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ABSTRACT

This paper constitutes D.4.2.2 for the Xperience project, consisting
of an executive summary of work over the period M13-M24, and of
the attached publications.

1 INTRODUCTION

The supposed demise in the late 1980s of “Good Old-Fashioned Artificial Intel-
ligence” (GOFAI), due to its admitted failure to come up with systems worthy
of the name, deployable in the real-world for practical tasks, was widely agreed
to have been due to hubristic overreliance on the notion of “representation”, and
insufficient attention to the problem of “grounding” representations in the world,
or rather, the sensory-motor manifolds that transduce the world into the machine.
Brooks (1991) argued that it was better to use the world in this sense “as its own
model” when it came to tasks like acting in real time in real dynamic situations.
Brooks pointed out that the time it took evolution on Earth to progress from bac-
teria to arthropod intelligence was on the order of 3Bn years, as compared to
only around 0.5 Bn from there to primate intelligence, plausibly suggesting that
the higher level problems would be relatively easy once the problem of grounded
insect-level intelligence was solved, a problem he proposed to solve using a lay-
ered “subsumption architecture”.

A number of successful reactive and adaptive robots at this level of sensory-
motor control were built according to this philosophy, which played an important
though not exclusive role in applications like the Mars rover and other autonomous
vehicles. There has subsequently been rather less success at building on this foun-
dation towards the level of higher intelligence, suggesting that the problem of
insect level cognition has not entirely been solved. Nevertheless, a lesson has

∗
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been learned.
The Xperience project seeks to extend the capabilities of reactive planning

by inducing event representations in the form of PDDL STRIPS-style rules from
observed changes in a state representation transduced from sensory-motor level
representations on the KIT ARMAR platform. PDDL rules constitute the top
level of the OACS architecture for action represntations described by Krüger et al.
(2011), while sensory motor representations for ARMAR form the lowest level.

One of the problems in achieving this goal is that the world is not in fact its
own best representation for this purpose: ARMAR is not grounded in anything
like the sense that a child or a kitten is grounded. Since we don’t have 500M years
and the resources of a planet available to allow such grounding to evolve, we have
to construct a representation.

Our work on learning event representations under conditions of noise, error
and partial observation arising under real world conditions is reported elsewhere
under Xperience deliverables D3.2.1 and D3.2.2. However, we return to the details
of the representation itself below

Natural language understanding might be seen as having undergone a rather
similar progression to robotics over the same period. Along with a general shift
away from concerns with expressive linguistic representation towards lower-level
context-free or even finite-state representations in order to scale to systems of
the size needed for real-world applications of the kind newly made possible by
the effects of Moore’s Law on computing power, there has been a similar shift
towards machine-learning and optimization of statistical models.

Nowhere has this change been more obvious that in the subfield of natural
language semantic interpretation and inference, where the emphasis has shifted
from representations closely resembling linguistic forms, and entirely parallel to
logicist AI knowledge representations as far as inference goes, to distributed rep-
resentations based on collocation statistics or paraphrase relations, induced by
machine-learning methods such as clustering over large volumes of text. Again,
there has been considerable improvement over earlier methods on certain low-
level tasks NLP tasks such as information retrieval and extraction of the kind
exploited by Google. However, there has been the same disappointingly limited
progress in lifting these low-level successes to the higher level tasks such as open-
domain question-answering.

Alongside these two parallel developments, there has been a lot of interest
in the idea that the access of new-generation robots to grounded representations
could be leveraged to induce a similarly grounded semantics for natural language
(Steels 1998). Such grounded language semantics might be expected to support
more efficient commonsense reasoning and inference. Discovering a semantics of
this kind and using it to induce “semantic parsers” for multiple human languages
is one of the goals of Xperience under the present workpackage that we report on
here.

Since we have noted that our robots are not grounded in any relevant sense,
and that a state representation from which we can induce grounded event repre-
sentations has to be constructed by hand, It might appear that we are back in the
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trap of old-fashioned AI, dooomed to construct knowledge representations that
will be special case and non-generalizable to other robot tasks and domains.

However, we claim that the task of making the state and event representations
support higher level processes including both deliberative planning and a specif-
ically natural language semantics that can support human-like language learning
and grammar induction for any language of the world constrains the state space
in ways that make it widely applicable and general-purpose, and allow us to es-
cape the logicist trap. The rationale behind the claim is that nobody knows any
way in which children could learn the languages of the world except by having
access to a conceptual representation that is closely related to the non-linguistic
conceptual representation with which our closest animal relatives act purposefully
in the world, and to which the languages of the world, despite their diversity, are
transparent enough for the child to see the relation. If so, then we should be able
to work out from observation of the ways languages structure their semantics what
the hidden common conceptual representation must be. In this connection, it is
important to realize that we know of some strong commonalities across the lin-
guistic categories that represent events and their relations, namely tense, mood,
aspect, and adverbial modification.

This work requires achieving two subgoals. The first is the development of
a general purpose mechanism for inducing “semantic parsers”—that is, gram-
mars and parsing models that simultaneously parse and build interpretations—
from exposure to paired sentences and meanings (Thompson and Mooney 2003;
Zettlemoyer and Collins 2005). This process is often referred to in the context of
child language acquisition as “Semantic Bootstrapping” of grammatical knowl-
edge (Pinker 1979, 1984). In the later stages of child language acquisition, Gleit-
man (1990) and Papafragou, Cassidy and Gleitman (2007) have described a re-
lated process of “Syntactic Bootstrapping”, according to which earlier semantic
bootstrapping draws the childas attention via learned grammatical rules to new
lexical entries in a process of one-trial learning.

The sentences in such a procedure may be in any language and the meaning
representations my be in an arbitrary knowledge representation (so long as the
latter is compositional). First results were reported last year and published as
Kwiatkowski et al. (2010). This phase of the work is largely complete, pursued as
anticipated in the Xperience proposal in conjunction with Dr. Luke Zettlemoyer,
now at University of Washington, Seattle. Noteworthy results of this work dis-
cussed in section 2 include: state-of-the-art semantic parser induction algorithms;
the first psychologically realistic and computationally effective model of child
language acquisition by semantic bootstrapping; and a demonstration that syntac-
tic bootstrapping effects are predicted by the same Bayesian model that mediates
semantic bootstrapping, rather than stemming from a separate process.

The second is the application of such a learner to data pairing sentences with
a meaning representation for natural language temporal expressions including
tense, mood, aspect and adverbial modification, following Reichenbach (1947),
Vendler (1967), and Davidson (1967), as outlined in Steedman (1997, 2012a,b).
The meaning representation is grounded in a STRIPS-like event representation
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that constitutes the top level of the Object-Action Complex architecture (OACs,
Krüger et al. 2011), developed for the robot domain under WP3, as reported in
D3.2.2. This phase of the work is ongoing. Noteworthy results of this work dis-
cussed in section 3 include a specification of the first fully formal semantics of
tense, mood, and aspect in natural language integrating a truly grounded action
representation into linguistic semantics, using the linear dynamic event calculus
(LDEC) logical formalism first outlined in Steedman 2002.

The next two sections of this report summarize progress on and notable results
from these two problems, referring to the published papers in the appendix.
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Florentin Wörgötter, Aleš Ude, Tamim Asfour, Dirk Kraft, Damir Omrčen,
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2 SEMANTIC PARSERS

The task of semantic parser induction is to automatically learn a grammar and a
parsing model for a parser that builds semantically interpretable structures from
data pairing sentences in natural language with their meanings expressed in some
meaning representation language. The sentences can be in any human language
(English, Japanese, Navajo, etc.), and the meaning representations can be in any
form for which a compositional semantics, pairing meaning-building operations
with syntactic operations and lexical items, can be devised. Examples of the lat-
ter are: database query languages such as SQL or the SABRE air travel booking
system; tactical plays in RoboCup soccer games or Dungeons and Dragons-style
video games; LISP S-expressions; terms in the λ -calculus; full Montague seman-
tics for natural languages.

Semantic parsers are a relevant technology for systems involving large gram-
mars and/or “productive” grammars generating unboundedly large stringsets. Em-
bedding constructions like relative clauses and complement clauses are productive
in this sense. An example of the latter construction arises from verbs like “help”
in English, which gives rise to an unboundedly large family of sentences like the
following:

(1) a. Help me to wipe the table clean.
b. I persuaded Frank to help me to wipe the table clean.
c. I told Betty to help Frank to help me wipe the table clean.
d. etc.
The GeoQueries database (Thompson and Mooney, 2003) pairs a productive

set of English queries with logical forms denoting queries concerning geographi-
cal information, such as the following:

(2) a. Which states border Texas?
b. Which states border states which border Texas?
c. etc.

Zettlemoyer and Collins (2005) showed that a small, relatively unambiguous, but
unboundedly productive parser for a Combinatory Categorial Grammar (CCG,
Steedman, 2000) can be induced from such data. (CCG is particularly well suited
to this task, because it is fully lexicalized, with all language-specific information
being specified in the lexicon, and because the syntactic operations that project
lexical items onto the sentences of the language are monotononic and fully trans-
parent to a compositional semantics.

Zettlemoyer and Collins’ method, like that of Thompson and Mooney, is to
some extent English-specific, and does not include a fully general parsing model,
making it difficult to generalize and scale to other languages and larger grammars.
However, Kwiatkowski et al. 2010 showed that a fully general method amounting
to learning a parsing model for the entire space of grammars permitted by CCG
could be applied to the GeoQueries data to induce semantic parsers not only for
English. but also for corresponding fragments of Italian, Japanese, and Turkish,
with performance at a new state of the art.
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Kwiatkowski et al. (2011) (see appendix) show that this method scales to the
much larger and more complex ATIS dataset of English sentences and database
queries and answers for a travel bookings domain, with state-of-the-art perfor-
mance.

Kwiatkowski et al. (2012) (see appendix), using a related algorithm using a
generative Bayesian model in application to a semantically annotated portion of
the CHILDES database of real child-directed adult utterance, show that semantic
parser induction provides a psychologically realistic model of child language
acquisition exhibiting the structural bootstrapping effects that are characteris-
tic of child language acquisition (Gleitman, 1999). For example, the following
pair of graphs shows the strength as learning proceeds of the hypothesis that
the category for the highly frequent determiner a, the less frequent determiner
another, and the very infrequent determiner any is to the left of nouns like bis-
cuit in English. (The first graph shows learning from the correct logical form
alone for each utterance, and the second shows learning for the correct form
plus two plausible but irrelevant logical forms.) The frequent determiner a
is learned incrementally and continuously, as one would expect. (Of course,
learning is slower in the second graph with the distractors.) The infrequent
determiners are learned later, again as one would expect. However, the fact
that they have the same semantic type as the frequent determiner means that
by the time they are encountered at all, the prior probability on the correct
hypothesis has increased by learning the frequent one. Learning is therefore
step-like and all-or-none, rather than incremental. Thus, the graphs demon-
strate a clear case of structural bootstrapping, of the kind targeted in Xperience.

More generally, we claim that syntactic bootstrapping in language acquisition
is an emergent late effect of shifting prior probabilities over the entire space of
possibilities allowed by CCG in a uniform Bayesian model of semantic structural
bootstrapping. A journal paper presenting this result for psycholinguistic and cog-
nitive science audiences is in preparation.

Further work on this problem includes extending it to grounded action repre-
sentations for the ARMAR robot platform, as expressed in the temporal semantic
language developed in the next section, and further broadening the semantics to
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include dialog planning, as in the original proposal, Annex 1.
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3 GROUNDED SEMANTICS OF TEMPORALITY

3.1 The Task

The task is to take the PDDL/STRIPS action representations (the topmost level
in the OAC architecture of Krüger et al. 2011), acquired by observing change in
the dynamic sensory motor state representation, and to build plans using the PKS
planner developed under WP3 for compound actions such as wiping the table
clean that can be executed by the robot, and monitored by plan monitoring during
execution. A semantic parser of the kind developed in the previous section can
then be induced from such representations to obey commands such as “wipe the
table clean”, “Help me to wipe the table clean” and “Help Tamim to help me to
wipe the table clean”, and to deliver fault reports arising from errors observed in
plan monitoring, as in the following dialog:

(3)USER : What happened?
ARMAR : I was wiping the table clean when the cloth disappeared.

USER : Is the table clean?
ARMAR : No.

The following is a preliminary sketch of a knowledge representation support-
ing STRIPS-style planning and a comositional semantics for natural language, for
discussion in the Xperience project in ongoing work under WP3.1 in developing
a version grounded in the ARMAR sensory-motor representation at the lower end
of the OACs architecture. (Certain liberties are taken with the type-system in the
interests of conveying the intuition—caveat lector.)

3.2 The Representation

We seek a knowledge representation that will support both STRIPS-style planning
and a compositonal semantics for tense mood and aspect in natural language. We
use the LDEC notation described by Steedman 2002, in which the implication
sign –◦ denotes linear implication, according to which antecedents on the left
are consumed or deleted. Thus, rules of the following form mean that if P and Q
hold, then if you take action α followed by actiion β , then Q no longer holds, R
does hold, and whether P holds or not is undefined:

(4) {P}∧Q –◦ [α;β ]R

This notation can be regarded as a (sugared, readable) version of the PDDL nota-
tion used by the planner (McDermott et al 1998), defined in terms of state fluents
grounded in robot sensory motorics.

3.2.1 Knowledge of wiping

In order to preempt well-known “ramification problems” arising from interval-
based temporal knowledge representation systems, we represent durative events
by an instantaneous event initiating the process in question and introducing a fact
that the process in question is ongoing, followed by an event concluding the pro-



cess and consuming or deleting that fact:

(5) a. ¬ongoing(p) –◦ [commence(p)] ongoing(p)
b. ongoing(p) –◦ [conclude(p)]¬ongoing(p)

The distinction of Vendler 1967 between atelic events of type “activity” like run-
ning (which can be modified by “for ten minutes” but not by “in ten minutes”) and
telic events of type “accomplishment” (for which the reverse holds) is expressed in
LDEC as the distinction between an atomic event of running (which may be iter-
ated) and a Piagetian “circular reaction” or conditionally iterating “TOTE unit” or
operant (Piaget, 1936; Miller, Galanter, and Pribram 1960), of the form (¬g?; p)+,
meaning “p until g”. The general form of such atelic and telic units is as follows:1

(6) a. {affords(p+)} –◦ [commence(p+(E));p+;conclude(p+(E))]
b. {affords(p+)}∧ cause(p+,g)∧¬g

–◦ [commence(p+(g,E));(¬g?;p)+;conclude(p+(g,E))]g

Events are defined in terms both of the class of situations that afford their occur-
rence, and in terms of a linear rule describing their effects:

(7) a. on(X,cloth)∧grasp(me,cloth)⇒ affords(wipe(me,X)+))
b. {affords(wipe(me,X)+))}

–◦ [commence(wipe(me,X)+(E));wipe(me,X)+;conclude(wipe(me,X)+(E))]
c. {affords(wipe(me,X)+))}∧¬clean(table)

–◦ [commence(wipe(me, table)+(clean(table)),E));(¬clean(table)?;wipe(me, table))+;
conclude(wipe(me, table)+(clean(table)),E))]clean(table)

3.2.2 The goal

The goal is to find a plan α that gets from the present situation to one in which the
table is clean:

(8) affords(α)∧ [α]clean(table)

3.2.3 The Plan

The plan is the accomplishment of wiping the table clean, by iterating wiping until
clean:

(9) commence(wipe(me, table)+(clean(table)),E));(¬clean(table)?;wipe(me, table))+;
conclude(wipe(me, table)+(clean(table)),E))

3.2.4 The Model

The following is a trace of the state defined as a set of ground fluents: (1) when
the accomplishment of wiping the table clean is successfully ongoing; (2) when
plan monir-toring reveals that the cloth has mysteriously vanished, due to sensor
error; (3) after the plan as a consequence fails.
1If a situation affords p+ (as opposed to merely affording p) p must be an elementary action whose
consequent state still affords p.



