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Executive Summary

A central contribution of WP3 (Generative Mechanisms), and WP3.2 (Structural Bootstrapping for
Planning) in particular, is to extend the capabilities of current high-level planning models by applying
structural bootstrapping to the knowledge-rich representation of actions and plans, and to provide the
apparatus needed to support plan generation and execution in low-level robotics domains (WP2; Outside
In: Development and Representations) and higher-level domains requiring language and communication
(WP4; Interaction and Communication). To this end, we describe the work by UEDIN on knowledge-level
planning during the last work period (M1–M13), with a focus on Task 3.2.1 (Informed Search Methods)
and Task 3.2.4 (Extended Reasoning about Object and Indexical Knowledge). This work is also related
to the project-wide integration and demonstrations of WP5 (System Integration).

The ability to reason and plan is essential for an intelligent agent acting in a dynamic and incompletely
known world, such as the proposed robot scenarios in WP5. High-level planning capabilities in Xperience
are (partly) supplied by the PKS planner [8, 9], which UEDIN is extending for use in robotic and linguistic
domains. PKS is a state-of-the-art conditional planner that constructs plans in the presence of incomplete
information. Unlike traditional planners, PKS builds plans at the “knowledge level”, by representing and
reasoning about how the planner’s knowledge state changes during plan generation. Actions are specified
in a STRIPS-like [4] manner in terms of action preconditions (state properties that must be true before an
action can be executed) and action effects (the changes the action makes to properties of the state). PKS
can build conditional plans with sensing actions, and supports numerical reasoning, run-time variables
[3], and features like functions that arise in real-world planning scenarios.

Like most AI planners, PKS operates best in discrete, symbolic state spaces described using logical
languages. As a result, work that addresses the problem of integrating planning on real-world robot
platforms often centres around the problem of representation, and how to abstract the capabilities of a
robot and its working environment so that it can be put in a suitable form for use by a goal-directed
planner. Integration also requires the ability to communicate information between system components.
Thus, the design of a planning system often has to take into consideration external concerns, to ensure
proper interoperability with modules that aren’t traditionally considered in pure theoretical planning
settings. Furthermore, a planner must strive for efficiency, to overcome the computation challenges
arising from operating in real-world environments like the proposed robot scenarios of Xperience.

In order to address the efficiency concerns of planning in complex domains, as part of Task 3.2.1 we have
begun to investigate informed search methods from the wider planning community that could be adapted
to the PKS planning system. Most modern planning systems rely on a search process to find a plan that
achieves the goal of a planning problem. However, searching through large state spaces of the kind that
typically arise in real-world robot domains is often problematic, since the search may take a large amount
of time, if it completes at all, and requires significant resource overhead. Thus, most modern planners
employ some form of informed or heuristic search in an attempt to gain leverage on the structure of a
given search problem, in order to improve the efficiency of the plan generation process.

In addition to exploring the efficiency problem, we have also made significant contributions in extending
PKS’s representation language as part of Task 3.2.4, by providing a method for reasoning with numerical
information that can be used to model the effects of noisy sensors and noisy effectors at the planning
level. Since such scenarios are commonplace in real-world robot domains, we believe these extensions
will be particularly useful in integrating high-level planning with the low-level sensorimotor systems on
Xperience.
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The two papers attached to this deliverable, [Pet12] and [Pet11], provide details of our contributions in
the past work period to the above tasks.

Overall, this deliverable reports a number of significant developments:

• We have completed initial studies into the task of adapting informed search techniques to the PKS
planner. A strategy has been adopted to explore both problem relaxation methods, which seek
to explore simpler versions of a state space at the search level, and compilation methods, which
attempt to transform the original problem specification into a simpler form that can be more easily
solved. Both methods make use of rich domain knowledge and structure which is a central focus of
structural bootstrapping on Xperience.

• Initial extensions to PKS’s plan generation and search mechanisms in support of future heuristic
search methods have been completed.

• A theoretical model of reasoning with numerical information in PKS has been developed, based
on the concept of an interval-valued function. This model includes an algorithm for progressing
knowledge states with a representation of noisy sensors and noisy effectors. Such a representation
provides a middle ground between planners that cannot work with numerical properties and those
that use full probabilistic representations. A prototype version of PKS with these extensions has
been implemented.

• In conjunction with KIT, we have begun developing high-level domain descriptions for use with
PKS on the ARMAR platform. Such a domain will model some of the sophisticated capabilities of
the ARMAR robot, including object manipulation with multiple grippers and movement between
workspaces in its operating environment.

• A new version of a plan execution monitor for PKS is currently being developed with an early
prototype ready for testing. This module works in conjunction with the backend PKS planner to
provide plan monitoring and replanning services, and can communicate with other system modules
using a modern ICE middleware interface.

A number of tasks remain open at the time of this report and constitute ongoing and future work:

• The plan execution monitor currently being developed has not been tested on the robot hardware.

• We are continuing to investigate the role of probabilistic and numeric models in high-level plan
generation and monitoring processes, with our work in [Pet11] being our first contribution here.
Since nondeterminacy will undoubtedly arise as the result of perception and action at the senso-
rimotor level, we are studying how best to utilise such information at the higher control levels.
Currently, we are experimenting with is the use of rapid replanning [10] (in conjunction with our
plan execution monitor) which has been successfully applied by planners in the probabilistic track
of the International Planning Competition [5].

• We have focused on the planner-level concerns of representation and efficiency in this report, how-
ever, this workpackage will also explore an approach that applies modern planning techniques to
problems in natural language generation (e.g., [7, 1, 6, 2]). In particular, we will generalise our exist-
ing apparatus for ordinary action planning to dialogue planning with speech acts. Initial theoretical
work is currently underway, ahead of the planned schedule.

In addition to the general workpackage connections mentioned above, we have also had specific interac-
tions with partners from KIT and SDU through email and Skype calls, and face-to-face meetings with
all project partners at an Xperience working meeting hosted by UEDIN.
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[Pet12] Ronald P. A. Petrick. Knowledge-level planning in the Xperience project. Xperience
Technical Report, University of Edinburgh, January 2012.

Abstract: This report describes part of UEDIN’s contribution to the ongoing work
of high-level planning in the Xperience project, namely knowledge-level planning. The
focus of this document is a description of the role of the PKS (Planning with Knowledge
and Sensing) planner, and its derivative technologies, which will be used and extended
throughout the project. This document will continually be updated for each reporting
period and provide a status report of key aspects of the PKS-related research agenda on
Xperience. In the first reporting period of this work (M13), we present an overview of
the problem of informed search for knowledge-level planning, and describe a workplan
for extending the PKS planner (or its successor) during the next work period of the
project. We also highlight other research directions for knowledge-level planning currently
in progress.

[Pet11] Ronald P. A. Petrick. An extension of knowledge-level planning to interval-valued functions. In
AAAI 2011 Workshop on Generalized Planning, San Francisco, CA, USA, August 2011.

Abstract: We investigate the problem of reasoning about numerical functions in the
presence of incomplete information, sensing actions, and conditional plans. An interval-
based representation is introduced into the PKS (Planning with Knowledge and Sens-
ing) planner, as a means of compactly representing sets of possible values for numerical
functions. We describe the enhancements we make to PKS, and demonstrate how such
information can be used for modelling uncertain sensors and effectors. We also show how
interval-valued functions can be used as a form of noisy run-time variable in plans. This
paper presents a snapshot of work currently in progress.
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KNOWLEDGE-LEVEL PLANNING IN THE
XPERIENCE PROJECT

Ron Petrick
University of Edinburgh

rpetrick@inf.ed.ac.uk

2012-01-25

Abstract

This report describes part of UEDIN’s contribution to the ongoing work of high-level planning in the
Xperience project, namely knowledge-level planning. The focus of this document is a description of
the role of the PKS (Planning with Knowledge and Sensing) planner, and its derivative technologies,
which will be used and extended throughout the project. This document will continually be updated for
each reporting period and provide a status report of key aspects of the PKS-related research agenda
on Xperience. In the first reporting period of this work (M13), we present an overview of the problem of
informed search for knowledge-level planning, and describe a workplan for extending the PKS planner
(or its successor) during the next work period of the project. We also highlight other research directions
for knowledge-level planning currently in progress.

