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Chapter 1

Executive Summary

This deliverable describes the blueprint of the cognitive architecture of Xperience. In particular,
it presents the first validated implementation of the three layers of the architecture (the three
layers are described already in D1.1.1). The approach and philosophical basis of the architecture
are discussed at length in D1.1.1 as derived in part from the RobotCub and Paco+ projects. In
this new deliverable we have progressed by proposing an actual implementation of the three
layers albeit each layer at the moment is deployed as a separate software library. The remainder
of the project will focus in delivery a fully integrated software system.

The blueprint of the architecture derives from the general “paper” architecture of figure 1.1. It
is a rather standard three-layer architecture, which can be grossly named: i) behavioral layer, ii)
OAC layer, iii) planning layer.

The behavioral layer is modeled after a subsumption-type architecture and the current imple-
mentation is based on a modified version of the YARP middleware. In particular, a plug-in
system has been developed (reported in Y2) and extended to run Lua scripts - which can be
modified on the fly without recompiling the code of the various modules. An example is pre-
sented later to show the actual use of the scripts in implementing one of the scenarios (table
cleaning) proposed as demonstrations for Y3.

The OAC layer is based on the Armar robot. It implements a state disclosure model which
makes the complete robot state always inspectable programmatically on a number of interfaces.
More importantly, the Armar architecture includes a statechart model which is shown to be used
to implement OACs (the middle layer in figure 1.1).

Finally, the OAC descriptions are used in the upper layer (planning). We designed a STRIP
planner (see D3.2.3) called PKS which builds plans at the knowledge level, by representing
and reasoning about how the planner’s knowledge stte changes during plan generation. Latest
additions improve the ability of the planner to model uncertain numerical information (e.g.
noisy sensors, effectors, etc.) and a standard interface (API) which supports the modification of
planning domains at run time.

The three layers partially overlap since as we shall see (WP5), there are various instances where
a given inference can be implemented equally well in two layers. For example, tool use can
be either part of an OAC or a set of behaviors. In the former, the knowledge about the use
of the tool is explicit, requiring an inference engine to work on the OACs. The latter instead
implements an implicit affordance resolution by coordinating various behaviors to achieve the
same goal. Clearly, the OACs are more general and powerful to represent complex affordances.
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Figure 1.1: The three-layer cognitive architecture presented in Xperience as part of D1.1.1:
behavior based layer, middle level and planing level

Similarly, plans can be constructed simply by concatenating OACs or rather by invoking PKS.
Also, the world model for PKS can rely to different degrees to the OAC representation or as an
alternative it can access the sensors and effectors level. A computational performance criterion
may be used to choose beforehand what representation to use. This is left to be explored in the
remainder of the Xperience project.

1.1 A comment on biological plausibility

We have not commented so far on the biological plausibility of the current architecture imple-
mentation. Several examples exist that link human development, language acquisition, and the
very concept of structural bootstrapping to our work.

Previously, we reported for example about the development of grasping in human infants as
in the work of Guerin et al [GKK13] (see D2.3.1 and D3.1.1). Another example of how our
research is rooted in child development is reported in D4.2.2. In that case [KGZS12a] we model
the acquisition of syntax and semantics from a corpus of child-directed utterances paired with
possible representations of their meanings. Finally, development is present is our work on motor
action acquisition as e.g. in some of our work on incremental learning where we investigate the
problem of learning over a developmental timescale, i.e. how can we learn efficiently on ever
increasing number of data points [GM12].
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In summary, while the overall architecture does not reproduce either child development or a
brain-like organization, many elements are of biological inspiration/derivation. The final re-
port on the architecture due at the end of the project will expand on the question of biological
plausibility or relevance of this work.
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Chapter 2

Behavior Based Layer

The robotics software community is continuing to grow. Within the community, researchers
have been developing large number of software components using some of the most com-
mon robotic middleware, such as ROS [QGC+09], YARP [GPL07], OROCOS [Bru01],
OPROS [JLJ+10] and Open-RTM [ASK08] or based on their customized frameworks using
standard communication libraries (e.g., CORBA [OMG08], ICE [Inc], ØMQ [zer]). They try
to adopt lessons learned from best practices in robotics [BS09, BS10] and software architecture
techniques and standards [Sam97] to build their modules as reusable as possible. Even so, it
is quite unlikely that components from different communities fit into a specific off–the–shelf
deployment scenario, without any adaptation by third party users. Heterogeneity and lacking
of standards are not the only bottlenecks burdening reusability. Even within a community
of developers who share the same middleware, software components can be developed with
different taste and still hard to reuse. Systematically developing high–quality reusable software
component is, indeed, a difficult task. Many developers keep their modules simple. However,
simplicity does not necessarily lead to more reusable software. On the other hand, with
reusability in mind, there is a risk of over–generalization and increased complexity: to build a
more generic and reusable component, the developer tries to foresee all possible future needs
and add them as reconfigurable functionalities to the software. Such a commitment leads to
complex components, polluted with application–dependent functionalities that are more costly
and difficult to maintain and use correctly. Thus, a proper balance must be found between
potential reuse and ease of implementation [Sam97].

Software should be extensible enough to be adapted to possibly unanticipated changes [Zen04].
Extensibility is an important property for software which significantly boosts reusability. One
direction to extend a module is via its interfaces. In distributed systems interfaces are imple-
mented by exchanging messages through special connection points that are call ports. This
plays an important role in nowadays robotic software architectures. This paper concentrates on
enhancing robotic software module’s reusability by extending its port’s functionality using a
scripting language. The basic idea is to extend the port’s functionalities in order to dynamically
load a run–time script and plug it into the port of an existing module without changing the code
or recompiling it. In our framework a port extension is called Port Monitor: in brief it allows
to access the data passing though a connection from/to the port for monitoring, filtering and
transforming it (See Section 2.2). Multiple port monitors can interact to allow an input port to
select data from multiple sources in an exclusive way. We call this object a Port Arbitrator: in
other words, a port arbitrator allows a module to arbitrate data coming from other components
to its input port and coordinate the corresponding modules (see Section 2.3).
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Section 2.1 gives an overview of similar approaches from the literature. The detail of the Port
Monitor and an overview of its API is described in Section 2.2. Section 2.3 represents the
Port Arbitrator. The applicability of this approach is demonstrated in Section 2.4 through a
step–by-step example using the iCub robot’s software repository (same of D5.2.3).

2.1 Related Work

Plug-in platforms, in general, extend a core system with new features implemented as com-
ponents that are plugged into the core at run time and integrate seamlessly with it. When
an application supports plug-ins, it enables customization, thus, provides a promising ap-
proach for building software systems which are extensible and customizable to the particular
needs [WD06]. Probably one of the more prominent example of a platform which broadly
supports plug-ins is Eclipse IDE [GB04]. Eclipse offers a framework to develop plug-ins in
Java which are delivered as JAR libraries. There are also some generic frameworks for plug-in
development and management such as Pluma [plu] which allows loading plug-ins as dynamic
linked libraries or FxEngine [fxe] for data flow processing and the design of dynamic systems.
plug-ins can also be developed using scripting languages. Scripting languages have been used
for decades to extend the functionality offered by software components and they have special
interests within the game developer communities. The main advantage of script–based plug-ins
is that they are usually easier to be developed and maintained.

Despite plug-in system has been broadly used by software developers over the last decades, to
our knowledge, less attention has been devoted to study their potentials in robotics. Our work is
an approach to extend a YARP component’s port as it can act as a plug-in manager to load plug-
ins written in a scripting language 1. The current implementation offers a plug-in development
using Lua but it can be easily extended to support other languages.

2.2 Port Monitor

To better illustrate the concept of the Port Monitor, we can consider, as an example, an applica-
tion for tracking faces in a humanoid robot as shown in Figure 2.1. The application involves two
simple modules. The first one is a Face–Detector module which receives image data from the
robot’s camera, detects human faces and streams out, through its output port, the 3D position of
the detected face together with a confidence level. The second module is called Head–Control;
which in its turn receives a 3D position and controls the head of the robot to look at the corre-
sponding point. A simple head tracking application can be achieved by connecting the output
of the Face–Detector to the input of the Head–Control. Now suppose we want to extend the ap-
plication and track the face only if the confidence level is above a certain threshold. This can be
achieved by modifying the Head–Control module to take into account the extra information, but
it would then be inadvertently polluted with application dependent functionality. A more appro-
priate choice would be to develop a third module which receives data from the Face–Detector
and filters out messages corresponding to detections that do not satisfy the required confidence
level. The drawback of this approach is that it introduces extra implementation effort whilst
adding further communication and deployment overhead to the system.

1The source code and relevant examples can be found at https://github.com/robotology/yarp/tree/master/src/carriers/
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PortMonitor.create = function() 
    return true; 
end 
 
PortMonitor.destroy = function() 
end 
 
PortMonitor.accept = function(reader) 
    return true 
end 
 
PortMonitor.update = function(reader) 
    return reader() 
end 

Figure 2.1: Conceptual representation of port monitor. The output port of Face–Detector mod-
ules is extended with a plug-in which provides access to the outgoing data through scripting
language (e.g., Lua).
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Figure 2.2: The life cycle of port monitor.

