c, w) =
DC [(c, w)]∑

x∈ΓDC [(x,w)]
. (7)

A relation query ρ(Q, c∗) approximates the prob-
ability of a relation with class-assignments Q =
{(c1, w1), · · · , (cl, wl)}, normalizing over the possible val-
ues of the class c∗. With Q∗ = {(c, w) ∈ Q : c 6= c∗}, the
relation query can be formulated as:

ρ(Q, c∗) =
DR[Q]∑

v∈DDR[Q∗ ∪ {(c∗, v)}] . (8)

In the evaluation, we will consider both types of queries.

IV. EVALUATION

To evaluate the proposed methods of domain learning
and relation extraction, we first show that it is possible
to use a specialized corpus to generate a domain ontology
of entity types that matches people’s expectations for the
kitchen environment. We then use another, more general text
corpus, to infer spatial relations and action-tool relations for
those entities. These components are independent: we show
in Section V that hand specification of the domain entities by
a human expert can aid the automated extraction processes.

A. Prerequisites

To learn a domain ontology using the proposed method,
the two text corpora CD and CI must first be defined.

1) The domain-defining Corpus CD: This corpus is used
to generate an initial vocabulary by analysing word frequen-
cies. CD should therefore be reasonably large but, more im-
portantly, should contain descriptions of common objects and
actions from the desired domain. For a kitchen environment,
we chose to build CD from a set of about 11,000 recipes,5

with a total size of 19.5 MB.
2) The domain-independent Corpus CI : The domain-

independent corpus is used to sort entities into different
classes according to the results of syntactic pattern matches.
CI does not need to be a different corpus than CD, but it
is difficult to extract reliable information on rare relations
from small corpora. This is especially true for common sense
knowledge that isn’t often explicitly expressed. Hence, CI
should be extensive. As it is often difficult to gather large
amounts of text about a specific topic, it is useful to separate
CI from CD, and use a large standard corpus for CI .

We use the Google Books Ngrams Corpus [18], in the
following referred to as the Google Corpus, which contains a
representation of 3.5 million English books containing about
345 billion words in total. The corpus is already parsed,
tagged and frequency counted. The Google Corpus does not
work on sentences, but on syntactic ngrams (Fig. 3), which
are n content-word long subpaths of the dependency paths.
We use the corpus in its arcs form which contains syntactic
ngrams with two content-words (n = 2) plus possible non-
content-words like prepositions or conjunctions. However,
the proposed methods can also be used in combination with
corpora containing longer syntactic ngrams.

B. Domain Ontology Learning

Using the corpora mentioned above, we can run the
method for automatic domain ontology learning. Generating
a domain ontology for nouns using parameter values of
k = 300,Θmin = 0.35 results in an ontology of 198 words of
which the 80 most frequent ones are listed in Table I. The 20
most frequent nouns that were part of the initial vocabulary,
but did not pass the concreteness filter are listed in Table II.

Analogously, the 80 most frequent actions from a do-
main ontology learnt from verbs using the parameters k =
300,Θmin = 0.2 are depicted in Table III. The full domain
ontology contains 206 verbs. The 20 most frequent verbs that
did not pass the concreteness filter are listed in Table IV.

Results show that for objects, as well as actions, the
generated domain ontologies are reasonable, but contain
obvious mistakes. For example, the concrete noun cream
was rejected while abstract nouns like top and bottom were
included. The reason for this is the diversity of possible word
senses present in WordNet that can mislead the filter Θ.

To evaluate the strength of the domain learning method,
we asked four people6 to manually extract kitchen-related
objects and actions from the sets of the 300 most frequent
nouns and verbs from CD. Fig. 4 shows the F1-scores of
the automatically learnt domain ontologies for objects and

5From http://www.ehow.com.
6Native speakers of English, not involved in the research.



TABLE I: Automatic domain ontology learning (objects)

k = 300, Θmin = 0.35
1 wine 21 milk 41 container 61 salad
2 water 22 bottle 42 home 62 tea
3 meat 23 fruit 43 bag 63 grill
4 bowl 24 pot 44 garlic 64 center
5 sugar 25 dough 45 skillet 65 soup
6 mixture 26 glass 46 hand 66 alcohol
7 pan 27 side 47 lid 67 coffee
8 oil 28 pepper 48 onion 68 beer
9 top 29 meal 49 skin 69 sheet

10 oven 30 flour 50 saucepan 70 world
11 salt 31 fish 51 egg 71 diet
12 dish 32 refrigerator 52 beef 72 freezer
13 cheese 33 drink 53 layer 73 blender
14 cup 34 chocolate 74 piece 89 batter
15 butter 35 turkey 55 liquid 75 pasta
16 chicken 36 bottom 56 spoon 76 pork
17 juice 37 cake 57 surface 77 addition
18 bread 38 place 58 restaurant 78 dinner
19 rice 39 ice 59 fat 79 vodka
20 sauce 40 knife 60 plate 80 powder

TABLE II: Not part of the object domain ontology

k = 300, Θmin = 0.35
1 time 6 taste 11 temperature 16 type
2 flavor 7 way 12 day 17 tbsp
3 heat 8 variety 13 process 18 color
4 recipe 9 cream 14 boil 19 hour
5 food 10 amount 15 cooking 20 half

actions, using different values for Θmin, compared to the
domains created by the human participants. The results show
that enabling the concreteness filter (Θmin > 0) significantly
increases the quality of the resulting domain for nouns as
well as for verbs. The results also show that values of roughly
Θmin > 0.5 result in a too restrictive filter. While in the case
of nouns, the restrictive filter still produces a better domain
than if no filter is applied, this is not true for verbs: the qual-
ity of a verb-domain drops dramatically the more restrictive
the filter gets. The reason for the difference between the two
plots is that verbs often have a variety of possible meanings.
By contrast, nouns usually have a predominant interpretation,
at least in terms of the differentiation between physical and
abstract meanings. This is also reflected in the fact that the
participants found it significantly harder to create a domain
of actions than to create a domain of nouns.