Revision history

2012-01-25 : Initial report focusing on an overview of the problem of informed search for knowledge-
level planning and strategies for implementing such a search process into PKS.
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1 Introduction

In this document we describe the state of knowledge-level planning work by UEDIN in
the Xperience project. This work forms part of WP3 (Generative Mechanisms) and,
in particular, WP3.2 (Structural Bootstrapping for Planning). The present report pri-
marily addresses Task 3.2.1 (Informed Search Methods) and presents the results of
initial exploratory studies into informed search methods and how they could be adapted
to a knowledge-level planning. This work is also closely related to WP4 (Interaction
and Communication) and the project-wide integration work and demonstrations of WP5
(System Integration).

High-level planning capabilities in the Xperience project are (partly) supplied by the PKS
planner [Petrick and Bacchus, 2002, 2004], which UEDIN is extending for use in robotic
and linguistic domains as part of WP3 (with some connections to WP4). PKS is a state-
of-the-art knowledge-level planner that constructs plans in the presence of incomplete
information. Unlike traditional planners, PKS builds plans at the “knowledge level”, by
representing and reasoning about how the planner’s knowledge state changes during
plan generation. Actions are specified in a STRIPS-like [Fikes and Nilsson, 1971] man-
ner in terms of action preconditions (state properties that must be true before an action
can be executed) and action effects (the changes the action makes to properties of the
state). PKS is able to construct conditional plans with sensing actions, and supports
numerical reasoning, run-time variables [Etzioni et al., 1992], and features like functions
that arise in real-world planning scenarios.

Like most AI planners, PKS operates best in discrete, symbolic state spaces described
using logical languages. As a result, work that addresses the problem of integrating
planning on real-world robot platforms often centres around the problem of represen-
tation, and how to abstract the capabilities of a robot and its working environment so
that it can be put in a suitable form for use by a goal-directed planner. Integration also
requires the ability to communicate information between system components. Thus, the
design of a planning system often has to take into consideration external concerns, to
ensure proper interoperability with modules that aren’t traditionally considered in pure
theoretical planning settings.

PKS was successfully used on the PACO-PLUS project, a predecessor project of Xpe-
rience. On that project, integration work successfully established a link between PKS
and KIT’s ARMAR robot platform. In Xperience, we will build on these past successes
to extend this integration even further. In particular, since we will address more complex
challenges in the robot domains we will consider, the high-level planning capabilities
must be extended on a number of levels. First, representations must be extended to
improve our ability to model real-world problems at the planning level. This will particu-
larly be important for the dialogue planning work scheduled for a later work period of the
project. However, changes to the representation alone are not enough. The plan gen-
eration methods themselves must be improved to take advantage of the new features of
an extended representation language. Furthermore, as the complexity of the planning
problem increases, we must work harder to find methods to overcome the difficulties
arising from increased domain size leading to increased planning times. Methods such
as informed search control seek to address these concerns by improving the efficiency
of the plan generation process itself.

In the remainder of this document we will present a brief overview of the state of
knowledge-level planning in Xperience. In Section 2, we address the problem of in-
formed search and present our workplan for achieving some of our defined goals in the
next work period. In Section 3 we highlight the state of some of the other research
directions we are currently exploring for knowledge-level planning in Xperience.

Knowledge-level planning in the Xperience project 3
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2 Knowledge-level planning and informed search

2.1 Background to planning and informed search

The ability to reason and plan is essential for an intelligent agent acting in a dynamic
and incompletely known world—such as the proposed robot scenarios in Xperience.
Achieving goals under such conditions often requires complex forward deliberation that
cannot easily be achieved by simply reacting to a situation without considering the long
term consequences of a course of action.

The problem of planning has been extensively studied in artificial intelligence. One of
the most influential approaches has been STRIPS [Fikes and Nilsson, 1971], a repre-
sentation language that reduces the problem of specifying actions to that of describing
an action’s preconditions (i.e., the qualification problem) apart from an action’s effects. A
solution to the frame problem [McCarthy and Hayes, 1969] is also captured in STRIPS
as a persistence condition on properties unaffected by an action. Although STRIPS
traditionally makes certain unrealistic assumptions about the nature of a planning do-
main, namely that actions are deterministic and world states are completely known, it
nevertheless forms the core of PDDL [McDermott et al., 1998], the standard language
of many modern planners and the language of the International Planning Competition
[ICAPS, 2008]. The success of this representation has led to the development of many
modern STRIPS-based planners that use techniques like heuristic search [Hoffmann
and Nebel, 2001] or compilation [Palacios and Geffner, 2007] to scale to large problem
instances.

While pure STRIPS-based planners are not directly relevant to Xperience, due to their
representational limitations, alternate attempts to solve more general planning prob-
lems often use variants of STRIPS as their underlying representations (e.g., [Cimatti
and Roveri, 2000, Bonet and Geffner, 2001]). In Xperience, we use an approach based
on knowledge-level planning, an instance of the general problem of planning with in-
complete information and sensing (e.g., [Peot and Smith, 1992])—i.e., planning with in-
complete states and observational actions that return information about the world state.
In contrast to more traditional approaches which build plans by reasoning about how ac-
tions affect the state of the world, the knowledge-level approach builds plans at a more
abstract level, by directly representing and reasoning about the incompleteness of the
planner’s knowledge and how that knowledge changes during planning. By abstracting
the type of reasoning used during plan generation, this approach has the potential to
generate quite complex plans very efficiently. This approach also has links to the knowl-
edge representation and reasoning community and those logical accounts that restrict
epistemic expressivity for tractable reasoning (e.g., [Funge, 1998, Demolombe and Po-
zos Parra, 2000, Son and Baral, 2001, Liu and Levesque, 2005, Vassos and Levesque,
2007]), as an alternative to more traditional accounts of knowledge and action (e.g.,
[Moore, 1985, Scherl and Levesque, 2003]). A similar idea to this is also explored in the
EU FP7 CogX project (ICT-215181).

One of the most advanced knowledge-level planners is PKS (“Planning with Knowl-
edge and Sensing”) [Petrick and Bacchus, 2002, 2004], a contingent planner that con-
structs plans with incomplete information and sensing. Unlike most planners, PKS uses
an extended STRIPS representation but restricts the types of knowledge it can repre-
sent in exchange for more efficient reasoning. PKS is particularly adept at modelling
knowledge-level changes resulting from sensing actions, which arise in many chal-
lenging planning scenarios. PKS also supports many features needed for real-world
planning, such as the representation of functional information, numerical reasoning,
and run-time variables [Etzioni et al., 1992]. PKS has been successfully used in com-
plex physical environments such as the robot kitchen domain in the FP6 PACO-PLUS
project, and is being used to control a robot bartender in the FP7 JAMES project (Grant
No. 270435) that must interact with multiple human users.

Knowledge-level planning in the Xperience project 4
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Reasoning about sensing actions allows planners to control certain types of indefinite
information that arise in the world. However, related approaches to planning under un-
certainty also attempt to manage other types of nondeterminism, including actions with
noisy effects or probabilistic outcomes. Currently, the most successful techniques em-
ploy rapid replanning methods that make use of advances in heuristic search [Hoffmann
and Nebel, 2001], a technique we will extend to knowledge-level planning in Xperience.
Planners like FF-Replan [Yoon et al., 2007] have been successfully employed in do-
mains such as those in the probabilistic track of the International Planning Competition
[ICAPS, 2008].

