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Chapter 1

Executive Summary

Xperience project focuses on the performance of the learning process. In this context we need to bench-
mark by how much and how quickly the task knowledge and robot skills improve as the amount of data
available to the learning agent increases. This document focused on the analysis of numerical methods and
their implementation as numerical software in order to measure the impact of structural bootstrapping
applied across all levels of the system architecture. Being able to test the correctness of the implementa-
tions as well as the performances of the methods is of significant importance. Furthermore, the validation
and benchmark is one of the major steps in the construction quality of open source software, in particular
if they are be used to transfer our findings in the community and employed in practical applications.

In summary, this deliverable places a great deal of importance in benchmarking, in terms of metrics,
that demonstrate and measure the impact of structural bootstrapping applied across all levels of the
architecture while also focusing on key performance indicators as benchmarks for learning, defined in
D1.1.1, such as the following, to name a few:

• Quality of learning: How good is the acquired task knowledge? How much better is the task
knowledge after coaching compared to standard imitation learning? (this is task specific)

• Efficiency of learning: How many training examples are needed to achieve satisfactory perfor-
mance? while also looking at the reduction of the number of training examples.

• Stability of learning: Standard deviation of the number of training examples for learning of a
specific task.

• Speed of acquisition: How many trials do we need to add information about new objects to the
library of known objects.

• Efficiency of generalization: How many specific objects belonging to a particular class do we
need before we can apply the acquired knowledge to all objects of this class?

In particular we show throughout this document how bootstrapping greatly influences the learning speed,
increases the prediction and motor accuracy and remarkably reduces the need for large training samples.
This increase of performance is seen in action generation, action coding, visual recognition and Object-
Action Complexes and we are able to obtain better generalization, and engender complex behaviors as
those needed for interacting with other cognitive agents.
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Chapter 2

Validation and execution of defined
benchmarks

2.1 Sensorimotor Level

2.1.1 Transfer of manipulation predictions between actions

This section will discuss the bootstrapping results we were able to achieve in learning visual success
predicting classifiers (see Section 2.1.1.1). Section 2.1.1.2 will give our learning approach without boot-
strapping and our experimental setup. The following section (2.1.1.3) will show the results we are able to
achieve without bootstrapping. Section 2.1.1.4 describes the approach used to bootstrap and the results
of bootstrapping are shown and discussed in Sections 2.1.1.5 and 2.1.1.6. The work summarised in this
section has lead to a more detailed description which can be found in [FKKG15].

2.1.1.1 Problem description

The goal of the visual success classifiers trained in this work is to accurately predict — based on visual
data — whether an action can be executed successfully in a given scene. The actions are means-end
actions where one action (means) is executed on one object in order to facilitate the successful execution
of another action (end) on another object. It is, therefore, the spatial relationship between the objects
involved, that is determining whether the means action can succeed to facilitate the end action.

An example of an action used in this work is the ‘slide’ action. The goal of the ‘slide’ action is to grasp
and tilt one object with another object on-top of it, so that the object on-top slides off the bottom object.
In case there is no object on-top (it might e.g., be beside) the action will fail. An successful ‘slide’ action
execution is illustrated in Figure 2.1.

Figure 2.1: Before/after action execution snapshots to Illustrate the ‘slide’ action.
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2.1.1.2 General learning approach

The robot experiments used in this work were performed using a six degrees of freedom robot arm in
a physically realistic simulated robotics setup including a simulated Kinect sensor. Using colour based
segmentation we extracted a point cloud for every object in the scene. Using Eigen decomposition over
the segmented point clouds we extract nine variables as approximations of an object’s position (X, Y, Z),
orientation (Roll, Pitch, Yaw) and size (elongation along each object axis).

In our experiments, we used an overall set of 29 objects, which can be split into four different groups:
(1) Toys, (2) Bases, (3) Obstacles and (4) Rakes. For every experiment exactly one toy object and one
object of a different group is used. The objects are randomly distributed within the workspace area that
approximately forms a semi-circle in front of the robot with a radius of 1.8 m. The robot is equipped
with nine actions it can perform. Depending on the two objects in the workspace, one of which always is
a toy object, different actions are available for execution.

Based on the visually derived variables (nine per object) describing each of the objects, a random forest
classifier is trained to predict the success of an action. This approach is illustrated by Figure 2.2.

Vision 
System

Action 
Success 
Classifier

Success 
Prediction

Visual Input State Space
 Object positions and 

orientations and
relational histograms

Figure 2.2: Illustration of the inputs for learning action success Predictors.

2.1.1.3 Results without bootstrapping

Figure 2.3 shows the learning curve for learning nine action success predictors without bootstrapping.

Figure 2.3: Illustration of the learning curve of action success predictor learning for nine actions without
bootstrapping. On the left, the X-axis is logarithmic scaled to highlight that the learning continues even
after several thousand training samples. On the right, the plot highlights the early stage of learning with
up to 100 samples.

The X-axes in Figure 2.3 show the number of samples used for training and the Y-axes show the accuracy
of the action success classifiers. The training data is always 50% positive and 50% negative samples. It
can be seen by the left part of Figure 2.3, that learning without bootstrapping continues even after several
thousand training samples are used. The right part of Figure 2.3 highlights the early stage of learning
with up to 100 samples.

2.1.1.4 Bootstrapping approach

We investigated how additional knowledge can be used to bootstrap the learning of these action success
classifiers. The agent stores its Knowledge in form of random forest based predictors:

• Action Success Predictor: The classifiers that predict the success of actions.
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• Category Predictor: Classifiers that recognise specific categorical patterns in the environment
(see [FKKG15]).

Bootstrapping is achieved by adding the output of existing predictors to the state space of a new action
success classifier that is learnt to predict the success of a new action. Figure 2.4 illustrates our gen-
eral structure of learning. We investigate the following approaches to bootstrapping of action success
classifiers:

A) using previously learned action success predictor(s) for other actions as additional input

C) using previously learned category predictor(s) as additional input

Vision 
System

Action 
Success 
Classifier

Success 
Prediction

Visual Input

Action Success 
Predictor(s)

State Space
 Object positions and 

orientations and
relational histograms

B)

A)

C)Category 
Predictor(s)

Figure 2.4: Illustration of the inputs for learning action success Predictors. The solid lines represent the
basic case of learning with no additional information. To bootstrap the learning additional information
can be added. The blue ellipse illustrates the addition of one or all other existing actions’ success
predictions. The green ellipse illustrates the addition of one or all previously learned category predictor
outputs.

Firstly, we analyse the bootstrapping effect by comparing the learning curves of learning with and with-
out bootstrapping. Secondly, we benchmark the bootstrapping effect by using a novel metric that we
introduced in [FKKG15] to quantify the bootstrapping effect.

2.1.1.5 Results with bootstrapping

The following bootstrapping result figures show on the left the learning curve of the action success
predictors (comparable with Figure 2.3 left) and on the right the bootstrap factor that quantifies the
bootstrapping performance.

A) Figure 2.5 shows the learning curve for learning the nine action success predictors bootstrapped with
the prediction of another action success predictor that leads to the best learning results1. Figure 2.6 shows
the learning curve for learning the nine action success predictors bootstrapped with the predictions of all
other action success predictors at once.

C) Figure 2.7 shows the learning curve for learning the nine action success predictors bootstrapped with
the prediction of the one category predictor that leads to the best learning results. Figure 2.8 shows the
learning curve for learning the nine action success predictors bootstrapped with the predictions of all
category predictors at once.

2.1.1.6 Discussion

By comparing the results of learning without bootstrapping in Figure 2.3 with the results of learning
with bootstrapping in Figures 2.5 to 2.8, the increase in learning speed achievable through bootstrapping
becomes evident. The Bootstrap factors that accompany the learning curve results of learning with

1This best result is the one with the highest average accuracy learning curve from two to 100 samples (see [FKKG15]
for details).
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Figure 2.5: Illustration of action success predictor learning for nine actions using another action success
predictor output for bootstrapping. Of all the potential action success prediction sources for bootstrap-
ping, for each action, only the best result is presented.

Figure 2.6: Illustration of action success predictor learning for nine actions using all other action success
predictor outputs at once.

Figure 2.7: Illustration of action success predictor learning for nine actions using a single category
predictor output for bootstrapping. Of all the potential category predictor sources for bootstrapping, for
each action, only the best result is presented.

Figure 2.8: Illustration of action success predictor learning for nine actions using all other category
predictor outputs at once.

bootstrapping highlight the bootstrapping performance. With bootstrapping, the action success classifiers
often reach up to 7.5 times the accuracy of not-bootstrapped classifiers when using the same amount of
training samples at early stages of learning (up to 9.5 in the best case) It can also be seen that not
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bootstrapped classifiers can need several hundred training samples to reach the same performance that
is reached by a bootstrapped classifiers after as few as twelve training samples.

2.1.2 Learning to grasp objects based on feature relations

Our work within learning of grasp affordances for use on previously unseen objects was initially motivated
by the work performed in [17], see also Figure 2.9. In this work, the idea was to learn a predefined set
of grasp primitives, called elementary grasping action (EGA), that where triggered by either co-planar
pairs of contours (Figure 2.9a-c) or by a single surface feature (Figure 2.9d-f). Three different grasp
types where hand defined for each of the heuristic based feature constellations and this knowledge was
applied on real scenes of objects. By utilising the set of EGA’s in a combined way (selecting one of them
in turns) a rather high rate for performing a successful grasp was achieved of around 20-30%.

Figure 2.9: Overview of the elementary grasping actions EGA, presented in [16]. a) to c) shows hand
defined EGA’s given co-planar contours and e)-f) show hand defined EGA’s with respect to surface
features. Figure is taken from [17]

In the following two subsections, we first describe the learning of grasp affordances directly from surface
features (section 2.1.2.1). In section 2.1.2.2, we then introduce an additional in-between level to the
very same learning algorithm, in which a discrete set of prototypes of visual structures are acquired
by unsupervised learning. We show that we achieve better performance on an even harder problem by
exploiting the visual structures provided by this inbetween level. In addition we show, that the extracted
discrete set of features can be associated to semantically meaningful structures such as ”walls” and
”borders” to which grasp affordances can be statistically linked.

2.1.2.1 Learning of grasping affordances without prior learned visual structures

In our work in Xperience, we proposed a framework for learning constellations of pairs of surface patch
features of different sizes and learning associated grasping affordances in a probabilistic way [34] instead
of hand defined such as in [17]. The aim of the work was to learn some of the underlying structure that
exists in a visio-action space spanned by a combinations of features, see also Figure 2.10. In this context,
we introduced a semantic property of a local feature to be a border feature, see Figure 2.10b. This feature
type was found by means heuristics and gave the additional information for a feature to be at a border and
have a direction towards the border. Given this, we spanned a space of feature pairs by means of spatial
relationships and two finger pinch grasps, allowing for learning structures in a feature grasp domain and
apply it on novel objects. The approach was applied to an object set consisting of three different object
classes, respectively open- (container), round- and box objects in a simulated environment. The results
of the investigation, see in Table 2.1, show success-rates in the range of 68% to 83% depending on the
object set. A particular interesting results is the impact that the border feature have for the open object
set, where the structure that it contributes with improves the results significantly. This lead us to believe
that we need to add/learn additional structure at the lower level features to achieve better predictions.
This work has lead to a publication as a journal paper [34].
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Figure 2.10: Work of [34], a) Shows a basis surfling feature representation. b) basis surfling representation
where borders are found using heuristics. c) Utilised 2nd order combinations of features. d) Linking visual
features to actions. Figures are taken from [34]

Table 2.1: Comparison of results acquired without prior visual learned structures [*] from [34] and with
prior learned visual structures [**] from [35] where 20 prior visual features were learned. The results
without prior visual knowledge were only performed object class wise (therefore the empty fields in the
table). For the results with prior visual knowledge, the results were performed for the all the object
classes making the problem more difficult. Random depict the chance for randomly selecting a successful
grasp in the set.

Containers [%] Boxes [%] Curved [%] All [%]
NPG WPG CG NPG WPG CG NPG WPG CG NPG WPG CG

[*] 68 - - - 84 - - 84 - - - -

[**] 78.0 40.5 74.0 13.6 87.9 87.9 6.3 92.5 92.5 37.0 70.4 83.8

random 10.6 11.5 - 4.8 46.6 - 4.4 51.3 - 7.0 34.1 -

2.1.2.2 Learning of grasping affordances with prior learned visual structures

Instead of learning from local surface structure directly, we now introduce a discrete set of semi-local
visual prototypes acquired by unsupervised learning as an in-between level to the very same learning
scheme as used in [34].

Given the aforementioned results, we proposed the SPGF (Sliced Pineapple Grid Feature) in [35], a semi-
local surface based feature, see also Figure 2.11. The feature is based on radially distributed pairwise
spatial relations between a central features and its neighbours which are organized into a circular grid
structure (Figure 2.11a). In this grid structure parametrization, we extract a finite set of descriptors by
means of k-means clustering (Figure 2.11b) allowing us to infer features on a novel situation (Figure 2.11c).
The features are learned on the full object dataset used in [34], resulting in a shared visual representation.
Given this representation we apply a similar probabilistic grasp affordance learning approach as in [34]
with the difference that we learn affordances for the discrete set of visual features. In addition, we learn
two types of pinch grasps a wide pinch grasp (WPG) and a narrow pinch grasp (NPG). Given this system,
we show that we are able to learn reusable visual structures for a variety of objects that can be used for
predicting successful action affordances with a reasonable probability. We show that the learned visual
representation can be utilised for predicting two different grasp types with rates for a successful grasp in
the range of 74% to 93% depending on object class (Table 2.1).