C. Inference

We now evaluate the relation and class inference mecha-
nisms described in Section III. To illustrate the capabilities of
these methods, we generated the results using the manually
created domain ontology as a gold standard. We additionally
show how false positives can affect the process by using the
automatically learnt domain ontology. The parameter Θmin
can be determined in practice by generating and evaluating
an ontology for a subset of the initial vocabulary using plots
similar to Fig. 4. Different syntactic patterns can be used to
conduct different kinds of inference. The following sections
show examples of possible queries.

1) Location Inference: A good use of knowledge acqui-
sition is the exploration of spatial relations between objects

TABLE III: Automatic domain ontology learning (actions)

k = 300, Θmin = 0.2
1 add 21 cool 41 come 61 stick
2 make 22 fill 42 press 62 beat
3 place 23 leave 43 freeze 63 clean
4 remove 24 go 44 garnish 64 begin
5 cook 25 bring 45 pick 65 burn
6 pour 26 hold 46 open 66 spread
7 stir 27 reduce 47 slice 67 replace
8 do 28 follow 48 become 68 whisk
9 put 29 heat 49 refrigerate 69 boil
10 take 30 pan 50 soak 70 produce
11 get 31 sprinkle 51 dip 71 preheat
12 turn 32 dry 52 form 72 squeeze
13 set 33 start 53 shake 73 chill
14 cut 34 melt 74 cause 89 top
15 cover 35 sit 55 pull 75 peel
16 mix 36 chop 56 break 76 fit
17 combine 37 drain 57 wash 77 move
18 create 38 rinse 58 simmer 78 coat
19 prepare 39 blend 59 lay 79 increase
20 bake 40 roll 60 transfer 80 seal

TABLE IV: Not part of the action domain ontology

k = 300, Θmin = 0.2
1 be 6 keep 11 eat 16 check
2 use 7 let 12 choose 17 enjoy
3 have 8 allow 13 need 18 give
4 serve 9 try 14 help 19 see
5 show 10 find 15 buy 20 want

and locations using prepositional contexts. For instance,
pattern (3) matches fragments where two nouns, #object
and #location, are linked by the preposition in. This pattern
can be used in combination with the above object ontology
(Table I) to infer spatial relations in a kitchen environment.
Table V shows the most likely locations for the ten most
frequent objects from the automatically learnt domain ontol-
ogy.7 Note that for generating the results we used pattern (3)
combined with three similar patterns using the prepositions
on, at and from. Table V presents two sets of locations for
each object: the upper, highlighted rows refer to the manually
created domain ontology and the lower, non-highlighted rows
refer to the automatically learnt domain ontology in Table I.

Results from the automatically learnt domain ontologies
are more noisy, and distractive terms like side or bottom
haven’t been filtered out. (We can also tune domain genera-
tion to work in a more restrictive way, e.g., by using the F0.5

measure instead of F1 to emphasize precision over recall.)
The results demonstrate that the system is able to infer

typical locations for objects. However, two problems con-
strain its performance. First, the automatically learnt domain
ontology does not contain typical locations like cupboard
or drawer, because these words do not frequently appear
in the initial vocabulary. Second, the system is not able to
differ between container objects like pot or pan, and actual
locations like refrigerator or oven (i.e., objects that have a
fixed position in the kitchen). Improving the domain entity
specification by using more diverse but relevant domain spe-
cific corpora is the subject of ongoing research. In Section V

7We consider top and oven not to be objects.
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Fig. 4: Automatically learnt domain ontologies are evaluated
using different values of Θmin, by comparing them to domain
ontologies created manually by human participants.

TABLE V: Results for location inference
Highlighted rows: Manually created domain ontology. Non-highlighted

rows: Automatically learnt domain ontology.
refr. - refrigerator, scp. - saucepan, swc. - sandwich, kit. - kitchen

object first second third fourth

wine glass / 0.20 bottle / 0.20 table / 0.15 cup / 0.14
glass / 0.13 bottle / 0.13 table / 0.10 cup / 0.09

water surface / 0.09 bottle / 0.07 water / 0.07 glass / 0.07
bottom / 0.06 side / 0.06 surface / 0.05 bottle / 0.04

meat table / 0.08 pan / 0.06 swc. / 0.05 pot / 0.05
diet / 0.11 table / 0.05 pan / 0.04 swc. / 0.04

bowl table / 0.51 refr. / 0.06 stem / 0.05 kit. / 0.05
table / 0.27 hand / 0.20 top / 0.06 side / 0.05

sugar water / 0.15 bowl / 0.15 scp. / 0.10 milk / 0.08
water / 0.13 bowl / 0.13 scp. / 0.08 milk / 0.06

mixture pan / 0.10 bowl / 0.08 water / 0.08 dish / 0.08
top / 0.10 pan / 0.07 bowl / 0.05 water / 0.05

pan oven / 0.40 stove / 0.19 rack / 0.18 pan / 0.02
oven / 0.29 stove / 0.14 rack / 0.13 hand / 0.07

oil skillet / 0.22 pan / 0.19 scp. / 0.08 board / 0.07
skillet / 0.19 pan / 0.16 scp. / 0.07 board / 0.06

salt water / 0.40 bowl / 0.17 scp. / 0.05 food / 0.04
water / 0.33 bowl / 0.14 diet / 0.06 scp. / 0.04

dish table / 0.30 oven / 0.24 menu / 0.11 pan / 0.03
table / 0.20 oven / 0.16 hand / 0.12 top / 0.04

we show the effect of more helpful entity specification.
2) Tool Inference: A similar approach that also includes

the action domain ontology uses the preposition with to infer
relations between actions and tools. The following syntactic
pattern matches a verb #action and a noun #tool from the
respective domain ontology, linked together by with:

(
(#action, verb), (with, prep), (#tool, noun)

)
. (9)

Table VI shows the three most probable tools for different
actions from the kitchen domain. The results are shown for
both the manually created domain ontology (upper rows,
highlighted) and the automatically learnt one (lower rows).