In Xperience, planning will also be used for the purpose of natural language dialogue,
and the demands of that problem will influence the structure and requirements of a suit-
able planning system. The tasks of natural language generation and reasoning about
dialogue have long traditions of using planning approaches. Early approaches to gen-
eration as planning (e.g., [Perrault and Allen, 1980, Appelt, 1985, Hovy, 1988, Young
and Moore, 1994]) focused primarily on high-level structures, such as speech acts and
discourse relations, but suffered due to the inefficiency of the planners available at the
time. As a result, recent mainstream research has tended to segregate task planning
from discourse and dialogue planning, capturing the latter with more specialised ap-
proaches such as finite state machines, information state approaches, speech-act the-
ories, dialogue games, or theories of textual coherence [Lambert and Carberry, 1991,
Traum and Allen, 1992, Green and Carberry, 1994, Young and Moore, 1994, Chu-Carroll
and Carberry, 1995, Matheson et al., 2000, Beun, 2001, Asher and Lascarides, 2003,
Maudet, 2004].

There has also been a renewed interest in applying modern planning techniques to
problems in NLG, such as sentence planning [Koller and Stone, 2007], instruction giv-
ing [Koller and Petrick, 2008], and accommodation [Benotti, 2008]. The idea of viewing
interaction management as a planning problem has also being revisited, for instance by
identifying the problem of planning conversational moves as an instance of the general
problem of planning with incomplete information and sensing actions [Stone, 2000]. This
view is also implicit in early “beliefs, desires and intentions” (BDI)-based approaches,
e.g., [Litman and Allen, 1987, Bratman et al., 1988, Cohen and Levesque, 1990, Grosz
and Sidner, 1990]. Thus, certain types of communicative actions (e.g., speech acts
like “asking” and “telling”) are treated as ordinary sensing actions that return otherwise
unknown information to the agent. Initial work using the knowledge-level PKS planner
explored this connection [Steedman and Petrick, 2007], but fell short of implementing a
robust tool that could leverage this relationship for efficient dialogue planning. A related
approach from the FP6 CoSy project [Brenner and Kruijff-Korbayová, 2008] also at-
tempted to manage dialogues by interleaving planning and execution, but failed to solve
the consequent problem of deciding when best to commit to plan execution versus plan
construction. Thus, many planning approaches are promising, but not yet fully mature,
and fall outside the mainstream of most recent NLG and dialogue work.

The common thread in all these approaches is that they seek to overcome the compu-
tational challenges inherent in complex domains. The most successful approach arising
from the planning community has been the use of heuristic or informed search tech-
niques for this task.

2.2 Informed search strategies

Most modern planning systems rely on the process of search to find a sequence of
actions that transforms an initial state into a state satisfying the goal of the planning
domain. However, a search through a large state space of the kind that typically arises
in many robot domains is problematic: the search process may take a large amount of
time to complete, if it completes at all, due to the resource overhead required to explore
large state spaces. As a result, most modern planners employ some form of informed

Knowledge-level planning in the Xperience project 5
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search or heuristic search (either directly or indirectly) in an attempt to gain leverage on
the structure of a given search problem, in order to improve plan generation times.

Surveying the recent literature on informed search in the planning community shows
that there are two main strategies employed by existing planning systems:

1. Problem relaxation: In problem relaxation, rather than solving the original prob-
lem in the original search space, the problem space is abstracted in some way,
typically by considering a subset or generalisation of the original planning space.
The relaxed problem, which is typically a simpler problem, is solved and then used
as an estimate for guiding the search in the original problem. In this case, solving
the relaxed problem must be done in an efficient manner so that the planner has
time to apply its results to the original problem with a net gain in overall planning
time.

2. Compilation methods: The idea of compilation usually refers to the process
whereby the original problem domain is transformed into an alternate, usually sim-
pler problem instance, and an existing (potentially more efficient) tool is then used
to solve the simpler problem. The solution to the compiled problem is then applied
to the original problem, sometimes through a process that modifies the generated
plan in some predefined way. Such methods may lead to exact compilations where
a problem can be provably reduced to a simpler problem instance, or approximate
compilations where the reduced problem is not provably “exact”, but nevertheless
produces a solution that can be used to solve the original problem.

(A third approach also exists, which is namely a hybrid approach that combines the two
approaches. For instance, as part of the problem relaxation approach a compilation
method might be employed to simplify the existing problem first before relaxing it at the
search space level.)

Examples of both approaches exist in the planning literature and have been successful
in practice. The most famous planner based on problem relaxation is FF [Hoffmann
and Nebel, 2001] which uses a relaxation technique that ignores the “delete lists” in a
STRIPS action description (i.e., the properties of the world that become false when an
action is applied). In this case, FF generates over-specified states during its search
which provides a lower bound on the number of steps a plan requires before a domain
property could possibly become true. This estimate, which is generated as part of a
structure called a planning graph, is then used to inform the original search problem.
In many of the standard planning benchmarks, such as those from the International
Planning Competition, this heuristic has been shown to be quite effective and had lead
to impressive performance on these domains. The success of this approach has also
influenced a number of subsequent planners which have attempted to adapt the FF
approach for improved performance. The task of designing new relaxation heuristics for
search remains an active area of research within the planning community.

The most influential work on compilation techniques within the planning community is
that of Palacios and Geffner [2007], which investigate the problem of converting a con-
formant planning problem (a problem with incomplete information but no sensing ac-
tions) into a classical problem (a problem with complete information) that can then be
solved using an off-the-shelf planner like FF. This is done by converting the original prob-
lem (described in terms of world-level properties) to its knowledge level counterpart, by
introducing new fluents into the domain model. When viewing the problem at the knowl-
edge level, a closed-world view of the fluents can be used, allowing a planner like FF
to be employed. Once a solution to the compiled problem is found, it is translated back
to the original problem, in some cases by expanding or removing certain actions in the
process. Compilation approaches are promising because they allow existing tools to be
leveraged to solve subproblems. However, usually the compilation imposes restrictions
on the types of problems that such techniques can be used on. For those domains for

Knowledge-level planning in the Xperience project 6
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which compilation techniques do not apply, approximate solutions might be possible, or
else other techniques must be adopted.

2.3 Informed search strategies for PKS

There are two immediate research questions for the knowledge-level planning compo-
nent on Xperience concerning informed search: (1) which technique should we use, and
(2) how should it be adapted to a planner like PKS? First, we observe that neither tech-
nique offers an immediate solution that can simply be “lifted” into a planner like PKS.
First, the state spaces that PKS uses are different from those of planners like FF, and
the relaxation technique of ignoring delete lists does not immediately transfer. Second,
the representation language used by PKS is substantially more expressive than those
used in the planners that are considered by Palacios and Geffner. As a result, the actual
compilation technique used in Palacios and Geffner [2007], and other similar work, does
not immediately translate to PKS.

However, the situation is not all bad news. First, while the FF relaxation technique does
not directly apply to PKS, relaxation techniques that are applicable should be possible.
The challenge in this case is identifying an approach that solves an abstraction of the
PKS planning problem quickly and accurately, and that can be used to inform a heuris-
tic search process. This remains a challenging but essential area of research for the
knowledge-level planning agenda at UEDIN.

Second, while the technique of [Palacios and Geffner, 2007] also doesn’t immediately
translate to PKS, a comparable approach used in earlier work, which does consider a
subset of the PKS representation, is applicable [Petrick and Levesque, 2002, Petrick,
2006]. This approach uses ideas similar to the work Palacios and Geffner but is based
on the logical language of the situation calculus. As a result, this approach provides a
much needed logical theory, which is less clear in [Palacios and Geffner, 2007].

As a result, we are adopting a two-pronged strategy for PKS. First, we will explore
relaxation techniques that can be used directly with the state spaces that arise in the
PKS planner. This approach will consist of a substantial implementation stage (which is
currently underway) to restructure the codebase of the PKS planner which implements
search, to take advantage of informed heuristic estimates. The code restructuring will
also provide a testbed whereby the PKS planning algorithm can be used with various
informed search techniques, to evaluate which are more effective at certain types of
domains arising on the Xperience project.