(10) 1. on(table,cloth) ∧ grasp(me,cloth) ∧ ¬clean(table) ∧
ongoing([(¬clean(table)?;wipe(x,y))+]))∧goal(clean(table))

2. ¬clean(table) ∧ ongoing([(¬clean(table)?;wipe(x,y))+]) ∧
goal(clean(table))

3. ¬clean(table)∧goal(clean(table))

3.2.5 The Appropriate Utterance

(11) I was wiping the table clean when the cloth disappeared.

3.2.6 Semantics of Tense, Mood, and Aspect

The bare infinitival denotes the bare activity of wiping or the bare accomplishment
of wiping until clean:

(12) a. wipe := (S\NP)/NP : λxλy.[wipe(x,y)+]
b. wipe := ((S\NP)/NP)/AP : λwλxλy.[(¬w(x)?;wipe(me,x))+]

The gerund represents the activity or accomplishment as ongoing:

(13) a. wiping := (Sin\NP)/NP : λxλy.ongoing([wipe(x,y)])
b. wiping := ((S\NP)/NP)/AP : λwλxλy.ongoing([(¬w(x)?;wipe(x,y))+])

Tense defines the relation of Reichenbachian reference time R to the commence-
ment and conclusion of activity or accomplishment E.

(14) a. wipes := (S\NP)/NP : λxλyλEλR.[commence(wipe(x,y)(E);wipe(x,y);
conclude(wipe(x,y)(E))]∧E = R

b. wipes := ((S\NP)/NP)/AP : λwλxλyλEλR.[commence(wipe(y,y)(w(x),E));
(¬w(x)?;wipe(me,x))+;conclude(wipe(y,y)(w(x),E))]
∧E = R

A preliminary paper surveying current approaches to temporal semantics for
natural language based on Reichenbach, Vendler, and Davidson appears as Steed-
man (2012a) (see appendix).

This work constitutes a component of a wider project to deliver an ambi-
tious computationally manageable full semantics for unrestricted natural language
text, which is under development in the form of a modification of existing wide-
coverage CCG parsers for natural language. The first component of this seman-
tics, concerning quantified NPs and negation, has appeared this year as a book
with MIT Press (Steedman 2012b). The implementation of this theory, together
with an extension representing the meaning of content words as clusters based on
paraphrase detection in large amounts of unlabeled text, forms the basis of Mike
Lewis’ ongoing Phd under Xperience funding, and of a paper in submission to a
journal (Lewis and Steedman 2012)

Work in progress reported under D3.1.2 includes the grounding of the event
semantics in ARMAR sensory-motor level representations under the multi-level
OAC architecture (Krüger et al., 2011), and its incorporation in the latter wide
coverage parser.
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Abstract

This paper presents an incremental prob-
abilistic learner that models the acquis-
tion of syntax and semantics from a cor-
pus of child-directed utterances paired with
possible representations of their meanings.
These meaning representations approxi-
mate the contextual input available to the
child; they do not specify the meanings of
individual words or syntactic derivations.
The learner then has to infer the meanings
and syntactic properties of the words in the
input along with a parsing model. We use
the CCG grammatical framework and train
a non-parametric Bayesian model of parse
structure with online variational Bayesian
expectation maximization. When tested on
utterances from the CHILDES corpus, our
learner outperforms a state-of-the-art se-
mantic parser. In addition, it models such
aspects of child acquisition as “fast map-
ping,” while also countering previous crit-
icisms of statistical syntactic learners.

1 Introduction

Children learn language by mapping the utter-
ances they hear onto what they believe those ut-
terances mean. The precise nature of the child’s
prelinguistic representation of meaning is not
known. We assume for present purposes that
it can be approximated by compositional logical
representations such as (1), where the meaning is
a logical expression that describes a relationship
have between the person you refers to and the
object another(x, cookie(x)):

Utterance : you have another cookie (1)

Meaning : have(you, another(x, cookie(x)))

Most situations will support a number of plausi-
ble meanings, so the child has to learn in the face

of propositional uncertainty1, from a set of con-
textually afforded meaning candidates, as here:

Utterance : you have another cookie

Candidate
Meanings


have(you, another(x, cookie(x)))

eat(you, your(x, cake(x)))
want(i, another(x, cookie(x)))

The task is then to learn, from a sequence of such
(utterance, meaning-candidates) pairs, the correct
lexicon and parsing model. Here we present a
probabilistic account of this task with an empha-
sis on cognitive plausibility.

Our criteria for plausibility are that the learner
must not require any language-specific informa-
tion prior to learning and that the learning algo-
rithm must be strictly incremental: it sees each
training instance sequentially and exactly once.
We define a Bayesian model of parse structure
with Dirichlet process priors and train this on a
set of (utterance, meaning-candidates) pairs de-
rived from the CHILDES corpus (MacWhinney,
2000) using online variational Bayesian EM.

We evaluate the learnt grammar in three ways.
First, we test the accuracy of the trained model
in parsing unseen utterances onto gold standard
annotations of their meaning. We show that
it outperforms a state-of-the-art semantic parser
(Kwiatkowski et al., 2010) when run with similar
training conditions (i.e., neither system is given
the corpus based initialization originally used by
Kwiatkowski et al.). We then examine the learn-
ing curves of some individual words, showing that
the model can learn word meanings on the ba-
sis of a single exposure, similar to the fast map-
ping phenomenon observed in children (Carey
and Bartlett, 1978). Finally, we show that our

1Similar to referential uncertainty but relating to propo-
sitions rather than referents.
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learner captures the step-like learning curves for
word order regularities that Thornton and Tesan
(2007) claim children show. This result coun-
ters Thornton and Tesan’s criticism of statistical
grammar learners—that they tend to exhibit grad-
ual learning curves rather than the abrupt changes
in linguistic competence observed in children.

1.1 Related Work
Models of syntactic acquisition, whether they
have addressed the task of learning both syn-
tax and semantics (Siskind, 1992; Villavicencio,
2002; Buttery, 2006) or syntax alone (Gibson
and Wexler, 1994; Sakas and Fodor, 2001; Yang,
2002) have aimed to learn a single, correct, deter-
ministic grammar. With the exception of Buttery
(2006) they also adopt the Principles and Param-
eters grammatical framework, which assumes de-
tailed knowledge of linguistic regularities2. Our
approach contrasts with all previous models in as-
suming a very general kind of linguistic knowl-
edge and a probabilistic grammar. Specifically,
we use the probabilistic Combinatory Categorial
Grammar (CCG) framework, and assume only
that the learner has access to a small set of general
combinatory schemata and a functional mapping
from semantic type to syntactic category. Further-
more, this paper is the first to evaluate a model
of child syntactic-semantic acquisition by parsing
unseen data.

Models of child word learning have focused
on semantics only, learning word meanings from
utterances paired with either sets of concept sym-
bols (Yu and Ballard, 2007; Frank et al., 2008; Fa-
zly et al., 2010) or a compositional meaning rep-
resentation of the type used here (Siskind, 1996).
The models of Alishahi and Stevenson (2008)
and Maurits et al. (2009) learn, as well as word-
meanings, orderings for verb-argument structures
but not the full parsing model that we learn here.

Semantic parser induction as addressed by
Zettlemoyer and Collins (2005, 2007, 2009), Kate
and Mooney (2007), Wong and Mooney (2006,
2007), Lu et al. (2008), Chen et al. (2010),
Kwiatkowski et al. (2010, 2011) and Börschinger
et al. (2011) has the same task definition as the
one addressed by this paper. However, the learn-
ing approaches presented in those previous pa-

2This linguistic use of the term ”parameter” is distinct
from the statistical use found elsewhere in this paper.

pers are not designed to be cognitively plausible,
using batch training algorithms, multiple passes
over the data, and language specific initialisations
(lists of noun phrases and additional corpus statis-
tics), all of which we dispense with here. In
particular, our approach is closely related that of
Kwiatkowski et al. (2010) but, whereas that work
required careful initialisation and multiple passes
over the training data to learn a discriminative
parsing model, here we learn a generative parsing
model without either.

1.2 Overview of the approach
Our approach takes, as input, a corpus of (ut-
terance, meaning-candidates) pairs {(si, {m}i) :
i = 1, . . . , N}, and learns a CCG lexicon Λ and
the probability of each production a → b that
could be used in a parse. Together, these define
a probabilistic parser that can be used to find the
most probable meaning for any new sentence.

We learn both the lexicon and production prob-
abilities from allowable parses of the training
pairs. The set of allowable parses {t} for a sin-
gle (utterance, meaning-candidates) pair consists
of those parses that map the utterance onto one of
the meanings. This set is generated with the func-
tional mapping T :

{t} = T (s,m), (2)

which is defined, following Kwiatkowski et al.
(2010), using only the CCG combinators and a
mapping from semantic type to syntactic category
(presented in in Section 4).

The CCG lexicon Λ is learnt by reading off
the lexical items used in all parses of all training
pairs. Production probabilities are learnt in con-
junction with Λ through the use of an incremen-
tal parameter estimation algorithm, online Varia-
tional Bayesian EM, as described in Section 5.

Before presenting the probabilistic model, the
mapping T , and the parameter training algorithm,
we first provide some background on the meaning
representations we use and on CCG.

2 Background

2.1 Meaning Representations
We represent the meanings of utterances in first-
order predicate logic using the lambda-calculus.
An example logical expression (henceforth also
referred to as a lambda expression) is:

like(eve,mummy) (3)
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which expresses a logical relationship like be-
tween the entity eve and the entity mummy. In
Section 6.1 we will see how logical expressions
like this are created for a set of child-directed ut-
terances (to use in training our model).

The lambda-calculus uses λ operators to define
functions. These may be used to represent func-
tional meanings of utterances but they may also be
used as a ‘glue language’, to compose elements of
first order logical expressions. For example, the
function λxλy.like(y, x) can be combined with
the object mummy to give the phrasal mean-
ing λy.like(y,mummy) through the lambda-
calculus operation of function application.

2.2 CCG
Combinatory Categorial Grammar (CCG; Steed-
man 2000) is a strongly lexicalised linguistic for-
malism that tightly couples syntax and seman-
tics. Each CCG lexical item in the lexicon Λ is
a triple, written as word ` syntactic category :
logical expression . Examples are:

You ` NP : you

read ` S\NP/NP : λxλy.read(y, x)

the ` NP/N : λf.the(x, f(x))

book ` N : λx.book(x)

A full CCG category X : h has syntactic cate-
gory X and logical expression h. Syntactic cat-
egories may be atomic (e.g., S or NP) or com-
plex (e.g., (S\NP)/NP). Slash operators in com-
plex categories define functions from the range on
the right of the slash to the result on the left in
much the same way as lambda operators do in the
lambda-calculus. The direction of the slash de-
fines the linear order of function and argument.

CCG uses a small set of combinatory rules to
concurrently build syntactic parses and semantic
representations. Two example combinatory rules
are forward (>) and backward (<) application:

X/Y : f Y : g ⇒ X : f(g) (>)
Y : g X\Y : f ⇒ X : f(g) (<)

Given the lexicon above, the phrase “You read the
book” can be parsed using these rules, as illus-
trated in Figure 1 (with additional notation dis-
cussed in the following section)..

CCG also includes combinatory rules of
forward (> B) and backward (< B) composition:

X/Y : f Y/Z : g ⇒X/Z : λx.f(g(x)) (> B)
Y \Z : g X\Y : f ⇒X\Z : λx.f(g(x)) (< B)

3 Modelling Derivations

The objective of our learning algorithm is to
learn the correct parameterisation of a probabilis-
tic model P (s,m, t) over (utterance, meaning,
derivation) triples. This model assigns a proba-
bility to each of the grammar productions a → b
used to build the derivation tree t. The probabil-
ity of any given CCG derivation t with sentence
s and semantics m is calculated as the product of
all of its production probabilities.

P (s,m, t) =
∏

a→b∈t
P (b|a) (4)

For example, the derivation in Figure 1 contains
13 productions, and its probability is the product
of the 13 production probabilities. Grammar pro-
ductions may be either syntactic—used to build a
syntactic derivation tree, or lexical—used to gen-
erate logical expressions and words at the leaves
of this tree.

A syntactic production Ch → R expands a
head node Ch into a result R that is either an
ordered pair of syntactic parse nodes 〈Cl,Cr〉
(for a binary production) or a single parse node
(for a unary production). Only two unary syn-
tactic productions are allowed in the grammar:
START→ A to generate A as the top syntactic
node of a parse tree and A→ [A]lex to indicate
that A is a leaf node in the syntactic derivation
and should be used to generate a logical expres-
sion and word. Syntactic derivations are built by
recursively applying syntactic productions to non-
leaf nodes in the derivation tree. Each syntactic
production Ch → R has conditional probability
P (R|Ch). There are 3 binary and 5 unary syntac-
tic productions in Figure 1.

Lexical productions have two forms. Logical
expressions are produced from leaf nodes in the
syntactic derivation tree Alex → m with condi-
tional probability P (m|Alex). Words are then pro-
duced from these logical expressions with condi-
tional probability P (w|m). An example logical
production from Figure 1 is [NP]lex → you. An
example word production is you→ You.

Every production a → b used in a parse tree t
is chosen from the set of productions that could
be used to expand a head node a. If there are a
finite K productions that could expand a then a
K-dimensional Multinomial distribution parame-
terised by θa can be used to model the categorical
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START

Sdcl

NP

[NP]lex

you

You

Sdcl\NP

(Sdcl\NP)/NP

[(Sdcl\NP)/NP]lex

λxλy.read(y, x)

read

NP

NP/N

[NP/N]lex

λfλx.the(x, f(x))

the

N

[N]lex

λx.book(x)

book

Figure 1: Derivation of sentence You read the
book with meaning read(you, the(x, book(x))).

choice of production:

b ∼ Multinomial(θa) (5)

However, before training a model of language ac-
quisition the dimensionality and contents of both
the syntactic grammar and lexicon are unknown.
In order to maintain a probability model with
cover over the countably infinite number of pos-
sible productions, we define a Dirichlet Process
(DP) prior for each possible production head a.
For the production head a, DP (αa, Ha) assigns
some probability mass to all possible production
targets {b} covered by the base distribution Ha.