3) Class Inference: Another possible result the system can
compute is the probability that a word falls into a certain
class of syntactic pattern. For example, given the above
pattern (3), the system can approximate the probability that a
word names an object or a location (Table VII). These results

TABLE VI: Results for tool inference
Highlighted rows: Manually created domain ontology. Non-highlighted

rows: Automatically learnt domain ontology.
object first second third

cut knife / 0.80 fork / 0.01 machine / 0.01
knife / 0.68 hand / 0.04 world / 0.03

flip spatula / 0.89 spoon / 0.06 fork / 0.03
spatula / 0.65 hand / 0.24 spoon / 0.05

mash fork / 0.58 spoon / 0.16 butter / 0.09
fork / 0.59 spoon / 0.16 butter / 0.09

stir spoon / 0.50 fork / 0.20 spatula / 0.08
spoon / 0.48 fork / 0.19 spatula / 0.08

can be used to improve the location inference results, e.g.,
by dropping words that seem unlikely to name a location.

TABLE VII: Results for class inference
Manually created domain ontology (left), automatically learnt

domain ontology (right)
symbol object location object location

wine 0.80 0.20 0.85 0.15
water 0.48 0.52 0.56 0.44
meat 0.77 0.23 0.81 0.19
bowl 0.11 0.89 0.16 0.84
sugar 0.93 0.07 0.95 0.05

mixture 0.72 0.28 0.77 0.23
pan 0.17 0.83 0.18 0.82
oil 0.82 0.18 0.83 0.17

oven 0.12 0.88 0.11 0.89
salt 0.95 0.05 0.96 0.04

4) Computation Time: In this work, the domain ontology
learning and distribution computation steps are considered to
be run offline. However we note that the computation time for
these steps depends heavily on the sizes and representations
of CD and CI . Processing the Google Corpus8 requires
especially high computational power. On the other hand, the
inference step consists of simple lookups in precomputed
distributions, and can therefore be done online.

V. PLANNING WITH COMMON SENSE KNOWLEDGE

In this section we show how the domain knowledge
induced by the processes described above can be used with
an automated planning system to improve the quality of
generated plans. We have chosen to use the PKS (Planning
with Knowledge and Sensing [19], [20]) planner for this
task, since PKS has previously been deployed in robot
environments like the one in Fig. 1 [21]. However, one of
the strengths of the above approach is that it is not planner
(or domain) dependent, and the method we outline for PKS
can be adapted to a range of different planners and domains.

As an example scenario, we will focus on the use of
spatial relations in a small kitchen domain. The domain
contains the entities cereal, counter, cup, cupboard, juice,
plate, refrigerator and stove. Table VIII shows the results of
the location inference method. We will first postprocess this
data for planning by considering the entity juice.

A. Postprocessing
Given the initial domain of objects, and using pattern (3),

we can approximate the probability of an object o being

8The Google Arcs Corpus contains 38G of compressed text.



TABLE VIII: Location inference for a small domain
Omitted values are zero.

object co
un

te
r

cu
p

cu
pb

oa
rd

di
sh

w
as

he
r

ju
ic

e

pl
at

e

re
fr

ig
er

at
or

st
ov

e

cereal 1.00
cup 0.25 0.33 0.13 0.01 0.18 0.02 0.08
juice 0.02 0.43 0.21 0.08 0.26
plate 0.14 0.10 0.07 0.58 0.06 0.06

spatially related to a location l by issuing a relation query:

P (loc = l|obj = o) = ρ
({

(obj, o), (loc, l)
}
, loc

)
. (10)

To put these results into a suitable form for planning, we in-
troduce the predicate at and output the computed likelihoods
for pairs of objects. The resulting relations that are extracted,
and their likelihoods, are shown in the top half of Table IX.

The postprocessor must now refine the results, possibly
making use of additional information about the structure
of the planning domain and the types of objects that are
available. Refinement can be done in three possible ways:

1) Symbol Mapping: A word that describes an object in
natural language may not necessarily match the symbol
name for that object in the planning domain. This is
currently corrected by an appropriate mapping process
that uses a dictionary of likely synonyms. E.g., the
word refrigerator may be mapped to fridge.

2) Type Filtering: Many planners have the concept of
object types, which enables us to filter relations that
have entity arguments of the incorrect type. Assuming
the planning domain provides us with a type location
that is required for the second argument of at, the
postprocessor can then remove the extracted relations
at(juice, cup), at(juice, juice), and at(juice, plate), since
the entities cup, juice, and plate are not locations.

3) Instantiation: The symbols extracted by our processes
will often refer to classes of objects, rather than the
specific object identifiers used by the planner. Making
use of type information in the planning domain, the
postprocessor can instantiate objects of the appropriate
types from the extracted relational information. For
instance, the class juice might be instantiated into
two objects, applejuice and orangejuice. These objects
can subsequently be substituted in any relations that
contains the appropriate class type.

The final set of postprocessed relations from our example
is shown in the bottom half of Table IX. We note that the ne-
cessity and possibility of applying these postprocessing steps
depends on the nature of the planning domain. Furthermore,
the information that is needed to perform the postprocessing,
i.e., the symbol mapping table or the type information, needs
to be manually encoded in the planning domain.

Given the postprocessed set of relations, the final step
is to decide how this information will be included in the
planning domain. For planners that work with probabilistic
representations, the relation/likelihood information could be

TABLE IX: Extracted and postprocessed relations

Extracted
Relations Likelihood
at(juice, cup) 0.43
at(juice, refrigerator) 0.27
at(juice, juice) 0.21
at(juice, plate) 0.08
at(juice, counter) 0.02

Postprocessed
Relations Likelihood
at(applejuice,fridge) 0.27
at(applejuice,counter) 0.02
at(orangejuice,fridge) 0.27
at(orangejuice,counter) 0.02

directly encoded. For planners like PKS that do not deal with
probabilities, there are two main possibilities:

1) The most probable location for each object could be
encoded as a single fact in the planner’s knowledge,
i.e., at(applejuice, fridge) and at(orangejuice, fridge).

2) Some or all of the most probable locations could be
encoded as a disjunction of possible alternatives, i.e.,
at(applejuice, fridge) | at(applejuice, counter), and
at(orangejuice, fridge) | at(orangejuice, counter).

Depending on the domain, either form may be appropriate.