One could argue over the immaturity of the involved modules and proposes that, for example,
the Face–Detector module could be improved and reimplemented so that it can be reconfigured
by specifying the desired confidence level. This solution requires higher development cost and
in general it easily leads to complex design. In addition, it makes it even more arduous to
connect the Face–Detector to multiple modules with different confidence requirements, thus
preventing runtime reusability.

In our approach it is possible to solve this problem by extending the ports of components using
run–time scripts. Figure 2.1 represents the concept of the Port Monitor (shown as a box with
M) attached to the output of the Face–Detector module. The Port Monitor can load a script file
(written using a standard scripting language such as, in our case, Lua [IDC96]) and can access
and modify the data traveling through the port using a simple API. Thus, some extra functional-
ities of a component such as data filtering, transformation, monitoring can be added during the
application development time and without the need to modify and rebuild the component itself.
Similarly the same script can be loaded by the input port of the Head–Control module.

This mechanisms offers the following advantages. Firstly, it avoids adding to the component
application specific functionalities. That is, some application–dependent functionalities can be
freely added to the component using the scripting language during the application development
stage. Secondly, it allows to simplify the implementation of the components, since the developer
does not necessarily need to provide all possible configurations supporting different application
scenarios. Finally, by embedding the extra functionalities inside the port, our approach intrin-
sically reduces communication and deployment overhead that would be introduced if the same
functionalities were added as separate modules.
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2.2.1 Port monitor life cycle and API

Figure 2.2 illustrates the states that define the life cycle of a port monitor. A callback function is
assigned to each state (except Waiting) which can have a corresponding implementation in the
user’s script. Using these callbacks, users have full control over the port’s data and can access it,
modify it and decide whether to accept the data or discard it. Listing 2.1 represents the callback
functions corresponding to the port monitor’s states in Lua.

The Port Monitor starts in the Create state in which PortMonitor.create callback is
called. The initialization of the user’s code can be done at this point. Returning a true value
means that the user’s initialization was successful and the monitor object is able to start mon-
itoring data from the port. When data arrives to the monitor, PortMonitor.accept is
called. In this callback, user can access (for reading purposes only) the data, check it and de-
cide whether to accept or discard it. The return value of this function indicates whether the data
should be delivered (accepted) or discarded. If the data is accepted, PortMonitor.update
is called, at which point the user has access to modify the data.

PortMonitor.create = function() return true end
PortMonitor.accept = function(dt) return true end
PortMonitor.update = function(dt) return dt end
PortMonitor.trig = function() return end
PortMonitor.destroy = function() end

Listing 2.1: Port monitor callback functions in Lua

A port monitor will usually act as a passive object [Mur95] where accept and update callbacks
are called only upon data reception. However, one may need to periodically monitor a con-
nection (within a specific time interval) and, for example, generate proper events in the case of
delay in the communication. For this purpose, a port monitor object can be configured to call
PortMonitor.trig within desired time intervals. Finally, PortMonitor.destroy is
called when the port monitor is detached from the port upon disconnection. As an example
listing 2.2 illustrates the pseudo–script in Lua that in the hypotetical application that requires
filtering out messages from Face–Detector when the confidence level is below a threshold of
80%.

1 PortMonitor.accept = function(data)
2 -- read face_pos from ‘data’
3 if face_pos.certainty < 0.8 then
4 return false
5 end
6 return true
7 end

Listing 2.2: An example of filtering Face–Detector data.

2.3 Port Arbitrator

A port Arbitrator is an extended functionality of an input port which can be configured to arbi-
trate data from multiple source based on some user–defined constraints. Figure 2.3 represents a
simple search–and–track application where a humanoid robot looks around in search of a per-
son’s face and tracks it. The robot should look around only if it is not tracking a face. The
application involves modules described in the face–tracking example from Section 2.2 and an
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Figure 2.3: Conceptual representation of port arbitrator
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Figure 2.4: The architecture of port arbitrator. Straight lines show the data flow and zigzag lines
represent event flows.

extra module to look around. Look–Around generates some random 3D position which makes
the robot randomly look around when it is provided to the Head–Control module. To get the
desired behavior, the Head–Control module should not receive data from the Look–Around
module when the Face detector module is sending detected face positions.

This is a common coordination problem which can be solved in different ways (e.g., using a
separate coordinator, extending modules to interact with each other). One way to achieve this
is to use a selector in the input port of the Head–Control module and constrain it to receive
data from each module under specific conditions. The concept is shown in Figure 2.3 where
a port arbitrator is used in the input port of the Head–Control (shown as box labeled with
two ’M’). The arbitration logic can be written using a scripting language and is loaded by
the port arbitrator. Our previous work [PMN] has demonstrated that this type of arbitration
mechanism can be effectively used to implement complex tasks without resorting to centralized
coordinators.

2.3.1 Architecture of Port Arbitrator

Figure 2.4 represents the internal architecture of the port arbitrator. A port arbitrator consists of
multiple port monitors, a set of selection constraints, an event container and a selector block.
Port arbitrator extends the port’s scripting API for setting constraints and altering events in the
container. In fact, when a port monitor is used in an arbitrator, the user’s script can access the
extended API for arbitration.

A port monitor can be attached to each connection (Ci) going through the port arbitrator. It
monitors the data from connection and inserts the corresponding events into a shared container.

11
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A port monitor can also remove an event (if previously inserted by itself) from the container 2.
Normally events have infinite life time. This means that they remain valid in the container
until they are explicitly removed by the monitor object. An event can also have a specific life
time. A time event will be automatically removed from the container when its life time is over.
For each connection Ci, there is a selection constraint written in first order logic as a Boolean
combination of the symbolic events. Upon the reception of data from a connection, the selector
evaluates the corresponding constraint and, if satisfied, it allows the data to be delivered to the
input port; otherwise the data will be discarded. Clearly a consistency check on the boolean
rules must be performed to guarantee that only a single connection Ci can deliver data at any
given time. Listing 2.3 represents the extended port monitor’s API in Lua which can be used
with port arbitrator.

PortMonitor.setEvent(event, life_time)
PortMonitor.unsetEvent(event)
PortMonitor.setConstraint(rule)

Listing 2.3: Port monitor extended API in Lua for arbitration

We refer to the search–and–track example from Figure 2.3 to demonstrate how selection con-
straints are represented and how they can be evaluated based on events from a container. As we
previously mentioned, the Head–Control module should receive data from the Look–Around
module if the Face–Detector module is not sending any data. To do this, we first need to in-
form the port arbitrator about the status of the data from the Face–Detector (i.e., if it is sending
any data or not) by setting an event into the container. Listing 2.4 represent a simple script
to set the ‘e_face_detected’ into the event container. The life time 1.0 indicates that
‘e_face_detected’ will be automatically removed after one second if the Face–Detector
is not sending any data.

1 PortMonitor.accept = function(data)
2 setEvent(‘e_face_detected’, 1.0)
3 return true
4 end

Listing 2.4: An example of setting time event into a container.

At this stage, the selection rule that allows the data from the Look–Around module (C2)
to be delivered to the Head–Control module when ‘e_face_detected’ does not ex-
ist in the event container, can be simply written as follows: setConstraint(‘not
e_face_detected’). The data from the Face–Detector module should be freely delivered
to the Head–Control. Thus the selection rule for the connection C1 is written as follows:
setConstraint(‘true’). As we previously described, constraints can be expressed as
Boolean combinations of symbolic events. To evaluate the expression, every symbolic event
is substituted with a Boolean value. If the event is present in the container, it represents a true
value in the expression; otherwise it is evaluated as false.

2.4 A step–by-step example

To demonstrate the applicability and advantages of our approach, we present an experiment
with the iCub humanoids robot [MSV08]. This experiment is completely built using modules

2This is similar to the Event–Mask mechanism used in user interface programming or in operating systems.
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Figure 2.5: The experimental setup of table–cleaning application. The reachable zone is de-
picted in green, the orange zone represents the zone reachable with the tool and finally the red
zone indicates the unreachable space, for which the robot needs human intervention.
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move the object
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Figure 2.6: The simplified activity diagram that illustrate the table–cleaning application.

from the iCub software repository3. The experiment focuses on reusing (with no modifications)
existing modules and by extending the required functionalities using port plug-ins. The overall
behavior of the experimental task is demonstrated using a simplified activity diagram in Fig-
ure 2.6. The goal of the task, as shown in the activity diagram, is to clean the table by removing
all the object and place them in a bucket located alongside the table. We allowed the robot to
use a tool at his disposal (a rake), located on a rack, to reach objects of interest that are out of
his workspace. The modules that allow the robot to grasp and use the tool are implemented as
described in [TPNM13]. Furthermore, we consider also the case in which the object is too far
to be reached even by the use of the tool. In this case the robot should look for a human and
asks his intervention (put the object within reach). Figure 2.5 shows the experimental setup and
it illustrates the three areas in which objects can be placed.

The activity diagram depicted in Figure 2.6 may give the impression that the task is only com-
posed of a few simple steps that the robot should follow to accomplish it. But in fact, there
are many uncertainties and unexpected conditions which should be taken into consideration to
make the task robust. For example, the proper decision should be taken if an object drops from
the hand while the robot is placing it into the bucket. Similarly the robot should behave ap-
propriately while it is holding the tool to pull the object closer, the human might intentionally

3Modules can be downloaded from: https://github.com/robotology/icub-main.git and
https://svn.code.sf.net/p/robotcub/code/trunk/iCub/contrib
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intervene and move the object within the iCub’s workspace. Considering all possible uncertain-
ties, in fact, reveals the underlying complexity of the task which requires that many modules
(e.g, for perception, action and coordination) are properly used and orchestrated (e.g, coordi-
nating robots, gaze, arm, speech) to perform the required task.