When assessing the learned visual feature, we have identified the border feature (previously derived from
heuristics in [34]) as well as other type specific surface structures such as ”walls” and ”borders” extracted
from the object data, hence we could replace manual design settings by learning.

In particular, we have shown how a finite set of semi-local visual features derived by k-means clustering
allows for learning grasping affordances. In addition, the property of utilising the visual structures for
multiple different grasp types is observed in the visio-action visualizations in Figure 2.13. These figures
show the grasp success probability for the two different grasp types with respect to the previously derived
visual structures. When comparing the figures it becomes obvious that only one structure, number eight,
is a reasonable predictor for the narrow pinch grasp, whereas a number of different structures show
prediction potential for the wide pinch grasp (2,4,6 and 10). This work has been published in [35].
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Figure 2.11: Overview of the SPGF feature presented in [35]. a) The circular grid structure of the SPGF
features describing the spatial relations of the neighbourhood radially. b) A finite set of features derived
from the circular grid by means of k-means clustering. c) Inferring of the clustered visual types on a
novel object. d) Linking of action with visual types. Taken from [35]

Figure 2.12: Visualisation of a learned set of visual features with K=10. The features are denoted 1 to 10
from left to right. The bottom and top rows show the same features from different angles. In addition to
the actual inclination of the outer ring feature, the colour also denote the angle difference to the normal
of the centre feature, green/cyan depict strong curvature whereas red depict none or little curvature. The
orientation of the features are described by the inlaid frames (red, green and blue sticks). Taken from
[35]

2.1.3 Accelerated motor learning in constrained domains

In this section we demonstrate the effectiveness of structural bootstrapping for motor learning. We
considered the problem of learning compliant movement primitives, where feedforward torque commands
need to be learned to enable compliant control. The approach uses a parametric trajectory representation
that includes both position and joint torque trajectories. This representation, called Compliant Movement
Primitive (CMP), is based on dynamic motion primitives (DMPs) for the position part and a weighted
sum of radial basis functions for the feedforward torques, i. e. torque primitives (TP). The details are
described in [22]. The learned torque components are used in a feed-forward manner in order to reduce
the necessary feedback gains while maintaining the same level of accuracy but with compliant behavior
of the robot. The method can be applied for any task or task variation, but the torque trajectories have
to be learned separately for each of these. This representation was developed in the FP7 project ACAT.

Since torque profiles have to be available for each task and even each task variation, their practical
implementation requires that they can be learned also without human demonstration. For this purpose
we first note that the parametric nature of the trajectory representation allows us to employ real-time
statistical generalization, i. e. Gaussian process regression, in order to generalize between a smaller subset
of learned behaviors [8]. In [6] we showed that generalization achieves similar levels of accuracy as the
directly demonstrated movements when generalizing from a database of learned CMPs. However, the
problem of building a comprehensive database remains demanding and time consuming. In the Xperience
project, we developed a new approach to reduce the learning time by having a robot to autonomously
expand its database through learning using the mechanisms of structural bootstrapping [PCG+15, FNU15].

Autonomous learning of CMPs simplifies the execution of dynamically versatile tasks while ensuring
accurate and compliant execution of the motion. However, since torques are not linearly scalable, TP
part of CMPs have to be learned for every variation of the task. These variations can include different
speeds, payloads, goals, etc. The process of learning TPs can be significantly accelerated by using
statistical generalization techniques, which can generate first approximations of the TPs based on a given
query point. In case the generalized TP achieves the desired performance, it can be immediately added
to the database of motion. If not, a recursive regression method [GPD+16] can be applied using the
generalized TP for the initial approximation, vastly reducing the number of needed iterations of motion.

Instead of learning all task variations by demonstration, we developed an algorithm where we bootstrap
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Figure 2.13: Visualisation of the visual features with the learned grasp affordances for the NPG grasp
(rows two and three) and the WPG grasp (rows four, five and six). The features are denoted 1 to 10 from
left to right. Red areas depict low probability (0.0) of success. The colour changes towards green that
depict a success probability of 1.0. First row show the features, second and fourth row show the features
with associated grasp from a perspective view and the third and fifth row show the features from a top
view. The sixth row show features from below view. Taken from [35]
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Figure 2.14: Learning of compliant movement primitives using bootstrapping in the motor space

autonomous learning of a new trajectory (a CMP includes both position and torque trajectory) with an
initial approximation provided by Gaussian process regression. Fig. 2.14 shows the basic schema of the
approach. Thus the learning starts from a good initial estimate and therefore needs less iterations to
accurately execute the motion. The number of required iterations is significantly reduced with each new
database entry. It should be noted that the learning can be either unsupervised or supervised.
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The method was evaluated on a humanoid robot performing a reaching task and on Kuka LWR-4 robot
performing a peg-in-hole task. We compared the speed of learning when bootstrapping for initial ap-
proximation and without the bootstrapping. The learning results for eight reaching examples of both
cases are shown in Fig. 2.15, where we can see that the convergence was faster with bootstrapping for the
initial estimate. Similar learning performance can also be observed for the peg-in-hole task. The learning
results are shown in Fig. 2.16, where we can see that the learning with bootstrapping is significantly
faster compared to learning without any prevision experience.
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Figure 2.15: The left plot show the results without bootstrapping and the middle plot shows the results
with bootstrapping, where the sequence of learning is determined with the Roman number. The desired
trajectory is shown with doted red line, initial trial is shown with blue line, gray thin lines show the
intermediate learning iterations and the black thick line shows the learned behavior. The I indicates the
number of epoch needed for successful learning of CMP, i. e. once the error was smaller than the desired
threshold. The right plot shows the error and the standard deviation for both cases.

Sequence and motion index

1 2 3 4 5 6 7 8 9 10 11 12 13

E
p
o
c
h

0

1

2

3

4

5

6

7

8

Without bootstrapping

With bootstrapping - autonomous database expansion

With bootstrapping - leave one out cross validation

p
x
 [
m

]

-0.1

-0.05

0

0.05

0.1

p
y
 [m]

-0.1 0 0.1

1

2

3

4

56

7

8

9

10

11 12

13

Figure 2.16: The left plot show the number of epochs needed to accomplish desired accuracy while
performing peg in a hole task. The right plot shows the sequence of learning.

12



Xperience 270273 PU

2.1.4 Action replacement versus unconstrained learning

This section relates to the Xperience deliverable D.1.2.1, chapter 5, bootstrapping at sensorimotor level.
As explained in D.1.2.1, some actions appear to be similar at higher-level information layers. It was
suggested that we could bootstrap the learning of a new action by the parameters of an action, which is
similar at the semantic level [40].

Our hypothesis is that knowing that two behaviors are similar can result in faster learning. Here we
demonstrate the benefits of bootstrapping for learning of a stirring behavior, which is bootstrapped by
the parameters of a previously learned wiping policy for pot stirring. While initially we planned to use
Reinforcement learning (RL) for the purpose of benchmarking, it turns out that in many cases Iterative
Learning Control (ILC) and Repetitive Control (RC) [39] can be applied to achieve faster results [38].
Therefore, we benchmark the learning of the pot stirring action with action replacement using repetitive
control.

Our experimental setup was composed of two KUKA LWR robots, equipped with Barred hands and
controlled using Fast Research Interface (FRI) [29]. First, wiping policy was obtained using LbD, see
Figure 2.18. This was accomplished using kinesthetic guiding in gravity compensation mode and recursive
regression [GPD+16]. Next, our goal was to learn how to stir in a metal pad of diameter of 21 cm using
wooden spoon (see Figure 2.17). The position, size and shape of the pad was not known. However,
we assumed that the initial pose of the robot tool (the spoon) was inside the pad and that the robot
orientation and z coordinate were also known. They remained unchanged during the stirring.

As a learning algorithm, we applied Repetitive Control (RC). The RC algorithm repetitively modifies
the movement to achieve the desired behavior, which in this case was defined as moving in contact with
the edge of the pot (this criterion is specified by the teacher). In order to determine the benefits of
bootstrapping similar activities, we considered two cases:

1. Without bootstrapping: learning without any previous knowledge about the stirring trajectory
and

2. With bootstrapping: the initial trajectory was obtained using LbD for wiping and the result
was encoded as a periodic DMP.

The task of the robot was to acquire the stirring motion as quickly as possible.

In our experiments we initially placed the robot’s end-effector at 2-3 cm away from the center of the
pot. Figure 2.19 shows the evolution of the stirring motion in x− y plane. The evolution of motion as a
function of time is shown in Figure 2.20. Note that the robot learned the desired policy in approximately
15 cycles without any prior knowledge and in approximately 7 cycles with the prior knowledge of the
trajectory taken from wiping. Figure 2.19 also shows that the tracking was not perfect, but note that
the tracking of the robot hand was captured, which was different from the motion of the spoon due to
the high compliance in robot joints. The actual trajectory of the spoon was following the pad shape.

Figure 2.17: Experimental setup Figure 2.18: Demonstration of wiping
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Figure 2.19: Learned path with desired and actual forces: left) without previous knowledge,
right) initial wiping trajectory was provided
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Figure 2.20: Time plot of the learned path: upper) without previous knowledge, lower) initial
wiping trajectory was provided

2.1.5 Bootstrapping reactive grasping by combining perception and action

Although many papers on image segmentation contain statements such as “segmentation is an important
pre-processing step for object recognition”, the practical usefulness of low-level segmentation algorithms
for the purpose of object recognition has been questionable up to now. This is due to many ambiguities
in natural images that can lead to different segmentation results. We developed an interactive approach
that resolves such ambiguities and makes low-level segmentation more reliable. Our hypothesis is that
the integration of visual perception and physical interaction for autonomous segmentation in cluttered
environments can bootstrap visual object learning and lead to a significant increase in robustness when
recognizing and grasping previously unknown objects (see [28], [27], [25], [26]), without needing to acquire
many thousands of annotated images as statistical methods do. In this section we describe how we
benchmarked the proposed interactive system with respect to the number of pushes that are needed to
reliably segment unknown objects from the background for the purpose of model learning, recognition
and grasping.
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2.1.5.1 Assessing the Segmentation Quality

We examined the performance of our interactive segmentation approach by testing it with 30 objects of
different shape, size and visual appearance type, which have been segmented twice each. To measure the
quality of the obtained segmentations, two metrics are determined: First, the object should be segmented
as completely as possible, i.e. in an optimal case the point cloud forming the object hypothesis should
fully cover the object. The second metric is the size of the falsely segmented area, i.e. the part of the
scene that is segmented but does not belong to the object. This happens when the object hypothesis
includes points that belong to the background or other objects.

Figure 2.21 shows these two metrics depending on the number of pushes executed. As can be seen, after
the first push the object is usually not covered completely, but already large part of it. After two to three
pushes, the object hypothesis contains almost the complete object, with the exception of small patches
that newly appeared due to object rotation or that were discarded from the hypothesis due to a change
in their appearance (e.g. reflections or bad depth estimation). After four pushes, the coverage does not
improve further, but different parts of the object may become visible, thus more information can still be
gained. The ratio of falsely segmented image regions compared to the whole object is always small.
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Figure 2.21: The average segmentation quality depending on the number of pushes that were executed.
The red line shows the segmentation ratio, i.e. the percentage of the object that is included in the
segmentation. The dashed green line depicts the false positive rate, i.e. the fraction of the segmentation
that does not belong to the actual object.

In summary, the interactive segmentation approach leads to very good segmentation results in complex
scenes which in general are hard or even impossible to obtain by otehr segmentation methods.

2.1.5.2 Assessing the Visual Object Learning based on the Segmentation

To benchmark the segmentation method, we tested how many pushes are necessary to achieve a good
multiview coverage of different objects. To this end, we performed a training process with 30 pushes for
5 of our test objects. We took test images of each of them from 8 different view directions, where the
object was turned on the table in steps of 45◦. We then tried to recognize the object using classifiers
learned from subsets of the acquired descriptors. As expected, when only the first few training images
were used, the object recognition succeeded only from some of the 8 viewpoints, but with an increasing
number of pushes and consequently more training images from different viewpoints, the recognition rate
improved (see Fig. 2.22). When looking at the individual objects, it seemed that a certain saturation was
usually reached between 15 and 25 pushes.

In summary, the interactive segmentation approach provides an efficient way for learning multiview visual
object representations autonomously.
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Figure 2.22: The performance of multiview object recognition with respect to the number of training
images acquired from different viewpoints.
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2.2 Objects and Actions

2.2.1 Robot object manipulation database for recognition

The ability to visually recognize objects is a fundamental skill for robotics systems. Indeed, a large
variety of tasks involving manipulation, navigation or interaction with other agents, deeply depends on
the accurate understanding of the visual scene. Yet, at the time being, robots are lacking good visual
perceptual systems, which often become the main bottleneck preventing the use of autonomous agents
for real-world applications. Lately in computer vision, systems that learn suitable visual representations
and based on multi-layer deep convolutional networks are showing remarkable performance in tasks such
as large-scale visual recognition and image retrieval. To this regard, it is natural to ask whether such
remarkable performance would generalize also to the robotic setting. In this section we investigate such
possibility, while taking further steps in developing a computational vision system to be embedded on
the iCub humanoid robot. In particular, we released a new data-set (ICUBWORLD28 [12]) that we use
as a benchmark to address the question: how many objects can iCub recognize? Our study is developed
in a learning framework which reflects the typical visual experience of a humanoid robot. Last year, we
started collecting and making available a data-set (ICUBWORLD1 [12]) that reflects the typical visual
experience of iCub and testing different solutions for visual recognition. Our preliminary results confirmed
on the one hand the potential of recently proposed systems, and on the other, highlighted the challenges
posed by the specific robotics context in particular the lack of accurate supervision. This section builds
on our previous work (presented in Y4) to take a further step in the development of a computational
vision system for the iCub. In particular, in this section we conduct an empirical study focusing at
key performance indicators as benchmarks in order to eventually answering the question: How many
objects can iCub recognize today?

