
Project Acronym: Xperience
Project Type: IP
Project Title: Robots Bootstrapped through Learning from Experience
Contract Number: 215821
Starting Date: 01-01-2011
Ending Date: 31-12-2015

XXPERIENCEPERIENCE..ORGORG

Deliverable Number: D3.2.2
Deliverable Title : Structural BootStrapping for Planning
Type (Internal, Restricted, Public): PU
Authors C. Geib, K. Murao, and M. Steedman
Contributing Partners UEDIN

Contractual Date of Delivery to the EC: 31-01-2013
Actual Date of Delivery to the EC: 12-03-2013





Contents

1 Deliverable Report 5

1.1 Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Structural Bootstrapping for Planning (Overview) . . . . . . . . . . . . . . . . . . . . . . 5

2 Attached Papers 9

Paper: Parallelizing Plan Recognition. 10

Report: PDDL Rule Learning. 17

3



Xperience 215821 PU

4



Chapter 1

Deliverable Report

1.1 Executive Summary

This Deliverable (D3.2.2) for the Xperience project, documents our progress on structural bootstrapping
for planning over the period M13-M24. The overview will briefly describe our work leading to structural
bootstrapping for high level plan representations. This will include references to two attached technical
reports that provide detail about progress that we have made in some of the supporting technical areas
required for this work.

1.2 Structural Bootstrapping for Planning (Overview)

Structural bootstrapping distinguishes between two kinds of knowledge about actions: syntactic knowl-
edge that captures the constraints on acceptable uses of the actions, and semantic knowledge that
captures the causal relations embodied in the action (the kind of information required to make predic-
tions about the state of the world that eventuates from the action’s execution.) Successfully performing
structural bootstrapping for planning operators requires learning of both of these kinds of information.

As is traditional in planning research, we argue that the semantics of actions can represented using
STRIPS/PDDL style[1] representations of the preconditions and effects of executing the action. Such
rules naturally capture the state to state transitions that occur when individual actions are actually
executed. This most accurately aligns with the idea of actions as functions that move an agent from
one state to another. Further, we argue that, as in natural language processing research, Combinatory
Categorial Grammars (CCGs)[2] can be used to represent the syntax of actions.

One of the central themes of Xperience is the using of “inside-out” knowledge (previously acquired syn-
tactic and semantic knowledge about actions) to recognize the syntactic role being played by a previously
unseen action as being the same as another action on the basis of shared effects (semantics) and its role
in executing a known plan. In Xperience we have proposed that in order to learn syntactic knowledge in
the action domain, something very similar to the process used by chart based type inference [3] in natural
language learning can be used to infer the syntactic type of a previously unseen actions. Chart based
type inference uses the set of possible parses for a sentence in which an unseen word occurs, to infer the
syntactic type of the unseen word. In a similar fashion we can construct a new syntactic type for actions
that have not previously been seen based on parsing successful occurrences of the unknown action in the
context of known actions.

Consider the following example. Imagine a robot that knows how to grasp an object from the side but
is unaware that the same object could be grasped with the same effect from above. Representing this
kind of syntactic knowledge in a CCG results in the following lexicon where each action (on the left
hand side of the “:=”) is associated with the category on the right hands side, and CCG categories have
a recursive structure of the form: basic-category or (result-category / argument-category) or (result-
category \argument-category)

• approachSideA(x) := surround(x).
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• approachOverA(x) := over(x).

• approachInA(x) := ( putAway(x,y) / {emptyHand} ) \{ holdSide(y) } , in(X).

• graspSideA(x) := holdSide(x) \{ surround(x) }.
• releaseA := emptyHand, release.

With this kind of lexicon we can view the process of recognizing the actions and plans of others as parsing
the categories assigned to the observed actions. For example, suppose we observe the following sequence
of actions:

approachSideA(cup1), graspSideA(cup1), approachInA(box1), releaseA

Figure 1.1 shows how the parsing of CCG categories of the kind outlined in our previous work and the
attached paper will allow us to conclude that we have observed an instance of the PutAway plan. Some
of the details of this parsing process are detailed in the attached paper on parallelizing plan recognition.

approachSideA(cup1) graspSideA(cup1) approachInA(box1)

surround(x) holdSide(x)\surround(x)

holdSide(x) (putAway(x,y)/handEmpty)\holdSide(x)

PutAway(x,y)/handEmpty

releaseA

handEmpty

PutAway(x,y)

Figure 1.1: Plan recognition by parsing CCG categories.

Now suppose that we have a previously unobserved action, and we see such an action within a context
wherein we know the surrounding categories. For example, in addition to the lexicon provided above
there is an action graspTopA(X) that has never been seen by the system. As such, the lexicon does
not have an entry for it, and does not assign it any categories. Imagine we observe within the following
sequence of actions.

[approachOverA(cup1), graspTopA(cup1), approachInA(box1), releaseA(cup1)]

Using the same parsing algorithm would result in the following two parses:

approachOver(cup1), unkn, in(box1), release

over(cup1), unkn, in(box1), emptyHand

If we know this sequence of actions constitutes a plan for some goal (either by being told by others or by
our own observation of a state change in the world), then we could infer two possible categories for the
unknown action:

• (((unknCat0(0,1)) / {emptyHand()} ) / in(0)) \{over(1)}
• (((unknCat1(0,1)) / {release()}) / {in(0)}) \{approachOver(1)}

These categories are created by collecting the categories of the actions that are on either side of the
unknown action and concatenating the appropriate directional slash operator (in order) to build up the
category. 1 As we have already alluded, this is very similar to Thomforde’s chart based type inference.

Over the last twelve months we have been working on developing an algorithm, based on these ideas, to
build action lexicons via category inference from a single presentation of a previously unknown action.

1Note that we have assumed that leftward arguments are placed outside all of the rightward arguments but there is no
necessary reason for this and it is an open research question as to how this should be done.

6



Xperience 215821 PU

We have made significant progress on formalizing an example of this kind of learning in the Xperience
domain. Specifically we have been looking at formalizing an example wherein a robot in a kitchen domain
is making batter and taught that a spoon can be used in place of a hand mixer to combine ingredients.
After learning this kind of syntactic knowledge, the system should not only be able to recognize others
engaged in the same task but also be able to perform it for themselves.

Beyond formalizing this process and developing a demonstration example within the Xperience domain, in
the past twelve months we have made significant progress on the underlying technology that is necessary
for realizing this vison of structural bootstrapping of planning knowledge. This includes completion of
serialization of ELEXIR lexicons. This allows the modification of the lexicon to be written out and read
back in by another reasoner. This functionality will be needed in order to transfer the learned categories
from the plan recognition component to a CCG based planning component.

As the Xperience robots become more and more adept at low level physical actions, the number of possible
plans they could be carry out will increase. As this happens searching the space of possible parses of
their observed actions will become more computationally costly. In order to address this issue we have
engaged in two complimentary research lines in the past twelve months. First we have completed a
parallel implementation of ELEXIR. This allows the ELEXIR system to take advantage of modern multi
core processor architectures. A paper on this topic is attached.

Second, we have completed an implementation of a depth first search for the ELEXIR parser rather than
the existing breadth first search. While the parallel implementation will help significantly with scaling,
we anticipate a time when a complete search of the space of possible parses is too lage even for the
parallel implementation (given a fixed bound on the number of available processors) and we will need to
approximate the set.