Table 2.1: A subset of modules used for the experiment
Module Input Output Type
Face–Detector image pos_3D perception
Object–Detector image List<pos_3D> perception
Bucket–Detector image pos_3D perception
Look–Around - pos_3D implicit action
Head–Control pos_3D - action
Pick–and–Place msg_cmd msg_status action
Pull–Object msg_cmd msg_status action
Speak msg_text - action

The modules used in this experiment are chosen from the iCub software repository and listed
here in Table 2.1. To build the desired application, a few modules might simultaneously require
to grab the camera image frames from the robot, control the arms and hands in various modes,
such as Cartesian or joint space using velocity or position control. However, for the sake of
brevity, only a subset of these modules are described in this deliverable. We use the previously
mentioned Face–Detector and the Look–Around modules.

Object–Detector gets as an input image from the cameras and produces a list of blobs and
extracts 3D positions of all the possible graspable objects as its output. Bucket–Detector is, in
fact, an instance of a generic object detector which is configured and trained to recognize this
specific object. As we previously mentioned, Look–Around randomly produces positions in 3D
space which are used by Head–Control to move the gaze in various positions. The Pick–and–
Place module receives a set of commands (e.g., take <3D_pos>, put <3D_pos>) to take
an object and release it on a specific position. The internal status of the module (e.g., e_taken,
e_arm_idle) is continuously sent out using status messages. Pull–Object is a complex set
of modules which together get the position of an object on the table and use a tool to bring
the object closer [TPNM13]. Similar to Pick–and–Place, the internal status of the Pull–Object
module is advertised via its output. The Speak module receives a text message and performs a
text–to–speech synthesis. Generally speaking, in order to be able to integrate some modules for
building an application, two important points should be considered: i) data type on both side
of the connections should match and ii) a proper coordination mechanism should orchestrate
modules to perform the task. We start with the simplest case in which the objects are reachable
by the iCub and progressively extend it to build the complete table–cleaning application.

2.4.1 Handling reachable objects

First our application should select the closest object within the reachable area and take it (see
Figure 2.7-A ). To do that, we connect the output of Object–Detector to the input of Pick–
and–Place. Using the port monitor, we implement a simple script that goes through the list of
objects, select the one that is closest to the robot and produces the proper ‘take’ command (i.e.,
take <3D_pos>) for execution. Similarly, to put the object into the bucket we connect the
output of Bucket–Detector with the same input of Pick–and–Place and attach to this connection
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A B

Figure 2.7: The iCub performing table–cleaning on reachable objects. The robot takes the
object (A) and places it into to bucket (B).

another port monitor that generates the ‘put’ command (i.e., put <3D_pos>) for execution
(see Figure 2.7-B )

Furthermore, an object should be taken only if the hand of the robot is free and the robot is not
performing another action using the arm. On the other hand, the ‘put’ command should be sent
to the Pick–and–Place module if the robot is holding an object. To this aim, the status of the
Pick–and–Place module should be monitored and the required arbitration rules should be added
to the system to properly coordinate taking, placing and releasing actions. Figure 2.8 repre-
sents the configuration of the modules that perform this simple task on the reachable objects.
As shown in the figure, the status output of the Pick–and–Place module is used to inform the
arbitrator about the internal state of the module. Below we illustrate how this is achieved.

Object
Detector

Bucket
Detector

Pick and 
Place

M
M
M

C1

C2

C3

Figure 2.8: Configuration of the modules for handling reachable objects on the table.

As we have previously mentioned, a monitor object is assigned to each connection going
through the port arbitrator. Listings 2.5, 2.6 and 2.7 respectively represent pseudo–scripts which
will be loaded by each monitor object for connections C1, C2, and C3. Listing 2.7 demonstrates
the script which is assigned to the monitor object of connection C3. This monitor receives status
messages from Pick–and–Place (i.e., e_taken, e_arm_idle) and adds them to the event
container of the port arbitrator. These events will be used for the selection of C1 and C2. Notice
that the connection C3 and the corresponding script (Listing 2.7) are created to make the status
events available for the arbitration. These events will be never delivered to Pick–and–Place.
This is achieved by refusing to accept the data from the connection C3 (return false).

1 PortMonitor.create = function()
2 setConstraint(‘not e_taken and e_arm_idle’)
3 return true;
4 end
5

6 PortMonitor.accept = function(object_list)
7 -- find closest_obj in the object_list
8 if closest_obj.dist > HAND_REACHABLE then
9 return false

10 end
11 return true
12 end
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13

14 PortMonitor.update = function(object_list)
15 return command(‘take’, closest_obj.pos)
16 end

Listing 2.5: Monitoring and arbitrating connection C1.

1 PortMonitor.create = function()
2 setConstraint(‘e_taken and e_arm_idle’)
3 return true;
4 end
5

6 PortMonitor.update = function(bucket_pos)
7 return command(‘put’, bucket_pos)
8 end

Listing 2.6: Monitoring and arbitrating connection C2.

1 PortMonitor.accept = function(status_event)
2 setEvent(status_event, 0.5)
3 return false
4 end

Listing 2.7: Monitoring connection C3 for generating events.

Listing 2.5 deserves particular attention: First, within the ‘create’ callback, the required se-
lection rule for the connection C1 is set into arbitrator. The rule implies that data from corre-
sponding connection should be delivered if the robot has not already taken (not e_taken)
an object and if it is not performing an action (e_arm_idle). In the ‘accept’ callback, first
the closest object to the robot is selected from the list of detected objects. If the object is reach-
able (the data is accepted), the ‘update’ method will be called to generate the ‘take’ message
to be delivered to Pick–and–Place. If the object is out of reach, it will be discarded (return
false). Similar Listing 2.6 represents the script that generates the ’put’ command and that
specifies the condition which enable action generation.

2.4.2 Handling objects using tool

We now extend the previous application to allow the iCub to use a tool to bring unreachable
object within its workspace (see Figure 2.9 ). Figure 2.10 represents how Pull–Object is inte-
grated in the application. The output of Object–Detector module provides a list of objects; this
list should be filtered to select one object that is within the tool–reach area and out of the robot’s
workspace. The position of this object should be given to the Pull-Object to trigger a sequence
of actions to take the tool from the rack, reach for the object with the tool, pull the object and
finally putting back the tool on the rack (see Figure 2.9-B, C, D ).

1 PortMonitor.create = function()
2 setConstraint(‘not e_taken and e_arm_idle’)
3 return true;
4 end
5

6 PortMonitor.accept = function(object_list)
7 -- find closest_obj in the object_list
8 if closest_obj.dist > TOOL_REACHABLE then
9 return false
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10 end
11 return true
12 end
13

14 PortMonitor.update = function(object_list)
15 if closest_obj.dist < HAND_REACHABLE then
16 return command(‘cancel’, nill)
17 end
18 return command(‘pull’, closest_obj.pos)
19 end

Listing 2.8: Monitoring and arbitrating connection C4.

Once the object is located within the reachable area of the robot, the previous picking–and–
placing application is activated. Appropriate selection rules should be added to the system to
properly arbitrate pulling and pick–and–placing.

Listing 2.8 represents the pseudo code of the script which is used in the port monitor of con-
nection C4. The selection constraint (not e_taken and e_arm_idle) filters messages
to Pull–Object when the robot is already involved in other actions (i.e. picking and placing an
object). Similar to Listing 2.5 from the previous application, first the closest object is extracted
from the list of detected objects. This object is accepted and generates a ‘pull’ command if it
is within the tool–reach area. Otherwise it is discarded. An interesting behavior is the fact that
the pulling action is composed of several sub–actions that should be aborted if the tool becomes
unnecessary (e.g. if a human moves the target objects in the workspace of the robot). This is
achieved by continuously monitoring the target object in the ‘update’ function and generating
the ’cancel’ command when necessary. Notice that as opposed to Pick–and–Place, Pull–Object
ignores redundant ‘pull’ commands until all ongoing sub-actions are accomplished or aborted
(with the ‘cancel’ command). Therefore, unlike Pick–and–Place, we do not need to monitor the
internal status of Pull–Object and filter conflicting ‘pull’ commands.

Clearly Pick–and–Place and Pull–Object are conflicting behaviors. To avoid conflicts the se-
lection rule for connection C1 must be updated to prevent generation of ‘take’ commands while
Pull–Object is active (i.e. not idle). This is achieved by making the internal state of the Pull–
Object available in the arbitrator of Pick–and–Place via connection C5 and by modifying the

A B

D

C

FE

Figure 2.9: The iCub performing table–cleaning using a tool (rake). The robot take the tool (A),
reaches for the object (B,C), pulls the object (D), grasps the object (E) and finally places it into
the bucket (F).
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Figure 2.10: Configuration of the modules for handling objects within tool–reach space.

A B C

ED

Figure 2.11: The iCub performing table–cleaning with human assistance. The robot detects an
unreachable object (A), detects the presence of a human and asks assistance (B,C), grasp the
object (D) and finally places it into the bucket (E).

selection constraint of Listing 2.5 as follows: ‘not e_taken and e_arm_idle and
e_pull_idle’

As for the connection C3, Listing 2.7 is used for the port monitor of connections C5 and C6 to
inserts the status events into the corresponding event containers.