We consider this problem within the Human-Robot Interaction scenario proposed in [2] and [3]for the
acquisition of the ICUBWORLD data-set. In the current work, a human teacher shows 28 different
objects to the iCub, verbally annotating them using a speech recognition system to provide labeling.
The same procedure is repeated for four consecutive days, leading to the acquisition of a new data-set,
dubbed ICUBWORLD28

An ideal robotic visual recognition system

• Reliability: In order to be reproducible, our analysis will be performed off-line on a visual
recognition data-set directly acquired from the robot cameras, ICUBWORLD28. However, in order
to generalize the recognition performance observed on such a benchmark, we will need a measure
able to quantify the confidence with which we can expect such results to hold also in the real-world
application.

• Contextual Information: The robotic setting offers a great deal of contextual information
that could be incorporated in the learning system to improve recognition performance. For
instance, by observing an object from different points of view, the robot could be able to bet-
ter disambiguate between different classes. Typically, contextual information is not available in
standard computer vision settings and therefore is unclear in general how to employ it in recognition

• Learning incrementally: A human-like artificial system should be able to learn a richer model
of the world as new observations become available. Specifically, it is natural to expect that the
visual recognition system of a humanoid robot should benefit from the incorporation of visual data
acquired on multiple occasions, such as training sessions across multiple days.

• Self-Supervision: Ideally, the interaction between a human and a robot should take place along
natural communication channels (for the human), such as speech or vision. Clearly, such a scenario
limits the amount of supervision that a human teacher can provide to the robot. For instance, in the
human-robot application considered in this work, images cannot be manually segmented around
the object of interest and therefore the system has to rely on so-called weak or self- supervised
strategies, such as motion segmentation, to eliminate, at least partially, the visual distractors (e.g.
background or other objects).
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Setup and Acquisition

Setup: The application setup we employed in this work is analogous to the one described in [3] and
we briefly outlined it in the introduction of this paper: a human supervisor is standing in front of the
iCub robot and shows it different objects while verbally providing the class annotation. Exploiting
independent motion detection routines [2], the robot tracks the novel object while acquiring images at
33hz. The independent motion detection algorithm allows to perform an approximate localization of the
object, effectively reducing the image size from 320 240 pixels to a mean of 120 120 pixels (See Fig. 2
for an example). Cropped images are then processed by a representation module that encodes the visual
information into a single vector or descriptor that will then be used for classification 2.23.

Figure 2.23: The visual recognition system adopted in this work and currently implemented on iCub.

Acquisition: Within the setting described above, we collected the ICUBWORLD28 dataset which
comprises images of 28 distinct objects evenly organized into 7 categories 2.24. For each object in the
dataset, we acquired a separate train and test sets during sessions of 20 seconds each. We reduced the
acquisition frequency by a factor of 3 (i.e. acquiring one image around every 0.09 seconds) to lower the
computational costs of the learning process. Thus, after each session, we collected 220 train and 220
test images for each of the 28 objects. To assess the incremental learning performance of the iCub visual
recognition system we repeated this same acquisition protocol for 4 consecutive days, ending up with four
datasets (Day 1, to 4) of more than 12k images each and 50k images in total. This release is available at
[12].

Figure 2.24: Example images from one of the 4 datasets comprising ICUBWORLD28. As can be seen in
the figure, each data-set is composed by 28 objects organized into 7 categories.

Extracting visual representation. To extract visual representations of images acquired from iCubs
cameras, in this work we employed a CNN originally trained on the ImageNet dataset [24]. Specifically we
employed a model provided in Caffes library [14], BVLC Reference CaffeNet, which is available online and
is based on the well-established network proposed in [18]. Following the strategy proposed in [32] and [7],

18



Xperience 270273 PU

we employed the CNN as a black-box module that takes images in input and returns their corresponding
vector representations in output.

Learning. In visual recognition settings, the typical approach to classification is to employ so-called
supervised learning methods such as Support Vector Machines or Regularized Least Squares (RSL). In
this work we rely on the GURLS [33] machine learning library to perform RLS. Indeed, as empirically
observed from previous work on the iCub, RLS exhibited comparable or even better results than Support
Vector Machines. Moreover, the rank-one update rule for matrix inversion provides a natural variant of
the classic RLS algorithm to the setting in which training data is provided incrementally to the system
(also the incremental RLS algorithm is implemented in the GURLS library).

Reliability and Scalability

Ideally, a reliable recognition system should be robust with respect to set of objects it has to discrimi-
nate.In other words, we would like the classification performance of a predictor to not vary dramatically
when we change the set of classes on which it is trained/tested. Therefore, to quantitatively measure
the reliability of the visual system currently available on the iCub, we performed multiple classification
experiments for different subsets of classes in ICUBWORLD28 for the data-set corresponding to Day
1. More precisely, for any t = 2, . . . , 26 we randomly selected 400 different combinations of t
object classes among the available 28 (to avoid the combinatorial explosion of 28 t experiments) and
trained/tested the learning system described previously on the corresponding reduced data-sets. As a
measure of performance for the resulting predictor we computed its average accuracy, namely the ratio
of correct guesses with respect to the cardinality of the whole test set.

Figure 2.25: Empirical estimation of the probability distribution P(acc = A—t) for a predictor trained
on a random set of t objects to have accuracy A.

Apart from the expected drop in accuracy that we observe when the cardinality of the multi-class problem
increases, this analysis provides us with useful insights: first notice that the slope of the mean accuracy
reported in 2.25 (white curve) experiences a remarkable decrease as the number of classes increases (e.g.
after t = 10), suggesting that such a negative effect should become less and less disrupting as we learn
new objects. Second, notice that for each fixed cardinality t, the distribution of accuracies P (acc =
A—t), measured across the multiple trials, is clearly concentrated around its mean. More specifically,
this means that in general we can expect with high confidence that a predictor trained on a randomly
selected set of t objects would have accuracy between 5% of the mean of P (acc = A—t). This offers a
useful perspective on what recognition performance we should expect during a typical run of the human-
robot interaction application. To better quantify the expected capability of the system to generalize its
performance, in 2.26 we report the minimum accuracy that we are guaranteed to achieve within specified
levels of confidence. To better understand the implications of this analysis, let us consider for instance
the Blue curve in 2.26, related to 95% and passing by t = 15 and A = 0.75: with high probability
(95%) and for a random choice of 15 objects, the resulting predictor is guaranteed to achieve at least
0.75 classification accuracy. This result, and its corresponding visualization in 2.26, is of particular use
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from a practical perspective since it can be employed as a reference data-sheet to train the iCub. Indeed,
depending on the desired confidence C and the number t of objects we want the robot to discriminate,
2.26 informs us what is the approximate level of accuracy that we can expect to achieve with the classifier
that we will train.

Figure 2.26: Confidence intervals for predictors trained on a randomly sampled set of objects. For a fixed
number of objects t, the value on a curve C represents the minimum accuracy that we are guaranteed to
achieve with the trained predictor, with confidence C.

Exploiting Contextual Information

The classification performances reported in 2.26 are clearly not comparable to the human-level accuracy
that we would expect on the problem considered. Indeed, even for relatively low confidence values such as
80% (Black curve), we observe a fast decay of the guaranteed accuracy, which falls under the 0.9 threshold
just after 4 objects. A viable approach to mitigate this problem relies on noticing that the robotic setting
offers a great deal of prior and contextual information that could remarkably improve performance. To
this regard, let us consider the natural assumption that the class of an object does not change while the
robot observes it from multiple points of view. In such a setting, given a set of w images (acquired from
different viewpoints around the object of interest) and a trained classifier with a (per-frame) accuracy A,
we can consider a new classification rule that combines the individual predictions on the set of w frames
into a global label. For instance, if we assume that the w images are sampled i.i.d., we have that the
rule returning the label that occurred at least 50% + 1 times would correctly classify the object with
probability (or accuracy). In principle, this strategy could be extremely beneficial: suppose for instance
that the trained predictor has a per-frame accuracy of A = 0.7. Then, even for small sets (or windows)
of just 3 images we would have improved classification accuracy of 0.78, while for a larger w = 21 we
would achieve an impressive 0.97. We evaluated the approach described above on ICUBWORLD28.
In particular, since in our setting the samples are acquired as a stream of consecutive images and we
are interested in on-line recognition, we chose to classify windows selecting the current frame together
with the previous w 1 ones. This approach could be interpreted as a sort of label-filtering process that
suppresses flickering one-frame misclassification.

2.27 reports the effect of the label-filtering approach on the confidence curve associated to C = 80%
introduced in 2.26. We varied the size of the temporal win- dows from 0 (instantaneous) to 4 seconds,
corresponding to a range of w between 1 and 50 frames. Notice that even in this non i.i.d. scenario, the
system performance clearly benefits from smoothing, in particular when several classes are considered.
Probably this is due to the fact that, as the number of object to discriminate grows, the chance of
short-lived one-frame misclassification increases proportionally.
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Figure 2.27: Improvement of the classification accuracy with respect to an increasingly large temporal
filtering window. Results are shown for fixed confidence level C = 80% (see 2.26).

Incremental Learning

The temporal filtering strategy considered previously leads to an impressive boost in recognition accuracy.
However, if we consider the original goal of achieving human-level performance on ICUBWORLD (say,
for reference, 0.98 accuracy), we notice from 2.27 that even for a relatively low confidence value of 80%
the system is still lacking a significant accuracy gap. To this regard, in this section we take into account
another aspect of robotics settings that could in principle improve the recognition capabilities of the
system, namely the ability to learn incrementally. Indeed, the robotic scenario is naturally suited to
life-long learning applications. Specifically, in visual recognition settings, novel training evidence could
be provided to the robot incrementally (and in principle, indefinitely) in order to update its knowledge
as the task requires. A first result, that empirically quantifies the importance of learning incrementally
and motivates the experimental analysis of this section, is reported in 2.28. We consider the experimental
setting previously introduced and report the curve associated to 80% confidence for classifiers trained on
an incremental number of examples per class. As can be noticed, the incremental growth of the training
data has a remarkable impact on the overall classification performance and opens the question of what
would be the long-term effects of such a learning process on the system’s recognition capabilities.

Figure 2.28: Classification accuracy for fixed level of confidence C = 80%) and an incremental number
of training examples per class.
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Day 1 Day 2 Day 3 Day 4 Average
Day 1 67.7 41.9 37.2 67.2 53.5
Day 2 40.1 67.8 35.4 66.8 57.5
Day 3 62.0 63.5 66.4 64.9 64.2
Day 4 62.9 64.1 65.3 67.1 64.8
All days 73.4 71.0 68.1 68.9 70.3

Table 2.2: Accuracy of predictors trained on single days compared with a predictor trained on all days
together. For a fair comparison, the training data-set have same size (100 examples per class).

We recall that ICUBWORLD28 is a data-set collected during 4 separate days and that for each day
both a training and test set were acquired. We further recall that all experiments discussed so far were
performed on a single day of ICUBWORLD28, say Day 1. To the purpose of studying the impact of
incremental learning on visual recognition, in the following we will take into account also to the remaining
3 days. In particular, we considered the learning setting in which we trained a classifier incrementally on
the training sets of the first three days of ICUBWORLD28 and then evaluated it on the tests set of the
fourth unseen day. To reduce the amount of computations we focused only on the problem of correctly
classifying the 28 objects in the data-set and report the measured accuracy in Fig. 8 for classifiers trained
starting respectively from Day 1 (Blue), Day 2 (Orange) and Day 3 (Yellow). On one hand, we notice
that when provided only with training data acquired from a single day, the incremental learning accuracy
exhibited by predictors follows a remarkably similar pattern for all days, suggesting the the three data-
sets contain a similar amount of information. On the other hand, we observe that while all these curves
seem to saturate around 0.65 accuracy, adding data from a new day allows to overcome such limitation,
improving the over- all system performance (here we refer to the jumps observed for both the Blue and
Orange curves as they switch between days). The results reported in 2.29 seem to suggest that training
across multiple days is more beneficial than training during a single session because it exposes the system
to less redundant information. To confirm this observation we considered a further experimental scenario
where we compared the performance of a predictor trained on data acquired from all days with the
accuracy achieved by other four classifiers, each trained on a different day of ICUBWORLD28 taking
the first 100 examples per class. In order to compare problems of identical dimension, the mixed dataset
was created by taking the first 25 samples (per class) from the training set of each day. 2.2 reports the
resulting classification accuracy tested separately on each day. In line with the original intuition, we
notice that predictor trained on the mixed dataset clearly outperforms the others on average. However,
it is of particular interest to observe that even on a single day basis, the predictor trained on all days
(and thus less exposed to redundant information) outperforms predictors trained and tested on the same
day.