Finally we have made significant progress on learning PDDL style representations of action. It is critical
for this work to be able to learn both the syntax and semantics of actions. This work on leaning the
PDDL style representations of actions forms the foundation of the learned semantics of actions. A paper
on this topic is attached.
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Chapter 2

Attached Papers

[Geib:13 ] Christopher W. Geib and Christopher E. Swetenham., Parallelizing Plan Recognition.,
XPERIENCE Technical Report, University of Edinburgh, January 2013.

Abstract: Modern multi-core computers provide an opportunity to parallelize plan
recognition algorithms to decrease runtime. Viewing the problem as one of parsing and
performing a complete breadth first search, makes ELEXIR (Engine for LEXicalized
Intent Recognition)[?]articularly suitable for such parallelism. This paper documents the
extension of ELEXIR to utilize such modern computing platforms. We will discuss multi-
ple possible algorithms for distributing work between parallel threads and the associated
performance wins. We will show, that the best of these algorithms will provide close to
linear speedup (up to a maximum number of processors), and that features of the problem
domain have an impact on the speedup.

[Mourão:13 ] Kira Mourão., PDDL Rule Learning.,
XPERIENCE Technical Report, University of Edinburgh, January 2013.

Abstract: In previous work STRIPS planning operators were learnt using data gathered
by exploration of the world (Mourão et al., 2012). I also cre- ated a model which oper-
ated in more complex PDDL-style domains, and made predictions of the successor state
given an action and initial state, but which did not produce explicit rules describing the
state transitions (Mourão, 2012). In this report I describe how these approaches can be
combined to learn PDDL-style planning operators. I also discuss the un- derlying graph-
ical representation used in learning PDDL-style domains, and explain how it supports
learning of sensing
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Parallelizing Plan Recognition.

Christopher W. Geib and Christopher E. Swetenham
In Submission to the Internation Joint Conference on Artificial Intelligence 2013

Abstract

Modern multi-core computers provide an opportu-
nity to parallelize plan recognition algorithms to
decrease runtime. Viewing the problem as one of
parsing and performing a complete breadth first
search, makes ELEXIR (Engine for LEXicalized
Intent Recognition)[Geib, 2009; Geib and Gold-
man, 2011] particularly suitable for such paral-
lelism. This paper documents the extension of
ELEXIR to utilize such modern computing plat-
forms. We will discuss multiple possible al-
gorithms for distributing work between parallel
threads and the associated performance wins. We
will show, that the best of these algorithms will
provide close to linear speedup (up to a maximum
number of processors), and that features of the
problem domain have an impact on the speedup.

2 Introduction
The ubiquity of multi-core processors provides an oppor-
tunity for algorithms that are easy to parallelize to realize
significant runtime gains. However, the use of the kind of
bounded parallelization available in these architectures has
not been closely studied for most AI applications. Even with
the ubiquity of libraries and packages supporting multithread-
ing, most AI research has not focused on efforts to parallelize
specific AI algorithms. That said, algorithms that are well
suited to this kind of bounded parallelism, could benefit from
a better understanding of the tradeoffs required to make full
use of easily obtainable modern computer architectures.

This paper presents experimental results on the paral-
lelization of a particular algorithm for the AI problem of
plan recognition, namely the Engine for LEXicalized Intent
Recognition (ELEXIR) system [Geib, 2009; Geib and Gold-
man, 2011]. It will show that this algorithm can easily be
parallelized to produce close to linear speedup if the correct
method for work allocation is chosen. The paper will also
show that specific features of the domain can have a signifi-
cant impact on the achieved speedup.

To this end, the rest of this paper will be organized as fol-
lows. First we will provide an overview of the ELEXIR sys-
tem, and discuss the features of the algorithm that make it

particularly well suited to parallelization. Next we will dis-
cuss four different algorithms for allocating work between the
different precessing threads and their respective strengths and
weaknesses. We will then discuss the results of testing these
allocation algorithms in multiple domains and discuss the im-
pact of various domain level features that can impact even the
parallelized algorithm’s performance. Finally we will draw
conclusions that are applicable both to other plan recognition
systems, as well as AI systems more broadly.

3 ELEXIR Background
Plan recognition is the process of inferring the plan being
executed by an agent based on observations of the agent’s ac-
tions and a library of plans to be recognized. Following other
work on grammatical methods[Sidner, 1985; Vilain, 1990;
1991] for plan recognition, ELEXIR[Geib, 2009] views the
problem as one of parsing a sequence of observations, based
on a formal grammar that captures the possible plans that
could be observed. Space prevents a complete discussion of
the ELEXIR system. Here we will cover only the basics of
the algorithm and those details necessary to understand its
parallelization. We refer the interested readers to[Geib, 2009;
Geib and Goldman, 2011] for more details.

In ELEXIR, plans are represented using Combinatory Cat-
egorial Grammars (CCG) [Steedman, 2000], one of the lex-
icalized grammars. Parsing in such grammars abandons the
application of multiple grammar rules in favor of assigning a
category to each observation and using combinators to com-
bine categories to build a parse.

3.1 Plan Grammar Categories
To represent possible plans in CCG, each observable action
is associated with a set of syntactic categories, defined recur-
sively as:
Atomic categories : A finite set of basic action categories.

C = {A, B, ...}.
Complex categories : ∀Z ∈ C, and non empty set

{W, X, ...} ⊂ C then Z\{W, X, ...} ∈ C and Z/{W, X, ...} ∈ C.
Viewing complex categories as functions, we will refer to
the categories on the right hand side of a slash as arguments
({W, X, ...}) and the category on the left hand side as a result
(Z). The direction of the slash indicates where in a stream of
observations the category looks for its arguments. That is, the



argument(s) to a complex category should be observed after
the category for a rightward slash and will be called right-
ward arguments. The arguments for a complex category with
a leftward slash, should be observed before it (leftward argu-
ments), to produce the result. Finally, multiple arguments in
set braces are unordered with respect to each other.

As an example consider the simple three step plan of pick-
ing up a cell phone, dialing a number, and talking on it. This
plan could be represented by the following grammar:

CCG: 1

dialCellPhone :=(CHAT/{T })\{G}.
talk :=T.

getCellPhone :=G.

Where G, T, and CHAT are basic categories, the actions of
talk and getCellPhone each have only a single possible cate-
gory, namely T and G, and the the action dialCellPhone has
a single complex category that captures the structure of the
plan for chatting to a friend.

It is also worth noting that lexicalized plan grammars also
require a design decision about which actions should carry
which parts of the structural information for a plan. We will
call an action that has a particular category as its result an
anchor for a plan to achieve that category. For example in
the phone calling grammar dialCellPhone is the anchor for
the plan to CHAT. However, as we can see in CCG: 2 and
CCG: 3 we could have chosen talk or getCellPhone as the
anchor by choosing a slightly different set of categories.

CCG: 2

dialCellPhone :=D.
talk :=(CHAT\{D})\{G}.

getCellPhone :=G.

CCG: 3

dialCellPhone :=D.
talk :=T.

getCellPhone :=(CHAT/{T })/{D}.

[Geib, 2009] notes that the anchors chosen for a particular
grammar can have a significant impact on the runtime of plan
recognition. Some choices for the anchors result in a smaller
number of possible parses. We will return to discuss this later.