2.4.3 Handling objects with human assistance

In Section 2.3 we explained how the Face–Detector and Look–Around modules can be prop-
erly used with the Head–Control module to implement a basic face tracking application. In
this section, we use these modules to complete our table–cleaning application. When an object
is completely unreachable, the robot should look for a person and asks assistance (see Fig-
ure 2.11). Figure 2.12 depicts the complete system. The output of Object–Detector arbitrates
the connections from Face-Detector and Look-Around via C7 and C11 so that when required,
the robot will look around searching and tracking human faces. This is achieved in Listing 2.9
by monitoring the closest object and generating an event ’e_unreachable’ when the latter
is out of the tool–reach area. Notice that this event is cleared (removed from the container) only
when the object becomes reachable again.

1 PortMonitor.accept = function(object_list)
2 -- find closest_obj in the object_list
3 if closest_obj.dist > TOOL_REACHABLE then
4 setEvent(’e_unreachable’)
5 else
6 unsetEvent(’e_unreachable’)
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7 end
8 return false
9 end

Listing 2.9: Monitoring connection C7 and C11.

1 PortMonitor.create = function()
2 setConstraint(‘e_unreachable’)
3 return true;
4 end
5

6 PortMonitor.accept = function(data)
7 if time() - time_prev < DESIRED_TIME then
8 return false
9 end

10 time_prev = time()
11 return true
12 end
13

14 PortMonitor.update = function(data)
15 return msg(‘Please put the object closer!’)
16 end

Listing 2.10: Monitoring and arbitrating connection C10.

Messages from Look–Around and Face-Detector are discarded depending on the internal state
of Pick–and–Place and Pull–Object via connections C12 and C13 and the event generator script
(i.e., Listings 2.7). This prevents moving the head when the robot is picking, placing or attempt-
ing to pull an object. Finally the output of Face–Detector generates a voice message synthesized
by the Speak module. This is achieved by connecting the two modules (C10) and adding a script
to the corresponding port monitor. This script generates a text message (a valid command for
the Speak module) if a human face is detected, but only if a certain amount of time has passed
from the last command, to reduce verbosity (Listing 2.10). Notice that these commands are
arbitrated by C11 so that the speech is activated only when necessary.
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Figure 2.12: Configuration of the modules for table–cleaning application.
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Chapter 3

Middle Level

The robot programming environment ArmarX [WVW+13] has been developed in order to ease
the development of higher level capabilities needed by complex robotic systems such as hu-
manoid robots. ArmarX is built upon the idea that consistent disclosure of the system state
strongly facilitates the development process of distributed robot applications.

Beside the development aspects that are addressed by the framework, ArmarX serves as a soft-
ware backbone for distributed robot programs as they are needed in complex systems in order
to incorporate all aspects of distributed sensor processing, robot control, planning and task
scheduling. The advanced inspection capabilities of ArmarX (graphical user interfaces, state
chart editors, etc.) provide possibilities to monitor and control the data and control flow within
a distributed robot application in order to allow both, the developer and the robot program itself,
to gain full knowledge about the current system state. The information can be used to predict
future resource usage profiles and to monitor execution footprints for bootstrapping novel exe-
cution sequences.

There are several essential prerequisites for any RDE that have to be met in order to fulfill the
requirements for robotics research and development. In the following, we will briefly discuss
design principles, which are considered by ArmarX to provide solutions for the demands of
current robot platforms and development processes.

• Distributed processing
Due to the complexity of robotics a typical robot hardware architecture consists of several
embedded PCs. Software components are spread over several, sometimes specialized,
computation units to fulfill hardware requirements or real-time conditions. Easy inter-
facing and connecting of these components is a key feature of modern RDEs. ArmarX
addresses these issues with distributed applications that are coordinated by a central man-
aging system. This allows for load balancing and robustness in case of failing hardware
components.

• Disclosure of the system state
Another key design principle of ArmarX is the disclosure of the internal system state on
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all levels - from the from the meta level to the sensorimotor level to the task level. Three
mechanisms support this idea on the technical level: inspectable hierarchical statecharts
with well-defined interfaces, well-defined application interfaces and flexible communica-
tion mechanisms. Distributed applications, the robot program, the robot sensors, and the
internal model of the world establish the disclosure of the internal system state.

• Interoperability
An essential feature of an RDE is to support an assortment of different hardware platforms
and operating systems for an easy integration of new components without the necessity
to adapt the new component to the given circumstances. Therefore, ArmarX can be com-
piled under Linux, Windows and Mac OS X. Additionally, ArmarX uses an interface
definition language (IDL) which supports a variety of platforms and programming lan-
guages. Thus, the supported operating systems can easily be extended by implementing
the ArmarX interfaces on the target platform using one of the supported programming
languages. By the IDL supported programming languages are C++, .NET, Java, C#,
Objective-C, Python, Ruby, PHP, and ActionScript.

• Open Source
To achieve the most impact on robotics an RDE should be open source since the bud-
get is spent usually on hardware than on software. Additionally, open source software
allows developers to achieve a deep insight in the underlying mechanisms of the RDE.
Consequently, ArmarX is available open source under the GPL license.

The core layer of ArmarX comprises four main building blocks: inter-object communication,
Sensor-Actor Units, Observers, and Operations as shown in Figure 3.1. The Inter-object com-
munication block provides convenient mechanisms for communication between objects of the
systems, while these objects could be any of the other buildings blocks. The Sensor-Actor Units
present a generic interface as the lowest level of abstraction for robot components like motor
control or sensors. These units are monitored by the Observers for changes to send applica-
tion specific events to appropriate operations. These operations are designed as statecharts.
They process the events and send resulting control commands to the Sensor-Actor Units, which
control the robot or the dynamic simulation.

3.1 Statecharts - High-Level Programming in ArmarX

Complex robot operations are usually compositions of a number of individual smaller opera-
tions which result into certain states of the robot and the environment. Based on this princi-
ple, robot operations in ArmarX are arranged as hierarchical, distributed, and orthogonal stat-
echarts based on Harel’s approach [Har87]. Statecharts are widely used in robotics to control
the behavior on a high level [KB12, MRW06, BECHR10, BC10]. In the well-known RDE
ROS [QCG+09] an approach [BC10] is employed that focuses on the data-flow similar to the
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Figure 3.1: The application programming interface comprises four different elements. The
Sensor-Actor Units serve as abstraction of robot components, the Observers generate events
from the continuous sensory data stream which result in transitions between Operations. The
operations are organized as hierarchical state-transitions networks. These elements are con-
nected by the communication mechanisms (arrows in the figure).

dataflow in our approach, but differs on the triggering of transitions. In many points our state-
charts are similar to the rFSM [KB12] from Orocos [BSK03] which focus on the coordination
of components, while our approach concentrates more on the disclosure of the internal state.

The key principles of the ArmarX statecharts are: modularity, re-usability, runtime-
reconfigurability, decentralization and state-disclosure.

• Modularity is supported in our statecharts naturally through the individual states and a
specified input and output.

• Re-usability is ensured since every state can be used as a substate in any other state and
has a specific interface for interaction.

• Runtime-reconfigurability means that a statechart can be defined in configuration files and
that the structure of a statechart can be changed completely at runtime.

• Decentralization means that a statechart does not need to be resided in one process, but
can be spread over several components. This enables load balancing and robustness.
A crashed distributed state component would not crash the whole statechart, i.e. the
complete high level robot behavior, but would just create an event for higher layers that
this specific component has failed.
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• State-disclosure means that the statechart can be inspected at run-time and logged for
future behavior adaptation. The state transition chain and the dataflow between states
could be used to predict the hardware workload or optimize the robot behavior.

3.2 Memory Structures

MemoryX, the memory layer of ArmarX, includes basic building blocks for memory structures
which can be either held in the system’s memory or made persistent in a non-relational database.
Based on these building blocks, the memory architecture illustrated in Figure 3.2 is realized. A
key element of MemoryX is the network transparent access facilities which allow consistently
updating or querying the memory within the distributed application. The architecture consists
of different memory types such as working memory (WM), long term memory (LTM), and prior
knowledge. Each memory type is organized in segments which can be individually addressed
and used to store arbitrary types or classes.

• Working Memory (WM)
The WM represents the current context of the robot’s internal state. It can be updated by
perceptual processes or prior knowledge via an updater interface. The memory consists of
logical segments which hold information about perceived object instances, object classes,
agents (including the robot itself) and world entities.

• Longterm Memory (LTM)
Compared to the short term memory structures, the LTM provides long term storage ca-
pabilities (e.g. database access) and offers an inference interface which allows attaching
learning and inference processes. The LTM can also be used to save snapshots of the
working memory in order to load them later on for extended processing like learning,
comparison, statistical analysis.

• Prior Knowledge
Prior knowledge contains information which is already known to the robot. Entities in
prior knowledge can be enriched with known data such as 3D models or features for
object detection which usually refer to user generated data that form the initial world
knowledge of the robot.