Figure 2.29: Incremental learning on ICUBWORLD28. Blue, Orange and Yellow curves identify the
classification accuracy of predictors trained incrementally starting from, respectively, Day 1, Day 2 and
Day 3. We used the test set from Day 4 to assess the generalization performance of the classifiers.
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Day 1 Day 2 Day 3 Day 4 Average
PHOW [1] 42.5 39.0 34.6 39.0 44.1
BoW [5] 44.9 40.8 35.3 38.8 41.1
Sparse Coding [41] 29.2 24.1 21.9 23.7 30.6
HMAX [31] 30.5 27.3 25.4 23.7 32.8
Fisher Vectors [19] 47.3 44.7 41.5 44.3 48.6
VLAD [13] 44.2 40.0 35.0 38.1 44.5
CaffeNet [14] 75.9 70.9 71.9 73.9 80.8
OverFeat [30] 66.8 57.5 57.7 60.0 68.3

Table 2.3: Comparison of several architectures for visual representation learning applied to the visual
classification problem of ICUBWORLD28. Modern Convolutional Neural Networks (the CaffeNet used
in this work and Overfeat) clearly outperform previous methods.

For completeness, we close this work by providing a brief comparison with other methods for visual
recognition. In 2.3 we report the classification accuracy of systems trained/tested on the different days
of ICUBWORLD28. The following architectures for visual representation learning were evaluated: Bag
of Words (BOW) [5], Sparse Coding [41], Fisher Vector [19], VLAD [13], PHOW [1] and the Overfeat
implementation [30] of a Convolutional Neural Network. Due to space limitation we refer the reader to the
original papers for more informations about these methods. However, we point out that these approaches
can be divided in two groups: pre-trained deep architectures (the CNNs CaffeNet and OverFeat) and
single layer shallow representations (the remaining methods), where the dictionary learning stage was
carried out on a subset of the training set of ICUBWORLD28. As can be noticed pre-trained CNNs clearly
outperform the others and this was the main reason for the choice of CaffeNet for our experiments.

Discussion

We identified a natural human-robot interaction application as a possible test-bed for our investigation
of the visual recognition problem. In order to foster the re-producibility of our experiments, we col-
lected a novel data-set within this scenario, ICUBWORLD28, comprising images depicting 28 object
classes and acquired over the course of 4 days. We approached the problem by first defining a measure
performance that would allow us to operatively quantify our confidence that results observed off-line on
ICUBWORLD28 would then generalize to the real application. We then identified multiple aspects of the
robotics context that could be leveraged to improve the overall recognition capabilities of the otherwise
purely-visual system. In particular we empirically observed that exploiting the temporal consistency of
subsequent frames in the visual stream or adopting weakly-supervised strategies to reduce the amount of
distractors in the image can be extremely beneficial. Following these principles we were able to provide
a preliminary answer to the original question How many objects can iCub recognize today? . Our results
show on one hand that modern visual representation architectures such as CNN are finally able to address
visual recognition in robotic settings but on the other hand they point out that the problem is extremely
challenging and far from being solved.

2.2.2 Locally convex connected patches

The LCCP algorithm was benchmarked on the Object Segmentation Database (OSD-v0.2) which was
proposed by [23]. It consists of 111 cluttered scenes of objects on a table, taken with close proximity
to the pictured objects. The scenes contain multiple objects, which have mostly box-like or cylindrical
shape, with partial and full occlusions and heavy clutter in 2D as well as 3D.

The qualitative examples (2.30) show that our algorithm performs very well in the segmentation of these
cluttered scenes. The object separation can be intuitively understood: all objects present in the scenes
are separated by concave boundaries, i.e. a line connecting neighboring surfaces of two different objects
always travels through air. This is also true for the boundary between an object and the supporting
surface. As a consequence, objects that have a convex shape are correctly captured as one segment and
separated from the other objects. Hollow objects (bowls, cups etc.) can be observed to show multiple
segments inside, because the orientation of surface normals changes strongly on these concave surfaces.

The quantitative results 2.31 demonstrate that our approach is able to compete with state-of-the-art
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Figure 2.30: Example results for the OSD dataset. Points beyond a distance of 2m were cropped for
visualization.

Figure 2.31: Comparison of different segmentation methods on the OSD dataset using weighted over-
lap WOv (the higher, the better), false positives fp , false negatives fn , as well as over- and under-
segmentation Fos and Fus (the lower, the better).

methods in the task of segmenting cluttered scenes into objects. Compared to the learning-based method
from [23] we achieve better object separation, but higher oversegmentation error. The latter is because
we sometimes detect object parts (handles) and we do not utilize model fitting, which helps against noise.
Comparing to the learning-free method of [4] we obtain results within a standard deviation. (2.32) shows
results for the LCCP implementation at UGOE applied on different tools. By tuning LCCP parameters
it is also possible to retrieve parts of objects (lower path).

Figure 2.32: LCCP with consecutive classification and execution: A) Original image of the scene, B,
C) object/part segmentation, D, E) object/part classification and F) action execution robot grasping a
heatgun by its handle.
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2.2.3 Inferring Object Affordances By Generalizing From Experience

Here we extend and adopt the ROAR (repository of objects and attributes with roles) benchmark frame-
work proposed in D1.2.1. to the final demonstrations. The ROAR implements the learning infrastructure
of object-action relation and the replacement of the objects or actions with a similar suitable ones. The
system relies on data sources collected by the method proposed by [15]. In that paper a text mining tech-
nique is introduced to discover the relationships between different word pairs. The possible connection
between the words is described by frequencies of co-occurrences as a raw score; based on those frequencies
a probabilistic score is also presented. We refer to this data as web-relations.

The full test procedure is built upon a scenario where the ternary relation between a pair of objects and
a common action is to be predicted. That kind of relation can answer this type of question: Given an
object and a related action, what are the objects that are most suitable as a substitute for this object under
that action? The “applicability” of those objects is measured by a predicted score derived on the base of
the scores taken from the web-relations.

The scenario can be summarized in these points:

With bootstrapping (ROAR): The robot checks the ROAR to verify the hypothesis that an object,
e.g. an “apple”, might be substituted by another one, “orange”, for a given action, after observing
some affordances of the first object, e.g. “soft” or “cut-able”, to establish relations between those
objects.

Then it checks the ROAR for those objects in its workspace, and observes that a third object is
located in the workspace known by the ROAR, and that it is useful for the action in question.

The ROAR’s performance can be quantified without an end-to-end robotic implementation in the
following manner:

1. Apply the annotated, realistic, ground-truth data set G, the web-relations, of objects with
attributes; see some examples of the data set in Table 2.4. Those examples represent the
relationships between objects and actions. The relations are characterized by two scores,
Pointwise Mutual Information and the absolute frequency of co-occurrence in the world wide
web data source.

2. Do K times:

(a) Create ROAR Rk by populating it with G, erasing a random subset of attributes.

(b) For each object in the ROAR, check whether its utility for mixing is correctly predicted.

3. The ROARs performance is the average of the correct-prediction rates over all objects in the
ROAR.

To test the stability of the ROAR with respect to the population of objects, the above procedure
can be repeated for various subsets of G.

Without bootstrapping (no ROAR) : The robot attempts to execute the action with the first object
observed, but generally fails to achieve the desired result. All it can do is proceed trying the other
objects in its workspace, one after the other, until it finds an object useful for the action required.

The system performance without ROAR is then simply given by the proportion of objects in the
robots workspace that are in fact useful for mixing.

The ROAR can provide to a given object all other relating pairs with respect to a given action, and
computes the confidences of the corresponding object-object-action ternary relation. An extract of the
prediction result is shown in Table 2.5. The source of this prediction is the data set of the web-relations
mentioned above.

Experimental setting

The input data, the annotated source, contains 19189 object-action pairs with the frequency of the co-
occurrence in the world wide web data base, and an additional statistical measure, Pointwise Mutual
Information to express the relationship within each of the pairs. Table 2.4 displays a slice of the full
dataset. The input data is filtered only to achieve sufficient consistency otherwise it comprises a broad
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range of possible connections and some random noise as well. To improve the input data set requires
further filtering, but that task is not part of the functionality of the ROAR, since it ought to work on
any formally correct data base. Therefore the predicted results might reflect the noisiness of the input
sources.

First the learning system of the ROAR establishes a binary relation between any two objects by comparing
their connections to the related actions. The level of the connections is measured by the correlation
between the scores of the shared actions. Since the input dataset is not complete, not all possible object-
action pairs are included; therefore all missing action related object-object pairs are predicted, and finally
the scores predicting the ternary, object-object-action, relations are derived.

The scores are based on the assumption that the values of the predicted scores are taken from a Gaussian
distribution with given expected value and variance. Based on this conjecture a p value can be computed
for each ternary relation, which can express the confidence in the corresponding prediction. These
confidence values are returned as scores. Some examples with the highest scores of the output relations
are shown in Table 2.5.

The entire table of the ternary relations contains 138967 items which can be stored in an SQL database.
This database can then be queried for an object that most strongly relates to a given object with respect
an action, or for the best applicable action connecting two given objects.

The test procedure outlined above has been repeated 5 times by applying 5-fold cross-validation. The
known examples of the data were randomly cut into 5 folds, and in each run one fold is selected as test
and all remaining as training. The average accuracy is measured by

ERR =
RMSE

Score Range
=

(∑
i(yi − ŷi)

2
)1/2

maxj yj − minj yj
, (2.1)

where index i runs over the test instances, index j runs over the training examples, yi, yj are the original
values of the scores in testing and training respectively, and ŷi denotes the predicted score on the test
examples. The results are shown in the table below.

Score Mean Accuracy (Standard Deviation)
Pointwise Mutual Information 0.064 (0.003)
Frequency of co-occurrence 0.083 (0.005)
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Object Action Pointwise Mutual Inf. Frequency
chair take 1.3263 192977
table set 1.0251 115054
table leave 1.0945 104349
cup take 0.4530 102246
cup drink 1.7899 100161
cup pour 1.9432 82714
table create 1.4062 76001
fruit eat 1.8377 71068
knife take 0.5074 64253
cup give 0.6992 61376
knife have 0.2783 57321
table clear 1.5715 56098
chair occupy 2.3486 51208
table give -0.0842 50293
chair hold 0.8307 49533
fruit bear 2.1986 45625
cup hold 0.5095 45585
tray carry 2.6249 43562
knife hold 0.9540 42312
table construct 1.5507 40033
cup bring 0.6302 39449
table find 0.4126 39383
chair pull 1.7299 37364
chair have -0.4491 36671
cup fill 0.9582 36570
apple eat 2.5208 35804
cup hand 1.4147 34861
table approach 1.4038 34207
table contain 0.8769 30937
table prepare 1.0308 29944
milk add 2.1591 29121
milk drink 1.8468 29118
chair draw 1.4699 28742
chair fill 0.9139 27571
juice add 2.6489 27090
table complete 1.5869 26586
plate place 0.8138 25709
can open 3.6008 25686
table lay 1.1276 24155
knife put 0.7094 23720
chair leave 0.4246 23462
table stand 0.9793 23334
knife carry 0.8350 22494
chair place 0.4177 22443
cup put 0.1288 22303

Table 2.4: Source data set of benchmark (selection)
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Object 1 Object 2 Action Predicted score
slicer cup call 0.9963
cup cornflakes eat 0.9955
sifter plate take 0.9951
chair squeezer give 0.9947
table squeezer call 0.9946
table squeezer NONE 0.9946
colander chair have 0.9931
corn fruit reap 0.9930
sifter table give 0.9926
fruit corn reap 0.9924
...

...
...

...
table stirrer put 0.8999
tray opener take 0.8999
sieve knife have 0.8999
fork spoon take 0.8999
bowl carrot put 0.8999
can corkscrew take 0.8998
plate blender have 0.8998
table fridge buy 0.8997
pot mixer put 0.8997
knife tomato hold 0.8997
.
..

.

..
.
..

.

..
bowl spoon place 0.7999
stove fridge take 0.7999
tongs plate hand 0.7999
microwave juice take 0.7999
cleaver table NONE 0.7998
blender cup wash 0.7998
cup nuts put 0.7997
juice whisk give 0.7997
ladle cleaver have 0.7997
can tray carry 0.7997
...

...
...

...
plate tray contact 0.6999
fruit bowl add 0.6999
tongs cup snatch 0.6999
skimmer pot shout 0.6999
poacher cereal have 0.6999
scissors table NONE 0.6999
cup tongs bang 0.6999
mixer cup open 0.6999
ladle juice carry 0.6999
table cleaver grasp 0.6999
...

...
...

...
skimmer apple pull 0.5999
corn spoon put 0.5999
fork cup drop 0.5999
pan cutter move 0.5999
bowl corn order 0.5999
nuts table knock 0.5999
scissors pan grab 0.5999
dredge pot raise 0.5999
chair scissors prevent 0.5999
cutter table reciprocate 0.5999

Table 2.5: Combined “object-object-action-score” prediction results (selection)
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2.2.4 Learning Pairwise Affordances

Previously we proposed that acquired knowledge about how objects behave under single-object actions
help us more efficiently learn how they behave under paired-object actions. In other words, use of high-
level object attributes learned for single-object actions should allow faster learning and generalization in
predicting paired-object actions compared to use of low-level attributes only. Consider an example where
the robot learns stackability affordances, i.e. learns to detect if two given objects would stably stack on
top of each other. In this case, the robot needs to explore a high-dimensional search space if it learns
from low-level shape features of these objects such as curvatures of different sides. On the other hand, if
the robot uses previously learned high-level abstractions, such as rollability, it would learn which objects
can be stacked on top of each other by associating rollability and stackability from fewer examples. This
is achieved because the robot already learns and encodes part of object-robot-environment dynamics in
the higher-level attribute of rollability, and can re-use this attribute to bootstrap other related learning
problems that share similar characteristics.