It is possible to use the DP as an infinite prior
from which the parameter set of a finite dimen-
sional Multinomial may be drawn provided that
we can choose a suitable partition of {b}. When
calculating the probability of an (s,m, t) triple,
the choice of this partition is easy. For any given
production head a there is a finite set of usable
production targets {b1, . . . , bk−1} in t. We create
a partition that includes one entry for each of these
along with a final entry {bk, . . . } that includes all
other ways in which a could be expanded in dif-
ferent contexts. Then, by applying the distribution
Ga drawn from the DP to this partition, we get a
parameter vector θa that is equivalent to a draw
from a k dimensional Dirichlet distribution:

Ga ∼ DP (αa, Ha) (6)

θa = (Ga(b1), . . . , Ga(bk−1), Ga({bk, . . . })
∼ Dir(αaH(b1), . . . , αaHa(bk−1), (7)

αaHa({bk, . . . }))

Together, Equations 4-7 describe the joint distri-
bution P (X,S, θ) over the observed training data

X = {(si, {m}i) : i = 1, . . . , N}, the latent vari-
ables S (containing the productions used in each
parse t) and the parsing parameters θ.

4 Generating Parses

The previous section defined a parameterisation
over parses assuming that the CCG lexicon Λ was
known. In practice Λ is empty prior to training
and must be populated with the lexical items from
parses t consistent with training pairs (s, {m}).

The set of allowed parses {t} is defined by the
function T from Equation 2. Here we review the
splitting procedure of Kwiatkowski et al. (2010)
that is used to generate CCG lexical items and de-
scribe how it is used by T to create a packed chart
representation of all parses {t} that are consistent
with s and at least one of the meaning represen-
tations in {m}. In this section we assume that s
is paired at each point with only a single meaning
m. Later we will show how T is used multiple
times to create the set of parses consistent with s
and a set of candidate meanings {m}.

The splitting procedure takes as input a CCG
category X :h, such as NP : a(x, cookie(x)), and
returns a set of category splits. Each category split
is a pair of CCG categories (Cl :ml,Cr :mr) that
can be recombined to give X : h using one of the
CCG combinators in Section 2.2. The CCG cat-
egory splitting procedure has two parts: logical
splitting of the category semantics h; and syntac-
tic splitting of the syntactic category X. Each logi-
cal split of h is a pair of lambda expressions (f, g)
in the following set:

{(f, g) | h = f(g) ∨ h = λx.f(g(x))}, (8)

which means that f and g can be recombined us-
ing either function application or function com-
position to give the original lambda expression
h. An example split of the lambda expression
h = a(x, cookie(x)) is the pair

(λy.a(x, y(x)), λx.cookie(x)), (9)

where λy.a(x, y(x)) applied to λx.cookie(x) re-
turns the original expression a(x, cookie(x)).

Syntactic splitting assigns linear order and syn-
tactic categories to the two lambda expressions f
and g. The initial syntactic category X is split by
a reversal of the CCG application combinators in
Section 2.2 if f and g can be recombined to give
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Syntactic Category Semantic Type Example Phrase
Sdcl 〈ev, t〉 I took it ` Sdcl :λe.took(i, it, e)
St t I′m angry ` St :angry(i)
Swh 〈e, 〈ev, t〉〉 Who took it? ` Swh :λxλe.took(x, it, e)
Sq 〈ev, t〉 Did you take it? ` Sq :λe.Q(take(you, it, e))
N 〈e, t〉 cookie `N:λx.cookie(x)
NP e John `NP:john
PP 〈ev, t〉 on John ` PP:λe.on(john, e)

Figure 2: Atomic Syntactic Categories.

h with function application:

{(X/Y : f Y : g), (10)

(Y : g : X\Y : f)|h = f(g)}

or by a reversal of the CCG composition combi-
nators if f and g can be recombined to give hwith
function composition:

{(X/Z : f Z/Y : g, (11)

(Z\Y : g : X\Z : f)|h = λx.f(g(x))}

Unknown category names in the result of a
split (Y in (10) and Z in (11)) are labelled via a
functional mapping cat from semantic type T to
syntactic category:

cat(T ) =

 Atomic(T ) if T ∈ Figure 2
cat(T1)/cat(T2) if T = 〈T1, T2〉
cat(T1)\cat(T2) if T = 〈T1, T2〉


which uses the Atomic function illustrated
in Figure 2 to map semantic-type to basic CCG
syntactic category. As an example, the logical
split in (9) supports two CCG category splits, one
for each of the CCG application rules.

(NP/N :λy.a(x, y(x)), N :λx.cookie(x)) (12)

(N :λx.cookie(x), NP\N :λy.a(x, y(x))) (13)

The parse generation algorithm T uses the func-
tion split to generate all CCG category pairs that
are an allowed split of an input category X :h:

{(Cl :ml,Cr :mr)} = split(X :h),

and then packs a chart representation of {t} in a
top-down fashion starting with a single cell entry
Cm :m for the top node shared by all parses {t}.
For the utterance and meaning in (1) the top parse
node, spanning the entire word-string, is

S :have(you, another(x, cookie(x))).

T cycles over all cell entries in increasingly small
spans and populates the chart with their splits. For
any cell entry X :h spanning more than one word
T generates a set of pairs representing the splits of
X :h. For each split (Cl :ml,Cr :mr) and every bi-
nary partition (wi:k, wk:j) of the word-span T cre-
ates two new cell entries in the chart: (Cl :ml)i:k
and (Cr :mr)k:j .

Input : Sentence [w1, . . . , wn], top node Cm :m
Output: Packed parse chart Ch containing {t}
Ch = [ [{}1, . . . , {}n]1, . . . , [{}1, . . . , {}n]n ]
Ch[1][n− 1] = Cm :m
for i = n, . . . , 2; j = 1 . . . (n− i) + 1 do

for X:h ∈ Ch[j][i] do
for (Cl :ml,Cr :mr) ∈ split(X:h) do

for k = 1, . . . , i− 1 do
Ch[j][k]← Cl :ml

Ch[j + k][i− k]← Cr :mr

Algorithm 1: Generating {t} with T .

Algorithm 1 shows how the learner uses T to
generate a packed chart representation of {t} in
the chart Ch. The function T massively overgen-
erates parses for any given natural language. The
probabilistic parsing model introduced in Sec-
tion 3 is used to choose the best parse from the
overgenerated set.

5 Training

5.1 Parameter Estimation
The probabilistic model of the grammar describes
a distribution over the observed training data X,
latent variables S, and parameters θ. The goal of
training is to estimate the posterior distribution:

p(S, θ|X) =
p(S,X|θ)p(θ)

p(X)
(14)

which we do with online Variational Bayesian Ex-
pectation Maximisation (oVBEM; Sato (2001),
Hoffman et al. (2010)). oVBEM is an online

238



Bayesian extension of the EM algorithm that
accumulates observation pseudocounts na→b for
each of the productions a → b in the grammar.
These pseudocounts define the posterior over pro-
duction probabilities as follows:

(θa→b1 , . . . , θa→b{k,... })) | X,S ∼ (15)

Dir(αH(b1) + na→b1 , . . . ,
∞∑

j=k

αH(bj) + na→bj
)

These pseudocounts are computed in two steps:

oVBE-step For the training pair (si, {m}i)
which supports the set of parses {t}, the expec-
tation E{t}[a → b] of each production a → b is
calculated by creating a packed chart representa-
tion of {t} and running the inside-outside algo-
rithm. This is similar to the E-step in standard
EM apart from the fact that each production is
scored with the current expectation of its parame-
ter weight θ̂i−1

a→b, where:

θ̂i−1
a→b =

eΨ(αaHa(a→b)+ni−1
a→b)

e
Ψ
(∑K
{b′} αaHa(a→b′)+ni−1

a→b′

) (16)

and Ψ is the digamma function (Beal, 2003).

oVBM-step The expectations from the oVBE
step are used to update the pseudocounts in Equa-
tion 15 as follows,

nia→b = ni−1
a→b + ηi(N × E{t}[a→ b]− ni−1

a→b)
(17)

where ηi is the learning rate and N is the size of
the dataset.

5.2 The Training Algorithm
Now the training algorithm used to learn the lex-
icon Λ and pseudocounts {na→b} can be defined.
The algorithm, shown in Algorithm 2, passes over
the training data only once and one training in-
stance at a time. For each (si, {m}i) it uses the
function T |{m}i| times to generate a set of con-
sistent parses {t}′. The lexicon is populated by
using the lex function to read all of the lexical
items off from the derivations in each {t}′. In
the parameter update step, the training algorithm
updates the pseudocounts associated with each of
the productions a → b that have ever been seen
during training according to Equation (17).

Only non-zero pseudocounts are stored in our
model. The count vector is expanded with a new
entry every time a new production is used. While

Input : Corpus D = {(si, {m}i)|i = 1, . . . , N},
Function T , Semantics to syntactic cate-
gory mapping cat, function lex to read
lexical items off derivations.

Output: Lexicon Λ, Pseudocounts {na→b}.
Λ = {}, {t} = {}
for i = 1, . . . , N do
{t}i = {}
for m′ ∈ {m}i do

Cm′ = cat(m′)
{t}′ = T (si,Cm′ :m

′)
{t}i = {t}i ∪ {t}′, {t} = {t} ∪ {t}′
Λ = Λ ∪ lex ({t}′)

for a→ b ∈ {t} do
ni

a→b = ni−1
a→b + ηi(N × E{t}i

[a→ b]−
ni−1

a→b)

Algorithm 2: Learning Λ and {na→b}

the parameter update step cycles over all produc-
tions in {t} it is not neccessary to store {t}, just
the set of productions that it uses.

6 Experimental Setup

6.1 Data

The Eve corpus, collected by Brown (1973), con-
tains 14, 124 English utterances spoken to a sin-
gle child between the ages of 18 and 27 months.
These have been hand annotated by Sagae et al.
(2004) with labelled syntactic dependency graphs.
An example annotation is shown in Figure 3.

While these annotations are designed to rep-
resent syntactic information, the parent-child re-
lationships in the parse can also be viewed as a
proxy for the predicate-argument structure of the
semantics. We developed a template based de-
terministic procedure for mapping this predicate-
argument structure onto logical expressions of the
type discussed in Section 2.1. For example, the
dependency graph in Figure 3 is automatically
transformed into the logical expression

λe.have(you,another(y, cookie(y)), e) (18)

∧ on(the(z, table(z)), e),

where e is a Davidsonian event variable used to
deal with adverbial and prepositional attachments.
The deterministic mapping to logical expressions
uses 19 templates, three of which are used in this
example: one for the verb and its arguments, one
for the prepositional attachment and one (used
twice) for the quantifier-noun constructions.
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SUBJ ROOT DET OBJ JCT DET POBJ

pro|you v|have qn|another n|cookie prep|on det|the n|table
You have another cookie on the table

Figure 3: Syntactic dependency graph from Eve corpus.

This mapping from graph to logical expression
makes use of a predefined dictionary of allowed,
typed, logical constants. The mapping is success-
ful for 31% of the child-directed utterances in the
Eve corpus3. The remaining data is mostly ac-
counted for by one-word utterances that have no
straightforward interpretation in our typed logi-
cal language (e.g. what; okay; alright; no; yeah;
hmm; yes; uhhuh; mhm; thankyou), missing ver-
bal arguments that cannot be properly guessed
from the context (largely in imperative sentences
such as drink the water), and complex noun con-
structions that are hard to match with a small set
of templates (e.g. as top to a jar). We also re-
move the small number of utterances containing
more than 10 words for reasons of computational
efficiency (see discussion in Section 8).

Following Alishahi and Stevenson (2010), we
generate a context set {m}i for each utterance si
by pairing that utterance with its correct logical
expression along with the logical expressions of
the preceding and following (|{m}i|−1)/2 utter-
ances.

6.2 Base Distributions and Learning Rate

Each of the production heads a in the grammar
requires a base distribution Ha and concentration
parameter αa. For word-productions the base dis-
tribution is a geometric distribution over character
strings and spaces. For syntactic-productions the
base distribution is defined in terms of the new
category to be named by cat and the probability
of splitting the rule by reversing either the appli-
cation or composition combinators.

Semantic-productions’ base distributions are
defined by a probabilistic branching process con-
ditioned on the type of the syntactic category.
This distribution prefers less complex logical ex-
pressions. All concentration parameters are set to
1.0. The learning rate for parameter updates is
ηi = (0.8 + i)−0.5.

3Data available at www.tomkwiat.com/resources.html
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Figure 4: Meaning Prediction: Train on files 1, . . . , n
test on file n+ 1.

7 Experiments

7.1 Parsing Unseen Sentences

We test the parsing model that is learnt by training
on the first i files of the longitudinally ordered Eve
corpus and testing on file i + 1, for i = 1 . . . 19.
For each utterance s′ in the test file we use the
parsing model to predict a meaning m∗ and com-
pare this to the target meaning m′. We report the
proportion of utterances for which the prediction
m∗ is returned correctly both with and without
word-meaning guessing. When a word has never
been seen at training time our parser has the abil-
ity to ‘guess’ a typed logical meaning with place-
holders for constant and predicate names.

For comparison we use the UBL semantic
parser of Kwiatkowski et al. (2010) trained in
a similar setting—i.e., with no language specific
initialisation4. Figure 4 shows accuracy for our
approach with and without guessing, for UBL

4Kwiatkowski et al. (2010) initialise lexical weights in
their learning algorithm using corpus-wide alignment statis-
tics across words and meaning elements. Instead we run
UBL with small positive weight for all lexical items. When
run with Giza++ parameter initialisations, UBL10 achieves
48.1% across folds compared to 49.2% for our approach.
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when run over the training data once (UBL1) and
for UBL when run over the training data 10 times
(UBL10) as in Kwiatkowski et al. (2010). Each
of the points represents accuracy on one of the
19 test files. All of these results are from parsers
trained on utterances paired with a single candi-
date meaning. The lines of best fit show the up-
ward trend in parser performance over time.

Despite only seeing each training instance
once, our approach, due to its broader lexi-
cal search strategy, outperforms both versions of
UBL which performs a greedy search in the space
of lexicons and requires initialisation with co-
occurence statistics between words and logical
constants to guide this search. These statistics are
not justified in a model of language acquisition
and so they are not used here. The low perfor-
mance of all systems is due largely to the sparsity
of the data with 32.9% of all sentences containing
a previously unseen word.

7.2 Word Learning

Due to the sparsity of the data, the training algo-
rithm needs to be able to learn word-meanings on
the basis of very few exposures. This is also a de-
sirable feature from the perspective of modelling
language acquisition as Carey and Bartlett (1978)
have shown that children have the ability to learn
word meanings on the basis of one, or very few,
exposures through the process of fast mapping.
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f = 168 a→ λf.a(x, f (x))

f = 10 another→ λf.another(x, f (x))

f = 2 any→ λf.any(x, f (x))

Figure 5: Learning quantifiers with frequency f.