Powerful update mechanisms can be realized with this setup. For example, a perception module
localizes a known object and updates the WM. This update creates a new entity of the object
with the current location and enriches it with the 3D model from the prior knowledge database.
Besides the possibility of directly addressing the WM, an observer exists which allows installing
conditions based on the memory content. If the associated content changes the matching events
will get generated.
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Figure 3.2: ArmarX offers the MemoryX architecture consisting of a working memory and a
long-term memory. Both memories can be accessed within the distributed application. Appro-
priate interfaces allow attaching processes to the memory for updating and inference.

3.3 OAC representation with statecharts

In this task, we worked on a hierarchical representation for Object-Action Complexes (OACs)
[KPP+11]. An OAC is a formalism for representing interactions with objects. They are com-
positional and can be arbitrary complex, e.g. the OAC ’Open door’ contains the OAC ’Grasp
handle’. They require a defined world state before the action and predict the effects of the OACs
on the world state (preconditions and effects). Additionally, they may provide some new infor-
mation, which was gained during the execution of the OAC. To be able to represent all kinds of
OACs with one representation a powerful internal structure is needed.

We developed a new structure to represent OACs as part of our new Robot Development En-
vironment ArmarX, which satisfies the demands of OACs and is based on the ArmarX design
principle ’Disclosure of the internal state’. We modified the statecharts of Harel [Har87] to suit
our requirements of a controlled and inspectable dataflow and state reusability, and developed a
new statechart specification.

The ArmarX statecharts support the OAC requirements as follows:

• Compositional OACs
Statecharts are hierarchical and divide an action into smaller sub-actions. In statechart
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notation an OAC corresponds to a state with sub states. Furthermore, the states ensure
reusability of OACs by a specified, but flexible interface. Therefore, states, i.e. OACs,
can be reused in a higher level state.

• Parameterization
The states in a statechart specify input parameters of various types, which are provided
by previous states and managed by the higher level states before the state is entered. The
state itself is unaware of the source of the input parameters, which ensures the reusability
of states. A higher level state has to provide the parameterization of this state by utilizing
the context knowledge that is available at the higher level but unimportant for the lower
level.

• Preconditions
The OAC preconditions are crucial for a correct execution of an OAC. To this end, Ar-
marX provides a powerful condition management system that allows generating complex
conditions over all robot components. With this system the fulfillment of the OAC pre-
conditions can be checked and a transition to the next state, i.e. the next OAC, can be
triggered.

• Effects
The effects of OACs are propagated in the exiting phase of a state, which triggers an
evaluation of the conditions for the next OAC.

• Gained information
By executing the OAC new information might be gained. This information is made avail-
able for subsequent states via the output parameters of a state.

With this OAC representation the internal state can be easily visualized for a convenient
overview over a complex task and for run-time inspection. Furthermore, it is possible to
generate new OACs automatically as a composition from basic OACs (see figure 3.3).

As shown in [WSA+13] it is possible to segment a observed human demonstration of a com-
plex task automatically into smaller basic OACs. With this segmentation and the new OAC
representation as statecharts it is possible to generate a new OAC, i.e. a new statechart, auto-
matically by creating a chain of states (consisting of existing OACs) connected by transitions.
The parametrization is extracted from the world state of the key frames and the change of the
world state at the key frames of the segmentation is converted into ArmarX conditions that
trigger state transitions.
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Figure 3.3: Example of a composition of basic OACs into a complex task with the statechart
notation.
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Chapter 4

Planning Level

The following description is in good overlap with D3.2.3. Here we summarize the impor-
tant aspects related to integration into the architecture. The main goal here is to extend the
capabilities of current high-level planning models by applying structural bootstrapping to the
knowledge-rich representation of actions and plans, to provide the apparatus needed to support
plan generation and execution in low-level robotics domains and higher-level domains requiring
language and communication.

To this end, we extended the PKS planner [PB02, PB04]. PKS is a state-of-the-art conditional
planner that constructs plans in the presence of incomplete information. Unlike traditional plan-
ners, PKS builds plans at the knowledge level, by representing and reasoning about how the
planner’s knowledge state changes during plan generation. Actions are specified in a STRIPS-
like [FN71] manner in terms of action preconditions (state properties that must be true before
an action can be executed) and action effects (the changes the action makes to properties of the
state). PKS can build contingent plans with sensing actions, and supports numerical reason-
ing, run-time variables [EHW+92], and features like functions that arise in real-world planning
scenarios.

Like most AI planners, PKS operates best in discrete, symbolic state spaces described using
logical languages. As a result, research that addresses the problem of integrating planning
on real-world robot platforms often centres around the problem of representation, and how
to abstract the capabilities of a robot and its working environment so that it can be put in a
suitable form for use with a goal-directed planner. A key problem when constructing such a
representation is the question of how to encode the planner’s knowledge about objects that are
not completely described in the domain model (but which are known or believed to exist), and
how to make assertions about domain properties that reference such objects. Similarly, as new
information becomes available to the planner, for instance as a result of sensorimotor processes
external to the planner itself, a facility should exist for updating the planner’s underlying domain
model to make use of this more certain information.

To address these problems in complex planning domains, we have reported (D3.2.1 and D3.2.3)
two main threads of research related to the PKS planner. These are concerned with the use
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of interval-valued fluents for modeling uncertain numerical information, in order to capture
the effects of noisy sensors and noisy effectors at the planning level. Since noisy information
is common in real-world robot domains, we believe these extensions will be particularly use-
ful in integrating high-level planning with the low-level sensorimotor systems on Xperience.
Moreover, this representation gives rise to a form of indexical (or relative) referencing during
plan generation, which addresses the problem of making assertions about domain properties
for partially-defined objects. This work is described in [Pet14] which is available in D3.2.3
(attached paper).

The second extension is central to the integration effort of this deliverable and it is in fact an
application programming interface (API) to the planning component, which supports the mod-
ification of existing planning domains at run time using the Internet Communications Engine
(ICE). In particular, the API abstracts common planning activities already supported by PKS,
including functions for adding new actions, properties, and objects to a planning domain, and
offers a network-based solution for communicating with the planner component. One of the
main contributions of this interface is that it is designed to be generic, which offers the possibil-
ity that alternative planners could be used in place of PKS, facilitating future integration tasks,
provided they support the same interface. Additional details are described in D3.2.3 ([Pet13]).

4.1 Interface design philosophy

This document is not meant to provide precise details concerning the implementation of the PKS
API, however, we note the following design decisions which affect our current implementation:

• Internet Communications Engine (ICE): The API detailed in D3.2.3 is implemented using
the Internet Communications Engine (http://www.zeroc.com/ice.html), which provides an
object-oriented middleware for building distributed applications. The default implemen-
tation using the PKS planner provides a planning server which allows clients to to access
the services provided by the API.

• Support for multiple backends: The current implementation of the planning API was
adapted from the interface to the PKS planner, but has been abstracted to avoid PKS-
specific representations and syntax. API functions connect the ICE layer to a version of
PKS implemented as a C++ library, which is linked to form the plan server. However,
there is no strict requirement that PKS must be used as the planning backend, and any
planner which is able to implement the API can be used in its place as an alternative
backend.

• Backend-dependent syntax: Many of the functions in our API require specifying a file or a
definition for a particular aspect of the planning domain (e.g., actions, problems, symbols,
etc.). The precise syntactic form of these definitions is left to the backend planner. As a
result, this means that the content (parameters) of certain function calls may change from
backend to backend. However, this also means that all planning domain entities do not
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need to be standardized in order to support the API. This functionality may change in the
future as we reconsider certain aspects of the interface.

4.2 Interface elements

The elements of the interface (which represent the main classes of functions in PKS) are:

• Properties and states;

• Plan steps and plan sequences;

• Planner configuration and debugging;

• Domain configuration;

• Plan generation and plan iteration.

The following subsections describes these elements with some additional details.

4.2.1 Properties and states

A structure called StateProperty defines the abstract notion of a domain property (or fea-
ture, fluent, relation, function, etc.) as an entity with a name, a list of arguments args, a sign,
and a value. This definition is meant to accommodate both relational and functional entitles
which commonly arise in planning states. For instance, a relation like ¬F(a) could be encoded
as:

name : F
args[0] : a
sign : false
value : (unused),

while a function mapping like f (a) = c could be encoded as:

name : f
args[0] : a
sign : true
value : c.

A state can be thought of as simply a list of StateProperty definitions, denoted in the API
as StatePropertyList. Note that this definition supports the standard STRIPS-style view
of states as collections of instantiated properties, and is consistent with many types of planning
approaches. It can also be used to encode the notion of an observed state, as a collection of
properties as returned from a set of sensors.
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4.2.2 Plan steps and plan sequences

A PlanStep can be thought of as a particular instantiated action in a plan, which is defined
by a structure specifying its name, its type, and a list of parameters, args. For instance, an
instantiated action pickup(blockA, table, lefthand) (pick up blockA from the
table using the lefthand), which denotes a type of manipulation action, could be encoded
in this structure as:

name : pickup
type : manipulation
args[0] : blockA
args[1] : table
args[2] : lefthand.

The type field is not often used by many traditional “linear” (i.e., non-hierarchical) plan-
ners, but may provide useful heuristic information to an execution system at run time. A
PlanStepList is simply a sequence of PlanSteps (i.e., instantiated actions) which can
also be thought of as a simple linear plan, of the form that most classical planners are able
to generate. This allows the possibility of providing a generic container for returning plans
to external modules that does not rely on the particular plan encoding used by the underlying
planning system. More complex plans (e.g., contingent plans involving branches, or programs
involving loops) could be encoded using standard containers (e.g., trees, maps, etc.) found in
most modern programming languages (e.g., STL containers in C++).