Figure 2.33: Sample snapshots from stacking interactions on various objects with the hand-arm robot
used in UIBK.

To quantify the speed-up in learning, the hand-arm robot in UIBK robot (Figure 2.33) performed ex-
ploratory actions on single objects and pairs of objects of different shapes and sizes. The following actions
are applied to objects with the following observed effects:

• Single-object actions: poke from top, poke from front, poke from side, grasp, release on table

• Effects of single-object actions: pushed, rolled, toppled, resisted, no-change

• Paired-object action: stack

• Effects of paired-object action: stacked, inserted, covered, tumbled

From interaction experience, the robot learns predicting effects of actions on objects given their visual
features. The visual features of an object include dimensions of the object (dim), distribution of normal
vectors obtained from local surfaces on the point cloud of the object (shape), and distribution of local
distances of all pixels to the neighouring pixels (dist). Support Vector Machines are used to learn
the mapping from object attributes to effect categories for each action. This deliverable analyzes the
bootstrapping effect on pairwise affordances, therefore we will skip details of learning single-object actions,
and focus on learning of paired-object actions, i.e. learning of effects of stack actions.

In order to test our hypothesis, we realized two effect prediction systems for stack action as follows:

• No bootstrapping (NO-BOOT): Effect of stack action on a pair of objects is directly predicted
from visual features ((dims, shape, dist)) of both objects. Figure 2.34(a) shows this prediction
scheme where visual features are used as inputs to SVM classifier/predictor.

• With Bootstrapping (WITH-BOOT): Effect of stack action on a pair of objects is predicted
from visual features of both objects and the predicted effects of poke actions on these objects
(Figure 2.34(b)).

We compared the learning speed of stack effect predictor in NO-BOOT and WITH-BOOT conditions
using two different datasets. The first dataset, which includes small and diverse set of objects, is collected
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(a) No bootstrapping (NO-BOOT) (b) With bootstrapping (WITH-BOOT)

Figure 2.34: Effect/affordance prediction systems. Each circle with an action corresponds to an SVM
classifier that predicts the effect of the corresponding action. Note that this prediction structure, i.e. the
links from poke action predictors to stack predictor, can emerge autonomously with an active learning
approach using intrinsic motivation and feature selection [36].

through robot’s physical exploration (Figure 2.35(a)). The robot executed stack action with 18 pairs of
random objects. We evaluated the performance of these classifiers by systematically changing the size
of the training set. For each training set size, we trained 10 classifiers using randomly selected samples.
We tested each classifier using the remaining sample interactions. The bootstrapping effect is visible in
the initial phases of learning where it is important to generalize to novel situations from small number
of training samples. As visual features are real valued large sized vectors that encode object shape
properties independent of robot-object dynamics, they require more training data for learning. On the
other hand, effect predictions for poke action encodes more abstract information about robot-object
dynamics, therefore provides more generalizable prediction performance with less data. With increasing
number of training samples, performance of NO-BOOT approaches to performance of WITH-BOOT
as abstract effect predictions are already computed from visual features and do not contain additional
information.

(a) Small diverse set of objects (b) Performance difference between NO-BOOT and WITH-BOOT

Figure 2.35: (b) The effect prediction performance of stack action that involves two objects with the
small dataset provided in (a). The training of classifiers are done with the indicated number of samples
(interactions) with either shape features or affordance features. The initial high performance of WITH-
BOOT demonstrates the advantage of using bootstrapping. This figure is taken from [36].

In order to more rigorously validate our bootstrapping hypothesis, next, we used a dataset that includes
83 objects (Figure 2.36 and 83× 83 effects created on these pairs of objects by the stack action. In order
to collect such a dataset, the robot, for example, was required to make 6889 interactions for an action
that involves two objects, which is not feasible in the real world. Thus, we used a human expert to fill-up
the effect field of the complete table. We compared the learning speed with (WITH-BOOT) and without
(NO-BOOT) use of inputs from other effect predictions in predicting stack effects. We performed 50
learning runs both WITH-BOOT and NO-BOOT in learning stack effect predictions. In this setting,
we can see a significant bootstrapping effect in learning as shown in Figs. 2.37(a) and 2.37(b). Mean
and standard deviation of the group of trained predictors of WITH-BOOT and NO-BOOT are shown
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with the bold line and the filled areas. As shown in the figures, initial and final mean accuracies and
variances of two different cases are same. Still, the expected bootstrapping effect in the beginning of
the learning steps are clearly visible in both figures. At the bottom of each figure, the difference in
accuracies between WITH-BOOT and NO-BOOT is given, which is confirmed with double-side t-test
with p < 0.01. The boxes at the bottom in Figure 2.37(a) show that the accuracy of WITH-BOOT
becomes 10% higher with 40 training samples, compared to NO-BOOT case with significance level of
p < 0.01. As shown, the bootstrapping effect quickly increases in the beginning and remains same for
some time. The bootstrapping effect is more significant when the accuracy is computed with novel pairs.
Novel pairs of objects (o1, o2) for stack action corresponds to objects, where o1 and o2 have never
been experienced in bottom and top roles during stacking, respectively. The effect becomes visible after
18 pairs instead of 22 pairs; and increases to a maximum value of 13% compared to 10%. This also
shows that use of affordances as inputs in learning and predicting other affordances provides significant
generalization capabilities. Preliminary version of these results were previously presented in [37] and has
been recently submitted to a journal [UP15].

Figure 2.36: Objects from the large dataset.

(a) Test with all pairs. (b) Test with novel pairs.

Figure 2.37: The evolution in prediction accuracy of stack effect predictor. The accuracy is computed
by using all object pairs in (a) and by using only the novel object pairs in (b). The black bars show the
amount of difference in prediction accuracies between WITH-BOOT and NO-BOOT, in significance level
of p < 0.01.
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2.3 Planning

2.3.1 high-level symbolic planning

Benchmarking of high-level symbolic planning components usually follows the standard approach taken
by the International Planning Competition 2 (see, e.g., [9] ), where the two main metrics for evaluation
are planning time and plan quality. Planning time is a measure of the raw speed of the planning process
applied to a particular planning domain and problem, and usually includes preprocessing, plan generation,
and postprocessing time. Plan quality attempts to measure how close the generated plan is to the ”ideal”
plan that could be (theoretically) generated. Plan quality is usually assessed against a secondary metric
(e.g., length, cost) which may have a large effect on the planning process (especially the planning time).
(A third metric which combines planning time and plan quality in a weighted average is also sometimes
used.) In both cases, planners are usually compared against other available planners on the same set of
planning domains.

When a planner is included as a component in a larger integrated system, the traditional planning
metrics may have to be considered in the larger integration context. For instance, longer planning times
may be acceptable provided such behaviour doesn’t negatively affect the overall response time of the
integrated system. Additional factors, such as the syntactic form of planning actions or the specification
of domain-dependent knowledge, also affect the planning process. In particular, the tradeoff between
the expressiveness of the planning representation and the time a planner takes to generate plans, is
often a significant factor in the results produced by the standard metrics. Thus, benchmarking also
involves analysing the scalability of particular aspects of a planning domain using a given planner, and
the identification of techniques to reduce the overall complexity of the planning domain (e.g., introducing
domain control knowledge, restricting action models, etc.).

As part of UEDIN’s work in WP3.2, benchmarking of symbolic planning using the PKS planner [20] [21]
has mostly involved assessing the quality of the plans that are generated in the project’s domains, given
acceptable bounds on the planning time, and understanding the scalability of the main planning domains
used on the project. Since the work on PKS has typically focused on issues related to planning problem
representation, rather than raw computational speed, the role of factors like commonsense domain control
knowledge is particularly important.

For instance, Figure 2.39 shows the results of planning in an open-ended version of the table setting
domain from Scenario 2 (WP5), where the goal is to set a number of place settings (#PS).

Figure 2.38: results of planning in an open-ended version of the table setting domain from Scenario 2
(WP5).

Three objects must be set for each place settings (e.g., a plate, a knife, and a fork) from a given number
of objects available (#O). Any object can be moved to any location within a given number of discrete
locations in the domain (#L). The domain includes three basic actions (grasp, putdown, and move).
(Details about the planning domain can be found in deliverable D3.2.4.) The number of planning states
(#States) and the minimum number of actions required in a successful plan (#Actions) are shown for a
given planning problem (i.e., a given tuple (#PS,#L,#O)). The planning time (in seconds) is also shown
for three planners, including SGPLAN ([11]), FF ([10]), and PKS. (SGPLAN and FF are provided to
give indicative measures of the planning time using other off-the-shelf planners that are optimised for
classical planning problems of this form.) These results illustrate the exponential growth of the state
space for larger problem instances, and the effect this has on the planning process: moving from 3 place
settings to 3 place settings plus 1 extra object results in a jump in planning time from 24.31 seconds to
3976.35 seconds using PKS, with similar results for the other planners. This is mainly due to the massive

2(IPC: (http://www.icaps-conference.org/index.php/Main/Competitions)
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parallelism in the structure of the domain (e.g., every object can always be moved to any location in the
domain) so there is little structure for the planner to exploit, leading to difficulty for modern planning
heuristics.

By contrast, Figure 2.39 shows the results of adding commonsense domain control knowledge (CSK) to
the PKS planning domain.

Figure 2.39: the results of adding commonsense domain control knowledge (CSK) to the PKS planning
domain.

In particular, two simple rules are encoded as part of the domain description: (1) once an object is
placed, do not remove it, and (2) finish setting all the objects of a particular type before moving to a new
type. These rules have the effect of adding structure to the domain by enforcing an ordering on certain
placement actions, while prohibiting object removals, leading to a pruning of the underlying search space.
This has a marked effect on the planning process, allowing PKS to scale to much larger problem instances
with reasonable planning times (e.g., 5 place settings in under 2 seconds, and 6 place settings in under
24 seconds). These results also motivate the need for structural bootstrapping techniques of the kind
considered on this project in order to learn appropriate commonsense control knowledge based on prior
experience.

Additional analyses in this benchmarking study are expected to be published by UEDIN beyond the end
of the project, along with a proposal to submit the table setting domain as a challenge problem for the
International Planning Competition.

33



References

[1] A. Bosch, A. Zisserman, and X. Munoz. Image classification using random forests and ferns. In
IEEE International Conference on Computer Vision, 2007.

[2] Carlo Ciliberto, Sean Ryan Fanello, Lorenzo Natale, and Giorgio Metta. A heteroscedastic approach
to independent motion detection for actuated visual sensors. In Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, pages 3907–3913. IEEE, 2012.

[3] Carlo Ciliberto, Sean Ryan Fanello, Maurizio Santoro, Lorenzo Natale, Giorgio Metta, and Lorenzo
Rosasco. On the impact of learning hierarchical representations for visual recognition in robotics. In
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pages 3759–
3764. IEEE, 2013.

[4] Andr ckermann, Robert Haschke, and Helge Ritter. Real-Time 3D Segmentation of Cluttered Scenes
for Robot Grasping. In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Hu-
manoids 2012), 2012.

[5] Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Willamowski, and Cdric Bray. Visual
categorization with bags of keypoints. In In Workshop on Statistical Learning in Computer Vision,
ECCV, pages 1–22, 2004.
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Bootstrapping the Learning of Means-End Action Success Predictions

Severin Fichtl1,2, Dirk Kraft2, Norbert Krüger2 and Frank Guerin1

Abstract—Robots acting in everyday environments need a good
knowledge of how a manipulation action will affect objects
in a relationship, such as ‘inside’ or ‘behind’ or ‘on top’.
We investigate how this could be learnt by a robot from its
own action experience. A major challenge in this approach is
to reduce the number of training samples needed to achieve
accuracy, and hence we investigate an approach which can
leverage past knowledge to accelerate current learning (which
we call bootstrapping). We learn Random Forest based action
success predictors from visual inputs and demonstrate two
approaches to knowledge transfer for bootstrapping. In the first
approach to bootstrapping, the state space for a new predictor
is augmented with the output of previously learnt predictors.
In second approach to bootstrapping, we learn categories that
capture underlying commonalities of a pair of existing predictors
and augment the state space with this category classifier’s output.
In addition, we introduce a novel heuristic, which suggests how
a large set of potential categories can be pruned to leave only
those categories which are most promising for bootstrapping
future actions. Our results show that we can autonomously learn
categories, and that bootstrapping learning of actions using these
categories outperforms learning without bootstrapping if the
learning problem is hard.

I. INTRODUCTION

We are interested in grounding knowledge in a robot’s own
sensorimotor experience, an accepted principle of develop-
mental robotics, justified e.g. in [1]. A major problem with
this approach is that it takes a long time to learn through
robot experience. The state of the art in artificial development
and learning methods does not permit a robot to learn from
experience as rapidly as an infant. This mirrors problems in
other areas of artificial intelligence such as speech recognition,
where systems need orders of magnitude more data to learn
from than a small child is exposed to [2]. The added difficulty
in robotics is that we do not have a large data set to run
the learning algorithm on, a robot must first go through the
slow process of trying actions out in the world. This problem
of slow learning has generated interest in methods that can
bootstrap learning [3], [4], [5]. The basic idea is that if we
have some prior knowledge, we should be able to learn similar
things faster, i.e. bootstrap the learning.