Figure 5 shows the posterior probability of the
correct meanings for the quantifiers ‘a’, ‘another’
and ‘any’ over the course of training with 1, 3,
5 and 7 candidate meanings for each utterance5.
These three words are all of the same class but
have very different frequencies in the training
subset shown (168, 10 and 2 respectively). In all
training settings, the word ‘a’ is learnt gradually
from many observations but the rarer words ‘an-
other’ and ‘any’ are learnt (when they are learnt)
through large updates to the posterior on the ba-
sis of few observations. These large updates re-
sult from a syntactic bootstrapping effect (Gleit-
man, 1990). When the model has great confidence
about the derivation in which an unseen lexical
item occurs, the pseudocounts for that lexical item
get a large update under Equation 17. This large
update has a greater effect on rare words which
are associated with small amounts of probability
mass than it does on common ones that have al-
ready accumulated large pseudocounts. The fast
learning of rare words later in learning correlates
with observations of word learning in children.

7.3 Word Order Learning

Figure 6 shows the posterior probability of the
correct SVO word order learnt from increasing
amounts of training data. This is calculated by
summing over all lexical items containing transi-
tive verb semantics and sampling in the space of
parse trees that could have generated them. With
no propositional uncertainty in the training data
the correct word order is learnt very quickly and
stabilises. As the amount of propositional uncer-
tainty increases, the rate at which this rule is learnt
decreases. However, even in the face of ambigu-
ous training data, the model can learn the cor-
rect word-order rule. The distribution over word
orders also exhibits initial uncertainty, followed
by a sharp convergence to the correct analysis.
This ability to learn syntactic regularities abruptly
means that our system is not subject to the crit-
icisms that Thornton and Tesan (2007) levelled
at statistical models of language acquisition—that
their learning rates are too gradual.

5The term ‘fast mapping’ is generally used to refer to
noun learning. We chose to examine quantifier learning here
as there is a greater variation in quantifier frequencies. Fast
mapping of nouns is also achieved.
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Figure 6: Learning SVO word order.

8 Discussion

We have presented an incremental model of lan-
guage acquisition that learns a probabilistic CCG
grammar from utterances paired with one or
more potential meanings. The model assumes
no language-specific knowledge, but does assume
that the learner has access to language-universal
correspondences between syntactic and semantic
types, as well as a Bayesian prior encouraging
grammars with heavy reuse of existing rules and
lexical items. We have shown that this model
not only outperforms a state-of-the-art semantic
parser, but also exhibits learning curves similar
to children’s: lexical items can be acquired on a
single exposure and word order is learnt suddenly
rather than gradually.

Although we use a Bayesian model, our ap-
proach is different from many of the Bayesian
models proposed in cognitive science and lan-
guage acquisition (Xu and Tenenbaum, 2007;
Goldwater et al., 2009; Frank et al., 2009; Grif-
fiths and Tenenbaum, 2006; Griffiths, 2005; Per-
fors et al., 2011). These models are intended
as ideal observer analyses, demonstrating what
would be learned by a probabilistically optimal
learner. Our learner uses a more cognitively plau-
sible but approximate online learning algorithm.
In this way, it is similar to other cognitively plau-
sible approximate Bayesian learners (Pearl et al.,
2010; Sanborn et al., 2010; Shi et al., 2010).

Of course, despite the incremental nature of our
learning algorithm, there are still many aspects
that could be criticized as cognitively implausi-

ble. In particular, it generates all parses consistent
with each training instance, which can be both
memory- and processor-intensive. It is unlikely
that children do this once they have learnt at least
some of the target language. In future, we plan
to investigate more efficient parameter estimation
methods. One possibility would be an approxi-
mate oVBEM algorithm in which the expectations
in Equation 17 are calculated according to a high
probability subset of the parses {t}. Another op-
tion would be particle filtering, which has been
investigated as a cognitively plausible method for
approximate Bayesian inference (Shi et al., 2010;
Levy et al., 2009; Sanborn et al., 2010).

As a crude approximation to the context in
which an utterance is heard, the logical represen-
tations of meaning that we present to the learner
are also open to criticism. However, Steedman
(2002) argues that children do have access to
structured meaning representations from a much
older apparatus used for planning actions and we
wish to eventually ground these in sensory input.

Despite the limitations listed above, our ap-
proach makes several important contributions to
the computational study of language acquisition.
It is the first model to learn syntax and seman-
tics concurrently; previous systems (Villavicen-
cio, 2002; Buttery, 2006) learnt categorial gram-
mars from sentences where all word meanings
were known. Our model is also the first to be
evaluated by parsing sentences onto their mean-
ings, in contrast to the work mentioned above and
that of Gibson and Wexler (1994), Siskind (1992)
Sakas and Fodor (2001), and Yang (2002). These
all evaluate their learners on the basis of a small
number of predefined syntactic parameters.

Finally, our work addresses a misunderstand-
ing about statistical learners—that their learn-
ing curves must be gradual (Thornton and Tesan,
2007). By demonstrating sudden learning of word
order and fast mapping, our model shows that sta-
tistical learners can account for sudden changes in
children’s grammars. In future, we hope to extend
these results by examining other learning behav-
iors and testing the model on other languages.
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Abstract

We consider the problem of learning fac-
tored probabilistic CCG grammars for seman-
tic parsing from data containing sentences
paired with logical-form meaning representa-
tions. Traditional CCG lexicons list lexical
items that pair words and phrases with syntac-
tic and semantic content. Such lexicons can
be inefficient when words appear repeatedly
with closely related lexical content. In this
paper, we introduce factored lexicons, which
include both lexemes to model word meaning
and templates to model systematic variation in
word usage. We also present an algorithm for
learning factored CCG lexicons, along with a
probabilistic parse-selection model. Evalua-
tions on benchmark datasets demonstrate that
the approach learns highly accurate parsers,
whose generalization performance benefits
greatly from the lexical factoring.

1 Introduction
Semantic parsers automatically recover representa-
tions of meaning from natural language sentences.
Recent work has focused on learning such parsers
directly from corpora made up of sentences paired
with logical meaning representations (Kate et al.,
2005; Kate and Mooney, 2006; Wong and Mooney,
2006, 2007; Zettlemoyer and Collins, 2005, 2007;
Lu et al., 2008; Kwiatkowski et al., 2010).

For example, in a flight booking domain we
might have access to training examples such as:

Sentence: I want flights from Boston
Meaning: λx. f light(x)∧ f rom(x,bos)

and the goal is to learn a grammar that can map new,
unseen, sentences onto their corresponding mean-
ings, or logical forms.

One approach to this problem has developed al-
gorithms for leaning probabilistic CCG grammars
(Zettlemoyer and Collins, 2005, 2007; Kwiatkowski
et al., 2010). These grammars are well-suited to the
task of semantic parsing, as they closely link syn-
tax and semantics. They can be used to model a
wide range of complex linguistic phenomena and are
strongly lexicalized, storing all language-specific
grammatical information directly with the words in
the lexicon. For example, a typical learned lexicon
might include entries such as:

(1) f light `N :λx. f light(x)
(2) f light `N/(S|NP) :λ f λx. f light(x)∧ f (x)
(3) f light `N\N :λ f λx. f light(x)∧ f (x)
(4) f are`N :λx.cost(x)
(5) f are`N/(S|NP) :λ f λx.cost(x)∧ f (x)
(6) f are`N\N :λ f λx.cost(x)∧ f (x)
(7) Boston`NP :bos
(8) Boston`N\N :λ f λx. f rom(x,bos)∧ f (x)
(9) New York `NP :nyc

(10) New York `N\N :λ f λx. f rom(x,nyc)∧ f (x)

Although lexicalization of this kind is useful
for learning, as we will see, these grammars can
also suffer from sparsity in the training data, since
closely related entries must be repeatedly learned for
all members of a certain class of words. For exam-
ple, the list above shows a selection of lexical items
that would have to be learned separately.

In this list, the word “flight” is paired with the
predicate flight in three separate lexical items which
are required for different syntactic contexts. Item
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(1) has the standard N category for entries of this
type, item (2) allows the use of the word “flight”
with that-less relative clauses such as “flight depart-
ing Boston”, and item (3) is useful for phrases with
unconventional word order such as “from Boston
flight to New York”. Representing these three lexi-
cal items separately is inefficient, since each word of
this class (such as “fare”) will require three similarly
structured lexical entries differing only in predicate
name. There may also be systemtatic semantic vari-
ation between entries for a certain class of words.
For example, in (6) “Boston” is paired with the con-
stant bos that represents its meaning. However, item
(7) also adds the predicate from to the logical form.
This might be used to analyse somewhat elliptical,
unedited sentences such as “Show me flights Boston
to New York,” which can be challenging for seman-
tic parsers (Zettlemoyer and Collins, 2007).

This paper builds upon the insight that a large pro-
portion of the variation between lexical items for
a given class of words is systematic. Therefore it
should be represented once and applied to a small set
of basic lexical units. 1 We develop a factored lex-
icon that captures this insight by distinguishing lex-
emes, which pair words with logical constants, from
lexical templates, which map lexemes to full lexical
items. As we will see, this can lead to a significantly
more compact lexicon that can be learned from less
data. Each word or phrase will be associated with a
few lexemes that can be combined with a shared set
of general templates.

We develop an approach to learning factored,
probabilistic CCG grammars for semantic pars-
ing. Following previous work (Kwiatkowski et al.,
2010), we make use of a higher-order unification
learning scheme that defines a space of CCG gram-
mars consistent with the (sentence, logical form)
training pairs. However, instead of constructing
fully specified lexical items for the learned grammar,
we automatically generate sets of lexemes and lexi-
cal templates to model each example. This is a dif-
ficult learning problem, since the CCG analyses that

1A related tactic is commonly used in wide-coverage CCG
parsers derived from treebanks, such as work by Hockenmaier
and Steedman (2002) and Clark and Curran (2007). These
parsers make extensive use of category-changing unary rules,
to avoid data sparsity for systematically related categories (such
as those related by type-raising). We will automatically learn to
represent these types of generalizations in the factored lexicon.

are required to construct the final meaning represen-
tations are not explicitly labeled in the training data.
Instead, we model them with hidden variables and
develop an online learning approach that simultane-
ously estimates the parameters of a log-linear pars-
ing model, while inducing the factored lexicon.

We evaluate the approach on the benchmark Atis
and GeoQuery domains. This is a challenging setup,
since the GeoQuery data has complex meaning rep-
resentations and sentences in multiple languages,
while the Atis data contains spontaneous, unedited
text that can be difficult to analyze with a formal
grammar representation. Our approach achieves at
or near state-of-the-art recall across all conditions,
despite having no English or domain-specific infor-
mation built in. We believe that ours is the only sys-
tem of sufficient generality to run with this degree of
success on all of these datasets.

2 Related work

There has been significant previous work on learn-
ing semantic parsers from training sentences la-
belled with logical form meaning representations.

We extend a line of research that has addressed
this problem by developing CCG grammar induc-
tion techniques. Zettlemoyer and Collins (2005,
2007) presented approaches that use hand gener-
ated, English-language specific rules to generate lex-
ical items from logical forms as well as English
specific type-shifting rules and relaxations of the
CCG combinators to model spontaneous, unedited
sentences. Zettlemoyer and Collins (2009) extends
this work to the case of learning in context depen-
dent environments. Kwiatkowski et al. (2010) de-
scribed an approach for language-independent learn-
ing that replaces the hand-specified templates with
a higher-order-unification-based lexical induction
method, but their approach does not scale well to
challenging, unedited sentences. The learning ap-
proach we develop for inducing factored lexicons is
also language independent, but scales well to these
challenging sentences.

There have been a number of other approaches
for learning semantic parsers, including ones based
on machine translation techniques (Papineni et al.,
1997; Ramaswamy and Kleindienst, 2000; Wong
and Mooney, 2006), parsing models (Miller et al.,
1996; Ge and Mooney, 2006; Lu et al., 2008), in-
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ductive logic programming algorithms (Zelle and
Mooney, 1996; Thompson and Mooney, 2002; Tang
and Mooney, 2000), probabilistic automata (He and
Young, 2005, 2006), and ideas from string kernels
and support vector machines (Kate and Mooney,
2006; Nguyen et al., 2006).

More recent work has focused on training se-
mantic parsers without supervision in the form of
logical-form annotations. Clarke et al. (2010) and
Liang et al. (2011) replace semantic annotations in
the training set with target answers which are more
easily available. Goldwasser et al. (2011) present
work on unsupervised learning of logical form struc-
ture. However, all of these systems require signifi-
cantly more domain and language specific initializa-
tion than the approach presented here.

Other work has learnt semantic analyses from text
in the context of interactions in computational envi-
ronments (Branavan et al. (2010), Vogel and Juraf-
sky (2010)); text grounded in partial observations of
a world state (Liang et al., 2009); and from raw text
alone (Poon and Domingos, 2009, 2010).

There is also related work that uses the CCG
grammar formalism. Clark and Curran (2003)
present a method for learning the parameters of a
log-linear CCG parsing model from fully annotated
normal–form parse trees. Watkinson and Manand-
har (1999) describe an unsupervised approach for
learning syntactic CCG lexicons. Bos et al. (2004)
present an algorithm for building semantic represen-
tations from CCG parses but requires fully–specified
CCG derivations in the training data.

3 Overview of the Approach
Here we give a formal definition of the problem and
an overview of the learning approach.

Problem We will learn a semantic parser that
takes a sentences x and returns a logical form z repre-
senting its underlying meaning. We assume we have
input data {(xi,zi)|i = 1 . . .n} containing sentences
xi and logical forms zi, for example xi =“Show me
flights to Boston” and zi = λx. f light(x)∧ to(x,bos).

Model We will represent the parser as a factored,
probabilistic CCG (PCCG) grammar. A traditional
CCG lexical item would fully specify the syntax and
semantics for a word (reviewed in Section 4). For
example, Boston`NP : bos represents the entry for

the word “Boston” with syntactic category NP and
meaning represented by the constant bos. Where a
lexicon would usually list lexical items such as this,
we instead use a factored lexicon (L,T ) containing:

• A list of lexemes L. Each lexeme pairs a word
or phrase with a list of logical constants that can
be used to construct its meaning. For example,
one lexeme might be (Boston, [bos]).

• A list of lexical templates T . Each template
takes a lexeme and maps it on to a full lexical
item. For example, there is a single template
that can map the lexeme above to the final lex-
ical entry Boston `NP : bos.

We will make central use of this factored repre-
sentation to provide a more compact representation
of the lexicon that can be learned efficiently.

The factored PCCG will also contain a parameter
vector, θ , that defines a log-linear distribution over
the possible parses y, conditioned on the sentence x.

Learning Our approach for learning factored PC-
CGs extends the work of Kwiatkowski et al. (2010),
as reviewed in Section 7. Specifically, we modify
the lexical learning, to produce lexemes and tem-
plates, as well as the feature space of the model, but
reuse the existing parameter estimation techniques
and overall learning cycle, as described in Section 7.