Second, we are also extending the work of [Petrick and Levesque, 2002, Petrick, 2006]
to provide a theoretical understanding of how compilation can be used in PKS. Part
of this work will out of necessity revisit the work of [Palacios and Geffner, 2007] and
re-interpret it in terms of the work of Petrick and Levesque. We believe that many of
the techniques presented in [Petrick and Levesque, 2002] can be adapted to a more
practical planning setting, but also that some of the insights of [Palacios and Geffner,
2007] have a role in improving the existing theoretical models in the situation calculus.
We also believe that the revised compilation technique can then be used in conjunction
with a PKS-specific relaxation method, combining the two approaches. However, more
research is needed to investigate what form such a technique might take.
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2.4 Proposed timeline

We provide the following timeline covering M1–M24 for the informed search task. We
note that this timeline is subject to change and the work that is necessary for completing
this task may extend beyond the end of the next work period.

Month Task Status
Studies

M1–M12 Initial informed search studies Complete
M12–M16 Intermediate studies Underway

Theory development
M12–M18 Initial heuristic search strategies Underway
M14–M18 Initial compilation techniques Not yet started
M18–M24 Intermediate search and compilation techniques Not yet started

Implementation and evaluation
M11–M18 Extension of existing search framework Underway
M18–M24 Implementation of initial/intermediate search techniques Not yet started
M11–M24 Evaluation of extended search methods Ongoing
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2.5 Example: compiling open world PKS to closed world FF

As an example of our early thinking on compilation techniques, we apply the approach
of Petrick [2006] to compile a simple PKS planning domain into a closed world form that
is then solvable using the off-the-shelf FF planner. An example is given using a standard
planning benchmark problem, the Bomb-in-the-Toilet domain.

Original PKS Bomb-in-the-Toilet domain

Here we give an encoding of the original Bomb-in-the-Toilet domain in PKS syntax.

Action Precondition Effects
dunk(p, t) K(package(p)) add(Kf ,disarmed(p))

K(toilet(t)) add(Kf , clogged(t))
K(¬clogged(t))

flush(t) K(toilet(t)) add(Kf ,¬clogged(t))

Compiled Bomb-in-the-Toilet domain

We now show the encoding of the compiled Bomb-in-the-Toilet domain using the tech-
niques of [Petrick, 2006]. Note that for each fluent P in the original PKS domain, a pair
of knowledge fluents, KP and K¬p are introduced into the compiled version of the prob-
lem. In this case, the set of knowledge fluents forms a type of “closed world” problem
which can be solved using classical planning techniques.

Action Precondition Effects
dunk(p, t) Kpackage(p) ¬K¬disarmed(p)

Ktoilet(t) ¬K¬clogged(t)
K¬clogged(t) Kdisarmed(p)

Kclogged(t)

flush(t) Ktoilet(t) ¬Kclogged(t)
K¬clogged(t)

Run times

Finally, we give some early results on solving the compiled version of the PKS domain
using the FF planner. In this case the running time is significantly faster using the
optimised FF approach, based on heuristic search.

Compiled to FF Original PKS
Problem (#P, #T) #Actions Time (s) #Actions Time (s)
bomb-50-50 50 0.19 100 1.220
bomb-60-60 60 0.43 120 2.190
bomb-70-70 70 0.82 140 3.640
bomb-80-80 80 1.45 160 5.840
bomb-90-90 90 2.41 180 8.280
bomb-100-100 100 3.83 200 11.78
bomb-100-10 190 0.48 200 3.730
bomb-100-20 180 0.73 200 4.430
bomb-100-30 170 0.91 200 5.180
bomb-100-40 160 1.08 200 5.970
bomb-100-50 150 1.28 200 6.790
bomb-100-60 140 1.56 200 7.730
bomb-100-70 130 1.93 200 8.650
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3 Other research directions for knowledge-level planning

In this section we briefly note other research directions for knowledge-level planning
currently being investigated. Many of these tasks are at a very early stage and are not
planned to be fully active until a later stage of the project.

• Extended representation for planning with intervals: This work seeks to im-
prove the planner’s ability to work with numerical properties. An interval-valued
representation is introduced to model the range of possible mappings for a nu-
meric function. See [Petrick, 2011] for more details.

• Modelling multiagent knowledge: This work seeks to extend the planner’s rep-
resentation and reasoning framework to support multiagent knowledge of the form
that can be used to model dialogue actions or information returned from exter-
nal data sources. This work involves both the development of a theoretical model
(most likely in the situation calculus) and an extension of the planner’s codebase.

• Plan execution monitoring: Although much of the work of this workpackage is
focused on plan generation, a second high-level component is needed to monitor
plan execution and control replanning/resensing activities. This monitor is respon-
sible for assessing both action failure and unexpected state information that result
from feedback provided to the planner from the execution of planned actions at the
robot level. The difference between predicted and actual states is used to decide
between (i) continuing the execution of a plan, (ii) resensing activities that target a
portion of a scene at a higher resolution to produce a more detailed state report,
and (iii) replanning from new/unexpected states. Building on the initial version of
the plan execution monitor developed for the PACO-PLUS project, we are currently
extending the monitor to use the new ICE middleware framework being developed
for the ARMAR robot at KIT.

• Domains: An ongoing task is the design of new planning domains supporting the
project’s demonstration scenarios. This task will continue throughout the project.

Knowledge-level planning in the Xperience project 10

Xperience 270273 PU

20



References
D. Appelt. Planning English Sentences. Cambridge University Press, Cambridge, Eng-

land, 1985.

N. Asher and A. Lascarides. Logics of Conversation. Cambridge University Press, 2003.

L. Benotti. Accommodation through tacit sensing. In Proceedings of the 12th Work-
shop on the Semantics and Pragmatics of Dialogue (LONDIAL 2008), pages 75–82,
London, United Kingdom, 2008.

R.-J. Beun. On the generation of coherent dialogue. Pragmatics and Cognition, 9:
37–68, 2001.

B. Bonet and H. Geffner. GPT: A tool for planning with uncertainty and partial infor-
mation. In Proceedings of the IJCAI-01 Workshop on Planning with Uncertainty and
Incomplete Information, pages 82–87, Aug. 2001.

M. Bratman, D. Israel, and M. Pollack. Plans and resource-bounded practical reasoning.
Computational Intelligence, 4:349–355, 1988.
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Abstract

We investigate the problem of reasoning about numerical
functions in the presence of incomplete information, sensing
actions, and conditional plans. An interval-based represen-
tation is introduced into the PKS (Planning with Knowledge
and Sensing) planner, as a means of compactly representing
sets of possible values for numerical functions. We describe
the enhancements we make to PKS, and demonstrate how
such information can be used for modelling uncertain sensors
and effectors. We also show how interval-valued functions
can be used as a form of noisy run-time variable in plans.
This paper presents a snapshot of work currently in progress.

Introduction and Motivation
An agent operating in a real-world domain often needs to do
so with incomplete information about the state of the world.
An agent with the ability to sense the world can also gather
additional information to generate plans with contingencies,
allowing the agent to reason about the possible outcomes of
sensed information at plan time, thereby extending its ability
to successfully construct plans in uncertain domains.

One particularly useful type of sensed information is nu-
merical information. The ability to reason about numbers
is often required in many real-world planning contexts, in
order to construct plans that work with numeric state prop-
erties (e.g., the robot is 10 metres from the wall), manage
limited resources (e.g., ensure the robot has enough fuel to
complete the task), satisfy numeric constraints (e.g., only
grasp an object if its radius is less than 10 cm), or apply
arithmetic operations (e.g., advancing the robot forward one
step reduces its distance from the wall by 1 metre). The im-
portance of numerical reasoning in planning has previously
been recognized with the inclusion of numeric state vari-
ables in PDDL (Fox and Long 2003), and the construction
of planning systems like MetricFF (Hoffmann 2003) that are
able to work with (limited forms of) numeric information.