4.2.3 Planner configuration and debugging

The first set of functions in the planning API provide a planner-independent way of configuring
the underlying planning system, and providing access to certain features needed for debugging:

• reset(): This function resets the planner to its initial state.

• getPlannerProperty(string s): This function returns the state of the planner
property variable s. The precise set of accessible properties is defined by the underlying
planner.

• setPlannerProperty(string s, string t): This function sets the state of
planner property s to value t. The precise set of accessible properties and associated
values is defined by the underlying planner.

• getInternalStructure(string s): This function is a hook to allow internal
planning structures to be queried by external modules. This is primarily included to
provide access to internal debugging information.
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In general, the implementation of these functions relies on such features being supported by
the underlying planner. Since many planners offer such functionality already, these functions
simply standardise the interface.

4.2.4 Domain configuration

The next set of functions provide the main methods for defining planning domain models to the
planning system. These functions provide support for loading predefined models, or incremen-
tally augmenting existing models at runtime:

• clearDomain(), clearActions(), clearProblems(), clearStates():
These functions direct the planner to delete any domain (similarly, actions, problems, or
states) that are currently defined.

• loadDomain(string s): This function directs the planner to load a domain from
the specified file/URL s. The actual format of the domain is specified by the backend
planner.

• loadSymbols(string s): This function directs the planner to load a set of symbol
definitions from the specified file/URL s. Symbol definitions typically involve a specifi-
cation of the allowable objects, types, and properties in a planning domain.

• loadActions(string s): This function directs the planner to load a set of action
definitions from the specified file/URL s. Actions are defined in a language supported by
the backend planner.

• loadProblems(string s): This function directs the planner to load a set of prob-
lem definitions from the specified file/URL s. A problem definition typically consists of
initial state and goal specifications, but may also contain additional problem constraints
or control information. Again, the precise form of a planning problem is specified by the
backend planner.

• loadPlanState(string s): This function allows the planner to load a cache a
state definition from the specified file/URL s. Such a state can be used by the planner
as a starting state, or a possible recovery state for replanning purposes. The only hard
requirement this function imposes on the backend planner is that this state be cached for
future use.

• loadObservedState(string s): This function is similar to loadPlanState
except the loaded state is additionally tagged as being an observed state. The only hard
requirement this function imposes on the backend planner is that this state be cached for
future use.
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• defineDomain(string s), ..., defineObservedState(string s):
These functions are analogous to the functions loadDomain(string s), ...,
loadObservedState(string s), as defined above, except rather than loading
definitions from a specified file or URL, the definitions are directly included in the
parameter string s. These functions allow all domain definitions to be performed directly
through function calls, without requiring access to external files.

• definePlanStateFromList(StatePropertyList s),
defineObservedStateFromList(StatePropertyList s): These func-
tions are similar to their counterparts definePlanState and defineObservedState,
except rather than specifying a state definition in a string s, it is defined using the state
structure StatepropertyList, as described above.

One of the important ideas behind these functions is that they offer the possibility of specifying
domains to the planner incrementally, using function calls alone, rather than specifying a single
monolithic domain file to the planner as a single entity, as is usual for many off-the-shelf plan-
ners from the planning community. This means that an initial domain could be specified and
then later revised, for instance due to additional information discovered by an external learning
process (e.g., new domain objects, revised action descriptions, additional properties correspond-
ing to new capabilities of the robot, etc.). This is a potentially powerful mechanism, however, it
pushes the problem of how a planner should react to a change in the planning domain onto the
planner itself. Conceptually, this may present problems for the underlying planner, especially
in the presence of partially built plans, and this API offers no solution to this problem.

4.2.5 Plan generation and plan iteration

The final set of functions defined in the API specify methods for controlling various aspects of
the plan generation process, and for iterating through generated plans:

• buildPlan(): This function directs the planner to generate a plan using the current
settings, domain, and default planning problem.

• clearPlan(): This function directs the planner to clear the current plan in its memory,
if one exists.

• getCurrentPlan(): This function directs the planner to return the current plan as a
string. This function is normally used to direct the planner to return a plan in its native
format.

• getCurrentPlanAsList(): This function directs the planner to return the current
plan as a PlanStepList structure. As a result, this function currently only supports plans
that can be returned as a linear sequence of actions.
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• getNextAction(): This function directs the planner to return the next action in a
plan, as a PlanStep structure.

• getNextActionUsingControlInfo(): This function is similar to getNextAction
except it allows for the specification of additional control information in the parameter
string s. This information is intended to help resolve plan ambiguities concerning
execution decisions (e.g., which branch of a plan should be followed, whether a loop
termination decision has been achieved). The precise form of the control information is
planner dependent.

• isNextActionEndOfPlan(): This function determines whether we have reached
the end of the plan during plan iteration.

• isPlanDefined(): This function returns a status update on whether or not a valid
plan currently exists.

• setProblem(string s): This function informs the planner that it should work with
the planning problem specified by the string s. The string may specify a label to a previ-
ously defined problem, or contain the definition of a new problem.

• setProblemGoal(string s): This function informs the planner that the current
goal condition should be replaced by the goal specified by the string s. The problem is
otherwise unchanged.

The idea behind many of these functions is to extend a degree of control over the plan generation
and execution processes, as necessary, to components outside the planner itself, to the extent that
simple plan execution monitoring activities can be supported without reliance on the planner.
As a result, a client using these services can determine whether to generate a plan, and can
iteratively ask for individual plan steps, advancing the plan one step at a time. Entire plans can
also be processed by external processes in their entirety. The functions also support run-time
updates to certain aspects of the planning problem, such as goal change.

4.2.6 Examples

Examples of the use of the PKS in the robotic domain are described in D3.2.3 and relative paper
attachments.
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Chapter 5

Benchmarking

During the first three years of the project the consortium has developed several bootstrapping
methods, and has gained a much better understanding of the concept. This motivates a revision
of the bootstrapping benchmarks outlined at the start of the project in D1.1.1. The following
benchmarking specification replaces Chapter 3 of D1.1.1.

We benchmark bootstrapping mechanisms at three levels, sensorimotor, objects and actions, and
symbolic. The following sections define benchmarks for each level. While in D1.1.1 we de-
fined a generic multi-level benchmarks, here we are more specific analysing progress in various
experiments. Each experiment is paradigmatic of the Xperience approach.

5.1 Sensorimotor Level

5.1.1 Learning to grasp unknown objects from partial point clouds infor-
mation

This benchmark activity deals with the test of grasping methods on unknown objects. We
analysed the quality of grasping on the iCub as described in [GPTM13b, GPTM13a]. In this
section we describe the grasping evaluation for this method. We decouple two object properties,
i.e.:

• shape: detected through stereo vision and image postprocessing;

• orientation: detected through stereo vision (see [GPTM13b]);

• weight: non measurable at the moment.

Following this subdivision, we devised the following tests:

• synthetic generic shape tests (full point cloud);
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• synthetic real objects of various shapes (but similar weight);

• real objects with varying orientation (detected through 3D vision and using a partial point
cloud).

It is to be noted that the weight (as well as other non detectable object properties) can be anal-
ysed by far and large even if the robot cannot really measure and/or take them into account for
planning grasping. They nonetheless provide useful information to the user with respect to the
applicability of a given robot to a given experimental scenario.

The following figure 5.1 shows an example of grasping using the iCub hand (model) on a
number of objects with various orientations and shape. These are all regular shapes with known
(perfect) orientation and size.

Figure 5.1: Synthetic objects and grasping simulations (benchmark 1 above).

A more realistic test is typically performed to quantify the grasping method and its failures.
Here a set of objects of varying size and shapes is designed (styrofoam) and employed to evalu-
ate the actual grasping performance 5.2 (the robot is unaided in these experiments). The results
for the iCub hand are shown in the table 5.1. These show that the iCub using the proposed
method (power grasp) work well in a range and elongations of the objects. This is expected
and thus this benchmark constitutes the baseline to compare further development in the coming
years.

Finally, a real grasping experiment testing orientation of an elongated object with varying angles
(with respect to the robot) has been performed 5.3. The goal was to show that the perception
of the orientation of the object works well and for objects whose size is compatible with the
results of the previous paragraph, the proposed method does a good job.
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Figure 5.2: Synthetic objects but actual grasping is performed to measure the overall quality
and range of the given grasping method (on the iCub in this case) - benchmark 2.

class small medium large
1 0% 34% 82%
2 42% 67% 94%
3 87% 90% 85%
4 0% 78% 89%
5 n/a% 77% 72%
6 n/a% 62% 89%

Table 5.1: Power grasp evaluation on the iCub robot.

We showed these three tests for the iCub grasping (power grasp) in order to illustrate how
they can be readily applied to various robot hands and employing more sophisticated grasping
strategies and visual routines.

5.1.2 Learning to Grasp Objects Based On Feature Relations

SDU and UIBK are collaborating on methods to identify visual object features that predict
suitability for specific grasp types. A visual feature is represented as a six-dimensional vector
specifying normalized distances and angles between each pair of three ECV surface patches.
Features are sampled from the region where the gripper touches the object during grasp at-
tempts. Grasps are represented as binary outcome values (success or failure) in SE(3) pose
space relative to the visual features.