We present the complete approach in three parts
by describing the factored representation of the lex-
icon (Section 5), techniques for proposing potential
new lexemes and templates (Section 6), and finally
a complete learning algorithm (Section 7). How-
ever, the next section first reviews the required back-
ground on semantic parsing with CCG.

4 Background
4.1 Lambda Calculus

We represent the meanings of sentences, words
and phrases with logical expressions that can con-
tain constants, quantifiers, logical connectors and
lambda abstractions. We construct the meanings of
sentences from the meanings of words and phrases
using lambda-calculus operations. We use a version
of the typed lambda calculus (Carpenter, 1997), in
which the basic types include e, for entities; t, for
truth values; and i for numbers. We also have func-
tion types that are assigned to lambda expressions.
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The expression λx. f light(x) takes an entity and re-
turns a truth value, and has the function type 〈e, t〉.
4.2 Combinatory Categorial Grammar
CCG (Steedman, 1996, 2000) is a linguistic formal-
ism that tightly couples syntax and semantics, and
can be used to model a wide range of language phe-
nomena. A traditional CCG grammar includes a lex-
icon Λ with entries like the following:

f lights`N :λx. f light(x)

to` (N\N)/NP :λy.λ f .λx. f (x)∧ to(x,y)

Boston`NP :bos

where each lexical item w`X : h has words w, a syn-
tactic category X , and a logical form h. For the first
example, these are “flights,” N, and λx. f light(x).
In this paper, we introduce a new way of represent-
ing lexical items as (lexeme, template) pairs, as de-
scribed in section 5.

CCG syntactic categories may be atomic (such
as S or NP) or complex (such as (N\N)/NP)
where the slash combinators encode word order
information. CCG uses a small set of combinatory
rules to build syntactic parses and semantic repre-
sentations concurrently. Two example combinatory
rules are forward (>) and backward (<) application:

X/Y : f Y : g ⇒ X : f (g) (>)
Y : g X\Y : f ⇒ X : f (g) (<)

These rules apply to build syntactic and semantic
derivations under the control of the word order infor-
mation encoded in the slash directions of the lexical
entries. For example, given the lexicon above, the
phrase “flights to Boston” can be parsed to produce:

flights to Boston

N (N\N)/NP NP
λx. f light(x) λyλ f λx. f (x)∧ to(x,y) bos

>
(N\N)

λ f λx. f (x)∧ to(x,bos)
<

N
λx. f light(x)∧ to(x,bos)

where each step in the parse is labeled with the com-
binatory rule (−> or −<) that was used.

CCG also includes combinatory rules of forward
(> B) and backward (< B) composition:

X/Y : f Y/Z : g⇒ X/Z : λx. f (g(x)) (> B)
Y\Z : g X\Y : f ⇒ X\Z : λx. f (g(x)) (< B)

These rules allow a relaxed notion of constituency
which helps limit the number of distinct CCG lexical
items required.

To the standard forward and backward slashes of
CCG we also add a vertical slash for which the di-
rection of application is underspecified. We shall see
examples of this in Section 10.

4.3 Probabilistic CCGs

Due to ambiguity in both the CCG lexicon and the
order in which combinators are applied, there will
be many parses for each sentence. We discriminate
between competing parses using a log-linear model
which has a feature vector φ and a parameter vector
θ . The probability of a parse y that returns logical
form z, given a sentence x is defined as:

P(y,z|x;θ ,Λ) =
eθ ·φ(x,y,z)

∑(y′,z′) eθ ·φ(x,y′,z′) (1)

Section 8 fully defines the set of features used in the
system presented. The most important of these con-
trol the generation of lexical items from (lexeme,
template) pairs. Each (lexeme, template) pair used
in a parse fires three features as we will see in more
detail later.

The parsing, or inference, problem done at test
time requires us to find the most likely logical form
z given a sentence x, assuming the parameters θ and
lexicon Λ are known:

f (x) = argmax
z

p(z|x;θ ,Λ) (2)

where the probability of the logical form is found by
summing over all parses that produce it:

p(z|x;θ ,Λ) = ∑
y

p(y,z|x;θ ,Λ) (3)

In this approach the distribution over parse trees y
is modeled as a hidden variable. The sum over
parses in Eq. 3 can be calculated efficiently using
the inside-outside algorithm with a CKY-style pars-
ing algorithm.

To estimate the parameters themselves, we
use stochastic gradient updates (LeCun et al.,
1998). Given a set of n sentence-meaning pairs
{(xi,zi) : i = 1...n}, we update the parameters θ it-
eratively, for each example i, by following the local
gradient of the conditional log-likelihood objective
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Oi = logP(zi|xi;θ ,Λ). The local gradient of the in-
dividual parameter θ j associated with feature φ j and
training instance (xi,zi) is given by:

∂Oi

∂θ j
= Ep(y|xi,zi;θ ,Λ)[φ j(xi,y,zi)]

−Ep(y,z|xi;θ ,Λ)[φ j(xi,y,z)]
(4)

As with Eq. 3, all of the expectations in Eq. 4 are
calculated through the use of the inside-outside al-
gorithm on a pruned parse chart. For a sentence
of length m, each parse chart span is pruned using
a beam width proportional to m

2
3 , to allow larger

beams for shorter sentences.

5 Factored Lexicons
A factored lexicon includes a set L of lexemes and
a set T of lexical templates. In this section, we for-
mally define these sets, and describe how they are
used to build CCG parses. We will use a set of lex-
ical items from our running example to discuss the
details of how the following lexical items:

(1) f light `N :λx. f light(x)
(2) f light `N/(S|NP) :λ f λx. f light(x)∧ f (x)

. . .
(6) Boston`NP :bos
(7) Boston`N\N :λ f λx. f rom(x,bos)∧ f (x)

are constructed from specific lexemes and templates.

5.1 Lexemes

A lexeme (w,~c) pairs a word sequence w with an
ordered list of logical constants ~c = [c1 . . .cm]. For
example, item (1) and (2) above would come from
a single lexeme (flight, [ f light]). Similar lexemes
would be represented for other predicates, for exam-
ple (fare, [cost]). Lexemes also can contain multiple
constants, for example (cheapest, [argmin,cost]),
which we will see more examples of later.

5.2 Lexical Templates

A lexical template takes a lexeme and produces a
lexical item. Templates have the general form

λ (ω,~v).[ω `X : h~v]

where h~v is a logical expression that contains vari-
ables from the list ~v. Applying this template to the
input lexeme (w,~c) gives the full lexical item w `
X :h where the variable ω has been replaced with the
wordspan w and the logical form h has been created

by replacing each of the variables in~v with the coun-
terpart constant from ~c. For example, the lexical
item (6) above would be constructed from the lex-
eme (Boston, [bos]) using the template λ (ω,~v).[ω `
NP :v1]. Items (1) and (2) would both be constructed
from the single lexeme (flight, [ f light]) with the two
different templates λ (ω,~v).[ω ` N : λx.v1(x)] and
λ (ω,~v).[ω `N/(S|NP) : λ f λx.v1(x)∧ f (x)]

5.3 Parsing with a Factored Lexicon

In general, there can by many different (lexeme,
template) pairs that produce the same lexical item.
For example, lexical item (7) in our running ex-
ample above can be constructed from the lexemes
(Boston, [bos]) and (Boston, [ f rom,bos]), given ap-
propriate templates.

To model this ambiguity, we include the selection
of a (lexeme, template) pair as a decision to be made
while constructing a CCG parse tree. Given the lex-
ical item produced by the chosen lexeme and tem-
plate, parsing continues with the traditional combi-
nators, as reviewed in Section 4.2. This direct inte-
gration allows for features that signal which lexemes
and templates have been used while also allowing
for well defined marginal probabilities, by summing
over all ways of deriving a specific lexical item.

6 Learning Factored Lexicons
To induce factored lexicons, we will make use of two
procedures, presented in this section, that factor lexi-
cal items into lexemes and templates. Section 7 will
describe how this factoring operation is integrated
into the complete learning algorithm.

6.1 Maximal Factorings

Given a lexical item l of the form w `X : h with
words w, a syntactic category X , and a logical form
h, we define the maximal factoring to be the unique
(lexeme, template) pair that can be used to recon-
struct l and includes all of the constants of h in
the lexeme (listed in a fixed order based on an
ordered traversal of h). For example, the maxi-
mal factoring for the lexical item Boston ` NP :
bos is the pair we saw before: (Boston, [bos]) and
λ (ω,~v).[ω ` NP : v1]. Similarly, the lexical item
Boston ` N\N : λ f .λx. f (x)∧ f rom(x,bos) would
be factored to produce (Boston, [ f rom,bos]) and
λ (ω,~v).[ω ` N\N : λ f .λx. f (x)∧ v1(x,v2)].

As we will see in Section 7, this notion of factor-
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ing can be directly incorporated into existing algo-
rithms that learn CCG lexicons. When the original
algorithm would have added an entry l to the lexi-
con, we can instead compute the factoring of l and
add the corresponding lexeme and template to the
factored lexicon.

6.2 Introducing Templates with Content

Maximal factorings, as just described, provide for
significant lexical generalization but do not handle
all of the cases needed to learn effectively. For
instance, the maximal split for the item Boston `
N\N : λ f .λx. f (x) ∧ f rom(x,bos) would introduce
the lexeme (Boston, [ f rom,bos]), which is subopti-
mal since each possible city would need a lexeme
of this type, with the additional from constant in-
cluded. Instead, we would ideally like to learn the
lexeme (Boston, [bos]) and have a template that in-
troduces the from constant. This would model the
desired generalization with a single lexeme per city.

In order to permit the introduction of extra con-
stants into lexical items, we allow the creation of
templates that contain logical constants through par-
tial factorings. For instance, the template below can
introduce the predicate from

λ (ω,~v).[ω `N\N : λ f .λx. f (x)∧ f rom(x,v1)]

The use of templates to introduce extra semantic
constants into a lexical item is similar to, but more
general than, the English-specific type-shifting rules
used in Zettlemoyer and Collins (2007), which were
introduced to model spontaneous, unedited text.
They are useful, as we will see, in learning to re-
cover semantic content that is implied, but not ex-
plicitly stated, such as our original motivating phrase
“flights Boston to New York.”

To propose templates which introduce semantic
content, during learning, we build on the intuition
that we need to recover from missing words, such
as in the example above. In this scenario, there
should also be other sentences that actually include
the word, in our example this would be something
like “flights from Boston.” We will also assume
that we have learned a good factored lexicon for the
complete example that could produce the parse:

flights from Boston

N (N\N)/NP NP
λx. f light(x) λyλ f λx. f (x)∧ f rom(x,y) bos

>
(N\N)

λ f λx. f (x)∧ f rom(x,bos)
<

N
λx. f light(x)∧ f rom(x,bos)

Given analyses of this form, we introduce new
templates that will allow us to recover from miss-
ing words, for example if “from” was dropped. We
identify commonly occurring nodes in the best parse
trees found during training, in this case the non-
terminal spanning “from Boston,” and introduce
templates that can produce the nonterminal, even if
one of the words is missing. Here, this approach
would introduce the desired template λ (ω,~v).[ω `
N\N : λ f .λx. f (x) ∧ f rom(x,v1)] for mapping the
lexeme (Boston, [bos]) directly to the intermediate
structure.

Not all templates introduced this way will model
valid generalizations. However, we will incorporate
them into a learning algorithm with indicator fea-
tures that can be weighted to control their use. The
next section presents the complete approach.

7 Learning Factored PCCGs
Our Factored Unification Based Learning (FUBL)
method extends the UBL algorithm (Kwiatkowski
et al., 2010) to induce factored lexicons, while also
simultanously estimating the parameters of a log-
linear CCG parsing model. In this section, we first
review the NEW-LEX lexical induction procedure
from UBL, and then present the FUBL algorithm.

7.1 Background: NEW-LEX

NEW-LEX generates lexical items by splitting and
merging nodes in the best parse tree of each training
example. Each parse node has a CCG category X : h
and a sequence of words w that it spans. We will
present an overview of the approach using the run-
ning example with the phrase w =“in Boston” and
the category X : h = S\NP : λx.loc(x,bos), which is
of the type commonly seen during learning. The
splitting procedure is a two step process that first
splits the logical form h, then splits the CCG syn-
tactic category X and finally splits the string w.

The first step enumerates all possible splits of
the logical form h into a pair of new expressions
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( f ,g) that can be used to reconstruct h by ei-
ther function application (h = f (g)) or composition
(h= λx. f (g(x))). For example, one possible split is:

( f = λy.λx.loc(x,y) , g = bos)

which corresponds to the function application case.
The next two steps enumerate all ways of splitting

the syntactic category X and words w to introduce
two new lexical items which can be recombined with
CCG combinators (application or composition) to
recreate the original parse node X : h spanning w. In
our example, one possibility would be:

(in` (S\NP)/NP :λy.λx.loc(x,y) , Boston`NP :bos)

which could be recombined with the forward appli-
cation combinator from Section 4.2.

To assign categories while splitting, the grammar
used by NEW-LEX only uses two atomic syntac-
tic categories S and NP. This allows NEW-LEX to
make use of a direct mapping from semantic type
to syntactic category when proposing syntactic cate-
gories. In this schema, the standard syntactic cat-
egory N is replaced by the category S|NP which
matches the type 〈e, t〉 and uses the vertical slash in-
troduced in Section 4.2. We will see categories such
as this in the evaluation.

7.2 The FUBL Algorithm

Figure 1 shows the FUBL learning algorithm. We
assume training data {(xi,zi) : i= 1 . . .n}where each
example is a sentence xi paired with a logical form
zi. The algorithm induces a factored PCCG, includ-
ing the lexemes L, templates T , and parameters θ .

The algorithm is online, repeatedly performing
both lexical expansion (Step 1) and a parameter up-
date (Step 2) for each training example. The over-
all approach is closely related to the UBL algo-
rithm (Kwiatkowski et al., 2010), but includes exten-
sions for updating the factored lexicon, as motivated
in Section 6.

Initialization The model is initialized with a fac-
tored lexicon as follows. MAX-FAC is a function
that takes a lexical item l and returns the maximal
factoring of it, that is the unique, maximal (lexeme,
template) pair that can be combined to construct l,
as described in Section 6.1. We apply MAX-FAC to
each of the training examples (xi,zi), creating a sin-
gle way of producing the desired meaning zi from a

Inputs: Training set {(xi,zi) : i = 1 . . .n} where each
example is a sentence xi paired with a logical form
zi. Set of entity name lexemes Le. Number of itera-
tions J. Learning rate parameter α0 and cooling rate
parameter c. Empty lexeme set L. Empty template
set T .

Definitions: NEW-LEX(y) returns a set of new lex-
ical items from a parse y as described in Sec-
tion 7.1. MAX-FAC(l) generates a (lexeme, tem-
plate) pair from a lexical item l. PART-FAC(y)
generates a set of templates from parse y. Both of
these are described in Section 7.2. The distributions
p(y|x,z;θ ,(L,T )) and p(y,z|x;θ ,(L,T )) are defined
by the log-linear model described in Section 4.3.