B. Plan Generation

Consider the task of finding the apple juice container in
the kitchen. In the absence of precise information as to the
object’s location, but knowing there are various places in the
kitchen where objects could be located (e.g., counter, cup-
board, fridge, stove), a planner could potentially build a plan
for a robot to exhaustively check all locations: move-robot-to-
counter, check-for-apple-juice, if not present move-robot-to-
cupboard, check-for-apple-juice, if not present move-robot-
to-fridge, etc., until all locations have been checked. If the
robot does not have information-gathering capabilities to
check for the apple juice in a particular location, the planner
may not be able to generate such a plan at all.

With the availability of more certain information about
the location of the apple juice, the planner can potentially
eliminate some parts of the plan (e.g., by ignoring certain lo-
cations), or at least prioritise certain likely locations over oth-
ers, resulting in higher quality plans. For instance, in the case
that the planner had the knowledge at(applejuice, fridge),
resulting from the above relation extraction process, then
the planner could build the simple plan move-robot-to-fridge,
under the assumption that the extracted information was true.

Similarly, if the planner had the disjunctive informa-
tion at(applejuice, fridge) | at(applejuice, counter) then the
planner could build the plan: move-robot-to-fridge, check-
for-apple-juice, if not present move-robot-to-counter. Again,
this plan improves on the exhaustive search plan by only
considering the most likely locations for the apple juice,
resulting from the extracted relational information.

One inherent danger when dealing with common sense
knowledge is that the plans that are built from such infor-
mation alone may ultimately fail to achieve their goals in



the real world. For instance, even though relation extraction
provides us with likely locations for the apple juice, there
is no guarantee that this is the way the robot’s world is
actually configured. (E.g., another robot may have left the
apple juice on the stove.) However, such information does
give us a starting point for building plans, in the absence of
more certain information, and can also aid plan execution
monitoring to guide replanning activities in the case of plan
failure. (E.g., if a plan built using common sense knowledge
fails to locate the apple juice, fall back to the exhaustive
search plan for the locations that haven’t been checked.)

Finally, we note that the use of common sense knowledge
may improve the efficiency of plan generation, since in
general more specific information helps constrain the plan
generation process. However, plan generation time is both
domain and planner dependent, and it is difficult to quantify
any improvements without experimentation. (E.g., planning
time went from 0.003s to 0.001s in our small examples.)

VI. CONCLUSION AND FUTURE WORK

We have presented two techniques for reducing the amount
of prior, hardcoded knowledge that is necessary for building
a robotic planning domain. Using the methods described
here, a domain ontology of object and action types can be
defined automatically, over which user-defined relations can
be inferred automatically from sources of natural language
text. The resulting representation of common sense domain
knowledge has been tested using an automated planning
system, improving the quality of the generated plans.

As future work, we are exploring a number of improve-
ments to our techniques. First, more specialized corpora CI ,
longer syntactic patterns, or databases of common sense
knowledge might help in overcoming the sparsity of com-
mon sense information in text sources. Second, the location
inference does not perform any checks for plausibility. While
the class inference will help in filtering results that are not
locations at all, additional methods are needed to differentiate
between locations for temporary storage and locations for
long-term storage. Another interesting improvement would
be the generalization of inferred relations to still missing
knowledge. For example one could conclude by analyzing
text sources that bowl and dish are conceptually similar and
therefore apply relations inferred for bowls also to dishes.
Finally, we are investigating the application of our methods
to robot domains other than the kitchen environment.
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Abstract

Language users are remarkably good at making inferences about speakers’ inten-
tions in context, and children learning their native language also display substan-
tial skill in acquiring the meanings of unknown words. These two cases are deeply
related: Language users invent new terms in conversation, and language learners
learn the literal meanings of words based on their pragmatic inferences about how
those words are used. While pragmatic inference and word learning have both
been independently characterized in probabilistic terms, no current work unifies
these two. We describe a model in which language learners assume that they
jointly approximate a shared, external lexicon and reason recursively about the
goals of others in using this lexicon. This model captures phenomena in word
learning and pragmatic inference; it additionally leads to insights about the emer-
gence of communicative systems in conversation and the mechanisms by which
pragmatic inferences become incorporated into word meanings.

1 Introduction

Two puzzles present themselves to language users: What do words mean in general, and what do
they mean in context? Consider the utterances “it’s raining,” “I ate some of the cookies,” or “can
you close the window?” In each, a listener must go beyond the literal meaning of the words to
fill in contextual details (“it’s raining here and now”), infer that a stronger alternative is not true
(“I ate some but not all of the cookies”), or more generally infer the speaker’s communicative goal
(“I want you to close the window right now because I’m cold”), a process known as pragmatic
reasoning. Theories of pragmatics frame the process of language comprehension as inference about
the generating goal of an utterance given a rational speaker [14, 8, 9]. For example, a listener might
reason, “if she had wanted me to think ‘all’ of the cookies, she would have said ‘all’—but she didn’t.
Hence ‘all’ must not be true and she must have eaten some but not all of the cookies.” This kind of
reasoning is core to language use.

But pragmatic reasoning about meaning-in-context relies on stable literal meanings that must them-
selves be learned. In both adults and children, uncertainty about word meanings is common, and
often considering speakers’ pragmatic goals can help to resolve this uncertainty. For example, if a
novel word is used in a context containing both a novel and a familiar object, young children can
make the inference that the novel word refers to the novel object [22].1 For adults who are profi-
cient language users, there are also a variety of intriguing cases in which listeners seem to create
situation- and task-specific ways of referring to particular objects. For example, when asked to refer
to idiosyncratic geometric shapes, over the course of an experimental session, participants create
conventionalized descriptions that allow them to perform accurately even though they do not begin
with shared labels [19, 7]. In both of these examples, reasoning about another person’s goals informs

∗nathaniel.smith@ed.ac.uk
1Very young children make inferences that are often labeled as “pragmatic” in that they involve reasoning

about context [6, 1], though in some cases they are systematically ‘too literal’ (e.g. failing to strengthen SOME
to SOME-BUT-NOT-ALL [23]). Here we remain agnostic about the age at which children are able to make such
inferences robustly, as it may vary depending on the linguistic materials being used in the inference [2].
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language learners’ estimates of what words are likely to mean.