3.2 Combinators
ELEXIR uses three combinators [Curry, 1977] defined over
pairs of categories, to combine CCG categories:

rightward application: X/α ∪ {Y}, Y ⇒ X/α
leftward application: Y, X\α ∪ {Y} ⇒ X\α
rightward composition: X/α ∪ {Y}, Y/β ⇒ X/α ∪ β

where X and Y are categories, and α and β are possibly empty
sets of categories. To see how a lexicon and combinators
parse observations into high level plans, consider the deriva-
tion in Figure 1 that parses the observation sequence: getCell-
Phone, dialCellPhone, talk using CCG: 1. As each observa-

getCellPhone dialCellPhone talk
G (CHAT/{T})\{G} T

<
(CHAT/{T}

>
CHAT

Figure 1: Parsing Observations with CCG categories

tion is encountered, it is assigned a category as defined by the
plan grammar. Combinators (rightward and leftward applica-
tion in this case) then combine the categories. We will refer to
each such parse of the observation stream as an explanation.

Stated briefly, ELEXIR performs plan recognition by gen-
erating the complete and covering set of explanations for an
observed stream of actions given a particular grammar. It
then computes a probability distribution over this complete
set, and on the basis of this distribution can compute the con-
ditional probability of any individual goal. While ELEXIR’s
probability model will not be relevant for our discussion and
will not be covered here, there are some additional details of
the parsing algorithm that make ELEXIR amenable to paral-
lelization which we will discuss next.

4 Parallelizing ELEXIR: Theory
To enable incremental parsing of multiple interleaved plans,
ELEXIR does not use an existing parsing algorithm. Instead
it uses a very simple two step algorithm based on combinator
application linked to the in-order processing of each observa-
tion and a restriction on the form of complex categories.

Assume we are sequentially observing the actions of an
agent, and further suppose that the observed agent is actually
executing a particular plan whose structure is captured in a
category that we are considering assigning to the current ob-
servation. In this case, it must be true that all of the leftward
arguments to the category have already been performed. For
example, in the cell-phone usage case, we must have observed
the action of getting the cellphone before the dialing action,
otherwise it is nonsensical to hypothesize the agent is trying
to chat with a friend.

To facilitate this check, ELEXIR requires that all leftward
arguments be on the “outside” (further to the right when read-
ing the category from left to right) of any rightward argu-
ments the complex category may have. For example, this
rules out reversing the order of the arguments to dialCell-
Phone in our example CCG: 1.
CCG: 4

dialCellPhone :=(CHAT/{T })\{G}. acceptable
dialCellPhone :=(CHAT\{G})/{T }. unacceptable

We call such grammers leftward applicable. This does not
make a difference to the plans captured in the CCG, as the
arguments are still in their correct causal order for the plan to
succeed. However, this constraint on the grammar mandates
that leftward arguments must be addressed first. In fact, ac-
counting for a categories leftward arguments is the first step
of ELEXIR’s two stage parsing algorithm.

The restriction to leftward applicable grammars allows
ELEXIR’s parsing algorithm to easily verify that an instance



of each of the leftward arguments for a category has previ-
ously been executed, by the agent, at the time the category
is considered for addition to the explanation. If a category
being considered for addition has a leftward argument that is
not already present in the explanation (and therefore can’t be
applied to the category), ELEXIR will not extend the expla-
nation by assigning that category to the current observation,
since it cannot lead to a legitimate complete explanation.

Thus, for each category that could be assigned to the cur-
rent observation, the first step of the parsing algorithm is to
verify and remove, by leftward application, all of its left-
ward arguments. This is done before the category is added
to the explanation. This means that the explanation is left
with only categories with rightward arguments. Further, since
none of the combinators used by ELEXIRproduce leftward
arguments, for the remainder of its processing the algorithm
only needs to consider rightward combinators. This feature
enables the second step of the ELEXIR parsing algorithm.

After each of the possible applicable categories for an ob-
servation have been added to a fresh copy of the explanation,
ELEXIR attempts to apply the rightward combinators to ev-
ery pairing of the new category with an existing category in
the explanation. If the combinator is applicable, the algorithm
creates two copies of the explanation, one in which the com-
binator is applied, and one in which it is not. As a result, each
rightward combinator can only ever applied once to any pair
of categories. This two step algorithm both restricts obser-
vations to only take on categories that could result in a valid
plan, and guarantees that all possible categories are tried and
combinators are applied. At the same time, it does not force
unnecessarily eager composition of categories that should be
held back for combination with as yet unseen category. Effec-
tively this is creating a canonical ordering for the generation
of explanations. This is what makes the ELEXIR algorithm
particularly amenable to parallelization.

ELEXIR uses this two step parsing algorithm to search the
space of all possible explanations for the observed actions.
Given the algorithm, any two explanations must differ either
in the category assigned to an observed action, or to the right-
ward combinators that are applied. As a result, given this
algorithm for parsing the explanations, it is not possible for
two explanations that have been distinguished either by the
addition of different categories or the application of different
combinators to result in the same explanation for the obser-
vations.1 This means each addition of a category to an expla-
nation or the use of a rightward combinator splits the search
space into complete and non-overlapping sub-searches. Such
sub-searches do not depend on their sibling searches and can
therefore be parallelized.

To summarize then, given the requirement of leftward
applicable plan grammars, the two step parsing algorithm
used by ELEXIR splits the search for explanations into non-
overlapping sub-searches. Each such search can be treated as

1This does not mean that the system can only find a single ex-
planation for a plan given a set of observations, but that each such
plan will differ either in which observed actions are part of the plan,
the categories assigned to the constituent observations, or the sub-
plans composed to produce it. These are all significantly different
explanations and need to be considered by the system.

separate unit of work that can be done in parallel, with the
complete set of explanations being collected at the end.

5 Parallelizing ELEXIR: Practice
Given a method to break up the search for explanations into
disjoint sub-searches, parallelization of the algorithm still re-
quires answers to the question: How will the work be sched-
uled for performance? Effectively scheduling work for exe-
cution across multiple threads means keeping all the available
threads busy with work while satisfying the dependencies be-
tween units of work. The unit of work scheduling may also
not directly correspond to a single subtask of the underlying
problem. We could decide to batch several subtasks together
to form a single work unit for scheduling. This means the
choosing the size of work units requires making a tradeoff
between the overhead of scheduling and the effectiveness of
the work distribution. For example, in the limit, scheduling
all the subtasks as one unit of work will give no multithread-
ing at all. We will see that, the methods we investigated differ
in the overhead of scheduling each unit of work, and in how
effectively they keep threads busy.

To parallelize ELEXIR we first modified the algorithm
to ensure the search could safely proceed across multiple
threads. In our C++ implementation of ELEXIR, we re-
placed the standard memory allocator with, the jemalloc
allocator[Evans, 2006], which is designed for multi-threaded
applications, has much better contention and cache behav-
ior, and showed much better speedups with larger numbers of
threads in exploratory test experiments.

We then implemented four different scheduling policies to
allocate the work to be performed across available hardware
threads, and compared these against the baseline runtime of
the original single-threaded algorithm. All except the base-
line implementation, were built to be configurable in the num-
ber of worker threads.

Some of our policies have the main thread distribute work
to the worker threads, in which case the set of explanations af-
ter each observation are collected and redistributed to threads
on the next observation. The others have the worker threads
pull work when they are otherwise idle. This means these
schedulers do not need to have all the worker threads com-
plete their work and fall idle after each observation, but can
instead keep all threads working until all the observations
have been processed. We will highlight these distinctions for
each of the implemented policies below:

1. The baseline implementation is the original implemen-
tation, albeit with the thread-safety guarantees in place.

2. The naive scheduler [Herlihy and Shavit, 2012] imple-
mentation is a proof of concept for multithreading the
algorithm; it spawns a new thread for each unit of work
to be scheduled, and the thread is destroyed when the
unit of work is completed. For each observation, one
unit of work is produced for each thread, and the set of
explanations is shared equally between units of work.