Initialization:

• For i = 1 . . .n

• (ψ,π) = MAX-FAC(xi ` S : zi)

• L = L∪ψ , T = T ∪π
• Set L = L∪Le.
• Initialize θ using coocurrence statistics, as de-

scribed in Section 8.

Algorithm:
For t = 1 . . .J, i = 1 . . .n :

Step 1: (Add Lexemes and Templates)

• Let y∗ = argmaxy p(y|xi,zi;θ ,(L,T ))
• For l ∈ NEW-LEX(y∗)

• (ψ,π) = MAX-FAC(l)
• L = L∪ψ , T = T ∪π

• Π = PART-FAC(y∗) , T = T ∪Π
Step 2: (Update Parameters)

• Let γ = α0
1+c×k where k = i+ t×n.

• Let ∆ = Ep(y|xi,zi;θ ,(L,T ))[φ(xi,y,zi)]
−Ep(y,z|xi;θ ,(L,T ))[φ(xi,y,z)]

• Set θ = θ + γ∆

Output: Lexemes L, templates T , and parameters θ .
Figure 1: The FUBL learning algorithm.

lexeme containing all of the words in xi. The lex-
emes and templates created in this way provide the
initial factored lexicon.

Step 1 The first step of the learning algorithm in
Figure 1 adds lexemes and templates to the fac-
tored model given by performing manipulations on
the highest scoring correct parse y∗ of the current
training example (xi,zi). First the NEW-LEX pro-
cedure is run on y∗ as described in Section 6.1 to
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generate new lexical items. We then use the func-
tion MAX-FAC to create the maximal factorings of
each of these new lexical items as described in Sec-
tion 6 and these are added to the factored represen-
tation of the lexicon. New templates can also be in-
troduced through partial factorings of internal parse
nodes as described in Section 6.2. These templates
are generated by using the function PART-FAC to
abstract over the wordspan and a subset of the con-
stants contained in the internal parse nodes of y∗.
This step allows for templates that introduce new
semantic content to model elliptical language, as de-
scribed in Section 6.2.

Step 2 The second step does a stochastic gradient
descent update on the parameters θ used in the pars-
ing model. This update is described in Section 4.3

Discussion The FUBL algorithm makes use of a
direct online approach, where lexemes and tem-
plates are introduced in place while analyzing spe-
cific sentences. In general, this will overgeneralize;
not all ways of combining lexemes and templates
will produce high quality lexical items. However,
the overall approach includes features, presented in
Section 8, that can be used to learn which ones are
best in practice. The complete algorithm iterates be-
tween adding new lexical content and updating the
parameters of the parsing model with each proce-
dure guiding the other.

8 Experimental setup
Data Sets We evaluate on two benchmark seman-
tic parsing datasets: GeoQuery, which is made up of
natural language queries to a database of geograph-
ical information; and Atis, which contains natural
language queries to a flight booking system. The
Geo880 dataset has 880 (English-sentence, logical-
form) pairs split into a training set of 600 pairs and
a test set of 280. The Geo250 data is a subset of
the Geo880 sentences that have been translated into
Japanese, Spanish and Turkish as well as the original
English. We follow the standard evaluation proce-
dure for Geo250, using 10-fold cross validation ex-
periments with the same splits of the data as Wong
and Mooney (2007). The Atis dataset contains 5410
(sentence, logical-form) pairs split into a 4480 ex-
ample training set, a 480 example development set
and a 450 example test set.

Evaluation Metrics We report exact match Re-
call (percentage of sentences for which the correct
logical-form was returned), Precision (percentage of
returned logical-forms that are correct) and F1 (har-
monic mean of Precision and Recall). For Atis we
also report partial match Recall (percentage of cor-
rect literals returned), Precision (percentage of re-
turned literals that are correct) and F1, computed as
described by Zettlemoyer and Collins (2007).

Features We introduce two types of features to
discriminate between parses: lexical features and
logical-form features.

Lexical features fire on the lexemes and templates
used to build the lexical items used in a parse. For
each (lexeme,template) pair used to create a lexi-
cal item we have indicator features φl for the lex-
eme used, φt for the template used, and φ(l,t) for the
pair that was used. We assign the features on lexi-
cal templates a weight of 0.1 to prevent them from
swamping the far less frequent but equally informa-
tive lexeme features.

Logical-form features are computed on the
lambda-calculus expression z returned at the root of
the parse. Each time a predicate p in z takes an
argument a with type Ty(a) in position i, it trig-
gers two binary indicator features: φ(p,a,i) for the
predicate-argument relation; and φ(p,Ty(a),i) for the
predicate argument-type relation. Boolean opera-
tor features look at predicates that occurr together
in conjunctions and disjunctions. For each variable
vi that fills argument slot i in two conjoined pred-
icates p1 and p2 we introduce a binary indicator
feature φcon j(i,p1,p2). We introduce similar features
φdis j(i,p1,p2) for variables vi that are shared by predi-
cates in a disjunction.

Initialization The weights for lexeme features are
initialized according to coocurrance statistics be-
tween words and logical constants. These are esti-
mated with the Giza++ (Och and Ney, 2003) imple-
mentation of IBM Model 1. The initial weights for
templates are set by adding −0.1 for each slash in
the syntactic category and −2 if the template con-
tains logical constants. Features on lexeme-template
pairs and all parse features are initialized to zero.

Systems We compare performance to all recently-
published, directly-comparable results. For Geo-
Query, this includes the ZC05, ZC07 (Zettlemoyer
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System Exact Match
Rec. Pre. F1

ZC07 74.4 87.3 80.4
UBL 65.6 67.1 66.3

FUBL 81.9 82.1 82.0
Table 1: Performance on the Atis development set.

System Exact Match Partial Match
Rec. Pre. F1. Rec. Pre. F1

ZC07 84.6 85.8 85.2 96.7 95.1 95.9
HY06 - - - - - 90.3
UBL 71.4 72.1 71.7 78.2 98.2 87.1

FUBL 82.8 82.8 82.8 95.2 93.6 94.6

Table 2: Performance on the Atis test set.

and Collins, 2005, 2007), λ -WASP (Wong and
Mooney, 2007), UBL (Kwiatkowski et al., 2010)
systems and DCS (Liang et al., 2011). For Atis,
we report results from HY06 (He and Young, 2006),
ZC07, and UBL.

9 Results
Tables 1-4 present the results on the Atis and Geo-
query domains. In all cases, FUBL achieves at or
near state-of-the-art recall (overall number of correct
parses) when compared to directly comparable sys-
tems and it significantly outperforms UBL on Atis.

On Geo880 the only higher recall is achieved
by DCS with prototypes - which uses signifi-
cant English-specific resources, including manually
specified lexical content, but does not require train-
ing sentences annotated with logical-forms. On
Geo250, FUBL achieves the highest recall across
languages. Each individual result should be inter-
preted with care, as a single percentage point cor-
responds to 2-3 sentences, but the overall trend is
encouraging.

On the Atis development set, FUBL outperforms
ZC07 by 7.5% of recall but on the Atis test set
FUBL lags ZC07 by 2%. The reasons for this dis-
crepancy are not clear, however, it is possible that
the syntactic constructions found in the Atis test set
do not exhibit the same degree of variation as those
seen in the development set. This would negate the
need for the very general lexicon learnt by FUBL.

Across the evaluations, despite achieving high re-
call, FUBL achieves significantly lower precision
than ZC07 and λ -WASP. This illustrates the trade-
off from having a very general model of proposing
lexical structure. With the ability to skip unseen

System Rec. Pre. F1

Labelled Logical Forms
ZC05 79.3 96.3 87.0
ZC07 86.1 91.6 88.8
UBL 87.9 88.5 88.2

FUBL 88.6 88.6 88.6
Labelled Question Answers
DCS 91.1 - -

Table 3: Exact match accuracy on the Geo880 test set.

System English Spanish
Rec. Pre. F1 Rec. Pre. F1

λ -WASP 75.6 91.8 82.9 80.0 92.5 85.8
UBL 81.8 83.5 82.6 81.4 83.4 82.4

FUBL 83.7 83.7 83.7 85.6 85.8 85.7

System Japanese Turkish
Rec. Pre. F1 Rec. Pre. F1

λ -WASP 81.2 90.1 85.8 68.8 90.4 78.1
UBL 83.0 83.2 83.1 71.8 77.8 74.6

FUBL 83.2 83.8 83.5 72.5 73.7 73.1

Table 4: Exact-match accuracy on the Geo250 data set.

words, FUBL returns a parse for all of the Atis test
sentences, since the factored lexicons we are learn-
ing can produce a very large number of lexical items.
These parses are, however, not always correct.

10 Analysis
The Atis results in Tables 1 and 2 highlight the ad-
vantages of factored lexicons. FUBL outperforms
the UBL baseline by 16 and 11 points respectively
in exact-match recall. Without making any modi-
fication to the CCG grammars or parsing combina-
tors, we are able to induce a lexicon that is general
enough model the natural occurring variations in the
data, for example due to sloppy, unedited sentences.

Figure 2 shows a parse returned by FUBL for
a sentence on which UBL failed. While
the word “cheapest” is seen 208 times in the
training data, in only a handful of these in-
stances is it seen in the middle of an utter-
ance. For this reason, UBL never proposes
the lexical item, cheapest ` NP\(S|NP)/(S|NP) :
λ f λg.argmin(λx. f (x)∧ g(x),λy.cost(y)), which is
used to parse the sentence in Figure 2. In contrast,
FUBL uses a lexeme learned from the same word in
different contexts, along with a template learnt from
similar words in a similar context, to learn to per-
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pittsburgh to atlanta the cheapest on july twentieth

NP (S|NP)\NP/NP NP NP\(S|NP)/(S|NP) (S|NP)/NP/NP NP NP
pit λxλyλ z.to(z,x) atl λ f λg.argmin(λx. f (x)∧g(x),λy.cost(y)) λxλyλ z.month(z,x) jul 20

∧ f rom(z,y) ∧day(z,y)
> >

(S|NP)\NP (S|NP)/NP
λxλy.to(y,atl)∧ f rom(y,x) λxλy.month(y, jul)∧day(y,x)

< >
(S|NP) (S|NP)

λx.to(x,atl)∧ f rom(x, pit) λx.month(x, jul)∧day(x,20)
>

NP\(S|NP)
λ f .argmin(λx. f (x)∧month(x, jul)∧day(x,20),λy.cost(y))

<
NP

argmin(λx. f rom(x, pit)∧ to(x,atl)∧month(x, jul)∧day(x,20),λy.cost(y))

Figure 2: An example learned parse. FUBL can learn this type of analysis with novel combinations of lexemes and
templates at test time, even if the individual words, like “cheapest,” were never seen in similar syntactic constructions
during training, as described in Section 10.

form the desired analysis.
As well as providing a new way to search the lex-

icon during training, the factored lexicon provides a
way of proposing new, unseen, lexical items at test
time. We find that new, non-NP, lexical items are
used in 6% of the development set parses.

Interestingly, the addition of templates that intro-
duce semantic content (as described in Section 6.2)
account for only 1.2% of recall on the Atis develop-
ment set. This is suprising as elliptical constructions
are found in a much larger proportion of the sen-
tences than this. In practice, FUBL learns to model
many elliptical constructions with lexemes and tem-
plates introduced through maximal factorings. For
example, the lexeme (to, [ f rom, to]) can be used
with the correct lexical template to deal with our
motivating example “flights Boston to New York”.
Templates that introduce content are therefore only
used in truly novel elliptical constructions for which
an alternative analysis could not be learned.

Table 5 shows a selection of lexemes and tem-
plates learned for Atis. Examples 2 and 3 show that
morphological variants of the same word must still
be stored in separate lexemes. However, as these
lexemes now share templates, the total number of
lexical variants that must be learned is reduced.

11 Discussion

We argued that factored CCG lexicons, which in-
clude both lexemes and lexical templates, provide
a compact representation of lexical knowledge that
can have advantages for learning. We also described
a complete approach for inducing factored, prob-
abilistic CCGs for semantic parsing, and demon-

Most common lexemes by type of constants in~c.
1 e (Boston, [bos]) (Denver, [den])
2 〈e, t〉 (flight, [ f light]) (flights, [ f light])
3 〈e, i〉 (fare, [cost]) (fares, [cost])
4 〈e,〈e, t〉〉 (from, [ f rom]) (to, [to])

5 〈e, i〉, (cheapest, [argmin,cost])
〈e, t〉 (earliest, [argmin,dep time])

6 〈i,〈i, t〉〉, (after, [>,dep time])
〈e, i〉 (before, [<,dep time])

Most common templates matching lexemes above.
1 λ (ω,~v).ω `NP :v1
2 λ (ω,~v).ω `S|NP :λx.v1(x)
3 λ (ω,~v).ω `NP|NP :λx.v1(x)
4 λ (ω,~v).ω `S|NP/NP\(S|NP) :λxλy.v1(x,y)
5 λ (ω,~v).ω `NP/(S|NP) :λ f .v1(λx. f (x),λy,v2(y))
6 λ (ω,~v).ω `S|NP\(S|NP)/NP :

λxλyλ z.v1(v2(z),x)∧ y(x)

Table 5: Example lexemes and templates learned from
the Atis development set.

strated strong performance across a wider range of
benchmark datasets that any previous approach.

In the future, it will also be important to ex-
plore morphological models, to better model vari-
ation within the existing lexemes. The factored lex-
ical representation also has significant potential for
lexical transfer learning, where we would need to
learn new lexemes for each target application, but
much of the information in the templates could, po-
tentially, be ported across domains.
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COMPUTATIONAL LINGUISTIC APPROACHES TO TEMPORALITY

(Draft 2.2, 4 April 2011

Mark Steedman

1 INTRODUCTION

Temporality in computational linguistics and natural language processing can
be considered from two aspects. One concerns the use of linguistic and philo-
sophical theories of temporality in computational applications. The other con-
cerns use of computational theory in its own right to define new kinds of theo-
ries of dynamical systems including natural language and its temporal seman-
tics. The latter influence is at least as important as the former.

2 LINGUISTIC CONTRIBUTIONS TO COMPUTATIONAL LINGUISTICS

As in the case of nominal expressions in natural language, we should be careful
to distinguish temporal semantics, or the question of what kinds of objects and
relations temporal categories denote, from the question of temporal reference
to particular times or events that the discourse context affords.

It is useful to draw a further distinction within the semantics between tem-
poral ontology, or the types of temporal entity that the theory entertains, such
as instants, intervals, events, states, or whatever, temporal quantification over
such entities, and the temporal relations over them that it countenances, such
as priority or posteriority, causal dependence, and the like.