Bootstrapping consists in extracting features that predict success or failure of grasps attempted
using the from SE(3) pose parameters in question. We are experimenting with different meth-
ods for extracting structure from high-dimensional data, including maximum-margin structured
learning methods and homogeneity analysis (see Deliverable D3.1.2).
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Figure 5.3: Real object grasping with various orientations - benchmark 3.

The baseline comparison without bootstrapping involves learning the graspability of individual
objects without transferring learned representations between distinct objects:

Without Bootstrapping: Learn to grasp each object independently from scratch by incremen-
tally refining its object-specific feature/success association.

With Bootstrapping: Learn to grasp one object after the other by incrementally refining a
single, generic feature/success association.

We will quantify the concept in simulation by:

• comparing the number of grasp trials required to learn to grasp N different objects with a
success rate of r in these two cases, and

• comparing the success rates of grasps suggested by these two learned representations
applied to novel objects.

5.1.3 Transfer of manipulation predictions between actions

We will use distributions of learned particles predicting success of actions based on observed
features and apply it to new actions. For a very straightforward and admittedly rather artificial
example this is shown in figure 5.4.

The main idea is that we by transferring earlier acquired particles from a different yet similar
action are able to improve the rate of learning on a novel action. The example shows how we
transfer knowledge from an inside grasping action to a dropping into action and vice versa.
Furthermore is depicts how the performance of the transferred learning compares to learning
from scratch. The cost of the learning in the example is described by a percentage of data
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Success distribution for ‘Dropping’ 

Success distribution for ‘Grasping inside’ 

Figure 5.4: Speed up of learning actions by biasing them with already known action-success
distributions

we utilize and the performance is measured as a combination of object/action coverage and
success-prediction.

The bootstrapping process is introduced when we use the earlier learned action prediction as a
starting point for learning a new type of action, hence we already have a prediction basis which
we then can improve/correct with knowledge from the novel action. The action predictions is
based on visual feature combinations and the experimental work are performed in a simulated
context of dynamic action simulation as well as simulated sensors.

Without bootstrapping We learn the action prediction from scratch for every novel manipu-
lation action.

With bootstrapping We use the earlier learned action prediction as a basis on a novel action.
We then introduce particles from the new action to update the already known action pre-
diction.

We will quantify the bootstrapping

• Comparing the success prediction of a learned action as well as the coverage.

• Comparing the amount of input data needed.

5.1.4 Accelerated Sensorimotor Learning In Constrained Domains

Through imitation a robot can obtain a first approximation of the desired movement, which
can later be improved by autonomous exploration. It has been demonstrated that this way
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difficult to learn motor behaviors can be acquired [MSG+96], which cannot be learned by direct
mimicking. Based on such early works, reinforcement learning (RL) of robot movements has
started to be seen as a viable approach to learning motor behaviors in robotics [MD01, PS08,
TBS10, TNUW11, STS12]. Standard reinforcement learning focuses on how to obtain optimal
task performance in a specific configuration of the robot’s environment.

Thus with the application of reinforcement learning, a robot can generate new variants of the
desired behavior. In Xperience project we focus on how the structure provided by previously
acquired example movements can be exploited for further learning. By taking into account
the structure of trajectory space defined by previously acquired example movements, the robot
can bootstrap its learning process [NFV+12]. The newly acquired example trajectories can be
added to the database of example movements, thereby increasing the performance of statistical
generalization techniques [UGAM10, MHM11, FGMU12, MKKP13].

In the context of reinforcement learning, we are going to benchmark the speed-up in learning
gained by exploiting the structure of previously acquired example movements. The following
approaches will be compared:

RL without Bootstrapping: Learn a new motor task, e. g. pouring, with standard reinforce-
ment learning techniques such as Policy learning by Weighting Exploration with the Re-
turns (PoWER) [KP10] or Policy Improvement with Path Integrals (PI2) [TBS10]. The
reinforcement learning process will be initialized by the knowledge from one example
behaviour, which can be obtained by imitation.

RL with Bootstrapping: Use reinforcement learning that exploits the structure provided by
multiple example trajectories to learn the same motor task.

We expect that reinforcement learning based on structural bootstrapping will be more efficient
due to the reduced dimensionality of the trajectory space spanned by previously acquired ex-
ample trajectories. The following key performance indicators will be tested:

• Number of rollouts needed to add another trajectory to the trajectory database

• Increase in the precision of statistical generalization with respect to the original database
and the database augmented by new motor patterns.

5.1.5 Action replacement versus unconstrained reinforcement learning

By exploiting higher-level information provided by semantic event chains [AAD+11], it can
be suggested to replace one action with another [WGT+14]. For example, it turns out that at
a semantic event chain level, stirring is similar to wiping. KIT and JSI are collaborating on
how to exploit such action replacement suggestions to learn new motor behaviors. Our goal is
to show that by initializing motor learning by exploration with the knowledge of one action,
e. g. wiping, we can learn the appropriate motor representation of another action, e. g. stirring,
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quicker than when learning from scratch. In other words, the learning of stirring motor primitive
can be bootstrapped by the knowledge originating from the wiping behavior. We are going to
benchmark the following types of learning

Reinforcement learning without action replacement bootstrapping: Learn a new motor
task, e. g. stirring, with standard reinforcement learning techniques (see Section 5.1.4).
No initial information about the task will be provided.

Reinforcement learning with action replacement bootstrapping: Exploit the motor knowl-
edge suggested by action replacement based on semantic event chains to initialize rein-
forcement learning and learn the same motor task.

We are going to evaluate the speed-up that can be achieved by the proposed action replacement
process. The key performance indicator will be the number of needed to learn a new motor
task with or without bootstrapping by action replacement.

5.1.6 Learning Between Object Softness And Action Parameters

In [MDA14] we addressed the question of generative knowledge construction from sensori-
motor experience acquired by exploration. We show how actions and their effects on objects,
together with perceptual representations of the objects, are used to build generative models,
which then can be used in internal simulation to predict the outcome of actions. Specifically,

Figure 5.5: Learning correlations between object softness and action parameters for wiping in
the Xperience cycle.
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we addressed the learning of association between object properties (softness and height) and
action parameters (DMPs parameters) for the wiping task to build generative models from sen-
sorimotor experience resulting from wiping experiments (see Figure 5.5). Object and action
are linked to the observed effect to generate training data for learning a nonparametric con-
tinuous model using Support Vector Regression. In subsequent iterations, the learned model
is grounded and used to make predictions on the expected effects for novel objects and thus
to constrain the action parameter exploration space. The approach has been implemented on
the humanoid platform ARMAR-IIIb. Experiments with set of wiping objects differing in soft-
ness and height demonstrate efficient learning and adaptation behavior of wiping objects with
different softness. We showed, that

• Increasing the number of wiping trails with different objects lead to decreasing time for
action parameter search.

• Without bootstrapping, the robot has to test each novel object and select suitable action
parameters.

• With bootstrapping, the robot is able to select suitable action parameters for novel ob-
jects without the exploration step.

In the future, we will extend this work in two ways: First we will consider additional object
properties such as geometry, weight which allow the estimation of additional action parameters
such as force, hand orientation and wiping pattern. Second, we will provide quantitative mea-
sure for the speed-up achieved by learning such generative models in the cross space of object
properties and action parameters.

5.1.7 Accelerating Blind Grasping

Approaches for accelerated grasping of unknown objects can be seen as bootstrapping mecha-
nisms. In our previous work ([SMAU13, SUA14]), we have shown how humanoid robots can
leverage their capability to physically interact with the world in order to support the autonomous
visual segmentation, learning and grasping of unknown objects in a cluttered environment. In
[SSA12] we demonstrated a reactive grasping approach, which integrate the acquired visual ob-
ject segmentation after pushing to accelerate pure haptic based object grasping (blind grasping).
We showed that

• Without bootstrapping, the time and the number of exploration behaviors for blind
grasping of unknown objects is high.

• With bootstrapping, the interactive visual segmentation significantly reduce the time
required for grasping unknown objects.
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In the future, we are going to benchmark the speed-up in blind grasping of unknown objects by
integrating the interactive segmentation approaches. We will provide qualitative measures on
the speed-up and relation between number of pushing actions and reactive grasping attempts.

5.2 Objects and Actions

5.2.1 Robot object manipulation database for recognition

One of the benchmarks we proposed in Y2 consists on a “classical” image database for recog-
nition acquired in an embodied setting: i.e. considering a human-robot interaction scenario as
well as considering a number of conditions (e.g. object in the hand, etc.). The database has
been made Open Source and distributed at: http://www.iit.it/en/projects/data-sets.html.

Within the collaboration with the Laboratory for Computational and Statistical Learning
(IIT@MIT) and the SLIP-GURU group at the University of Genoa (occasional collabora-
tion), we developed a Human-Robot-Interaction (HRI) schema whereby the iCub can label
images automatically exploiting self-supervision by either using knowledge of its own kine-
matics or visual motion cues. This knowledge provides a prior on the object location in
the images which allows selecting a simple but reliable region of interest for further pro-
cessing. We collect data in two modalities: human mode and robot mode (e.g. see video:
http://www.youtube.com/watch?v=vhPLUNg9r5k).