3. The blocking scheduler [Herlihy and Shavit, 2012]
gives each worker thread a queue, and the main thread
distributes work to these queues on each observation.



Threads can block on an empty work queue instead of
repeatedly having to check the queue. As in the naive
scheduler, explanations are redistributed equally among
threads on each new observation.

4. The global queue [Herlihy and Shavit, 2012] sched-
uler uses a single multiple-producer, multiple-consumer
work queue shared between all the threads and guarded
by mutex at both ends. Worker threads push new work
into this queue as they produce new explanations, and
fetch work from this queue when they fall idle. This
policy has a second configurable parameter: the batch
size, which specifies the maximum number of explana-
tions to be added to a unit of work to be scheduled. The
larger the batch size, the fewer units of work we need to
schedule when processing, but the more potential there
is for missed parallelism due to underutilization. By
measuring the runtime with different batch sizes, We
determined a batch size of 32 to be adequate, although
larger values may preferable for large problems.

5. The work-stealing [Blumofe and Leiserson, 1999]
scheduler gives each worker thread a queue. When
worker threads produce new explanations, they sched-
ule new work units into their own queue, and threads
which run out of work can steal work from other threads’
queues. We implemented a lockless work-stealing queue
due to [Chase and Lev, 2005].

6 Real-World Domains
We tested the performance of the schedulers described above
on three domains. First, a simplified robotic kitchen clean-
ing domain involving picking up objects and putting them
away (XPER). This domain is based on the European Union-
FP7 XPERIENCE robotics project[Xpe, 2011]. Second, a
logistics domain (LOGISTICS), involving the transporting of
packages between cities using trucks and airplanes. This do-
main is based on a domain in the First International Planning
Competition[Long and Fox, 2003]. Third and finally, a cyber
security based domain (CYBER) based on recognizing the
actions of hostile cyber attackers in a cloud based network
computing environment.

For each domain a problem with a runtime between a sec-
ond and a minute for the baseline algorithm was generated by
hand. This problem was then presented to each of the algo-
rithms running on a multi-processor machine using 1 to 12
cores. We will present data on the speedup of each algorithm
on the problem, defined as the single threaded runtime di-
vided by the runtime with a larger number of threads. Ideally
we would like to achieve linear speedup (speedup equal to
the number of threads). In the following graphs, we compute
the speedup against the baseline runtime of the original algo-
rithm. In later figures, where the baseline implementation is
not included, we instead compute the speedup by comparing
the runtime for a single thread and the runtime for the current
number of threads.

Figures 2, 3, 4 show the average speedup for each sched-
uler as we vary the number of threads available. Each data
point was generated from the average of 20 runs. Compar-
ing the results for different schedulers, on all three problem
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Figure 2: Speedup for CYBER domain vs. # of threads.
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Figure 3: Speedup for XPER domain vs. # of threads.

domains, the work-stealing scheduler remains the clear win-
ner; the next best scheduler varies depending on the domains
but the work-stealing scheduler dominates the others. The
work-stealing scheduler does this by ensuring threads which
are starved for work can rapidly find more, and the lockless
work-stealing deque implementation has very low overhead.
Given this convincing success, the remainder of our experi-
ments focus on the work-stealing scheduler.

In Figure 5, we compare the speedups achieved on all three
domains, using the work-stealing scheduler. The algorithm
performs significantly worse on the CYBER domain than the
XPER and LOGISTICS domains. Looking at the respective
runtimes provides us with a clue as to why. The CYBER do-
main problem runs much faster than the others. For compara-
ison, with a single thread the CYBER domain problem runs in
around 1 second, the LOGISTICS domain problem in around
25 seconds, and the XPER domain problem in around 60 sec-
onds. This suggests, that the CYBER domain may simply
have less to work to parallelize. Since the chief determiner
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Figure 4: Speedup for LOGISTICS domain vs. # of threads.
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Figure 5: Speedup of work-stealing across all domains.

of the runtime for the single threaded case is the number of
explanations to be considered, we decided to explore if the
structure of the plans in the domain could impact the speedup.

7 Synthetic Domains
To study how the structure of the plans within the domains
affects the amount of work to be done and therefore the possi-
ble speedup, we created six synthetic domains, systematically
varying the plan grammar, while maintaining the same input
sequence of observations. We explored two different ways in
which the plan grammer could be varied. First by changing
the causal ordering of the actions within the plans, second by
varying the anchor actions selected for the plans. We discuss
each in turn. [Geib and Goldman, 2009] showed that partial
orderness in the plan grammar could result in large numbers
of alternative explanations when using gramatical methods
for plan recognition. We therefore explored two partially or-
dered plan structures (see Figure 6), which we will refer to as
order FIRST where there is a single first element of the plan

CG 

C1 C2 C3 

First 

CG 

C1 C2 C3 

Last 

Figure 6: Causal structures for plans.

that all other actions must follow, and order LAST where there
is a single last element that all actions must precede.

[Geib and Goldman, 2009] also showed the effects of par-
tial ordering can be influenced by the choice of anchors in
a lexicalized plan grammar. Therefore, for our synthetic do-
mains, we assumed complete tree structured plans of depth
two with a uniform branching factor of three resulting in nine
step plans. We then numbered the actions of the plan from
left to right and on the basis of these indicies systematically
varied the anchor of the plans from the far left to the far right.
Given the branching factor of three for each subplan, this re-
sulted in three possible values for the anchor which we will
call: anchor LEFT, anchor MID, and anchor RIGHT, corre-
sponding to the anchor being assigned to the leftmost action
in the subplan the rightmost action of the subplan or the mid-
dle action in the subplan. As an example of only a sub part of
the plan, the following is a set of CCG grammars for a three
step, order FIRST plan, like that shown in Figure 6.

CCG: 5

FIRST-LEFT:
act1 := GC/{C2,C3}. act2 := C2. act3 := C3.
FIRST-MID:

act1 := C1. act2 := (GC\{C1})\{C3} or (GC\{C1})/{C3}.
act3 := C3.
FIRST-RIGHT:

act1 := C1. act2 := C2.
act3 := (GC\{C1})\{C2} or (GC\{C1})/{C2}.

As in the above grammars, in the future, we will denote each
synthetic test domain grammar by its ordering feature and its
anchor feature.

To quantify how much work is done by the algorithm for
each grammar, during recognition we recorded the number
of explanations that were generated both during the interme-
diate stages of processing as well as the final number of ex-
planations generated for all of the domains. The results are
presented in Table 1.

To confirm our hypothesis that the number of explanations
generated is a reasonable metric of the amount of time taken,
Figure 7 is a scatter plot, showing the runtime of the work-
stealing algorithm in seconds against the sum of the interme-
diate and final number of explanations for all of the domains.
Note that FIRST-MID and LAST-RIGHT are basically on top
of one another down almost on the origin. From this, we can
see that the growth in runtime is roughly proportional to the



Domain Intermediate Final
FIRST-LEFT 1115231 330496
FIRST-MID 209 16
FIRST-RIGHT 5438 1296
LAST-LEFT 208326 48384
LAST-MID 1106489 416016
LAST-RIGHT 35 1
CYBER 74487 26632
XPER 710549 1149149
LOGISTICS 1628890 995520

Table 1: Explanations generated by each domain
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Figure 7: Runtime vs. total explanations, for all domains.

total number of explanations generated for each problem, giv-
ing us strong reason to believe the total number of explana-
tions is a reasonable metric for the amount of work done.