2.1 Temporal Semantics: Ontologies, Quantifiers, and Relations

Applications such as information retrieval (IR), and question-answering (QA),
have made surprisingly little use of the riches offered by linguistic temporal
semantics and temporal logic. The reason is the inextricable entanglement
of the temporal categories with everyday knowledge. As other chapters of
this handbook show, categories like tense, mood, and aspect are confounded
with non-temporal relations such as causality, teleology, counterfactuality, ev-
identiality, and the like, to an extent that makes firm boundaries to temporal
semantics hard to draw.
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For example, the question

(1) Have you met Miss Jones?

does not define a temporal relation between the present time and an event of
meeting Miss Jones, as theories of temporal reference founded on Reichenbach
(1947) might seem to suggest, but rather asks whether the state of affairs that
is consequent upon such an event—roughly speaking, knowing Miss Jones—
is in force (Moens and Steedman, 1988). One may be able to answer such
questions in the affirmative even if one has no recollection of the event in
question, nor any idea when it might have been, or even lacks the capacity for
such recollection, as in the case of certain agnosias.

Of course, one may infer that meeting Miss Jones must have preceded the
present, for this state of affairs to hold—but that is an entailment of the relation
between cause and effect, rather than temporal sequence as such.

Similarly, if a search engine offers (2A) in answer to a query (2Q), in order to
answer the question correctly, a question answerer must understand the textual
entailment of A that, although one might have expected Swatman to win, in
the event he did not:

(2) Q: Did John Swatman win the British Open Gold Medal?

A: In 1980 at 16 years of age he fought his way to the final in the under
60 Kg category, and was winning the contest when he was forced to
withdraw through injury.

That is, the progressive denotes a state of affairs that would normally bring
about a win, rather than a temporal relation to an actual event of winning.

Such inferences are extremely specific to the particular content that is in-
volved. Thus, the temporal extent of the state of having met Miss Jones is
generally (as the song says) only bounded by the lifetime of the participants.
However, if the following question is asked, the relevant consequent state is
bounded by our knowledge of the digestive process to a few hours:

(3) Has the patient had anything to eat?

Similarly, if the question is:

(4) Has the patient had a tetanus shot recently?

—then the answer depends on specific knowledge of the length of time the
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consequent protection typically lasts, which is a few years.
Human beings are remarkably good at such associative inference, which

they seem to achieve quite effortlessly. However, the problem of formulating
such knowledge in computational terms, and carrying out similar inference by
machine, using the standard logics that have been designed for the purpose
(Prior, 1967; McDermott, 1982; Allen, 1983), is very hard, although Prior’s
work provided one of the foundations for the computational dynamic logics
discussed in section 3. Pratt and Francez (2001) formulate temporal gener-
alized quantifiers for such a framework, and Pratt-Hartmann (2005) proves
complexity properties of this system.

There have been attempts to design limited logics with better search proper-
ties, which have tended to trade under the name of “temporal database query
languages”, and there have been attempts to design natural language user-
interfaces or “front ends” for such systems, drawing on linguistically-informed
semantics, notably the ontologies of Vendler (1967) and followers (e.g. Bruce,
1972; Ritchie, 1979; Moens, 1987; Hinrichs, 1988; Palmer et al., 1993; Crouch
and Pulman, 1993; White, 1994; Dorr and Olsen, 1997; Androutsopoulos et al.,
1998; Dorr, 2007).

Such ontologies typically distinguish event-types according to a number of
dimensions including ±durativity and ±telicity, and distinguish states as of
type progressive, consequent, iterative, habitual, and so on. Several of these
systems constitute recursive mereologies, or part-whole hierarchies, some-
times embodying a notion of type-coercion or overloading, whereby aspects
and adverbial modifiers compositionally add layers of temporal predication
such as preparation, initiation, iteration, and culmination, and the like, without
any limit on depth of embedding, as in:

(5) It took me two years to be able to play “Young and Foolish” in less than
thirty seconds for up to an hour at a time.

Further examples of work of this linguistically informed kind are Pustejovsky
1991a; Kameyama et al. 1993; Hitzeman 1997; Narayanan 1997. However,
such attempts at general-purpose solutions to the problem of temporal query
have not been widely used, and typically involve serious investments of time
in knowledge-engineering by hand.

Instead, early natural language query systems for temporally rich domains,
such as Sager et al. 1994 tended to hard-wire the requisite knowledge into
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collections of very specific hand-built inference rules representing actions di-
rectly, in ad-hoc (although nonetheless revealing) ways, in the tradition of AI
action representations systems, to which we will return in section 3.

The CYC project (Lenat, 1995) is an attempt in the same tradition to build a
knowledge representation of this kind by hand on a very large scale, and with
general applicability including temporal reasoning, based on a rather general
ontology and a number in the millions of specific rules of inference, many
of which represent relations among events and states. Specialized versions of
CYC have been developed for supporting effective inference in several nar-
rower “closed” domains, many of them industrially significant, and a research
version is freely available.

However, common sense reasoning about the everyday world, of the kind
that is needed to capture the simple natural language examples with which this
piece began, remains a very difficult task. Attempts to apply the publicly avail-
able version in tasks like text-based inference have not proved very successful
(Mahesh et al., 1996), The general suspicion is that this is because such hand-
built resources are both too high-level in terms of ontology, and too small-scale
in comparison to what a mixture of animal evolution and social learning has
put in our own heads.

In reaction to this realization concerning the limits of hand-built knowledge
resources of many kinds, including ontologies such as WordNet (Fellbaum,
1998b), FrameNet (Baker et al., 1998), and VerbNet (Kipper et al., 2008),
there is renewed interest recently in building larger resources of this kind by
clustering on collocations in large volumes of text (Lin and Pantel, 2001), or by
searching such text corpora for string-based proxies for ontological relations
(Webber et al., 2002). The proposals of Banko and Etzioni (2007); Etzioni
et al. (2007) and Mitchell et al. (2009) for “machine reading” to create similar
knowledge resources are related.

A more radical proposal of this kind is to use more directly associative
knowledge representations such as associative memory models and semantic
networks whose nodes directly correspond to individuals of various types, and
whose arcs represent relations between them. Harrington and Clark (2009)
have proposed a method using a wide coverage parser to parse unlabeled text
and constructing a semantic network an orders of magnitude larger than CYC,
using spreading network activation to bound the complexity of network access
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and update.
The biggest obstacle to such ambitious plans is the low reliability of wide-

coverage parsers. Because of the large search spaces involved, the best-
performing parsers use parsing models (and often grammars) acquired by “su-
pervised” machine learning from human-annotated corpora such as the one
million word Penn Wall Street Journal Treebank. The models are acquired by
deriving probabilities (or feature weights) from the frequency with which com-
ponents of derivations are found in the corpus, in order to choose the derivation
that most closely resembles the training material.

The most successful parsers frequently exploit “head dependency” models,
in which probabilities or weights are computed on the basis of frequency of
co-occurrence of relations between particular words, such as the noun “days”
acting as the subject of verb “elapsed”. Such parsers, while performing better
than the hand-built alternative, still have dependency recovery rates of only
around 90% (Collins, 2003). Since word dependencies are closely related to
semantic predicate-argument relations, there is a danger that the structures the
parsers deliver will be too errorful for this process to deliver useful semantic
networks.

Error analysis suggests that the reason the parsers are so weak is that 1M
words of fairly arbitrarily selected annotated newspaper text is not enough to
give us a grammar or a parsing model comparable to what we have in our own
heads. There is considerable work going on to develop unsupervised methods
for parser induction from unannotated text, and semisupervised methods for
using unlabeled text to generalize the treebank parsers.

The relative success of supervised-learned parsers using head dependency
models trained on human-labeled data might seem to suggest a quite different
and much bolder solution to the common-sense reasoning bottleneck in tem-
poral semantics. The content-dependency of the extent of the consequent state
denoted by the perfect on the nature of the core event—meeting Miss Jones ver-
sus eating something versus having a tetanus shot—is reminiscent of the way
in which those parsing models rank parses by assigning higher probability to
a head-word dependency that occurs frequently in the training data than one
that appears rarely or not at all. Head-word dependency parsing models work
because they approximate a mixture of semantics and real world knowledge
that underlies frequent collocations.
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One can therefore consider as a thought experiment the idea of approxi-
mating a similar mixture underlying the interpretation of tenses, moods, and
aspects, by having human annotators annotate texts about events like meet-
ing Miss Jones with the implicit consequent states like knowing Miss Jones
and preparatory processes like traveling for the purpose of fulfilling an ap-
pointment with Miss Jones, together with their temporal extents, and learning
a model that would allow a machine to answer questions like Was Mr. Smith
meeting Miss Jones when he had the accident? and had he met Miss Jones?.

Of course, such an experiment is completely unrealistic, both in terms of
the possibility of obtaining reliable annotations, and in terms of the amount of
annotated data that would be required for effective machine learning, let alone
in terms of the limitations of the learning techniques themselves when faced
with an essentially AI-complete problem. However, a scaled-down version of
this idea is being attempted in the related area of temporal reference, to which
we now turn.

2.2 Temporal Reference

By temporal reference is meant the anchoring of temporal descriptions to spe-
cific clock-times, or to other events in an established narrative. The simple
tenses—the past, present, and in English the bare infinitival future—are tem-
porally referential, in the sense that their underlying Reichenbachian reference
time R must stand in an inferable temporal/causal relation to some time or
event that is either already give discourse-given, as in (6a), or provided by a
modifier that is itself temporal/causally anchored, as in (6b,c);

(6) a. It was the night they raided Minsky’s. I met Miss Jones.
b. I met Miss Jones the night they raided Minsky’s.
c. I met Miss Jones when they raided Minsky’s.
d. I met Miss Jones soon after they raided Minsky’s.

Webber (1988) points out that such temporal anchoring processes resemble
definite noun-phrase reference in allowing “bridging” reference to inferred ref-
erents, as when the mention of a car supports reference to “the driver” (Clark
and Marshall, 1981). Such inferences are knowledge-dependent in the same
way as the temporal semantic interpretations considered in the last section.
Thus, in the following example, the fact that we know that throwing us in jail
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followed the raid, and that coming with a warrant preceded it, is a matter of
world-knowledge about preparations for, and consequences of, such events:

(7) The night they raided Minsky’s,
a. they threw us all in jail.
b. they came with a warrant

Such discourse is also characterized by shifting temporal focus: once we have
decided the relation of throwing in jail to the raid, it may in turn act as anchor
for further events such as phone calls, which may act as anchors for events
of obtaining bail, and so on, under similar conditions of script-like general
knowledge about goal-directed activities (Schank, 1975).

As in the case of early work on temporal semantics, for suitably closed do-
mains we may be able to finesse explicit reference. Wiebe et al. (1998) de-
scribe a domain-specific rule-based approach to temporal reference resolution
in the sense of time-stamping for a corpus of scheduling dialogs consisting of
exchanges like the following:

(8) a. Would you like to meet Wednesday, August 2nd?
b. No, how about Friday at 2?

This work uses a graph-structured stack as a focus model that allows non-
adjacent antecedent anchors in complex dialogs. Filatova and Hovy (2001)
offer a related approach to time-stamping event clauses in the more open do-
main of newspaper stories, including relations of anteriority and priority. Both
papers evaluate on held-out data—that is, additional human-labeled data that
have not been used for training.

Developed as part of the ACE (automatic content extraction) initiative
hosted at the Linguistic Data Consortium at the University of Pennsylvania,
the TIMEX2 annotation scheme (Ferro et al., 2005) has been used to anno-
tate corpora such as the ACE 2005 corpus (around 600 documents), which has
been used for training and evaluating automatic temporal expression recogni-
tion and normalization (TERN) programs using a mixture of small numbers of
hand-written rules and machine learning (e.g. Ahn et al. 2007)

The TimeML temporal mark-up language (Pustejovsky et al., 2003a; Verha-
gen et al., 2009) is a reformulation of TIMEX2 that has been extended to cover
events, temporal relations, and certain kinds of state, and used for annotation of
the Timebank corpus of 186 news reports (Pustejovsky et al., 2003b). Pan et al.

7



(2006) have extended the Timebank annotation to include estimated upper and
lower bounds on the temporal extents of TimeML temporal expressions, with
reasonable inter-annotator agreement. Chambers et al. (2007) present a tempo-
ral relation classifier for six relations trained on the original Timebank corpus,
reporting 72% accuracy when these relations are collapsed to the simplest bi-
nary classification before/after.

Mazur and Dale (2010) criticize both ACE and Timebank for the brevity
of the documents that they include, and the limitations on the complexity of
the temporal reference that they support. They point out that most temporal
expressions in these corpora can be interpreted relative to a single temporal
focus or “anchor”, defined as the dateline of the report, rather than involving
the kinds of shifting focus characteristic of extended discourse and narrative.
They offer an alternative WikiWars corpus comprising 22 much more extended
Wikipedia articles on the major wars of human history, containing around 2700
TIMEX2annotated temporal expressions.

It is possible in principle that the typical extent of events could be learned
from such data, and used to improve TERN-style temporal reference programs
of the kind discussed earlier. While TimeML does not mark consequent states
(of the kind crucial to the interpretation of (1), Have you met Miss Jones?)
as such, it does mark “signal words” such as modals and auxiliary verbs, so
it is even possible in principle that the typical temporal extent that should be
considered in answering questions like (3) (Has the patient eaten anything?)
and (4) (Has the patient had a tetanus shot recently?) could be learned.

Not surprisingly, nothing as ambitious as this has been attempted so far. As
Lapata and Lascarides (2006) point out, these corpora are quite small in com-
parison with the Penn Wall Street Journal treebank (the TIMEX2-annotated
English portion of ACE 2005 is around 26K words, while TimeBank is around
69K.) Given the sparse nature of these data, and the sheer difficulty in many
cases of annotating temporal relations reliably, it is unclear whether supervised
learning with human-labeled data can succeed practically on this problem, al-
though, as Lapata and Lascarides point out, the labeled corpora remain valu-
able as gold-standards against which unsupervised methods can be evaluated.

In reaction to these resource limitations for supervised learning, there has
been considerable research into unsupervised methods for training such classi-
fiers using unsupervised methods based on wide-coverage parsing of unlabeled
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text. Chklovski and Pantel (2004) learn verb subcategorization frames and se-
mantic relations between them including temporal relations, the latter chosen
on the model of Fellbaum 1998a. Lapata and Lascarides (2006) have used such
methods successfully to automatically extract a restricted class of specifically
temporal relations, by parsing unlabeled text using a wide-coverage statistical
parser trained on the Penn treebank, in search of main and subordinate clauses
linked by temporal connectives such as “after”, “while”, and “until”, evaluating
against the human-labeled Timebank corpus (see above). Chambers and Juraf-
sky (2009) show how script-like narrative chains involving shared participants
can be mined using similar unsupervised methods, evaluating in comparison
to the related but non-narrative relations in the hand-built FrameNet corpus
(Baker et al., 1998), as well as by a novel “narrative Cloze” procedure.

Automatically identifying temporal semantics and temporal reference re-
mains an extremely hard problem, to which linguistic semantics provides only
part of a solution which we do not seem very close to attaining. The Recog-
nizing Text Entailment (RTE) task (Dagan et al., 2006) attempts to provide a
standard test-set of pairs of text passages of the kind delivered by real informa-
tion retrieval and machine translation programs, and questions or “hypotheses”
which the text may or may not answer in the positive or negative. Many of the
examples involve temporal reference, such as the following:

(9) T: Bush returned to the White House late Saturday while his running mate
was off campaigning in the West.