Despite this intersection, there is relatively little work that takes pragmatic reasoning into account
when considering language learning in context. Recent work on grounded language learning has
attempted to learn large sets of (sometimes relatively complex) word meanings from noisy and am-
biguous input (e.g. [10, 17, 20]). And a number of models have begun to formalize the consequences
of pragmatic reasoning in situations where limited learning takes place [12, 9, 3, 13]. But as yet
these two strands of research have not been brought together so that the implications of pragmatics
for learning can be investigated directly.

The goal of our current work is to investigate the possibilities for integrating models of recursive
pragmatic reasoning with models of language learning, with the hope of capturing phenomena in
both domains. We begin by describing a proposal for bringing the two together, noting several
issues in previous approaches based on recursive reasoning under uncertainty. We next simulate
findings on pragmatic inference in one-shot games (replicating previous work). We then build on
these results to simulate the results of pragmatic learning in the language acquisition setting where
one communicator is uncertain about the lexicon and in iterated communication games where both
communicators are uncertain about the lexicon.

2 Model

We model a standard communication game [19, 7]: two participants each, separately, view identical
arrays of objects. On the Speaker’s screen, one object is highlighted; their goal is to get the Listener
to click on this item. To do this, they have available a fixed, finite set of words; they must pick one.
The Listener then receives this word, and attempts to guess which object the Speaker meant by it.
In the psychology literature, as in real-world interactions, games are typically iterated; one view of
our contribution here is as a generalization of one-shot models [9, 3] to the iterated context.

2.1 Paradoxes in optimal models of pragmatic learning. Multi-agent interactions are difficult
to model in a normative or optimal framework without falling prey to paradox. Consider a simple
model of the agents in the above game. First we define a literal listener L0. This agent has a
lexicon of associations between words and meanings; specifically, it assigns each word w a vector
of numbers in (0, 1) describing the extent to which this word provides evidence for each possible
object2.To interpret a word, the literal listener simply re-weights their prior expectation about what
is referred to using their lexicon’s entry for this word:

PL0
(object|word, lexicon) ∝ lexicon(word, object)× Pprior(object). (1)

Because of the normalization in this equation, there is a systematic but unimportant symmetry among
lexicons; we remove this by assuming the lexicon sums to 1 over objects for each word. Con-
fronted with such a listener, a speaker who chooses approximately optimal actions should attempt
to choose a word which soft-maximizes the probability that the listener will assign to the target
object—modulated by the effort or cost associated with producing this word:

PS1
(word|object, lexicon) ∝ exp

(
λ
(
logPL0

(object|word, lexicon)− cost(word)
))
. (2)

But given this speaker, then the naive L0 strategy is not optimal. Instead, listeners should use Bayes
rule to invert the speaker’s decision procedure [9]:

PL2
(object|word, lexicon) ∝ PS1

(word|object, lexicon)× Pprior(object). (3)

Now a difficulty becomes apparent. Given such a listener, it is no longer optimal for speakers
to implement strategy S1; instead, they should implement strategy S3 which soft-maximizes PL2

instead of PL0 . And then listeners ought to implement L4, and so on.

One option is to continue iterating such strategies until reaching a fixed point equilibrium. While this
strategy guarantees that each agent will behave normatively given the other agent’s strategy, there
is no guarantee that such strategies will be near the system’s global optimum. More importantly,

2We assume words refer directly to objects, rather than to abstract semantic features. Our simplification
is without loss of generalization, however, because we can interpret our model as marginalizing over such a
representation, with our literal Plexicon(object|word) =

∑
features P (object|features)Plexicon(features|word).
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there is a great deal of evidence that humans do not use such equilibrium strategies; their behavior in
language games (and in other games [5]) can be well-modeled as implementing Sk or Lk for some
small k [9]. Following this work, we recurse a finite (small) number of times, n. The consequence
is that one agent, implementing Sn, is fully optimal with respect to the game, while the other,
implementing Ln−1, is only nearly optimal—off by a single recursion.

This resolves one problem, but as soon as we attempt to add uncertainty about the meanings of words
to such a model, a new paradox arises. Suppose the listener is a young child who is uncertain about
the lexicon their partner is using. The obvious solution is for them to place a prior on the lexicon;
they then update their posterior based on whatever utterances and contextual cues they observe,
and in the mean time interpret each utterance by making their best guess, marginalizing out this
uncertainty. This basic structure is captured in previous models of Bayesian word learning [10]. But
when combined with the recursive pragmatic model, a new question arises: Given such a listener,
what model should the speaker use? A rational speaker attempts to maximize the listener’s likelihood
of understanding, so if an uncertain listener interpets by marginalizing over some posterior, then a
fully knowledgeable speaker should disregard their own lexical knowledge, and instead model and
marginalize over the listener’s uncertainty. But if they do this, then their utterances will provide no
data about their lexicon, and there is nothing for the rational listener to learn from observing them.3

One final problem is that under this model, when agents switch roles between listener and speaker,
there is nothing constraining them to continue using the same language. Optimizing task perfor-
mance requires my lexicon as a speaker to match your lexicon as a listener and vice-versa, but there
is nothing that relates my lexicon as a speaker to my lexicon as a listener, because these never in-
teract. This clearly represents a dramatic mismatch to typical human communication, which almost
never proceeds with distinct languages spoken by each participant.

2.2 A conventionality-based model of pragmatic word learning. We resolve the problems de-
scribed above by assuming that speakers and listeners deviate from normative behavior by assuming
a conventional lexicon. Specifically, our final convention-based agents assume: (a) There is some
single, specific literal lexicon which everyone should be using, (b) and everyone else knows this
lexicon, and believes that I know it as well, (c) but in fact I don’t. These assumptions instantiate a
kind of “social anxiety” in which agents are all trying to learn the correct lexicon that they assume
everyone else knows.