Next, Figure 8 plots the speedup for the work stealing al-
gorithm on the same observation stream for each of the syn-
thetic domains. As expected it shows a clear difference in
speedup depending on the structure of the plans and the gram-
mar used to describe it. Comparing Figure 8 to Table 1 also
shows a clear correlation. The LAST-RIGHT and FIRST-
MID domains which generate only a handful of explanations
have limited speedup, while the FIRST-LEFT and LAST-
MID which generate tens of thousands of explanations and
exhibit close to linear speedup. This gives us strong reason to
believe that the differences in the speed up are a result of the
differences in the number of explanations are generated.

This shows, that when more explanations are posible ac-
cording to the grammar, more work is required, therfore more
threads can be kept busy, and a greater speedup is achievable.
However, the converse is also true. Fewer explanations in a
domain, means that less work needs to be done, and for small
enough problems there will be no significant gain in the run-
time for a parallel implementation. Therefore, to help in real
world deployment, we need to be able to identify when a par-
allel implementation is worth the cost.

To identify this, Figure 9 is a second scatter plot graphing
speedup achieved with 12 threads against the base runtime
with 1 thread for each of the problem domains. Its shows that
for runs that take longer than around 5 seconds, we achieve
10-fold speedup, very close to the ideal, 12-fold speedup,
making parallelism worth while. For shorter runs, there is
much less benefit to the multithreaded implementation.

Our analysis also suggests that for real world domains with
plan grammars with predominately LAST-RIGHT or FIRST-
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Figure 8: Speedup of the synthetic domain problems with
increasing # of threads. The data points for the FIRST-
LEFT and LAST-MID, as well as the FIRST-MID and LAST-
RIGHT series overlap extremely closely.

MID structure (where both the causal structure of the plan
and the CCG grammar’s anchors act to reduce the number of
explanations) parallelism will be less helpful.
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Figure 9: Speedup vs runtime, for all domains.

8 Conclusion
This paper has shown that parallelization using a work-
stealing scheduling regime can be usefully applied to signifi-
cantly speed up the processing of the ELEXIR plan recogni-
tion system. The multithreaded implementation discussed in
this paper allows us to use the ubiquitous modern multi-core
machines to explore domains which would previously have
been computationally intractable, and larger plans than would
previously have been possible. Further, it demonstrates that
using the causal structure of the plan and correctly choosing
the anchors for a CCG representation of plans can have a sig-
nificant impact on the effectiveness of parallelization by pre-
emptively taming of the complexity that results from partially
ordered plans. Finally it suggests that parallelization should
not be universally applied. For some domains and problems,
the costs of parallelization may equal the gains, and it sug-
gests some practical rules of thumb for when this may happen
when using ELEXIR.
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Abstract

In previous work STRIPS planning operators were learnt using data
gathered by exploration of the world (Mourão et al., 2012). I also cre-
ated a model which operated in more complex PDDL-style domains, and
made predictions of the successor state given an action and initial state,
but which did not produce explicit rules describing the state transitions
(Mourão, 2012). In this report I describe how these approaches can be
combined to learn PDDL-style planning operators. I also discuss the un-
derlying graphical representation used in learning PDDL-style domains,
and explain how it supports learning of sensing actions.

1 Introduction

Developing agents with the ability to act autonomously in the world is a ma-
jor goal of artificial intelligence. One important aspect of this development is
the acquisition of domain models to support planning and decision-making: to
operate effectively in the world, an agent must be able to accurately predict
when its actions will succeed, and what effects its actions will have. Only when
a reliable action model is acquired can the agent usefully combine sequences of
actions into plans, in order to achieve wider goals.

In this report we consider the problem of acquiring explicit domain models
from the raw experiences of an agent exploring the world, where the domains
under consideration are relational PDDL-style domains. Given the autonomous
learning setting, we assume only a weak domain model where the agent knows
how to identify objects, has acquired predicates to describe object attributes
and relations, and knows what types of actions it may perform, but not the
appropriate contexts for the actions, or their effects. Experience in the world
is then developed through observing changes to object attributes and relations
when motor-babbling with primitive actions.

2 Problem definition

A domain D is defined as a tuple D = 〈O,P,F ,A〉, where O is a finite set of
world objects, P is a finite set of predicate (relation) symbols, F is a finite set of
function symbols and A is a finite set of actions. Each predicate, function and
action also has an associated arity. A fluent expression is a statement of the
form (i) p(c1, c2, . . . , cn), where p ∈ P, n is the arity of p, and each ci ∈ O, or
(ii) f(c1, c2, . . . , cn) = cn+1, where f ∈ F , n is the arity of f , and each ci ∈ O.
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A state is any set of fluent expressions, and S is the set of all possible states.
Since state observations may be incomplete we assume an open world where
unobserved fluents are considered to be unknown. For any state s ∈ S, a fluent
expression φ is true at s iff φ ∈ s. The negation of a fluent expression, ¬φ, is
true at s (also, φ is false at s) iff ¬φ ∈ s. If x ∈ s then ¬x /∈ s. Any (legal)
fluent expression not in s is unobserved.

Each action a ∈ A is defined by a set of preconditions, Prea, and a set
of effects, Effa. Prea can be any set of fluent expressions and negated fluent
expressions. Additionally, preconditions may be existentially qualified, of the
form ∃x1, x2, . . . , xnP (x1, x2, . . . , xn) where P is a set of preconditions, subject
to a scope assumption, described below (see Section 3). We consider several
different kinds of action effects. First, we will allow standard STRIPS effects,
where each e ∈ Effa has the form add(φ) or del(φ), and φ is any fluent expression.
Second, we permit conditional effects of the form Ce ⇒ add(φ) or Ce ⇒ del(φ).
Here, Ce is any set of fluent expressions and negated fluent expressions, and is
referred to as the secondary preconditions of effect e. Third, we allow universally
quantified effects of the form ∀x1, x2, . . . , xnE(x1, x2, . . . , xn) where E is a set
of effects, possibly conditional, and subject to a scope assumption, described
below. Action preconditions and effects can also be parameterised. An action
with all of its parameters replaced with objects from O is an action instance. For
any fluent expression or action φ, the function label(φ) returns its predicate or
action symbol, args(φ) returns the set of arguments of φ, and argsi(φ) returns
the i-th argument of φ.

The task of the learning mechanism is to learn the preconditions and ef-
fects Prea and Effa for each a ∈ A, from data generated by an agent per-
forming a sequence of randomly selected actions in the world and observing
the resulting states. The sequence of states and action instances is denoted
by s0, a1, s1, . . . , an, sn where si ∈ S and ai is an instance of some a ∈ A.
Our data consists of observations of the sequence of states and action instances
s′0, a1, s

′
1, . . . , an, s

′
n. In previous work (Mourão et al., 2012; Mourão, 2012),

state observations could be noisy (some φ ∈ si may be observed as ¬φ ∈ s′i)
or incomplete (some φ ∈ si are not in s′i). In this report, observations are
assumed to be complete and noise-free: the extension to incomplete, noisy ob-
servations will be based on the corresponding STRIPS approach (Mourão et al.,
2012). Action failures are allowed: the agent may attempt to perform actions
whose preconditions are unsatisfied. To make accurate predictions in domains
where action failures are permitted, the learning mechanism must learn both
preconditions and effects of actions.