H: Bush left the White House. (RTE example no. 1960:PP)

(10) T: De La Cruz’s family said he had gone to Saudi Arabia a year ago to
work as a driver after a long period of unemployment.

H: De la Cruz was unemployed. (RTE example no. 1030:RC)

The question of whether T entails H is in both cases dependent upon the tem-
poral referent of the latter. If in (9), it is taken as Saturday relative to the
dateline of T then the latter entails that H is false. If it is taken as sometime
prior to that Saturday, then the entailment is true. Similarly, in (10), the text T
says that at the time the family spoke, the time De la Cruz went to employment
in SA was after being unemployed. If the reference time of the hypothesis
H is the time the family spoke, then either the entailment is false, or there
is no entailment (because we are not actually told how long the employment

9



lasted). Thus it seems that the RTE task examples considerably underspecify
the task of temporal reference (Beigman-Klebanov and Beigman 2010). Lin-
guistic semantics will certainly continue to be crucial to solving these hard
computational problems, but it is not in itself a sufficient solution.

3 COMPUTATIONAL CONTRIBUTIONS TO LINGUISTIC TEMPORAL
SEMANTICS

The temporal semantics of both human languages and programming languages
can be thought of as logical languages predicating relations over a model (in
the logicians’ narrow sense of the term) that can be visualized as in figure 1.

α
βαβ

Figure 1: The S4 model

The figure depicts a Kripke or S4 model, in which nodes represent possible
states of the world (only a few of which are depicted, and which should be
thought of as complex structures, consisting of a number of propositional “flu-
ents”, or facts subject to change), and directed arcs represent events α,β, etc.
that transform one state into another (of which few are depicted also). We may
want to distinguish some particular sequence of states and events as actual or
historical: those might be the ones in solid black.

This structure is not “there,” in the mind or the computer. It is not some-
thing that can ever be built—for one thing, it is infinitely extending. Rather, it
describes the space of possibilities that we or a machine inhabit, and to a very
limited extent can think about by searching it to some limited depth.

What we and other animals do have in our heads (as do machines, if we
program them with that capability, or allow them to acquire it for themselves)
is a finite but extendable set of rules that describe the events that change one
state to another, some of which are probabilistically under our control.

These rules (together with some computational resources that must include
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a (possibly simulated) push-down automaton) are what allows us and some
other animals to see small portions of the eternal world, and to construct plans
or sequences of actions that (with any luck) will take us to the more desirable
possible worlds (or at least to the ones that we can find by searching the forest
of crossing destinies to some very limited depth).

Most of the semantic theories discussed in the present volume assume such
a model, implicitly or explicitly, and can be seen as addressing the question of
the precise content of the states, and the nature of the events that take us from
one state to another.

For example, the theories differ as to whether they take intervals as the basic
temporal primitive, and regard events as durative, or whether they take instants
as primitive and intervals as composite. Under the first view, a Vendlerian Ac-
tivity like running would be represented as a transition, with a temporal and
spatial extent. Under the second view, an Activity would be regarded as a pro-
gressive fluent, or property of a state, with the states that it characterizes being
accessed via instantaneous incipitative events of beginning running and aban-
doned via terminative events of stopping running. (Vendler and his followers
seem equivocal between these two interpretations.) Under the latter interpre-
tation, the instantaneous incipitative and terminative events themselves corre-
spond to Vendlerian Achievements, associated with further changes in fluents
corresponding to consequent states, such as running and having stopped run-
ning. Vendlerian Accomplishments like running to the bus-stop are then the
composition of an Activity of running with the goal of being at the bus-stop,
the terminative Achievement of stopping running and the culminative achieve-
ment of reaching the bus-stop, which in turn initiates its own consequent state
of being at the bus-stop.

When scaled to practical problems of planning in realistic worlds, such mod-
els are clearly going to be very complex. In deciding which of the many the-
ories they allow we should adopt, we will be guided not only by the usual
questions of soundness in representing temporal knowledge, but also by ques-
tions of efficiency for the purpose of searching for plans, which we can think
of as proofs in a logic of change.

It is in this connection that theoretical computer science can be of help to
linguistics. Computation can also be modeled as a space of states and opera-
tors that change state, using logics of change, as Prior (1967) noted himself.
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In computer science, issues of constructivity (that proofs of attainability of a
state are always accompanied by an algorithm for actually getting there) and
efficiency (that useful proofs can actually be found with affordable resources)
are always paramount. As a result, theoretical computer science has been the
main engine driving progress in the use of temporal logics since the time of
Prior.

With these ends in mind, computer scientists have made a very important
observation about logics of change as they apply to programs and human rea-
soning. That is that the kind of changes that we are interested in are localized,
affecting only a very few among the vast number of facts or fluents that define
the current state in the model. Thus, assigning a value to a register affects that
register and no other aspect of the state of the machine. Similarly, drinking
an ice-cold beer affects the beer, and the consumer, in predictable ways, but
leaves unaffected a miriad other facts that hold in the situation of the action,
such as the weather, the color of the walls, and the current popularity ratings
of the president of the United States. This suggests that events are to be de-
fined in terms of partial descriptions of situations. (There are some events, like
detonating H-bombs, that change practically everything. However, these too
are only useful to the extent that they can be defined in terms of simple partial
descriptions—for example, using a universal quantifier.)

This insight has been captured in a number of ways, both informal and for-
mal. In linguistic theory, an early version of the idea surfaced in Lewis’s (1973)
idea of “inertia worlds,” which he defined in terms of similarity between actual
and hypothetical worlds, in order to provide a semantics for counterfactuals,
which Dowty (1991) used explain the imperfective paradox. (Fine, 1975, criti-
cized this definition using examples involving H-Bombs and the like, for which
similarity between the inertia world and the actual world doesn’t seem to work.
Lascarides (1991) showed that inertia worlds cannot sensibly be defined other
than in terms of the progressive itself.)

In Artificial Intelligence, the idea is usually identified with the STRIPS
representation for actions for the purpose of automatically constructing plans
(Fikes and Nilsson, 1971), although the idea seems to have been arisen more
than once (cf. PLANNER, Hewitt, 1969). STRIPS actions are represented
in terms of three elements: a list of preconditions, that is, facts or “fluents”
which must hold for the action to be possible; a list of deletions, or fluents that
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cease to be true when the action occurs, and a list of additions, or fluents that
become true in the aftermath of the action. Additions and deletions are mod-
eled by database update, so the property that every fact that is not explicitly
mentioned in the rule remains as it is, holds by default.

For example, the earlier example of my drinking an ice-cold beer might
be represented by the following triple, in which the variable x is implicitly
existentially quantified:

(11) preconditions: beer(x), ice-cold(x), here(x), here(me), thirsty(me)
delete: beer(x), here(x), ice-cold(x), thirsty(me)
add: high(me)

This rule says that when I drink an ice-cold beer, it ceases to be, while I, al-
though I still exist, stop being thirsty and start being high. Whatever else holds
in the current state remains unchanged. If we want to model a counterfactual
situation such as If I had not drunk an ice-cold beer we can reverse the rule
and work out that it would be pretty much the same apart from my state and
that of the beer. Since our representation is in terms of actions rather than pos-
sible worlds, notions of similarity between worlds don’t come into it: if we
want to include actions like detonating an H-bomb in our plans we can do so.
(Simplifying a bit, the latter action deletes everything, so it is easy to work out
that counterfactuals like If someone had detonated an H-Bomb, you wouldn’t
be here are true.)

A number of important lessons were learned from work using STRIPS-like
action representations. First, it isn’t at all easy to represent even the simplest
temporal knowledge domains consistently, especially if you want to be able to
extend the domains by freely adding new actions. For example, if you repre-
sent the fact that some boxes and a truck are in Edinburgh as ground facts in a
database, then your action of loading boxes on trucks should delete the ground
fact that the boxes are in Edinburgh, and add a ground fact that they are on the
truck. If the move action for trucks is defined in the obvious way, as deleting
the ground fact of the truck being in Edinburgh and adding one of it being in
London (say), this stratagem will ensure consistency in reasoning about where
the boxes are when the truck moves. (Alternatively, you could define the move
action as deleting the location at the origin of any objects that are on the mov-
ing object and asserting their location at the destination.) It is easy to make
mistakes defining domain knowledge like this.
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The other lesson learned from STRIPS is that, if you want to do any kind
of temporal reasoning over the representation, or more generally need to rep-
resent co-occurrent actions, then you have to represent durative events like
trucks moving as composed of an instantaneous incipitative event that intro-
duces a progressive fluent, and a terminative event removing it (cf. Kowalski
and Sergot, 1986). This ensures that if the truck is dry at the start of its jour-
ney, and it starts to rains while the truck is moving, the database will not end up
saying inconsistently that the truck is both wet and dry at its destination. (This
observation seems to suggest that instants and not intervals should be taken as
the primitive elements in any model theory for systems of this kind—see Allen
and Hayes, 1989 for a dissenting opinion.)

Event calculi of this kind underlie some very powerful planning programs,
which compete at an annual competition on shared tasks of considerable com-
plexity. The STRIPS idea was enshrined in a standard notation by McDermott
et al. (1998), and extended in a series of papers culminating in Fox and Long
(2006) to cover a rich ontology of time-stamped event types for purposes of
the competition.

STRIPS representations were initially derided by logicians for their non-
monotonicity. However, they provide a very natural expression for change
of state, particularly when events are instantaneous and discrete, as they are in
digital computers. Hoare Logic (Hoare, 1969) is founded on a very similar idea
of “triples” P{S}Q, where P is a set of preconditions for a program statement
S and Q describes the resulting state.

Pratt (1976) and Harel (1984) extend Hoare Logic to Dynamic Logic (DL)
for the purpose of proving correctness of programs. DL combines a modal
logic with the algebra of regular events or finite-state machines. DL is a mul-
timodal one, in which the 2 and 3 modalities are relativized to particular
event-types. For example, if a program or command α computes a function F
over the integers, then we may write the following:

(12) a. n≥ 0⇒ [α](y = F(n))
b. n≥ 0⇒ 〈α〉(y = F(n))

The meaning of (12a) is that in any state in which n ≥ 0, executing α always
results in a state where y = F(n). The meaning of (12b) is that in any state
in which n ≥ 0, executing α sometimes results in a state where y = F(n).
Although our knowledge of action is inherently nondeterministic, as far as
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reasoning about the world goes, we usually reason as if we could predict out-
comes, even if we attach a probability of success, so we will mostly be dealing
with the [α] modalities.

The α may be sequences α;β; . . .. They may also include loops or iteration,
as in the following representation for Piaget’s “primary circular reaction” of
sucking in infants (1936):

(13) [while hungry do suck]

Dynamic Logic is usually applied to pure functional programming lan-
guages, without update. If we want to apply it for representing actions and
change we may want to extend to make it “resource sensitive”, by extending it
to include Girard’s (1995) linear implication operator, written−◦ (pronounced
“lolly”), to yield “linear dynamic” versions of event calculi such as STRIPS
and its descendants.

For example, we might represent the earlier naive version of the move action
as follows:

(14) affords(move(x, loc2))∧at(x, loc1)−◦[move(x, loc2)]at(x, loc2)

This formula means that if you can move and are at a location, and you move
to another location, you stop being at the first place and start being at the other
place. We adopt a convention that only ground fact (that is, the ones actu-
ally explicit in the data-base) are deleted or added, so the rule doesn’t define
whether the new situation supports inferrable facts like affords(move(x, loc2).
If we define the latter in terms of a ground facts, using standard implicature as
follows, to say that you can’t move to a place if you are at that place, then it
will not:

(15) ¬at(x, loc)⇒ affords(move(x, loc))

(The predicate affords for preconditions is used in homage to Gibson’s (1979)
notion of affordance of actions by situations, which lies at the heart of effective
action representation.)

If we want to avoid ramification problems arising from unexpected events
like rain, as in the earlier example, then we need to recast the representation in
terms of the instantaneous and stative components described there. For exam-
ple:

15



(16) a. ¬at(x, loc)⇒ affords(start(move(x, loc)))
b. affords(start(move(x, loc2)))∧at(x, loc1)

−◦[start(move(x, loc2))]moving(x, loc1, loc2)

(17) a. moving(x, loc1, loc2)⇒ affords(stop(move(x, loc2)))

b. affords(stop(move(x, loc2))))∧at(x, loc3)∧moving(x, loc1, loc2)

−◦[stop(move(x, loc2))]at(x, loc3)

Equipped with such rules, practical planning programs can search possible
futures by progressing the database breadth-first to some limited depth (say, by
iterative deepening, Korf, 1985), and build and execute plans to reach desirable
states by search and composing actions in very complicated domains involving
multiple actions and objects.

At some point, it may be thought desirable to timestamp everything in such
representations. However, the causal structure implicit in the representation
will often define the simplest relations of temporal antecedence and aspectual
state without explicit indexing to clock-times. For example a simple history of
starting to move from loc1 to loc2 followed by stopping doing so at a different
place loc3 will contain the information necessary to answer the question “Was
x moving to loc2 when she stopped at loc3?” Such calculi therefore appear to
offer a transparent and efficient representation for the concepts implicit in most
current linguistic theories of temporal semantics for natural language, and have
obvious relevance for purposes of linguists and philosophers of language.

Systems related to dynamic and nonmonotonic logics in application to natu-
ral language semantics are described by van Benthem (1991); Blackburn et al.
(1994); Barwise and Seligman (1997)and Fernando (2011). Dynamic and non-
monotonic formalisms invoking or capturing real-world knowledge and related
to the computational calculi outlined in this section have been applied to ele-
gant effect in linguistic theories of temporality by Dowty (1986); Sperber and
Wilson (1986); Pustejovsky (1991b); Moltmann (1991); Lascarides (1991);
Asher (1992); Kamp and Reyle (1993); ter Meulen (1995); Glasbey (2004);
Ramchand (1997); Piñon (1997); Pianesi and Varzi (1999); Stone and Hardt
(1999); van Lambalgen and Hamm (2005); Bittner (2007); Truswell (2007),
among others.
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4 FURTHER READING

The computational literature on temporality and representation of causal action
and its applications is overwhelming, and I am painfully aware of having been
forced to pass over entirely or, worse, to treat very superficially, a great deal of
important and relevant work. The following sources are offered as a means of
entry to a more extensive literature.

Vardi 2008 provides an exceptionally readable summary of temporal
and dynamic logic from Prior to the present from a computer science per-
spective. Mani et al. 2005 is an indispensable collection of mainly com-
putational readings including several of the papers discussed above, and
much other work that deserves attention. Virtually all of the more re-
cent literature on computational approaches is accessible from the web,
and in particular from the similarly indispensable ACL Computational
Linguistics Anthology, at http://www.aclweb.org/anthology-new/.
References to the broader literature on tense and aspect in natural lan-
guage can be found in the Annotated Bibliography of Contemporary Re-
search in Tense, Grammatical Aspect, Aktionsart, and Related Areas at
http://www.scar.utoronto.ca/~binnick/TENSE/
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