Assumption (a) corresponds to the lexicographer’s illusion: Naive language users will argue vocifer-
ously that words have specific meanings, even though these meanings are unobservable to everyone
who purportedly uses them. It also explains why learners speak the language they hear (rather than
some private language that they assume listeners will eventually learn): Under assumption (a), ob-
serving other speakers’ behavior provides data about not just that speaker’s idiosyncratic lexicon,
but the consensus lexicon. Assumption (b) avoids the explosion of hypern-distributions described
above: If agent n knows the lexicon, they assume that all lower agents do as well, reducing to the
original tractable model without uncertainty. And assumption (c) introduces a limited form of un-
certainty at the top level, and thus the potential for learning. To the extent that a child’s interlocutors
do use a stable lexicon and do not fully adapt their speech to accomodate the child’s limitations,
these assumptions make a reasonable approximation for the child language learning case. In gen-
eral, though, in arbitrary multi-turn interactions in which both agents have non-trivial uncertainty,
these assumptions are incorrect, and thus induce complex and non-normative learning dynamics.

Formally, let an unadorned L and S denote the listener and speaker who follow the above assump-
tions. If the lexicon were known then the listener would draw inferences as in Ln−1 above; but by
assumption (c), they have uncertainty, which they marginalize out:

PL(object|word, L’s data) =
∑

lexicon

PLn−1
(object|word, lexicon)P (lexicon|L’s data) (4)

3Of course, in reality both parties will generally have some uncertainty, making the situation even worse. If
we start from an uncertain listener with a prior over lexicons, then a first-level uncertain speaker needs a prior
over priors on lexicons, a second-level uncertain listener needs a prior over priors over priors, etc. The original
L0 → S1 → . . . recursion was bad enough, but at least each step had a constant cost. This new recursion
produces hypern-distributions for which inference almost immediately becomes intractable even in principle,
since the dimensionality of the learning problem increases with each step. Yet, without this addition of new
uncertainty at each level, the model would dissolve back into certainty as in the previous paragraph, making
learning impossible.
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Phenomenon Ref. WL PI PI+U PI+WL Section

Interpreting scalar implicature [14] x x x 3.1
Interpreting Horn implicature [15] x x 3.2
Learning literal meanings despite scalar implicature [21] x 4.1
Disambiguating new words using old words [22] x x x 4.2
Learning new words using old words [22] x x 4.2
Disambiguation without learning [16] x x 4.2
Emergence of novel & efficient lexicons [11] x 5.1
Lexicalization of Horn implicature [15] x 5.2

Table 1: Empirical results and references. WL refers to the word learning model of [10]; PI refers
to the recursive pragmatic inference model of [9]; PI+U refers to the pragmatic inference model of
[3] which includes lexical uncertainty, marginalizes it out, and then recurses. Our current model is
referred to here as PI+WL, and combines pragmatic inference with word learning.

Here L’s data consists of her previous experience with language. In particular in the iterated games
explored here it consists of S’s previous utterances together with whatever other information L may
have about their intended referents (e.g. from contextual clues). By assumption (b), L treats these
utterances as samples from the knowledgeable speaker Sn−2, not S, and thus as being informative
about the lexicon. For instance, when the data is a set of fully observed word-referent pairs {wi, oi}:

P (lexicon|L’s data) ∝ P (lexicon)
∏

i

PSn−2
(wi|oi, lexicon) (5)

The top-level speaker S attempts to select the word which soft-maximizes their utility, with utility
now being defined in terms of the informativity of the expectation (over lexicons) that the listener
will have for the right referent4:

PS(word|object, S’s data) ∝
exp

(
λ
(
log

∑

lexicon

PLn−1(object|word, lexicon)P (lexicon|S’s data)− cost(word)
)) (6)

Here P (lexicon|S’s data) is defined similarly, when S observes L’s interpretations of various ut-
terances, and treats them as samples from Ln−1, not L. However, notice that if S and L have the
same subjective distributions over lexicons, then S is approximately optimal with respect to L in the
same sense that Sk is approximately optimal with respect to Lk−1. In one-shot games, this model
is conceptually equivalent to that of [3] restricted to n = 3; our key innovations are that we allow
learning by replacing their P (lexicon) with P (lexicon|data), and provide a theoretical justification
for how this learning can occur.

In the remainder of the paper, we apply the model described above to a set of one-shot pragmatic
inference games that have been well-studied in linguistics [14, 15] and are addressed by previous
one-shot models of pragmatic inference [9, 3]. These situations set the stage for simulations investi-
gating how learning proceeds in iterated versions of such games, described in the following section.
Results captured by our model and previous models are summarized in Table 1. In our simulations
throughout, we somewhat arbitrarily set the recursion depth n = 3 (the minimal value that produces
all the qualitative phenomena), λ = 3, and assume that all agents have shared priors on the lexicon
and full knowledge of the cost function. Inference is via importance sampling from a Dirichlet prior
over lexicons.

3 Pragmatic inference in one-shot games

3.1 Scalar implicature. Many sets of words in natural language form scales in which each term
makes a successively stronger claim. “Some” and “all” form a scale of this type. While “I ate some

4An alternative model would have the speaker take the expectation over informativity, instead of the infor-
mativity of the expectation, which would correspond to slightly different utility functions. We adopt the current
formulation for consistency with [3].
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of the cookies” is compatible with the followup “in fact, I ate all of the cookies,” the reverse is not
true. “Might” and “must” are another example, as are “OK,” “good,” and “excellent.” All of these
scales allow for scalar implicatures [14]: the use of a less specific term pragmatically implies that
the more specific term does not apply. So although “I ate some of the cookies” could in principle be
compatible with eating ALL of them, the listener is lead to believe that SOME-BUT-NOT-ALL is the
likely state of affairs. The recursive pragmatic reasoning portions of our model capture findings on
scalar implicature in the same manner as previous models [3, 13].

3.2 Horn implicature. Consider a world which contains two words and two types of objects. One
word is expensive to use, and one is cheap (call them “expensive” and “cheap” for short). One object
type is common and one is rare; denote these COMMON and RARE. Intuitively, there are two possible
communicative systems here: a good system where “cheap” referes to COMMON and “expensive”
refers to RARE, and a bad system where the opposite holds. Obviously we would prefer to use the
good system, but it has historically proven very difficult to derive this conclusion in a game theoretic
setting, because both systems are stable equilibria: if our partner uses the bad system, then we would
rather follow and communicate at some cost than switch to the good system and fail entirely [3].