Consider, for example, the Briefcase domain (shown in Figure 1a), an ADL
domain where an agent inserts and removes items from a briefcase, and moves
it from location to location. For a state with items A and B in the briefcase at
location L1, and item H at location L2, the state description could be:

(AND (is-at L1) (in A) (in B) (NOT (in H)) (at A L1) (at B L1)

(at H L2) (NOT (at A L2)) (NOT (at B L2)) (NOT (at H L1))

(NOT (is-at L2))).

2



A sequence of states and actions could be as follows:

s0: (AND (is-at L1) (in A) (in B) (NOT (in H)) (at A L1) (at B L1)

(at H L2) (NOT (at A L2)) (NOT (at B L2)) (NOT (at H L1))

(NOT (is-at L2)))

a1: (take-out A)

s1: (AND (is-at L1) (NOT (in A)) (in B) (NOT (in H)) (at A L1)

(at B L1) (at H L2) (NOT (at A L2)) (NOT (at B L2)) (NOT (at H L1))

(NOT (is-at L2)))

a2: (move L1 L2)

s2: (AND (is-at L2) (NOT (in A)) (in B) (NOT (in H)) (at A L1)

(at B L2) (at H L2) (NOT (at A L2)) (NOT (at B L1)) (NOT (at H L1))

(NOT (is-at L1)))

a3: (put-in A)

s3: (AND (is-at L2) (NOT (in A)) (in B) (NOT (in H)) (at A L1)

(at B L2) (at H L2) (NOT (at A L2)) (NOT (at B L1)) (NOT (at H L1))

(NOT (is-at L1))).

Taking a sequence of such inputs, we learn action descriptions for each action
in the domain. For example, the move action, which moves the briefcase from
one location to another, would be represented as:

(:action move

:parameters (?m ?l - location)

:precondition (is-at ?m)

:effect (and (is-at ?l) (not (is-at ?m))

(forall (?x - portable) (when (in ?x)

(and (at ?x ?l) (not (at ?x ?m))))))).

3 Representing PDDL-style domains for learn-
ing

When learning models of STRIPS domains, the problem can be simplified by
learning from reduced world state descriptions. These only include predicates
relating to objects which are parameters of the action being performed in a par-
ticular state. Such state descriptions are sufficient for learning STRIPS action
models, by the STRIPS scope assumption, which states that objects mentioned
in the preconditions or the effects must be listed in the action parameters. The
STRIPS scope assumption fixes a small number of objects to consider for an
action, as well as their roles, which allows relational state descriptions to be en-
coded in a vector, as each possible fluent in a state maps to exactly one possible
fluent in any other state.

However, in more complex PDDL-style domains the STRIPS scope assump-
tion does not hold. Since we still need to reduce the size of world state descrip-
tions to make learning tractable, we extend the STRIPS scope assumption by
applying the notion of deictic terms. Similar to Pasula et al. (2007), a deictic
term is a variable Vi and a constraint ρi where ρi is a set of literals defining Vi
in terms of the arguments of the current action and any previously defined Vj
(j < i). Then an object has a deictic term if it is an argument of the current
action, or it is related directly, or indirectly via other objects, to the arguments
of the action. Additionally, we add the constraint that for an object to have a
deictic term, it must be linked by a positive fluent to either an action parame-
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ter, or another object which has a deictic term (the positive link assumption).
This additional restriction accounts for the open world representation now in
place, avoiding deictic terms of the form “the-object-not-under-the-object-I-am-
picking-up-and-not-on-the-floor”, which will not usually be unique and seem
counter-intuitive.

Apart from the action parameters, any object in a state may be referred to
by several deictic terms, and (unlike Pasula et al. (2007)) any deictic term may
refer to several objects in a state. Deictic terms partition the set of objects in a
state into a set of equivalence classes, where any two members of an equivalence
class share the same set of deictic terms. We write x1 ∼ x2 if every deictic term
which refers to object x1 also refers to x2 and vice versa. Similarly, deictic terms
also partition the set of fluents in a state into a set of equivalence classes where
for φ1, φ2 ∈ s, φ1 ∼ φ2 iff label(φ1) = label(φ2) and ∀i argsi(φ1) ∼ argsi(φ2).
We extend the notion of arguments to the fluent equivalence classes so that
argsi([φ1]) = [argsi(φ1)] and args([φ1]) =

⋃
i{[argsi(φ1)]}.

Now we can make the deictic scope assumption that objects mentioned in
the preconditions or effects are either action parameters1 or related to the action
parameters, i.e., they have a deictic term. In this work we restrict ourselves to a
1-step deictic scope assumption, where related objects must be directly related
to the action parameters.2

With the deictic scope assumption, a vector representation can no longer be
used, as objects can have multiple roles relative to the action parameters. For
example, suppose a1 and a2 are action parameters, o, o1 and o2 are objects,
and p is a relation. If in one state description p(o, a1) and p(o, a2) are true,
and in another p(o1, a1) and p(o2, a2) are true, then when comparing the state
descriptions during learning, o could be mapped to either o1 or o2. The vector
representation does not allow for this possibility.

Instead we represent world states as graphs. Nodes in the graph represent
the current action, and the equivalence classes of fluents and objects defined
above. Negated fluents are also included. Fluent nodes are labelled with the
corresponding predicate or action symbols, and object nodes with the object
name of a representative in the equivalence class. Edges link equivalence classes
of fluents (or the current action) and their arguments, and are labelled with the
argument position.

Definition 3.1. For a state s ∈ S and an action a ∈ A, the situation graph
is the bipartite graph G = 〈R ∪O,E〉 where

• the set of fluent nodes is R, where
R = {[r] : [r] = {x : x ∈ s ∧ x ∼ r ∧ args(x) ∩ args(a) 6= ∅}} ∪ {a},

• the set of object nodes is O, where
O = {[c] : ∃[r] ∈ R such that [c] ∈ args([r])}, and

• the set of edges is E = {([r], [c]) : [r] ∈ R ∧ [c] ∈ O ∧ [c] ∈ args([r])}.
Figure 1 depicts an example from the Briefcase domain. Figure 1c shows a

situation graph for the state depicted in Figure 1b in the context of the (move

L1 L2) action. The object equivalence classes are [arg1], [arg2], [A], [D] and [F ],
since A ∼ B ∼ C, D ∼ E and F ∼ G.

1Thus the STRIPS scope assumption is a special case.
2Greater depths are possible, where objects are 2, 3 or more steps from the action param-

eters.