In this paper, we focus on bootstrapping the learning of
one part of a robot’s knowledge that is important for object
manipulation, that is the knowledge about spatial relationships
that determine the outcome of actions on object pairs. How-
ever, the general approach described here is also relevant for
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Fig. 1. Illustration of the Robot Simulation environment with the robot
attempting to pull a shelf-like object with a cup on top of it.

other bootstrapping tasks where prior knowledge is existing
and rapid learning from few samples is desired.

Spatial relationships are extremely important for robotic
manipulation e.g. in service robots, to determine the outcome
of actions in everyday home environments; for example, trying
to reach an object that is partly obstructed by another object,
or pulling or lifting an object when another object is on top or
inside of it (see Fig. 1). These are the kinds of situations that
children are competent with, and in looking at how infants
first acquire this knowledge, we see the close connection with
means-ends behaviours involving more than one object (i.e.
when one action is used as a means to achieve some other
end goal). Infants start to appreciate the importance of spatial
relationships when they begin exploring means-end actions at
around eight months [6], [7], [8], and means-end behaviour
is the start of planning: how to use one action as a step to
achieve some more distant goal. Hence learning how spatial
relationships determine the outcome of actions is a crucial
part of the problem of robots learning planning operators for
manipulation. To demonstrate our bootstrapping approach, we
therefore use this particular problem.

Our key technique for bootstrapping of this learning is
inspired by works in cognitive science, where symbolic knowl-
edge is learnt from interaction and can then be reused where it
benefits subsequent learning, for example the ‘synthetic item’
of Drescher and Chaput [9], [10]. These techniques have not
been applied to high dimensional robot manipulation scenarios
to the best of our knowledge (Ugur et al. [4] being a very
recent exception). In our work, we learn categories from early
experience, where these categories correspond to spatial rela-
tionships like ‘on top’ or ‘inside’. Note that these categories
are not imposed by the human designer, but rather are learnt
by a classifier with the task to discriminate situations from
visual input, where a certain action will have one outcome or
another. These categories can then be used as a binary input to
subsequent learning, resulting in a speed up where they have
discriminative power. We learn from simulated robot actions



as this was the only feasible way to generate the thousands of
examples we needed to compare different approaches.

Bootstrapping (in the sense used here) is a kind of transfer
learning [11], and while transfer can give a massive perfor-
mance boost, it is also well known that it can equally well
reduce performance via negative transfer [11]. For this reason
we believe that it is important to evaluate a bootstrapping
technique not just on one carefully chosen example, but
on a reasonable range of examples, in order to develop an
understanding of where it is likely to work best and where it
will not. Therefore we have attempted to learn a variety of
categories (36) and used them to bootstrap the learning of a
range of action success predictors (9). In this, our work stands
out from related work on bootstrapping like [3], [4] where the
authors focus on single instances of transfer.

Our exhaustive approach to creating categories from action
pairs leads to a large amount of category classifiers, some of
which may be good for bootstrapping and some not (a problem
which would be worse in, e.g. a realistic service robot system
with many more actions). Rather than trying out all categories
for bootstrapping there is a need for a method to prune
possible categories and arrive at a small set which is most
promising for bootstrapping. To achieve this, we introduce a
novel heuristic based on how correlated existing action success
predictions are. This is based on the intuition that there exist
some underlying physical relationships in the world which are
implicitly captured by some action success predictors, and are
common for some actions, and that these relationships are
important to physical causality and are likely to be useful to
determine the success of future actions. Our heuristic enables
us to prune away 3/4 of the candidate categories without
losing bootstrapping performance.

As a representation for learning, we use Random forests.
This allows us to compare category based bootstrapping as
described above with what action success prediction based
bootstrapping in which an already learned action success
predictor is directly fed into the input of a Random Forest
classifier for a new action. We show that this action success
prediction based approach is nearly as effective as the category
based approach, which indicates that category formation –
although required for higher level transfer learning involving,
e.g., language – might not be necessary for transfer on such
a low motor–sensorial level as dealt with in this paper.
To summarize the achievements of this work:

• We realize a system in which autonomous category
formation on spatial object relations for action outcome
prediction is performed during robot exploration.

• We show that by exploiting these categories, we can
efficiently bootstrap the learning of action outcome pre-
dictions leading to a significant speed up.

• We show that by applying a heuristic for selecting , we
can circumvent the inherent problem of accumulating a
large number of highly correlated categories.

• We compare the category based bootstrapping with action
success prediction based bootstrapping approach, which
leads to similar bootstrapping performance than category

based learning.
The remainder of this paper is structured as follows: Sec-

tion II reviews the literature. Sections III and IV describe
in more details the methods and experimental setups used.
Section V presents the results of this work. Section VI
discusses our work in a broader context.

II. LITERATURE REVIEW

In this section we first sketch the big picture of cognitive
development and describe where our work fits within this.
We then focus on the specific problem we tackled and review
closely related approaches.

This work has been inspired by the cognitive development
of human infants. Infants undergo rapid development from
simple action schemas such as sucking or banging objects at
six months, to solving relatively complex problems such as
simple tool use at two years of age [6], [12]. Two-year-old
infants are clearly capable of reasoning about objects, spatial
relations and actions effects and are able to come up with plans
to effectively reach their goals. Their knowledge is at a rela-
tively high level of abstraction because they easily generalise
across a wide variety of everyday situations. Psychologists
have described their knowledge structures as “schemas” (or
various similar terms, see [8]) which are roughly analogous
to the “planning operators” of Artificial Intelligence, because
there are situations which make them likely to be executed
(like the precondition of a planning operator), and expected
effects (postcondition), as well as some motor control program
describing the behaviour executed. Two-year-olds seem to
possess a sizable repertoire of schemas whereas six-month-
olds seem to have a relatively impoverished repertoire. One
of the essential mysteries of cognitive development is how to
account for the acquisition of this large repertoire of relatively
abstract knowledge, based on concrete action experiences.

Within this development a particularly interesting stage
concerns the acquisition of means-ends behaviours which
begins about 8 months (i.e. where one action is used in order to
facilitate another [13]), because it is through learning means-
ends behaviours that infants begin to learn about relationships
between objects [14]. For example in pulling a supporting
object (e.g. cloth) to retrieve a more distant object (e.g. toy)
that is on top, the precondition that determines success of
the action must capture the relationship between the objects.
Much of the child’s learning up to this point is related to
relationships with its own body (subjective), such as something
being reachable, or suckable. However the relationship “on
top” marks a beginning of learning more objective properties
of the world. Probably this is initially learnt in quite a
context-bound manner, but gradually it will be generalised.
According to Mandler’s analysis [15] infants begin with ‘per-
ceptual knowledge’, which is implicit in individual schemas,
and develop towards more abstract ‘conceptual knowledge’.
Conceptual knowledge is essential for more advanced problem
solving. The mechanism may also be the same as, or at least
closely related to, “representational redescription” [16]. As
infants make this transition they begin to see things at a higher



level of abstraction, seeing precisely those relationships which
are important in determining what object manipulations are
possible (by the infant or other agents). For this reason we
have explored the acquisition of chunks of knowledge that
are locked in the context of a particular manipulation, as well
as more abstract chunks of knowledge that begin to capture
a category like “on top”. We explore the use of both for
bootstrapping subsequent acquisitions.

Although there are works which learn planning operators
[17], [18], [19], [20], in this paper we focus only on learning
the precondition for a new behaviour (i.e. learn to predict
action success in a given state). This is quite close to work on
learning relational ‘affordances’. There is rather a lot of work
on affordances, but it has been noted by Moldovan et al. [21]
that there is very little work on relational affordances (i.e. the
actions afforded by a pair of objects in a particular spatial
relationship). In their work the relational features considered
are relative distance between two objects, the relative orienta-
tion of one with respect to the other, and whether or not they
are touching. We go for a much richer relational description
looking at much finer grained details of the objects, which can
for example capture such things as one object having elements
surrounding another, or in front of another.

Ugur et al. [4] learn ‘paired object affordances’ for the
action of stacking. The features input to the learner are
histograms of normal vectors for various points on an object’s
surface. They learnt to predict the effect the effect of a stacking
action, given the visual features of the pair of objects being
stacked. A related affordance learning approach is that of
Griffith et al. [22] which focused on learning features which
could predict if an object could serve as a container, based
on the effect of exploratory actions. There is a significant
difference with our work in that we are looking at objects
already in a relationship, in order to determine the effect of
an action, whereas Ugur et al. or Griffith et al. are looking at
the features of objects before they are put in a relationship,
in order to determine what relationship they might end up in
after an action.

Our histogram approach is inspired by the approach of
Mustafa et al. [23], which considers relationships between
surface patches (distances and angles) in a single object. These
histograms characterise the object and are quite robust to
variations in viewpoint. We also consider relationships among
surface patches; however we look at a pair of objects, consid-
ering the relationship between every patch on the first object
with every patch on the second. Our histograms characterise
the relationship between the objects [24], [25], [26]. We are
not aware of any other work which uses a feature computed
from relationships among parts of two different objects.

Rosman and Ramamoorthy [27] learn spatial relationships
between objects using a support vector machine based ap-
proach, where support vectors are picked for their ability to
differentiate the point cloud into two objects. This has the
effect that the subset of points considered by the classifier are
on the edges of the object. Relations are then learnt based upon
the relative positions of clusters of the support vectors. Our

histogram based approach preserves more information about
the relations between objects in the scene, whereas much of
this information is discarded by Rosman et al. [27] and also the
above approach of Moldovan et al. [21]. We consider not just
the border between objects, but all patches on each object; this
could be important for example when a small object is near
to one edge of a large one, in a containment relationship.

A further work on support relations is by Panda et al. [28].
The work exploits a number of visually derived features
regarding the relationship between the objects: proximity,
boundary overlap, depth boundary, containment, relative sta-
bility. In addition, a rule based method is employed to infer
what supports what, when multiple objects are stacked or
leaning on each other. In contrast to this work, we have
approached the problem more from a developmental robotics
perspective; we are attempting to see what the system can
learn without significant prior knowledge, and learning from
the effects of its actions. The reasons for our preferring the
developmental approach have been discussed elsewhere [29],
[8].

All of these works which can recognise containment or sup-
port relationships (and implied affordances) have importance
beyond the task of informing a robot of action possibilities.
Affordance work is beginning to be used to help solve classic
computer vision problems such as object categorisation [30]
which take the approach of imagining an actor exploiting the
affordance defining the object. Also it is highly relevant to
learning about human activities from observations, for the
purposes of imitation or understanding [31], [32]. These works
use semantic scene graphs and can benefit from accurate
descriptions of spatial relationships between objects within
these graphs.

A second aspect of our work which deserves comparison
with others is bootstrapping. As stated in Sec. 1, what we mean
by ‘bootstrapping’ is a type of transfer learning: “transfer
learning aims to extract the knowledge from one or more
source tasks and applies the knowledge to a target task” [11].
In our work our feature space is the same for our source and
target domains, but the source and target tasks are different,
making this an example of ‘inductive transfer’ [11]. In terms
of the detailed taxonomy on transfer learning by Lazaric
[33] ours is ‘learning speed improvement’; i.e. a reduction
in the amount of experience required to learn the solution,
which is distinct from transfer approaches which improve the
asymptotic performance, or which ‘jumpstart’ to give better
performance at the first attempt on the new (target) task; i.e.
before training.

There are also closely related bootstrapping approaches in
the developmental robotics literature. Do et al. [3] present
a case study of learning to wipe a table, where they show
that ‘mixing’ experience (e.g. a cake mix) can be reused to
bootstrap the learning of ‘wiping’. They use sequences of
objects getting in contact and losing contact to assess action
similarity. While the demonstrated example shows strong
positive transfer, we believe it is important to extend such
studies to a larger variety of actions, to gain knowledge of



where transfer works and where it may not bring any benefit
or even reduce performance. In our work we demonstrate both
positive and negative bootstrapping effects on a variety of nine
different actions.

In another recent ‘bootstrapping’ approach, Ugur et al. [4]
bootstrap the learning of a ‘stacking’ affordance by first
learning a ‘rolling’ affordance They first learn for a set of
individual objects if the object has the ‘rollable’ affordance
by executing preprogrammed ‘poking’ actions. This affordance
knowledge helps the robot to quickly learn whether two objects
are stackable. Two ‘rollable’ objects are less likely to stand
on top of each other, than two objects that are not ‘rollable’.
However, there are also affordances where knowledge of one
is unlikely to bootstrap the learning of the other, e.g. ‘rollable’
and ‘graspable’ where the former depends mainly on the shape
of the object (e.g. sphere versus cube) and the latter mainly on
the size (e.g. fits in gripper versus does not fit in gripper). Ugur
et al.’s work is in the same spirit as our approach; where they
have ‘rollable’ as an input to the second stage of learning, we
have several categories. We have attempted to learn a variety of
categories because the robot does not know in advance which,
if any, might be useful in later stages of learning.

In fact the work of Ugur et al. [4] above is attempting
something of much broader scope than what we tackle in this
paper; they attempt is staged development where there are
successive developments which build on each other. This is
an area of great interest to developmental robotics, and there
are several more examples [34], [35], [36], [37]. One area
of interest within this is whether the stages need to be pre-
scripted [34], or could emerge naturally, e.g. as a consequence
of some relatively simple intrinsic motivation mechanism [38].
We see our work as contributing to this area because we
believe spatial relationship categories learnt could influence
subsequent behaviour and the experiences generated (e.g. the
robot creates “on top” and “inside” situations), however this
has not been pursued yet.