Reasoning about numerical information under conditions
of incomplete information is potentially problematic, how-
ever, especially for planners that are built on possible-world
representations or sets of belief states. In such representa-
tions, the complete set of possible values for an unknown
(or incompletely known) state property is often explicitly
represented, e.g., by a set of states, each of which denotes a
possible configuration of the actual world state. If the value

of a numeric function is unknown, then the belief state must
contain a state representing every possible mapping of the
function, which could be a potentially large (or even infi-
nite) set. Even when the range of possible values is rela-
tively small, the number of required states can quickly grow.
E.g., if a numeric function f could potentially map to any
natural number between 1 and 100, then we require 100
states to capture the set of possible mappings using a pos-
sible world/belief state approach. The state explosion re-
sulting from large sets of mappings can be computationally
difficult for planners that must reason with individual states
and progress (or regress) those states to construct plans.

The general problem of reasoning about knowledge and
action, while avoiding the drawbacks of possible worlds, has
previously been studied in formal representation languages
like the situation calculus (see, e.g., (Demolombe and Po-
zos Parra 2000; Soutchanski 2001; Liu and Levesque 2005;
Petrick 2006; Vassos and Levesque 2007)). Many of these
accounts model certain (restricted) types of knowledge di-
rectly, rather than indirectly inferring such information from
sets of worlds, thereby trading representational expressive-
ness for more tractable reasoning. (For instance, simple re-
lational facts can be explicitly modelled by sets of predi-
cates known to be true and sets of predicates known to be
false.) One representation for modelling uncertain numeri-
cal information without possible worlds uses the notion of
an interval-valued function as a means of capturing a set of
disjunctive alternatives (Funge 1998). The idea is simple:
rather than representing each possible function mapping in-
dividually across a set of worlds, a single function mapping
is used and only the endpoints of the range of possible values
are represented. Thus, a function f that maps from 1 to 100
can be denoted in an interval-valued form, f = 〈1, 100〉.

Interval-valued models of numeric information have been
investigated in the planning community, especially when
time is represented as a resource (see, e.g., (Edelkamp 2002;
Frank and Jónsson 2003; Laborie 2003)). The idea of
bounding uncertain numeric properties by intervals has also
been studied in a planning context (Poggioni, Milani, and
Baioletti 2003), however, to the best of our knowledge the
combination of numerical reasoning with incomplete infor-
mation, sensing, and contingent planning has not been fully
explored. We focus on this problem in the present paper,
which describes work currently in progress to extend the
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PKS (Planning with Knowledge and Sensing) planner (Pet-
rick and Bacchus 2002; 2004), by incorporating the ability
to use interval-valued functions.

Our interest in adding interval-valued representations to
PKS is twofold. First, PKS has always had the ability
to work with simple numerical information (e.g., function
(in)equalities and arithmetic operations), however, unlike
other types of knowledge in PKS, its ability to reason about
uncertain numerical values is limited. We believe interval-
valued functions provide a compact representation that can
be used to model the effects of noisy actions and knowledge,
and augment PKS’s existing ability to work with incomplete
knowledge without using possible worlds or belief states.
Second, we are also interested in tracking the results of cer-
tain types of sensed information through subsequent physi-
cal actions. For instance, if the location of a robot is sensed
and the robot then moves 2 steps forward, we should be able
to use such information in a planning context, even if the
actual value of the robot position isn’t explicitly known. We
believe an interval-based representation will also be useful
in modelling such situations. We explore both of these ideas
in this paper.

The rest of the paper is organized as follows. In the next
section we briefly review the PKS planner. We then de-
scribe a simple model of interval-valued functions. Using
this model we characterize the changes we have currently
implemented in PKS. We then demonstrate the extended ver-
sion of PKS with a series of detailed examples. Finally, we
discuss some open problems and future work, and conclude.

Planning with Knowledge and Sensing (PKS)
In this work, we aim to extend PKS (Planning with Knowl-
edge and Sensing), a contingent planner that constructs
plans in the presence of incomplete information and sens-
ing actions (Petrick and Bacchus 2002; 2004). PKS works
at the “knowledge-level” by reasoning about how the plan-
ner’s knowledge state, rather than the world state, changes
due to action. PKS works with a restricted subset of a first-
order language, and a limited amount of inference in that
subset, allowing it to support a rich representation with non-
propositional features such as functions and variables. This
approach differs from planners that work with propositional
representations over which complete reasoning is feasible,
or approaches that model incomplete knowledge based on
sets of possible worlds. By working at the knowledge level,
PKS can often abstract its reasoning from irrelevant distinc-
tions that occur at the world level.

PKS is based on a generalization of STRIPS (Fikes and
Nilsson 1971). In STRIPS, the state of the world is mod-
elled by a single database. Actions update this database and,
by doing so, update the planner’s world model. In PKS,
the planner’s knowledge state, rather than the world state, is
represented by a set of five databases, each of which mod-
els a particular type of knowledge. The contents of these
databases have a fixed, formal interpretation in a modal logic
of knowledge. Actions can modify any of the databases,
which has the effect of updating the planner’s knowledge
state. To ensure efficient inference, PKS restricts the type of

knowledge (especially disjunctions) that it can represent in
each database. We briefly discuss each database below.
Kf : This database is similar to a standard STRIPS database
except that both positive and negative facts are permitted and
the closed world assumption is not applied. Kf is used for
modelling the effects of actions that change the world. Kf

can include any ground literal `, where ` ∈ Kf means “the
planner knows `.” Kf can also contain information about
known function (in)equality mappings.
Kw: This database models the plan-time effects of “binary”
sensing actions. φ ∈ Kw means that at plan time the plan-
ner either “knows φ or knows ¬φ,” and that at execution
time this disjunction will be resolved. In such cases we will
also say that the planner “knows whether φ.” Know-whether
knowledge is important since PKS can use such information
to construct conditional plans with branches (see below).
Kv: This database stores information about function values
that will become known at execution time. In particular, Kv

can model the plan-time effects of sensing actions that re-
turn constants, such as numeric values. Kv can contain any
unnested function term f , where f ∈ Kv means that at plan
time the planner “knows the value of f .” At execution time
the planner will have definite information about f ’s value.
As a result, PKS is able to use Kv terms as “run-time vari-
ables” (Etzioni et al. 1992) or placeholders in its plans.
Kx: This database models the planner’s “exclusive-or”
knowledge of literals, namely that the planner knows “ex-
actly one of a set of literals is true.” Entries in Kx have the
form (`1|`2| . . . |`n), where each `i is a ground literal. Such
formulae represent a particular type of disjunctive knowl-
edge that is common in many planning scenarios, namely
that “exactly one of the `i is true.”
LCW: This database stores the planner’s “local closed
world” information (Etzioni, Golden, and Weld 1994), i.e.,
instances where the planner has complete information about
the state of the world. We mention LCW here for complete-
ness but will not focus on it in this paper.

PKS’s databases can be inspected through a set of prim-
itive queries that ask simple questions about the planner’s
knowledge state. Primitive queries have the following form:
(i) Kp, is p known to be true?, (ii) Kvt, is the value of
t known?, (iii) Kwp, is p known to be true or known to
be false? (i.e., does the planner know-whether p?), or (iv)
the negation of queries (i)–(iii). An inference algorithm
evaluates primitive queries by checking the contents of the
databases, taking into consideration the interaction between
different types of knowledge.

An action in PKS is modelled by a set of preconditions
that query the agent’s knowledge state, and a set of effects
that update the state. Action preconditions are simply a
list of primitive queries. Action effects are described by a
collection of STRIPS-style “add” and “delete” operations
that modify the contents of individual databases. For exam-
ple, add(Kf , φ) adds φ to Kf , and del(Kw, φ) removes φ
from Kw. Actions are permitted to have ADL-style context-
dependent effects (Pednault 1989), where the secondary pre-
conditions of an effect are described by lists of primitive
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queries, and can employ a limited form of quantification
(∀Kx and ∃Kx) that ranges over known instantiations of x.

PKS constructs plans by reasoning about actions in a sim-
ple forward-chaining manner: if the preconditions of an ac-
tion are satisfied by the planner’s knowledge state, then the
action’s effects are applied to the state to produce a new
knowledge state. For actions with context-dependent effects,
secondary preconditions are similarly evaluated against the
knowledge state to determine if their effects should be ap-
plied. Planning then continues from the resulting state.