Humans, however, unlike traditional game theoretic models, do make the inference that given two
otherwise equivalent utterances, the costly utterance should have a rare or unusual meaning. We
call this pattern Horn implicature, after [15]. For instance, “Lee got the car to stop” implies that
Lee used an unusual method (e.g. not the brakes) because, had he used the brakes, the speaker
would have chosen the simpler and shorter (less costly) expression, “Lee stopped the car” [15].
Surprisingly, Bergen et al. [3] show that the key to achieving this favorable result is ignorance. If
a listener assigns equal probability to her partner using the good system or the bad system, then
their best bet is to estimate PS(word|object) as the average of PS(word|object, good system) and
PS(word|object, bad system). These might seem to cancel out, but in fact they do not. In the good
system, the utilities of the speaker’s actions are relatively strongly separated compared to the bad
system; therefore, a soft-max agent in the bad system has noiser behavior than in the good system,
and the behavior in the good system dominates the average. Similar reasoning applies to an uncertain
speaker. For example, in our model with a uniform prior over lexicons and Pprior(COMMON) =
0.8, cost(“cheap”) = 0.5, cost(“expensive”) = 1.0, the symmetry breaks in the appropriate way:
Despite total ignorance about the conventional system, our modeled speakers prefer to use simple
words for common referents (PS(“cheap”|COMMON) = 0.88, PS(“cheap”|RARE) = 0.46), and
listeners show a similar bias (PL(COMMON|“cheap”) = 0.77, PL(COMMON|“expensive”) = 0.65).

This preference is weak; the critical point is that it exists at all, given the unbiased priors. We return
to this in §5.2. [3] report a much stronger preference, which they accomplish by applying further
layers of pragmatic recursion on top of these marginal distributions. On the one hand, this allows
them to better fit their empirical data; on the other, it removes the possibility of learning the literal
lexicon that underlies pragmatic inference – further recursion above the uncertainty means that it is
only hypothetical agents who are ignorant, while the actual speaker and listener have no uncertainty
about each other’s generative process.

4 Pragmatics in learning from a knowledgable speaker

4.1 Learning literal meanings despite scalar implicatures. The acquisition of quantifiers like
“some” provides a puzzle for most models of word learning: given that in many contexts, the word
“some” is used to mean SOME-BUT-NOT-ALL, how do children learn that SOME-BUT-NOT-ALL is
not in fact its literal meaning? Our model is able to take scalar implicatures into account when learn-
ing, and thus provide a potential solution, congruent with the observation that no known language
in fact lexicalizes SOME-BUT-NOT-ALL [21].

Following the details of §3.1, we created a simulation in which the model’s prior fixed the mean-
ing of “all” to be a particular set ALL, but was ambiguous about whether “some” literally meant
SOME-BUT-NOT-ALL (incorrect) or SOME-BUT-NOT-ALL OR ALL (correct). The model was then
exposed to training situations in which “some” was used to refer to SOME-BUT-NOT-ALL. Despite
this training, the model maintained substantial posterior probability on the correct hypothesis about
the meaning of “some.” Essentially, the model reasoned that although it had unambiguous evidence
for “some” being used to refer to SOME-BUT-NOT-ALL, this was nonetheless consistent with a lit-
eral meaning of SOME-BUT-NOT-ALL OR ALL which had then been pragmatically strengthened.
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Figure 1: Simulations of two pragmatic agents playing a naming game. Each panel shows two
representative simulation runs, with run 1 chosen to show strong convergence and run 2 chosen to
show relatively weaker convergence. At each stage, S and L have different, possibly contradictory
posteriors over the conventional, consensus lexicon. From these posteriors we derive the probability
P (L understands S) (marginalizing over target objects and word choices), and also depict graphi-
cally S’s model of the listener (top row), and L’s actual model (bottom row).

Thus, a pragmatically-informed learner might be able to maintain the true meaning of SOME despite
seemingly conflicting evidence.

4.2 Disambiguation using known words. Children, when presented with both a novel and a
familiar object (e.g. an eggbeater and a ball), will treat a novel label (e.g. “dax”) as referring to the
novel object, for example by supplying the eggbeater when asked to “give me the dax” [22]. This
phenomenon is sometimes referred to as “mutual exclusivity.” Simple probabilistic word learning
models can produce a similar pattern of findings [10], but all such models assume that learners retain
the mapping between novel word and novel object demonstrated in the experimental situation. This
observation is contradicted, however, by evidence that children often do not retain the mappings that
are demonstrated by their inferences in the moment [16].

Our model provides an intriguing possible explanation of this finding: when simulating a single
disambiguation situation, the model gives a substantial probability (e.g. 75%) that the speaker is
referring to the novel object. Nevertheless, this inference is not accompanied by an increased belief
that the novel word literally refers to this object. The learner’s interpretation arises not from lexical
mapping but instead from a variant of scalar implicature: the listener knows that the familiar word
does not refer to the novel object—hence the novel word will be the best way to refer to the novel
object, even if it literally could refer to either. Nevertheless, on repeated exposure to the same novel
word, novel object situation, the learner does learn the mapping as part of the lexicon (congruent
with other data on repeated training on disambiguation situations [4]).

5 Pragmatic reasoning in the absence of conventional meanings

5.1 Emergence of efficient communicative conventions. Experimental results suggest that com-
municators who start without a usable communication system are able to establish novel, consensus-
based systems. For example, adults playing a communication game using only novel symbols with
no conventional meaning will typically converge on a set of new conventions which allow them to
accomplish their task [11]. Or in a less extreme example, communicators asked to refer to novel
objects invent conventional names for them over the course of repeated interactions (e.g., “the ice
skater” for an abstract figure vaguely resembling an ice skater, [7]). From a pure learning perspective
this behavior is anomalous, however: Since both agents know perfectly well that there is no existing
convention to discover, there is nothing to learn from the other’s behavior. Furthermore, even if only
one partner is producing the novel expressions, their behavior in these studies still becomes more
regular (conventional) over time, which would seem to rule out a role for learning—even if there is
some pattern in the expressions the speaker chooses to use, there is certainly nothing for the speaker
to learn by observing these patterns, and thus their behavior should not change over time.
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To model such phenomena, we imagine two agents playing the simple referential game introduced
in § 2. On each turn the speaker is assigned a target object, utters some word referring to this object,
the listener makes a guess at the object, and then, critically, the speaker observes the listener’s
guess and the listener receives feedback indicating the correct answer (i.e., the speaker’s intended
referent). Both agents then update their posterior over lexicons before proceeding to the next trial.
As in [19, 7], the speaker and listener remain fixed in the same role throughout.