4



(define (domain briefcase)
(:requirements :adl)
(:types portable location)
(:predicates (at ?y - portable ?x - location)

(in ?x - portable)
(is-at ?x - location))

(:action move
:parameters (?m ?l - location)
:precondition (is-at ?m)
:effect (and (is-at ?l) (not (is-at ?m))

(forall (?x - portable) (when (in ?x)
(and (at ?x ?l) (not (at ?x ?m)))))))

(:action put-in
:parameters (?x - portable ?l - location)
:precondition (and (not (in ?x)) (at ?x ?l) (is-at ?l))
:effect (in ?x)))

(:action take-out
:parameters (?x - portable)
:precondition (in ?x)
:effect (not (in ?x)))

(a)

(b)

is-at move

arg1 arg2

in at at at

[A] [D] [F ]

1 2

1

2

1

2

1

2

(c)

Figure 1: (a) A PDDL description of the Briefcase domain, (b) a
state in the Briefcase domain, and (c) its graphical representation
(as a situation graph) when combined with the move action. Ob-
jects are represented by their deictic terms: here, given the action
(move arg1 arg2), [A]={x:(at x arg1) ∧ (in x) ∧ ¬(at x arg2)},
[D]={x:(at x arg1) ∧ ¬(in x) ∧ ¬(at x arg2)}, and
[F]={x:(at x arg2) ∧ ¬(in x) ∧ ¬(at x arg1)}. For clarity, nega-
tive relations are omitted in the graph.

3.1 Relevance to Xperience

3.1.1 Mixing domain representation

In the context of the Xperience project, the graphical representation is needed
for learning actions in the proposed mixing domain. For example, the specified
mix action is as follows:

(:action mix

:parameters ( ?hand ?mixer ?container )

:precondition (and (mixer ?mixer) (container ?container) (hand ?hand)

(graspable ?container) (graspable ?mixer)

(inHand ?mixer ?hand)

(exists (?mixture ?ingredient3 ?loc)

(and (mixture ?mixture) (ingredient ?ingredient3)

(location ?loc) (batter ?ingredient3)

(in ?mixture ?container) (on ?container ?loc)

(robotAt ?loc))) )

:effect (and (not(in ?mixture ?container)) (in ?ingredient3 ?container)))
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Figure 2: Graphical representation of the mix action precondition from the
Xperience mixing domain.

The earlier vector representation would exclude mixture, ingredient3 and loc,
due to the STRIPS scope assumption. However the graphical representation
includes these, and the resulting precondition in this representation would be
as shown in Figure 2.

3.1.2 Representations to support sensing actions

The graphical representation has the potential to support learning of dialogue
and other sensing actions. An important aspect of planning with sensing actions
is that the actions have the effect of changing the knowledge of the agent. For
example, when agent1 performs the action of asking agent2 which object they
need, the effect, usually, is that the deictic term “the-object-needed-by-agent2”
becomes known. The actual value of the term may vary: sometimes it might
be cup, sometimes pen. Typically when building a plan, the plan will depend
on acquiring knowledge via sensing actions, and using that knowledge elsewhere
in the plan. However, the values are not required until plan execution. For
example, once agent1 knows which object is needed by agent2, it can give the
object to agent2. In the plan the object can be denoted by the deictic term (or
run-time variable) the-object-needed-by-agent2, which can be replaced by the
actual object known to be needed when the plan is executed.

Such sensing actions can be represented graphically to correspond to those
used in the PKS planner (Petrick and Bacchus, 2002, 2004). In PKS, knowledge
acquired by sensing actions is stored in its Kv database, which contains a set
of functions whose values will become known at execution time. Whenever a
function term f ∈ Kv it can be used as a run-time variable in a plan.

Sensing actions can be represented in the graphical representation by using
functions, and by introducing predicates for equality and knowledge, as follows.
Some item of knowledge pertaining to x1, . . . , xn can be modelled as the func-
tion term f(x1, . . . , xn). Sensing actions update both the value of the function
term, and a predicate Kv which is true if the value is known, and false oth-
erwise. Previously, within the graphical representation, functions have been
modelled in the same way as predicates, with a function node linked by edges
to its arguments, and with an additional edge linking to its value (Figure 3).
However, this approach, combined with the existing learning mechanism, does
not support the use of a Kv predicate. Nor does it allow the existing learning
mechanism to learn that acquired knowledge can appear in preconditions for
actions. The problem is that for learning, terms which appear in the world
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Figure 3: Previous graphical representation of an action ask whose effect is to
set the value of function requires(agent2) to pen.

ask

agent2 pen

requires object-needed-by-agent2 =

Kv

1

2

Figure 4: New graphical representation of an action ask whose effect is to set
the value of function requires(agent2) to pen.

state must correspond to individual nodes in the situation graph.
Instead we introduce an additional deictic term t denoting the result of the

function. When the value of the function is known, Kv(t) is true, and otherwise
it is false, allowing us to model the effects of actions which change the agent’s
knowledge. Similarly, the term t can also be used in action preconditions, oper-
ating as a form of run-time variable. Sometimes the constant value of a function
may be relevant for an action, rather than the function result. Therefore we
must also include the known values of functions in the representation of a world
state. This is achieved using an equality predicate relating the result of the
function t to the value of the function v. Figure 4 presents an example of the
extended representation.

As a result of this extension to the graphical representation, sensing actions
can now be learnt using the learning approach described by Mourão (2012).
When combined with the extension to the rule extraction mechanism described
below, it will be possible to learn planning rules for sensing actions from expe-
rience in the world.

4 Learning planning operators

In previous work (Mourão et al., 2012) planning operators were learnt in a
two-stage process: initially a classification method was used to learn to predict
effects of actions, then STRIPS rules were derived from the resulting action
representations. A similar classification method was also used to learn to predict
effects of actions in PDDL-style domains (Mourão, 2012).
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In both cases, each action has its own set of classifiers, each of which predicts
whether a single fluent changes as the result of an action. (By default no change
is predicted, which reduces the number of potential classifiers.) Each classifier is
a voted perceptron (Freund and Schapire, 1999) combined with a graph kernel
which measures the similarity between two situation graphs. A key point is
that the classification function of the voted perceptron is a function of the set
of support vectors identified during learning, where the set of support vectors
is some subset of the set of training examples.3

Once the classifiers are trained, planning operators can be derived as follows.
First, rules are extracted from individual classifiers (Section 4.1). Since each
classifier predicts change to a single fluent this results in a set of candidate
preconditions for each candidate effect - a fluent which may change due to the
action. Second, the candidate preconditions and effects are combined via a
heuristic merging process to produce planning operators (Section 4.2).

4.1 Extracting rules from individual classifiers

Extracting rules from individual classifiers in the graphical case is a straight-
forward reapplication of the approach used for STRIPS vectors (Mourão et al.,
2012). The process is summarised here to provide background for the rule com-
bination step (Section 4.2).

Rules are extracted from a voted perceptron with kernel K and support
vectors SV = SV + ∪ SV −, where SV + (SV −) is the set of support vectors
whose predicted values are 1 (−1), where 1 means the corresponding fluent
changes, and −1 means there is no change. The positive support vectors are
each instances of some rule learnt by the perceptron, and so are used to “seed”
the search for rules. The extraction process aims to identify and remove all
irrelevant nodes in each support vector, using the voted perceptron’s prediction
calculation to determine which nodes to remove.

The weight of any possible state description vector x is defined to be the value
calculated by the voted perceptron’s prediction calculation before thresholding
(Freund and Schapire, 1999):

weighte(x) =
n∑

i=1

ci sign
i∑

j=1

yjαjK(xj ,x) (1)

where each xi is one of the n support vectors, yi is the corresponding target
value, ci and αi are the parameters learnt by the classifier, and e is the effect
predicted by the classifier. The predicted value for x is 1 if weighte(x) > 0
and −1 otherwise. A child of situation graph x is any distinct situation graph
obtained by removing a single fluent node of x. Similarly, a parent of x is any
situation graph obtained by inserting a true or false fluent node.