PKS can also add conditional branches to a plan, provided
it has Kw knowledge. For instance, if φ ∈ Kw then PKS
can construct two conditional branches in a plan: along one
branch (the K+ branch) φ is assumed to be known (i.e., φ is
added to Kf ), while along the other branch (the K− branch)
¬φ is assumed to be known (i.e., ¬φ is added to Kf ). Plan-
ning continues along each branch from the new knowledge
states, until each branch satisfies the goal, also specified as
a list of primitive queries.

Interval-Valued Functions and Knowledge
In this paper we will only focus on functions that map to nu-
merical values (rather than general constants or terms). For
instance, robotLoc = 10 might denote a function indicating
that a robot is known to be 10 metres from a wall.

An interval-valued function is a function whose denota-
tion is an interval of the form 〈u, v〉. The values u and v are
called the endpoints of the interval, and indicate the bounds
on a range of possible mappings for the function. Since
we are primarily interested in reasoning about an agent’s
(incomplete) knowledge during planning, a mapping of the
form f = 〈u, v〉 will mean that the value of f is known to
be in the interval 〈u, v〉.1 For instance, robotLoc = 〈5, 10〉
might indicate that the distance to a wall is known to be be-
tween 5 and 10 metres. If a function maps to a point interval
of the form 〈u, u〉, for some u, then the mapping is certain
and known to be equal to u.

Each interval-valued function will be associated with a
particular number system X that restricts the range of per-
missible intervals for a function. Typically, the number sys-
tem will be one of the standard mathematical number sys-
tems (e.g., the reals R, the natural numbers N, the integers
Z, etc.), extended to include the points at infinity, ∞ and
−∞. Given a number system X, a mapping f = 〈u, v〉
is permitted, provided u, v ∈ X and u ≤ v. For ev-
ery number system X, the special interval 〈⊥,>〉 repre-
sents the maximal interval for that number system. For in-
stance, 〈⊥,>〉 def

= 〈−∞,∞〉 in R, however in B, the bi-
nary number system consisting of the two elements 0 and 1,
〈⊥,>〉 def

= 〈0, 1〉. In terms of knowledge, a mapping of
the form f = 〈⊥,>〉 means that the agent considers every
element of X as a possible mapping for f . In other words,
the value of f is completely unknown to the agent.

1We will only focus on closed intervals whose endpoints are
included as possible mappings (i.e., intervals of the form [u, v]
in standard mathematical notation). Open intervals (u, v), or
partially-open intervals (u, v] and [u, v), are treated in a similar
manner except for minor differences in the boundary cases.

For simplicity, we will assume that all interval-valued
functions in this paper range over N unless otherwise indi-
cated. Also, as an alternative to using the maximal interval
〈⊥,>〉 to represent functional uncertainty, we will some-
times use PKS’s ability to reason about incomplete informa-
tion when a function is not listed in its knowledge bases.

Representing and Reasoning about
Interval-Valued Knowledge in PKS

In this section we describe some of the changes we have
made to PKS to support interval-valued functions. Since this
paper presents a snapshot of work currently in progress, we
will discuss many of these changes at a high level and leave
many of the technical details for a future paper. In particular,
we will focus on the representation of interval knowledge by
considering changes to the Kf , Kv , Kw, and Kx databases.
We will also briefly mention extensions to PKS’s primitive
query language and action representation.
Kf and knowledge of intervals Recall that theKf database
stores the planner’s knowledge of facts, including functional
equalities (e.g., f = 10) and inequalities (e.g., g 6= 12). In
our extended representation we allow functions to map to
interval values, provided the intervals only contain numeric
constants. That is, a function like f = 〈5, 10〉 is permitted,
however, g = 〈5, x〉 is not if x is a variable. Intuitively, a
function of the form f = 〈u, v〉 ∈ Kf means that f is known
to map to a value between u and v.
Kv and sensed intervals TheKv database is primarily used
to represent the results of sensing actions that return func-
tions. In particular, this database does not constrain the type
of underlying function it can represent, i.e., whether it is
an ordinary function mapping or an interval-valued map-
ping. Thus, Kv can immediately be used with interval-
valued functions which are treated in the same way as or-
dinary functions. I.e., if f ∈ Kv , where f is interval valued,
then the (interval) value of f is known at plan time.

However, we also extend our notion of Kv knowledge to
allow noisy sensed information to be modelled. To do so, we
specify an interval schema for the associated function, using
a variable (x in our examples) to denote the actual value of
the function. For instance, a function of the form:

f : 〈x− 1, x+ 1〉 ∈ Kv

means that the value of the function f is known, and f is in
the range x±1, for some x. In this case, we treat x as a spe-
cial type of “run-time variable” (Etzioni et al. 1992) that acts
as a placeholder to the actual value of the sensed function.
The value of f in this case is “noisy” as it admits a range of
possible values. In practice, we allow formulae of the form
f : 〈x− u, x+ v〉 in Kv , where u and v are numeric con-
stants. This type of information will be particularly useful
for tracking changes to numeric sensed values through the
effects of certain physical actions.
Kw and numeric comparisons The Kw database is typi-
cally used to model sensing actions with binary outcomes,
i.e., those that return one of two possible values. Kw is also
important since information in this database can be used to

Xperience 270273 PU

27



build conditional branches into a plan: when a conditional
branch is inserted, one branch is added for each possible out-
come of the sensed information.

With numeric functions (interval-based or not), certain
types of numeric relations become useful in a planning con-
text. In particular, the relational operators =, 6=, >, <,
≥, and ≤ often arise in many planning scenarios. In our
extended version of PKS, we allow simple formulae us-
ing such operators to be explicitly represented in Kw, pro-
vided such formulae have the form f op c, where op ∈
{=, 6=, >,<,≥,≤} and c is a numeric constant. Thus,
f > 5 ∈ Kw can be used to model a sensing action that
determines whether f is greater than 5 or not.

Such extended Kw information can also be used to form
conditional plans as usual in PKS. For a given Kw formula,
two branches are added to a plan: along one branch the Kw

formula is assumed to be true while along the other branch
the formula is assumed to be false. Thus, if the formula
f > 5 ∈ Kw is used as the basis for a new branch point in
a plan then f > 5 is assumed to be true in the K+ branch,
and f ≤ 5 is assumed to be true in the K− branch.
Kw branching is particularly important when combined

with interval-based knowledge in Kf : any assumptions re-
sulting from the addition of a branch must be combined with
existing knowledge in the other databases, possibly refining
or resolving that knowledge as necessary. Thus, if f > 5
is assumed to be true and f = 〈3, 10〉 ∈ Kf , then the
Kf knowledge is updated and the interval is refined so that
f = 〈6, 10〉. Similarly, if f ≤ 5 is assumed to be true then
the Kf knowledge is updated so that f = 〈3, 5〉. When used
with interval-based knowledge that has a wide range of pos-
sible values, this process gives rise to a powerful technique
that allows the planner to split intervals into smaller compo-
nents and employ a form of case-based reasoning.
Kx versus interval-valued functions The notion of an
interval-valued function has a close connection to the
exclusive-or knowledge that can be represented in Kx: both
types of representation can be used to model disjunctions of
possible values where one, and only one, of the disjunctions
can be true. For instance, in this view a formula of the form
(f = 3 | f = 4 | f = 5) ∈ Kx is similar to an interval-
valued function of the form f = 〈3, 5〉.

There are notable differences, however. In particular,
Kx takes a very conservative view of physical actions that
change the values of literals mentioned in Kx formula. In
such cases, any formula containing a property changed by an
action is completely removed from Kx since it’s “exclusive-
or” property may no longer hold. This is not the case for
interval-valued functions. Instead, we would like to track
the set of possible values for such functions through ac-
tion. Each Kx formula is also restricted to a set of literals
that must be explicitly enumerated as a finite disjunction.
Interval-valued functions provide a more compact represen-
tation that permits continuous intervals over number systems
such as the reals (R), which cannot be modelled in Kx.