Fig. 1 shows the result of simulating several such games when both parties begin with a uniform prior
over lexicons. Notice that: (a) agents’ performance begins at chance, but quickly rises – a commu-
nicative system emerges where none previously existed; (b) they tend towards structured, sparse
lexicons with a one-to-one correspondence between objects and words – these communicative sys-
tems are biased towards being useful and efficient; and (c) as the speaker and listener have entirely
different data (the listener’s interpretations and the speaker’s intended referent, respectively), un-
lucky early guesses can lead them to believe in entirely contradictory lexicons—but they generally
recover and converge. Each agent effectively uses their partner’s behavior as a basis for forming
weak beliefs about the underlying lexicon that they assume must exist. Since they then each act on
these beliefs, and their partner uses the resulting actions to form new beliefs, they soon converge on
using similar lexicons, and what started as a “superstition” becomes normatively correct. And un-
like some previous models of emergence across multiple generations of agents [18, 25], this occurs
within individual agents in a single dialogue.

5.2 Lexicalization and loss of Horn implicatures. A stronger example of how pragmatics can
create biases in emerging lexicons can be observed by considering a version of this game played in
the “cheap”/“expensive”/COMMON/RARE domain introduced in our discussion of Horn implicature
(§3.2). Here, a uniform prior over lexicons, combined with pragmatic reasoning, causes each agent
to start out weakly biased towards the associations “cheap”↔ COMMON, “expensive”↔ RARE. A
fully rational listener who observed an uncertain speaker using words in this manner would therefore
discount it as arising from this bias, and conclude that the speaker was, in fact, highly uncertain. Our
convention-based listener, however, believes that speakers do know which convention is in use, and
therefore tends to misinterpret this biased behavior as positive evidence that the ‘good’ system is in
use. Similarly, convention-based speakers will wager that since on average they will succeed more
often if listeners are using the ‘good’ system, they might as well try it. When they succeed, they
take their success as evidence that the listener was in fact using the good system all along. As a
result, dyads in this game end up converging onto a stable system at a rate far above chance, and
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preferentially onto the ‘good’ system (Figs. 2 and 3).

In the process, though, something interesting happens. In this model, Horn implicatures depend on
uncertainty about literal meaning. As the agents gather more data, their uncertainty is reduced, and
thus through the course of a dialogue, the implicature is replaced by a belief that “cheap” literally
means COMMON (and did all along). To demonstrate this phenomenon, we queried each agent in
each simulated dyad about how they would refer to or interpret each object and word, if the two
objects were equally common, which cancels the Horn implicature. As shown in Fig. 3 (right), after
30 turns, in nearly 70% of dyads both S and L used the ‘good’ mapping even in this implicature-free
case, while less than 20% used the ‘bad’ mapping (with the rest being inconsistent).

This points to a fundamental difference in how learning interacts with Horn versus scalar implica-
tures. Depending on the details of the input, it is possible for our convention-based agents to observe
pragmatically strengthened uses of scalar terms (e.g., “some” used to refer to SOME-BUT-NOT-ALL),
without becoming confused into thinking that “some” literally means SOME-BUT-NOT-ALL (§4.1).
This occurs because scalar implicature depends only on recursive pragmatic reasoning (§2.1), which
our convention-based agents’ learning rules are able to model and correct for. But, while our agents
are able to use Horn implicatures in their own behaviour (§ 3.2), this happens implicitly as a result
of their uncertainty, and our agents do not model the uncertainty of other agents; thus, when they
observe other agents using Horn implicatures, they cannot interpret this behavior as arising from an
implicature. Instead, they take it as reflecting the actual literal meaning. And this result isn’t just
a technical limitation of our implementation, but is intrinsic to our convention-based approach to
combining pragmatics and learning: in our system, the only thing that makes word learning possi-
ble at all is each agent’s assumption that other agents are better informed; otherwise, other agents’
behavior would not provide any useful data for learning. Our model therefore makes the interesting
prediction that all else being equal, uncertainty-based implicatures should over time be more prone
to lexicalizing and becoming part of literal meaning than recursion-based implicatures are.

6 Conclusion

Language learners and language users must consider word meanings both within and across con-
texts. A critical part of this process is reasoning pragmatically about agents’ goals in individual
situations. In the current work we treat agents communicating with one another as assuming that
there is a shared conventional lexicon which they both rely on, but with differing degrees of knowl-
edge. They then reason recursively about how this lexicon should be used to convey particular
meanings in context. These assumptions allow us to create a model that unifies two previously sep-
arate strands of modeling work on language usage and acquisition and account for a variety of new
phenomena. In particular, we consider new explanations of disambiguation in early word learning
and the acquisition of quantifiers, and demonstrate that our model is capable of developing novel and
efficient communicative systems through iterated learning within the context of a single simulated
conversation.

Our assumptions produce a tractable model, but because they deviate from pure rationality, they
must introduce biases, of which we identify two: a tendency for pragmatic speakers and listeners to
accentuate useful, sparse patterns in their communicative systems (§5.1), and for short, ‘low cost’
expressions to be assigned to common objects (§5.2). Strikingly, both of these biases systematically
drive the overall communicative system towards greater global efficiency. In the long term, these
processes should leave their mark on the structure of the language itself, which may contribute to
explaining how languages become optimized for effective communication [26, 24].

More generally, understanding the interaction between pragmatics and learning is a precondition to
developing a unified understanding of human language. Our work here takes a first step towards
joining disparate strands of research that have treated language acquisition and language use as
distinct.
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