We do not feel that our work is particularly close to com-
puter vision work in scene understanding (E.g. [39]) because
those works typically recognise all objects, and then can use
higher level knowledge to assist in understanding. Our work
in contrast is at a lower level, and is more concerned with
the physical relationships among surfaces without regard for
object knowledge. We think of it more like how an infant might
recognise simple physical relationships between household
objects without any idea of what their names are or what their
typical purposes are.

The following section will describe in more detail our
approach to bootstrapping the learning of action success
predictors.

III. METHODS

In this section, we describe our methods for using addi-
tional knowledge for bootstrapping the learning of a classifier
(Section III-A), how to generate categories used as additional
knowledge (Section III-B) and how we measure the effect of
additional knowledge on learning performance (Section III-C).
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Fig. 2. Illustration of the inputs for learning action success classifiers. The
solid lines represent the basic case of learning with no additional information.
To bootstrap the learning additional information can be added. The blue
ellipse illustrates the addition of one, two or all other existing actions’ success
predictions. The green ellipse illustrates the addition of one or all previously
learned category predictor outputs.

A. Learning Action Success Predictors

The goal of the action success classifiers trained in this
work is to accurately predict whether the action associated
with the classifier can be executed successfully in a given
scene. The actions are (with one exeption) means-end actions
where one action (means) is executed on one object in order to
facilitate the successful execution of another action (end) on
another object. It is, therefore, the spatial relationship between
the objects involved, that is determining whether the means
action can succeed to facilitate the end action. To learn the
mapping between the current state of the environment and
the means action success, the classifiers are trained using a
state space description including the positions of both objects
relative to the robot and information describing the spatial
relationship between the objects. In this paper, we investigate
how additional knowledge can be used to speedup the learning
of action success classifiers.
Throughout the paper, we will refer to the different classifiers
with the following terminology:
Action Success Classifier: The classifier that is currently
learnt with the goal of predicting the success of a new action.
Action Success Predictor: Already existing classifiers that
predict the success of other existing actions. Their output is
used to bootstrap the learning of a new action classifier.
Category Predictor: Classifiers that recognise specific cate-
gorical patterns in the environment. The category predictor’s
output is used to bootstrap the learning of a new action
classifier.

Fig. 2 illustrates our general structure of learning. We
investigate the following approaches to learning action success
classifiers:

B) basic learning with no additional information (represented
by the solid line in Fig. 2)

A) using previously learned action success predictor(s) for
other actions as additional input

C) using previously learned category predictor(s) as an ad-
ditional input

In the following subsections we describe in more detail
these different approaches to bootstrapping.



1) Basic Learning Without Bootstrapping (B): Learning
without bootstrapping corresponds to the typical isolated learn-
ing of an individual action success classifier. Here, for learning
to predict the success for different actions, each action success
classifier receives as input a set of visually derived descriptors
of a scene before an action execution trial and a success label
differentiating successful trials from unsuccessful ones. The
classifier learns a mapping from these visual inputs to success
labels. The combination of all the inputs that go into the
classifier, apart from the success label, define the state space
(see Fig. 2).

2) Bootstrapping With Already Learnt Action Success Pre-
dictors As Knowledge Source (A): Our approach to boot-
strapping is based on extending the state space of a new
action success classifiers with the output of an action success
predictor learnt for already existing other actions. If the new
action is related to an already existing action, the state space
extention can carry relevant information and hence bootstrap
the learning.

We investigate three different variations of action success
prediction based bootstrapping: Adding the success predic-
tion(s) of
A1) a single already existing action success predictor,
A2) two already existing action success predictors,
An) all already existing action success predictors
as additional inputs to the action success classifier under
training.

3) Bootstrapping With Automatically Created Categories
As Knowledge Source (C): The approach to bootstrapping
followed here is extending the state space of a new action
success classifier with the output of a category predictor. A
category is an abstraction from the state space that describes
properties of the environment. E.g., the abstract notion of
one object being ‘ontop’ of another could be captured by a
category predictor. Further examples are one object ‘inside
another’ or an object being ‘in reach’ of the robots arm. Such
abstraction are useful for general reasoning in a cognitive
system. In this paper we show, how such categories can be
built autimatically from experience made by exploration.

We investigate two different variations of category predic-
tion based bootstrapping:
C1) adding the output of a single existing category predictor,
Cn) adding the output of all existing category predictorss
as additional inputs to the action success classifier under
training.

If a category encoded by the added category predictor(s)
is relevant for the new action, then adding the output of this
category predictor to the new actions’ state space can be used
by the new predictor to bootstrap its learning.

To create a category predictor, we combine the training data
that was used to train two individual action success predictors.
This combined training set is then used to train a new classifier
that captures properties of the state space, that lead to either
success or failure for both of the two different actions. In this
initial approach we limit ourselves to creating categories from
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Fig. 3. Searching for correlations between action success predictions.

two actions while the concept could be extended to combine
more actions, e.g., by finding clusters of correlating actions
(i.e., actions that are often predicted to succeed in the same
states).

B. Heuristic For Category Formation

The number of categories predictors potentially created
in our approach increases polynomially with the number of
actions available; therefore a heuristic for pruning out cate-
gory candidates before creating and trying category predictors
would be useful. The aim of a heuristic would be to remove the
candidates that are unlikely to capture meaningful properties
of the agent’s environment.

We hypothesise that strong correlations between action pre-
dictions indicate that a meaningful category predictor can be
learnt. Hence, as heuristic we use the correlation between pairs
of action success predictor outputs. After learning at least two
action success predictors, the system records the prediction
correlation between pairs of action success predictors. To
compute the correlation between these, both action success
predictors are presented with the same scenes to predict
their associated actions’ success. The agent then records the
predictions of each of the action success predictors for all
scenes and calculates the correlation between these action
success predictions (see Fig. 3). A category predictor is created
only if the correlation exceeds a certain threshold.

C. Bootstrap Factor

To analyse the effect of our approaches to bootstrapping,
we calculate a bootstrap factor as

bf =
Pbl − Pc

Psl − Pc

where Pbl is the performance of bootstrapped learning (e.g.,
Fig. 8), Psl is the performance of standard learning (e.g.,
Fig. 7), Pc is the performance of chance and bf is the bootstrap
factor as illustrated in Fig. 9.

This gives a value above one if bootstrapping assists learn-
ing and a value between zero and one if bootstrapping impedes
learning. Note that a small bootstrap factor can stand for
significant improvements in learning speed. E.g., jumps from
70% to 80% performance, or from 76.7% to 90% performance
have a bootstrap factor of 1.5.



IV. EXPERIMENTAL SETUP

The robot experiments used in this work were performed
using a physically realistic simulated robotics setup (Sec-
tion IV-A). Correspondingly a perception system in combi-
nation with a simulated Kinect is used (Section IV-B). The
objects and actions used in the experiments are described
in IV-C and Sections IV-D respectively. In the last section
(IV-E) the used classification technology (Random Forests) is
described in some detail and used parameters are given.

A. Simulation Environment

To collect data we used a physically realistic simulation
environment [40]. This simulator is designed for robot sim-
ulations and simulates a Kinect sensor [41] with a realistic
noise model [42] to produce data that resembles the depth
map results from real Kinect camera setups. We simulated a
robot arm with six degrees of freedom (DOF), mounted on a
table with a two finger gripper attached as tool (see Fig. 1).

B. The Robotic Perception System

The Kinect camera is positioned in the workspace on the
opposite side of the robot at a high position, looking down on
the workspace area in front of the robot.

The Kinect records images with VGA resolution (640x480
pixels) and provides one 3D point per pixel (307200 points
per scene). For performance reasons, we subsampled this point
cloud via voxel grid subsampling with a resolution of 0.0125 m
which resulted in point cloud sizes between 40k and 50k
points.

We use simple colour based segmentation in this work. All
objects are coloured in one of a set of known colours, and
every object in the scene has a different colour selected from
this set. All points that have the same colour are assigned
to a new point cloud, representing one object. This is a
common simplification also used in real vision set ups, e.g., by
Rosman and Ramamoorthy [27]1. We acknowledge that highly
sophisticated object segmentation algorithms exist, e.g., [43],
[44] and we assume they could be employed to work in a
more complex environment, e.g. with real objects and clutter.

Using Eigen decomposition (as used for PCA) over the seg-
mented point clouds, our vision system extracts nine variables
as approximations of an object’s position, orientation and size.
The nine variables that describe the segmented object point
clouds are:

• X, Y and Z position of the centre of the segmented object
point cloud (the Euclidean average of all point positions
in the robots coordinate frame).

• Three angles (Roll, Pitch and Yaw) describing the ori-
entation of the segmented object point cloud. Based on
the orthogonal set of Eigenvectors of the point cloud, we
derive a segmented object point cloud coordinate system
(x-axis is in the direction of the biggest Eigenvector, z-
axis is in the direction of the smallest Eigenvector). The

1The mentioned approach uses stereo but this is in the same way applicable
to the Kinect sensor since the for Kinects necessary registration between point-
clouds and colour is straightforward.

three angles describe the relative orientation between the
segmented object point-cloud coordinate system and the
robot coordinate system.

• Three size values for the elongation along the object’s
three axes (the Eigenvalues are used to indicate elonga-
tion along each Eigenvector axis).

This gives reasonable results for most objects in practice,
finding sensible directions for not spherical or not symmetrical
objects. For symmetrical objects such as spheres and cylinders,
the resulting direction is partly arbitrary and a product of
noise (i.e. due to noise in the camera sensor the point cloud
would not be perfectly symmetrical or spherical), but the
‘direction’ of a sphere is irrelevant for manipulation and
therefore this poses no issue. Likewise for a cylinder the
important orientation of the cylinders’ main axis is captured
correctly. These nine variables per object make up the 18
variable baseline vision state space representation, where the
first nine variables belong to the object that is subject to
manipulation by the action.

Independently from the Eigen decomposition based object
representation, the segmented point clouds are also used to
create relational histogram features (RHF) [23] to capture
the spatial relationships between objects. These RHFs form a
relational space into which the absolute geometric information
(3D position and orientation) of the segmented object point
clouds is transferred. For this, every point of the first object is
compared with each point of the second object to calculate a
set of distance and angle features. These relational features
encode the spatial relationship of the two objects and are
captured in form of a histogram with 300 bins. This RHF
extraction process is described in more detail in [25], [26]
and we use the RHFs described there as 1D histograms as
these were found to show the best performance in [25].

The final state space is then made up from the 9 + 9 = 18
values of the PCA state space representation for the two
objects on their own, or combined with the RHF to
18 + 300 = 318 values. In the remainder of this paper, we
will refer to these as the PCA or RHF state spaces respectively.

C. Objects
In our experiments, we used an overall set of 29 objects,

which can be split into four different groups (see Fig. 4)2:

1. Toys (5 Objects)
2. Bases (15 Objects)
3. Obstacles (5 Objects)
4. Rakes (5 Objects)

For every experiment exactly one toy object and one object of
a different group is used. The objects are randomly distributed
within a workspace area that approximately forms a semi-
circle with a radius of 1.8 m. The robot arm is placed in the
center of the semi-circle and no object is placed closer than
20 cm away from the robot. The rake objects are an exception
as they are attached to the robot arm as a tool. The maximum
reach of the robot is approximately 1.2 m.

2One Object (Cup) is member of two Groups (Toys and Bases)



TABLE I
LIST OF ACTIONS

Action Motor Program Goal
Lift Grasp base object and lift it. Base and Toy objects are lifted.

Move Reach to toy object and move it aside. Toy & base objects have moved aside.
Pull Grasp base object and pull it. Base and Toy objects are pulled closer.
Push Grasp base object and push it. Base and Toy objects are pushed further away
Rake Put rake head behind toy object and pull. Toy object has been brought closer.
Take Grasp toy object and lift it. Toy object is lifted.
Pour Grasp base object and lift & tilt it. Base and Toy object are lifted.
Slide Grasp base object and lift & tilt it. Base object is lifted, Toy object has moved but not been lifted.

Unobstruct Grasp base/obstacle object and push aside. The toy object that wasn’t reachable before, is now reachable.

Lift Move Pull

Push Rake Take

Pour Slide UnOb
Fig. 5. Action execution effect snapshots of the nine actions. The left figures show a scene before action execution. The right figures show the state afterwards.
(UnOb is short for Unobstruct.)

D. Actions

The robot is equipped with nine actions it can perform.
Depending on the two objects in the workspace, one of which
always is a toy object, different actions are available for
execution. Table I briefly describes the actions, their motor
programs, and the objects involved and the actions’ goals.
Fig. 5 illustrates the actions’ motor programs.

Note that some actions have identical goals but different
motor programs, while other actions have identical motor
programs but different goals. The set of actions was contrived
to cover an extensive set of both, different requirements for
success and also similar/duplicated requirements. With this
set of closely-, partly- and un-related preconditions between
actions, we can demonstrate both successful and unsuccessful
bootstrapping results.

The simulated actions used inverse kinematics without path

planning, which leads to occational failures due to impossible
paths. We collected approximately 10,000 samples per action,
with 50% positive and 50% negative samples. The positive
samples are selected uniformly. The negative samples are
selected with a bias such that the distribution of distances
between the centres of gravity (COG) of the two objects is
similar within the groups of positive and negative samples. If
we do not select negative examples with smaller distance then
a classifier can achieve very high accuracy by simply using the
distance between COGs, and not capturing the ‘on top’/‘inside’
relation at all.