Interval-valued functions can also be included in Kx,
however, and are treated in the same way as any other piece
of Kx information. In particular, this means they are subject
to the conservative update rules inherent in that database.

We refer the reader to (Petrick and Bacchus 2004) for more
information about Kx and its update rules.2

Primitive queries and intervals The underlying primitive
query language used by PKS is unchanged with the addi-
tion of interval-valued functions. In particular, the exist-
ing query language already permits primitive queries that
include numeric relational operators such as those we per-
mit in the extended Kw database (e.g., >). However, we
have also extended the inference procedure that evaluates
primitive queries to reason with interval-based information.
For instance, a query of the form K(f > 3) only evaluates
as true given an interval f = 〈u, v〉 ∈ Kf provided u > 3.
Similarly, a queryK(g 6= 5) is true if both 5 < u and 5 > v.
Actions and intervals Actions in our extended version of
PKS are defined in a similar way to ordinary PKS actions,
with preconditions and effects. Preconditions are still simply
sets of primitive queries, as defined above. Effects permit
updates to be made to interval-valued information through a
set of simple arithmetic operations. (In this paper we only
consider the arithmetic addition and subtraction operators.)
In particular, we allow updates to have the form

add(Kf , f := f ± d),
where f is an interval-based function and d is either a nu-
meric constant or constant interval (i.e., no variables). In the
case of a constant d, an existing interval 〈u, v〉 is updated to
the resulting interval 〈u± d, v ± d〉. If d itself is an inter-
val, the process is somewhat more complicated and a new
range must be calculated for the resulting interval. For in-
stance, adding the interval 〈3, 5〉 to 〈1, 2〉 results in an inter-
val 〈4, 7〉. We currently focus on arithmetic operations that
can be calculated in a straightforward manner and result in
well-formed intervals.

One additional update is performed when interval-valued
updates occur: Kv formulae that are specified using inter-
val schema are also updated appropriately. That is, the in-
terval corresponding to a Kv formula is updated in a simi-
lar manner to an ordinary interval-based function. For in-
stance, if f : 〈x− c, x+ c〉 ∈ Kv , and an effect of the form
add(Kf , f := f + d) updates f , where d is a constant, then
Kv is updated so that f : 〈x− c+ d, x+ c+ d〉 ∈ Kv .

Finally, we also allow actions to include ordinary database
assertions, following the standard PKS rules for add and del .
Thus, we can specify “noisy” knowledge through an update
such as add(Kf , f = 〈3, 5〉) that adds f = 〈3, 5〉 to Kf .
PKS planning with intervals Given the above changes
to the PKS database representation, primitive query mecha-
nism, and database update procedure, the underlying plan-
ning algorithm operates as in the unextended version of
PKS. In particular, the plan generation process is treated as
a search through the set of database states, starting from an
initial state denoted by the initial set of databases. Plans are
built in a forward-chaining manner by choosing an action to

2One of the open technical questions in this work is whether
or not intervals of the form f = 〈3, 5〉 actually belong in Kf , or
whether a better intuitive definition would place such knowledge in
an extended Kx database. We leave open the possibility of chang-
ing our current representation in the future.
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Action Effects
moveForward add(Kf , robotLoc := robotLoc− 1)
moveBackward add(Kf , robotLoc := robotLoc + 1)
atTarget add(Kw, robotLoc = targetLoc)

Table 1: Action specifications for Example 1.

add to a plan, or by introducing conditional plan branches.
Planning continues until the goal conditions are achieved
along every branch of a plan, or no plan can be found. We
refer the reader to (Petrick and Bacchus 2002) for more de-
tails on the actual plan generation process used by PKS.

Examples
To illustrate the above extensions, we present three simple
examples of interval-based reasoning in PKS.
Example 1 Consider a robot whose location, robotLoc, is
measured by its distance to a wall. The robot has two phys-
ical actions available to it: moveForward moves the robot
one unit towards the wall, and moveBackward moves the
robot one unit away from the wall. The robot also has a sens-
ing action, atTarget, which senses whether the robot is at a
target location specified by the function targetLoc. The defi-
nition of these actions is shown in Table 1. The robot’s initial
location is specified by the interval-valued function mapping
robotLoc = 〈3, 5〉 ∈ Kf . The goal is to move the robot
to the target location, denoted by the query K(robotLoc =
targetLoc). In this example, targetLoc = 2 ∈ Kf .

One solution generated by PKS is the conditional plan:
1 | moveForward ;
2 | atTarget ;
3 | branch(robotLoc = targetLoc)
4 | K+ : nop.
5 | K− : moveForward ;
6 | atTarget ;
7 | branch(robotLoc = targetLoc)
8 | K+ : nop.
9 | K− : moveForward.

In step 1, the moveForward action uniformly decreases the
value of robotLoc in Kf by one unit so that robotLoc =
〈2, 4〉. In step 2, atTarget senses whether robotLoc =
targetLoc, which has the effect of adding robotLoc = 2 to
Kw (i.e., the planner knows whether robotLoc is 2 or not).
In step 3, a branch point is added to the plan based on this
Kw formula, allowing the plan to consider the two possible
outcomes of the Kw formula (which also has the effect of
removing the formula from Kw). Along one branch (step 4),
robotLoc = 2 is assumed to be true (i.e., robotLoc = 2
is added to Kf ) and the goal is achieved. Along the other
branch (step 5), robotLoc 6= 2 is assumed to be true (i.e.,
robotLoc 6= 2 is added to Kf ). As a result, the inter-
val mapping for robotLoc in Kf can be refined to remove
2 as a possible mapping, so that robotLoc = 〈3, 4〉. The
moveForward action then updates robotLoc further so that
robotLoc = 〈2, 3〉. The sensing action in step 6 again adds
robotLoc = 2 to Kw. In step 7, another branch point is
added to the plan. Along one branch (step 8), robotLoc = 2
is assumed to true, satisfying the goal. Along the other

Action Effects
noisyForward add(Kf , robotLoc := robotLoc− 〈1, 2〉)
withinTarget add(Kw, robotLoc ≤ targetLoc)

Table 2: Additional actions for Example 2.

branch (step 9), robotLoc 6= 2 is assumed to be true. In this
case, refining robotLoc results in the (definite) knowledge
that robotLoc = 〈3, 3〉 = 3. A final moveForward action
results in robotLoc = 2, satisfying the goal.

Example 2 We next consider a robot with the moveBack-
ward and atTarget actions from Example 1, but with move-
Forward replaced by a “noisy” movement action, noisyFor-
ward, which moves the robot forward either 1 or 2 units. Ad-
ditionally, the robot also has a second sensing action, within-
Target, that determines whether or not the robot is within the
target distance (where targetLoc = 2 ∈ Kf ). The specifica-
tion of these new actions is given in Table 2. In this example,
the robot’s initial location is specified by the interval-valued
mapping robotLoc = 〈3, 4〉 ∈ Kf . The goal is to move the
robot to the target location, i.e., K(robotLoc = targetLoc).

One solution generated by PKS is the conditional plan:
1 | noisyForward ;
2 | withinTarget ;
3 | branch(robotLoc ≤ targetLoc)
4 | K+ : atTarget ;
5 | branch(robotLoc = targetLoc)
6 | K+ : nop.
7 | K− : moveBackward.
8 | K− : noisyForward ;
9 | atTarget ;

10 | branch(robotLoc = targetLoc)
11 | K+ : nop.
12 | K− : moveBackward.