The basic intuition behind the rule extraction process is that more discrim-
inative features will contribute more to the weight of an example. Thus the
rule extraction process operates by taking each positive support vector and re-
peatedly deleting the feature which contributes least to the weight until some
stopping criterion is satisfied. This leaves the most discriminative features un-
derlying the example, which can be used to form a precondition. This algorithm
is detailed in Figure 5.

3Despite the name, note that support vectors in this case are situation graphs.
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for v ∈ SV + do
child := v
while child only covers +ve training examples do

parent := child
for each node in parent do

flip node to its negation and calculate weight
child := child whose parents have least weight difference

rulev := parent

Figure 5: The rule extraction algorithm.

4.2 Combining rules into planning operators

Combining the rule fragments ((precondition,effect) pairs) resulting from the
rule extraction process into planning operators is more challenging than in the
STRIPS case. The graphical structure of the rule fragments introduces ambigu-
ity to the process of merging preconditions and effects together. Furthermore,
the introduction of (some) quantification and conditional effects makes the pro-
cess more complex.

4.2.1 Overview

In outline, the rule combination process operates as follows. For each action the
process derives a rule (grule, erule) from the set of rulesR = {(g1, e1), . . . , (gr, er)}
produced by rule extraction, ordered so that weightei(gi) ≥ weightej (gj) if
i < j. The process first initialises grule to the highest weighted precondition in
R and sets erule = ∅. The rule is then refined by combining it with each of the
remaining per-fluent rules in turn, in order of highest weight.

Combining rules involves merging the graphs encoding the preconditions, as
well as the fragments of the graphs encoding the effects, into a new candidate
rule. After merging, a simplification step tests each fluent which has been added,
to see if deleting the fluent makes any difference to the predictions made by the
candidate rule. If predictions are unaffected, the fluent is deleted.

4.2.2 Merging preconditions and effects

At the merge step, the current rule (grule, erule) is merged with the next (pre-
condition,effect) pair, to form (gnew, enew). An example of a current rule and
(precondition,effect) pair to be merged is shown in Figure 6. Apart from the
action parameters, nodes in one situation graph may have multiple possible
mappings to nodes in another situation graph. This presents a problem for
merging as there are multiple possible resulting graphs. Therefore, only nodes
with identical deictic terms are mapped to each other, as these are the only
nodes which can be guaranteed to have the same role across different situation
graphs. All other nodes are inserted as new nodes in the candidate graph gnew,
with all their corresponding relations also added. Some of these nodes will be
deleted in the simplification step. The effect nodes are added to enew in the
same way.
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is-at move
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in at Mat Mat
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(a)

is-at move

Mis−at ?l1 ?l2

¬in at

?y

1 2

1

2

(b)

Figure 6: An example of a candidate rule (a) and a per-fluent rule (b) to be
merged into the candidate rule. Nodes labelled as Mpredicate are marker nodes
indicating effect fluents. In (a) the fluents which change are (is-at ?l1),
(at ?x ?l1) and (at ?x ?l2) where the action is (move ?l1 ?l2) and
(at ?x ?l1) and (in ?x) hold. When (a) and (b) are merged, both ?x and
?y, and fluents involving them, will exist in the merged graph, as their deictic
terms are not identical.

4.2.3 Simplifying

First the modified precondition gnew is considered with only the original (pre-
merge) set of effects erule. Each fluent node f in gnew which was not in grule
is deleted in turn, and the resulting rule g′new tested. Testing is performed by
the AcceptPrecons test from Mourão et al. (2012), which identifies preconditions
which are inconsistent with the training data, inconsistent with the underlying
classifiers, or which perform significantly worse than the existing precondition
in terms of F-score on the training data.

If g′new fails the AcceptPrecons test then the deleted fluent f is required in
the precondition, and is retained in gnew. If g′new passes the test then f will be
deleted from gnew, except in the case where the fluent occurs as part of a deictic
term in enew. In this case the fluent node is required in the precondition just
to bind deictic terms which occur in the effects. If enew is later accepted as the
new set of effects then f will be retained, otherwise it is deleted.

Without noise or partial observability, effects can simply be merged, as an
observed change has to be due to the action. However it must be determined
whether to add an effect to the main effects or conditional effects (if present).

4.2.4 Conditional effects

In the above we assumed that there were no conditional effects encoded by the
classifiers. Further steps are required to handle the possibility of conditional
effects.

Conditional effects are identified after the merging step by a conditional
testing step. The modified rule (gnew, enew) is tested in case it now incorporates
a conditional effect. This occurs if both gnew and enew are more specific than
grule and erule, and additionally the coverage of (gnew, enew) is substantially less
than the previous rule (grule, erule) on the training set. The difference between
gnew and grule is identified as the preconditions for the conditional effect, and
the difference between enew and erule as the effects. While retained as part
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of the rule throughout the rule combination process, the simplification steps
are applied separately to the main preconditions and effects, and then to the
secondary preconditions and conditional effects.

If a rule (grule, erule) has a conditional effect (gcon, econ), this must be ac-
counted for when merging in further (precondition,effect) pairs (p, e). If the
new effect is already present in erule then the merge should be performed on
(grule, erule) because the effect cannot occur as the result of a conditional ef-
fect, and as the result of the main rule. If the new effect is already present
in econ the merge should be performed on (gcon, econ) for the same reason. If
the effect is entirely new, the merge is first attempted on (grule, erule). Then at
the conditional testing step of the new rule, if a conditional effect is identified
we backtrack and try to merge (p, e) with (gcon, econ). This process may be
repeated if there are several conditional effects.

4.2.5 Generating PDDL

It remains to convert the final graphical preconditions and corresponding effects
into PDDL descriptions of a planning operators. Considering the preconditions
first, converting fluent and object nodes into a list of fluents is a simple mapping
process. By default, deictic terms not bound as action parameters are existen-
tially quantified. The effects can similarly be mapped to fluents, and in this case
values are derived from the preconditions (as the effects specify a particular flu-
ent changes rather than what its value is). Unbound variables in the effects are
universally quantified. Where conditional effects are present, variables in the
secondary preconditions which also occur in the effects are universally quanti-
fied, to give conditional effects of the form:

(forall (?x) (when (p1 ?x) (and (p2 ?x ...) ... (pn ?x ...))))

Conversely variables which do not occur in the effects are existentially quan-
tified, to give conditional effects of the form:

(when exists (?x) (p1 ?x) (and (p2 ?y ...) ... (pn ?z ...)))

5 Conclusions and Future Work

This report describes an approach to learning PDDL-style planning operators,
by extending existing work on learning STRIPS planning operators, and on
predicting the effects of PDDL-style actions. The graphical representation of
states allows more expressive preconditions and effects to be represented and
learnt. In particular, PKS-style sensing actions can be supported. The next
step will be to evaluate the proposed rule extraction and combination process
to check it produces appropriate rules.

However, there remain some limitations to the process. The planning op-
erators which can be learnt using the representation and learning process de-
scribed are still a restricted set of the planning operators which can be expressed
in PDDL. For example, existentially quantified effects and universally quanti-
fied preconditions are not supported. In future work the representation will be
extended to support quantifiers of these types.
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The rule combination process presented in this report has assumed that the
state observations are noiseless and complete. This assumption is unrealistic,
especially in the context of state observations drawn from real robot domains.
However, the existing work on rule learning in STRIPS domains (Mourão et al.,
2012) accounts for noisy, incomplete observations. In future work, the approach
used there will be applied to the rule combination process detailed above.
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