There are two modalities illustrated in Figure 5.6:

• Human Mode – A human demonstrator holds the object of interest in her/his hand and
moves it in front of the robot. The head of the robot tracks the object during acquisi-
tion allowing a certain degree of background variability. The object is also presented
from various points of view. We determine the bounding box of the object by using an
“independent motion detection algorithm” developed previously for the iCub;

• Robot Mode – The object of interest is held by the iCub and the robot moves the arm
pseudo-randomly to generate a variation of points of view and backgrounds. The forward
kinematics is known and it is used to determine the object bounding box.

Figure 5.6: Illustration of the two modes of acquisition for the dataset of iCubWorld.
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We collected two different datasets:

• 10 categories, 40 objects acquired in human mode (see definition above) for the training
phase. Data for the testing phase have been collected both in human and robot mode. The
acquisition size is 640×480 and subsequently cropped to the bounding box of the object
according to the kinematics or motion cue. The bounding box is 160× 160 in humand
mode and 320× 320 in robot mode. For each object we provide 200 training samples.
Each category is trained with three objects (600 examples per category);

• This is the first release of the iCubWorld dataset. It consists of seven instances of objects
acquired in the two different modalities: human and robot as defined earlier. The size of
the images is 320×240 subsequently cropped to the bounding box size according to the
following:

– Human mode: the bounding box is set to 80×80;

– Robot mode: the bounding box is set to 160×160.

The kinematics of the robot is known and used to position the bounding box. The inde-
pendent motion detector method is used to position the bounding box in the human mode.
We provide 500 images per class during the training phase and 500 images per class for
the testing phase.

An example of the images contained in iCubWorld1.0 is shown in figure 5.7.

Figure 5.7: Sample images of the iCubWorld1.0 dataset.

These standard datasets are relatively different from other image centered databases since we
strove to collect data in realistic HRI experiments which are different from simple collections
of images taken by a human photographer (e.g. centered, in focus, etc.). In iCubWorld we have
to deal with blur, with considerable clutter, occlusions, etc. thus providing a better evaluation
of actual performance in the robotic/HRI setting.
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5.2.2 Inferring Object Affordances By Generalizing From Experience

The methods UIBK is developing for grasp generalization (cf. Sec. 5.1.2) apply more generally
to inference between attributes of objects, actions, etc. In Xperience Scenario [?], also described
in a draft journal publication [WGT+14], we will put it to use to provide a Repository of Objects
and Attributes with Roles (ROAR).

The relevant part of the scenario proceeds as follows: The robot has encountered, in different
contexts, the activities of wiping (with a sponge) and of mixing (with a spoon). These two ac-
tivities are described by the same SECs. Moreover, both share approximately the same circular
hand motion. Thus, the robot (wrongly) infers that sponges and spoons are equivalent.

Now, the robot is tasked with mixing batter, but does not find a spoon in its workspace.

With bootstrapping (ROAR): The robot checks the ROAR to verify the hypothesis that a
sponge can serve as a substitute for a spoon in mixing, and finds that the sponge, be-
ing soft, is clearly outside the ROAR cluster of objects known to be useful for mixing.

It then checks the ROAR for other objects it finds in its workspace, and finds that the fork
is located near objects known by the ROAR to be useful for mixing.

The ROAR’s performance can be quantified without an end-to-end robotic implementa-
tion in the following manner:

1. Create a fully annotated, realistic, ground-truth data set G of objects with attributes.

2. Do K times:

(a) Create ROAR Rk by populating it with G, erasing a random subset of attributes.
(b) For each object in the ROAR, check whether its utility for mixing is correctly

predicted.

3. The ROAR’s performance is the average of the correct-prediction rates over all ob-
jects in the ROAR.

To test the stability of the ROAR with respect to the population of objects, the above
procedure can be repeated for various subsets of G.

Without bootstrapping (no ROAR): The robot attempts to mix the batter with the sponge,
but fails to achieve the desired result. All it can do is proceed trying the other objects in
its workspace, one after the other, until it finds an object useful for mixing.

The system performance without ROAR is then simply given by the proportion of objects
in the robot’s workspace that are in fact useful for mixing.

5.2.3 Learning Pairwise Affordances

Many actions involve pairs of objects. Understanding the effect of actions involving pairs of
objects constitutes the next step beyond acting on a single object. We hypothesize that knowl-
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edge about how these objects behave under single-object actions help us predict how they will
behave under dual-object actions.

To quantify this, UIBK’s robot is performing exploratory actions on single objects (poking
from the top, the front, or the side; releasing them above the table) while observing their effects
(rolled, pushed, toppled, no effect). Then, it releases one object above the other and observes
the effect (inserted, stacked, toppled, covered).

Learning to predict the effect of the latter, two-object action by exhaustive experimentation is
expensive, involving on the order of N2 experiments. This is exacerbated if the goal of learning
is not simply to predict the outcome for pairs of specific, known objects, but for new objects
based on features known about them (e.g., features of shape). However, if these features include
their single-object affordances such as the above, learning the dual-object affordances should
require much less training.

We are currently performing experiments to quantify the difference in training complexity be-
tween learning these dual-object affordances with and without including the single-object af-
fordances in the feature vector describing each object.

5.3 Planning and Language

The work at UEDIN falls roughly into three areas:

1. learning actions,

2. recognizing and learning plans, and

3. learning language.

We discuss benchmarking in each of these areas individually below.

5.3.1 Learning Actions

There is no standard benchmark for comparing different planning domain models. We have used
domains from the International Planning Competition (http://ipc.icaps-conference.org/), which
are commonly used when benchmarking planners and are widely known and available. To com-
pare the performance of different domain models we have used F-score, error rate [ZYHL10]
and variational distance [PZK07]:

• The F-score is the harmonic mean of precision and recall (true positives/predicted changes
and true positives/actual changes, respectively). It was calculated by designating the
number of correctly predicted changes to the fluents as the true positives, the number
of changes which were not predicted as the false negatives, and the number of incorrectly
predicted changes as false positives.
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• The error rate for a single action is defined as the number of extra or missing fluents in the
preconditions and effects (Epre and Eeff respectively) divided by the number of possible
fluents in the preconditions and effects (T ): Error(a) = 1

2T (Epre+Eeff ). The error rate of
a domain model with a set of actions A is: Error(A) = 1

|A|∑a∈A Error(a).

• Variational distance is more useful than the above measures when comparing probabilis-
tic domain models. It compares the true model P with the learnt model P̂ over a set of
examples E. The variational distance between two domain models is the average differ-
ence between the probability of an example occurring assigned by the true model and the
probability assigned by the learnt model: VD(P, P̂) = 1

|E|∑e∈E |P(e)− P̂(e)|.

5.3.2 Recognizing and Learning Plans

Our research on recognizing plans in the Xperience area is very much related to work on parsing
in natural language and work on plan recognition. As such, benchmarking our systems will use
well known metrics from the plan recognition literature including accuracy, precision, and mean
time to recognition[BA06]. To provide a baseline values for these metrics we anticipate using
either other well known domains from the plan recognition literature or synthetic domains that
have known properties. Note that in some instances synthetically generated plan libraries are
able to control form various factors and provide a level of systematic study that using real world
domains cannot.

To benchmark the learning of plans will require looking at two different aspects of the learned
plans, recognition of further instances of the plan and generation of plans for future use. We
anticipate using different metrics and benchmarking for these tasks.

For benchmarking recognition of newly learned plans we anticipate using the same metrics as
described for recognition in the domain in general namely: accuracy, precision, recall, and mean
time to recognition of new instances of the newly learned plans. As new plans are learned the
system’s performance on these critical metrics should not be significantly decreased. We would
anticipate some change, but a significant decrease would be cause for concern.

To benchmark the effectiveness of newly learned plans for plan generation requires considering
the speed of planning, that is average time to construct a successful plan. For cases where the
system was previously unable to construct a plan (like the current Xperience wiping vs mixing
example) the value of the learned plan is obvious and can be benchmarked as the value of
executing the plan at all.

However, we can also imagine more general cases where the system is able to find a plan but the
newly learned plan should be an improvement over the known plan. In order for such a benefit
to be quantifiable it must be the case that either executing the learned plan results in a preferred
outcome (higher utility) or the system is able to generate a plan of the same quality faster. In
this case we might view what is going on a “speedup learning”[Fer10].
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5.3.3 Learning Language

In terms of UEDIN’s work on language learning there are a number of different benchmarks
that we evaluated our work against. [TS11] Semi-supervised CCG Lexicon Extension was
evaluated against the baseline unextended parser and against other learning techniques (self
training) on a standard benchmark dataset (the CCG version of) the Penn Wall Street Journal
Treebank[MSM93].

[KGZS12b] A Probabilistic Model of Syntactic and Semantic Acquisition from Child-Directed
Utterances was evaluated on a new publicly available benchmark training set derived from the
standard CHILDES Eve corpus. Ours is the only work we know of using this dataset in any
form, but we evaluated our model in comparison to [KZGS10] on the same benchmark, The
latter is a state of the art semantic parser learner which was in turn evaluated on the standard
Geoqueries benchmark datasets[TM03] in comparison with a number of other learners.

[KLP+14] Extracting Common Sense Knowledge from Text for Robot Planning is evaluated
against human evaluations and against the baseline planner, but we are not aware of any avail-
able benchmark dataset.
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