Since forward movements may change the robot’s position
by either 1 unit or 2 units, the noisyForward action in step 1
results in an even less certain position for the robot, namely
that robotLoc = 〈1, 3〉 ∈ Kf . However, the sensing ac-
tion in step 2, together with the branch point in step 3,
lets us split this interval into two sub-intervals. In step 4,
we assume that robotLoc ≤ 2 and consider the case that
robotLoc = 〈1, 2〉. The atTarget action, together with the
branch in step 5, lets us divide this interval even further: in
step 6, robotLoc = 2 and the goal is satisfied, while in step 7,
robotLoc = 1 and a moveBackward action achieves the
goal. In step 8 we consider the other sub-interval of the first
branch, namely the interval resulting from robotLoc > 2,
i.e., robotLoc = 3 ∈ Kf . In this case we have defi-
nite knowledge of the robot’s location, however, the sub-
sequent noisyForward action results in robotLoc = 〈1, 2〉.
The remainder of the plan in steps 9–12 is the same as in
steps 4–7: the robot conditionally moves backwards in the
case that robotLoc is determined to be 1, while the plan triv-
ially achieves the goal if robotLoc = 2.

Example 3 In the final example, we consider a robot with
the moveBackward action from Table 1, and the noisyLo-
cation action from Table 3. In this case, noisyLocation is a
noisy sensing action that either senses the actual value of the
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Action Effects
noisyLocation add(Kv, robotLoc : 〈x, x+ 1〉)

Table 3: Additional action for Example 3.

robot’s location, or 1 unit more than the actual location. This
is denoted by the notation 〈x, x+ 1〉 in the action descrip-
tion, where x acts as a placeholder for the actual location,
and the interval specifies the range of possible values. Ini-
tially, the location of the robot is unknown, i.e., robotLoc
is not listed in the planner’s databases. The goal is to en-
sure the robot has moved to or past the target location, i.e.,
K(robotLoc ≥ targetLoc), where targetLoc = 2 ∈ Kf .

Here, PKS can generate the simple 3-step plan:
1 | noisyLocation ;
2 | moveBackward ;
3 | moveBackward.

Step 1 of the plan adds the formula robotLoc = 〈x, x+ 1〉
to Kv , indicating that the planner has (noisy) knowledge
of the robot’s location. In step 2, the result of moveBack-
ward updates the planner’s parametrized Kv knowledge.
In particular, robotLoc = 〈x+ 1, x+ 2〉, which has the
effect of tracking the movement action in relation to the
planner’s (ungrounded) location information. In step 3,
the second moveBackward action results in robotLoc =
〈x+ 2, x+ 3〉. In this case, the planner can reason that
robotLoc ≥ 2 holds since robotLoc is a function over N:
since x ≥ 0, it must be the case that x+ 2 ≥ 2.

Although the above examples are admittedly simple, they
nevertheless demonstrate some interesting plan-time reason-
ing. In Example 1, we illustrate a case where the plan-
ner has uncertain knowledge about the location of a robot.
Using interval-valued functions, we track the robot’s loca-
tion as physical actions change this information and sens-
ing actions, together with conditional plan branches, pro-
duce more certain knowledge. We note that in the original
version of PKS, we could represent the disjunctive nature
of robotLoc (for N at least) using the Kx database, e.g.,
(robotLoc = 3 | robotLoc = 4 | robotLoc = 5) ∈ Kx.
However, an action like moveForward would immediately
invalidate this information, causing it to be removed, since
it changes a function mentioned in the Kx formula.

In Example 2, we consider a simple case of an action
with a noisy physical effect, represented by the action noisy-
Forward, that changes robotLoc with an interval-based ef-
fect. Again, we demonstrate how the use of sensing actions
together with conditional branching allows us to perform
a type of case-based reasoning, to subdivide intervals into
more manageable components. Of course, this example also
demonstrates that if we do not have the right sensing actions
(e.g., withinTarget), then the ability to track certain intervals
alone may not always be sufficient for useful reasoning.

Finally, in Example 3 we illustrate an interesting type of
reasoning we are currently experimenting with: the ability
to track sensed information through physical actions using
a type of placeholder variable. In particular, noisyLocation
is a noisy sensing action whose resulting (indefinite) knowl-
edge is tracked through moveBackward actions. We note

that in this example the Kv interval is not strictly necessary
for finding a plan since only the left endpoint of the inter-
val is used. (I.e., an action that adds robotLoc : 〈x, x〉 to
Kv using a point interval would be sufficient.) However, the
interval-based sensing action demonstrates one of the new
features of our extended PKS representation.

Example 3 also demonstrates one of the drawbacks inher-
ent in plan-time sensing with unknown quantities: for such
values to be useful in a plan we often need to “ground” them
in some way. In this case, we use knowledge of the un-
derlying number system and the interval offset to make an
assertion about a lower bound. However, PKS also has the
ability to work with functions in an “unground” form, allow-
ing them to be composed with other functions, or using them
to produce a form of parametrized plan. One of the goals
of this work is to extend PKS’s representation of interval-
valued functions so they can also be used in this way. One
particular application where we believe this will be useful is
in the automatic generation of plans with loops (Levesque
2005). (For instance, in the case of Example 3 we could
imagine generating a parametrized plan that loops until a
certain exit condition is achieved.) However, this extension
is part of ongoing work.

Discussion and Future Work
Interval-valued functions provide an interesting middle
ground between those representations that do not represent
uncertainty about numerical values and those that reason
with full possible-world models, or models based on prob-
abilistic distributions. For a planner like PKS that works
with a restricted representation to model particular types of
knowledge, an interval-valued representation makes a good
fit and offers another useful tool for knowledge-level plan-
ning. Moreover, such extensions have not been fully ex-
plored in the context of planning with incomplete informa-
tion, sensing actions, and contingent plans, and this work of-
fers the prospect of results that can be applied beyond PKS.

There are still some non-trivial technical problems to
overcome. First, we are considering interval-based opera-
tions other than addition and subtraction. While we do not
want to integrate a complete equation solver with our plan-
ner, we are focusing on those operations that are useful for
planning and that can easily be “tracked” in simple, pre-
dictable ways. To help guide our work, we are investigat-
ing planning problems based on real-world robot domains
requiring numeric reasoning. We are also exploring how ex-
isting approaches in the literature use intervals in other con-
texts (e.g., temporal reasoning).

Second, although intervals provide a compact means of
representing a range of possible values, there are problems
when those values are sparsely distributed. For instance,
if f can map to the values 5, 7, and 10, then the interval
f = 〈5, 10〉 suffices for representing the set of possible
mappings, but also admits 6, 8, and 9 as possible values.
While such intervals may not be problematic, depending on
the task, they are potentially less accurate and may incur
more reasoning than needed. To overcome these potential
drawbacks, we are also investigating functions that map to
interval sets consisting of a finite number of intervals. In
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such cases, a function f could map to an interval set of the
form f = {I1, I2, . . . , In}, where each Ii is an interval.
In PKS, this would combine the interval-based representa-
tion described here in a form of “extended-Kx” knowledge.
To avoid situations of excessive fragmentation, with large
numbers of intervals, we will initially bound the number of
intervals allowed in a set, and in some cases use a single
wide interval in the place of multiple intervals, if necessary.

Finally, we have not focused on the efficiency of PKS’s
plan generation process in this paper but have instead con-
sidered particular representation and reasoning problems.
(We note that all the examples presented in this paper can be
generated in less than a second using PKS on a single CPU
running at 1.86 GHz with 2Gb of RAM.) In other work, we
are also addressing the problem of scaling up PKS’s perfor-
mance by adapting heuristic search techniques to the state
spaces produced by PKS. While interval-based representa-
tions may complicate this process somewhat, we believe
that the compilation techniques of (Petrick 2006) could be
adapted to this problem, allowing interval-based functions
to be treated in a similar fashion to ordinary functions.

This paper presents a snapshot of work in progress. It
also forms part of a larger research agenda aimed at trans-
forming standard contingent planning domains (e.g., do-
mains that can be represented in planners like Contingent-
FF (Hoffmann and Brafman 2005)) into knowledge-level
forms. It also builds on theoretical work in the situation
calculus (Funge 1998; Demolombe and Pozos Parra 2000;
Petrick 2006) that we are currently extending, with a focus
on the construction of practical planning systems.
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