E. Classifiers

To predict the success of actions in a particular scene, we
use ensemble classifiers based on the Random Forest [45]
algorithm. In the following sections we will first describe
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Fig. 4. Illustration of the Objects used for the experiments of this work

Random Forests in general and then give details about the
parametrisation of the Random Forests used in this work.

1) Random Forest Classifiers: The idea of ensemble clas-
sification methods is to turn a set of ‘weak’ classifiers into
one ‘strong’ classifier, where the final classification is based
on some form of voting scheme. In Random Forests, these
‘weak’ classifiers are standard Classification and Regres-
sion Trees (CART) [46], which iteratively split the dataset into
more and more subsets where each split maximises the class
purity of the created subsets. The number of trees used can
vary from ten up to hundreds or even thousands of trees per
forest. The final prediction of the Random Forest is the class
that is returned by most of the individual trees.

Random Forests have a series of advantageous properties
compared to other types of classifiers, e.g. SVMs or ANNs,
some of which they inherit from classification trees. Random
Forests:

• do not require much data preparation: Linear dependent
variables do not have to be removed and data normalisa-
tion is not required.

• can handle both, numerical and categorical data.
• are comparably fast.
• look for the best variable to split. They inherently do

feature selection and are therefore particularly well suited
for high dimensional data.

• tend to not overfit (if forest & 10 trees). Therefore no
pruning is necessary leading to strong individual trees.

Random Forests (RF) are particularly well suited for our use
case, as they inherently do feature selection and hence identify
the relevant features from the (potentially) large amount of

PCA

Fig. 6. Illustration of action success classifier learning for nine actions using
the PCA state space without bootstrapping. The X-axis is logarithmic scaled
to highlight that the learning continues even after several thousand training
samples.

state space variables (see Section IV-B).
2) Random Forest Parameterisation: The amount of

trees (T ) in our Random Forests is dependent on the amount
of samples available for training (N ), where

T = 95 +
N

20

up to a maximum size of 115 trees (the maximum forest
size is reached with 400 samples). To parametrise the trees in
our Random Forests, we followed the guidelines of Breiman
et al. [45], [47]. For each tree in the forest, we use 2/3
of the samples in the training set to train the tree. We use
standard CART trees as base classifiers using the Gini impurity
criterion [46] to split nodes and allow a minimum size of 1
sample for a partition created by a split. We do not prune the
trees, but we do limit growth to a maximum depth of 200
splits. For every split, each tree uses all samples available to
it (2/3 of the samples available to the forest). But, for every
split, at each node, out of M dimensions, only m << M are
randomly picked and the best split on these is used to split
the node, where m =

√
M .

V. RESULTS

In the following subsections, we present the results of learn-
ing action success classifiers based on the different approaches
introduced in Section III.

The results of basic learning (B) of action success classifiers
without bootstrapping is presented in Subsec. V-A. The results
of learning action success classifiers when bootstrapping with
already learnt action success predictors following the ap-
proaches (A1), (A2) and (An) are shown in Subsecs. V-B, V-C
and V-D respectively. In Subcec. V-E the results of bootstrap-
ping from a single category (C1) are presented. The outcome
of using the heuristic for category formation is shown in
Subsec. V-F. Finally, the results of learning action success
classifiers from all created categories (Cn) is presented in
Subsec. V-G.
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Fig. 7. Illustration of the early stage of action success classifier learning for nine actions in different state spaces without bootstrapping.

A. Basic Learning of Action Success Classifiers (B)

Following the basic approach (B) for learning of classifiers
as described in Sec. III-A1, we trained a set of success
classifiers for nine actions based on the PCA and RHF state
spaces as described in Sec. IV-B.

The long term learning rate for the different action suc-
cess classifiers using the PCA state space representation is
illustrated in Fig. 6. It can be seen that learning continues
after learning from several thousand training samples. The
early stage of learning success classifiers for the same actions
using different state space representations are highlighted in
Fig. 7. It can be seen by comparing the PCA and RHF cases,
that an appropriate state space representation is of significant
importance for learning. The state representation using RHFs
in general massively outperforms learning without histograms.
This is not surprising as the RHFs were specifically designed
with this use case in mind. We will show that we can achieve
similar performance in the PCA state space via bootstrapping.

The ‘Take’ action serves as a good example of the potential
shortcomings of such specialised state spaces. The success
of ‘Take’ has a weak negative correlation with an aspect
the RHF is able to represent (i.e., ‘inside’) but has a much
stronger correlation with aspects not being represented by the
RHF (e.g., object orientation). The increased amount of input
variables in the RHF case therefore actually causes a decrease
of learning speed (curse of dimensionality).

The basic action success classifier results presented in
this section serve three purposes: Firstly, they illustrate the
‘standard’ learning rate for learning action success classifiers
when learning without bootstrapping and will be used as
a baseline for comparison in the following sections. Sec-
ondly, they constitute part of the ‘knowledge’ that will be
used for bootstrapping in the following sections. Thirdly, the
RHF based results serve as performance ‘benchmark’. Using
bootstrapping in the PCA state space we attempt to achieve
similar learning speeds and accuracy as can be achieved using
manually optimised state spaces.

B. Bootstrapping With a Single Already Learnt Action Success
Predictor as Knowledge Source (A1)

Here we present the results of using a single already learnt
action success predictor as knowledge source, as described
in Section III-A2. In practice, this means that the prediction
of an existing action success predictor is used to extend the
state space of the new action success classifier, by adding it’s
prediction to the 18 PCA or 318 RHF state space variables.
These additional inputs in the state space might make the
mapping from state space to action success easier to learn,
if the added inputs carry relevant information.

We found that bootstrapping works best if the bootstrapping
input gets promoted by being added more than once, because
by that the likelihood of being chosen in the Random Forest
algorithm increases. For that reason we added the prediction
of the already existing action success predictor six times to
the PCA state space and 30 times to the RHF state space.
This creates an extended PCA state space of 24 variables or
an extended RHF state space of 348 variables.

Fig. 8 demonstrates the bootstrapping on all nine actions.
For each of the nine actions, the ‘best’ bootstrapping result
is presented, highlighting the potential of bootstrapping. This
‘best’ result is the one with the highest average accuracy
learning curve from two to 100 samples. Comparing the PCA
cases from Fig. 8 and Fig. 7, the increase in learning speed
achievable through bootstrapping becomes evident. Fig. 8 also
demonstrates that bootstrapping in simple state spaces (PCA)
can lead to performances comparable to learning in optimised
RHF state spaces as in Fig. 7.

Fig. 9 emphasizes the bootstrapping effect of the results
demonstrated in Fig. 8, by presenting the corresponding boot-
strap factors (as defined in section III-C). Two observations can
be made here: a) It can be seen that especially when learning
from few samples, the bootstrap factors are considerably large
with values between three and eight in the PCA case. In the
RHF case, however, an approximate bootstrap factor of one
indicates that there is no or only little bootstrapping effect.
The bootstrap factors then decrease until they asymptotically
approach a value of 1.0 as the performance of the unboot-
strapped learner catches up with the bootstrapped learner. b)
Fig. 9 also highlights the fact that bootstrapping in simple state
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Fig. 8. Illustration of the action success classifier learning speed for nine actions in different state spaces using another action success predictor output for
bootstrapping. Of all the potential action success prediction sources for bootstrapping, for each action, only the best result is presented. It can be seen that
with bootstrapping in the simple PCA state space, similar performance can be reached as when learning in manually optimised state spaces.

PCA RHF

Fig. 9. Illustration of the bootstrap factors of nine action success classifiers in different state spaces when learning with another action success predictor
output for bootstrapping. Of all the potential action prediction sources for bootstrapping, for each action, only the best result is presented.

spaces like the PCA case is multiple times more effective than
in specialised state spaces where learning is already efficient
without bootstrapping like in the RHF case.

It is evident that, in order to achieve these bootstrapping
effects, the single best candidate from a group of available
action success predictors has to be selected for bootstrapping.
This is also the case when using a pair of action predictions
(A2) or single categories (C1) for bootstrapping. How this
selection can be achieved in practice is described in V-H.

As we demonstrated here that bootstrapping in PCA state
spaces can lead to similar performance as manually optimised
state spaces like the RHF state space and that there is no
significant bootstrapping achievable in the RHF state space, we
will, in the following, only present the bootstrapping results
of the PCA state space.

C. Bootstrapping With Action Success Predictor Pairs As
Knowledge Source (A2)

Here we present the results of learning an action success
classifier when adding the output of two action success pre-
dictors of other actions as knowledge source, as described in
Section III-A2. As before we added the inputs multiple times,
but did not increase the overall amount of additions, i.e., the
six inputs in the PCA state space where filled half by each of
the actions of the action pair used for bootstrapping.

PCA

Fig. 10. Illustration of the bootstrap factors of nine action success classifiers
in the PCA state space when learning with action pairs for bootstrapping. Of
all the potential knowledge sources for bootstrapping, for each action, only
the best result is presented.

Fig. 10 emphasises the effect of bootstrapping on the
learning by presenting the corresponding bootstrap factors.
Similar as before, the bootstrapping effect is largest at the early
stage of learning. The result is similar as before, however, the
best two candidates had to be picked from eight candidates,
which allows 28 possible combinations. This adds complexity
without adding benefit.
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Fig. 11. Illustration of the bootstrap factors for nine action success classifiers
in the PCA state space when learning with all existing action predictions for
bootstrapping.

D. Bootstrapping With All Action Success Predictors As
Knowledge Source At Once (An)

Here we present the results when using the action success
predictions of all eight other actions as knowledge source, as
described in Section III-A2. As before we added the inputs
multiple times, however, as there where more than six inputs
to add, we added each input exactly once.

The bootstrapping effect when using the success predictions
of all other available actions for bootstrapping is lower than
with the single best other action success prediction. This
effect can be seen when comparing Fig. 11 with the PCA
part of Fig. 9. This is because not every action success
prediction does help bootstrapping every other action success
classifier and instead obstructs bootstrapping by both adding
noise to the state space and thus making learning difficult
and also increasing the size of the state space, also making
learning more difficult (the curse of dimensionality [48]).
This approach, however, is the most straightforward one, as
it relieves the agent from searching for the best bootstrapping
input from a set of candidate action success predictions and
also does not require the learning of category predictors.

E. Bootstrapping With a Single Automatically Created Cate-
gory Predictor (C1)

Here we present the results when using the output of a single
automatically created category predictor as knowledge source,
as described in Section III-A3. As before we added the inputs
six times to the PCA state space.

Following the binomial combinatorics rule(
9

2

)
= 36

from our nine actions we create 36 category predictors.
Again, Fig. 12 emphasises the effect of bootstrapping on

the learning by presenting the corresponding bootstrap factors.
Similar as before, the bootstrapping effect is largest at the
early stage of learning. It can be seen by comparing Fig. 12
with Fig. 9 that using category predictions for bootstrapping
is comparable to bootstrapping from single action success
predictions. The same holds true when comparing Fig. 12 with
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Fig. 12. Illustration of the bootstrap factors of nine action success classifiers
in different state spaces when learning with the output of a single category
predictor for bootstrapping. Of all the potential knowledge sources for
bootstrapping, for each action, only the best result is presented.

Correlation

Fig. 13. Correlations between the success predictions for nine different actions
after training with 2000 samples.

Fig. 10 where the pair of action success predictions used for
bootstrapping stem from the same two actions that are used for
creating the categories used for bootstrapping here. This slight
improvement is likely due to the more abstract representation
of concepts of the environment that can be directly accessed
when bootstrapping from category predictors.

F. Effects Of Using the Heuristic For Creating Category
Predictors

As a heuristic to avoid the combinatorial increase of the
number of categories created by our approach, we limit the
creation of categories to those that are based on strongly
correlating pairs of action success predictors. This is based
on the hypothesis, that strong correlations between action
predictions indicate that a meaningful category predictor can
be learnt. The correlations between the nine action success
predictors after learning each from 2000 samples are shown
in Fig. 13.



Two clusters can be noted in Fig 13. The first cluster
contains primarily ‘Lift’, ‘Pull’ and ‘Push’. These three actions
have in common that they work fairly reliably when the
toy object is ‘ontop’ or ‘inside’ of the base object, while
they never work otherwise (i.e., in the when the objects are
only beside each other on the table). The actions ‘Pour’ and
‘Slide’ are related in the sense that they share these properties
with ‘Lift’, ‘Pull’ and ‘Push’, and differ only slightly with
‘Pour’ being unseccessful in the ‘ontop’ case and ‘Slide’ being
unseccessful in the ‘inside’ case. The Second cluster is weaker
and separated from the first cluster as the actions ‘Move’,
‘Take’, ‘UnOb’ and ‘Rake’ are more likely to be succesfull
case of the two objects being ‘beside’ each other on the table
than if they are ‘ontop’ or ‘inside’ each other. At the same
time, no two actions in the second cluster have identical cases
where they work and where not (unlike ‘Lift’, ‘Pull’ and
‘Push’ in the first cluster), hence there is a generally weaker
correlations between them.

The heuristic we use has, as described in Sec. III-B, one pa-
rameter that can be changed. This parameter is the correlation
threshold specifying the minimum correlation between two
action success predictors that is required to create a category
predictor based on these two actions. A high threshold will
lead to few category predictors, but the resulting category
predictors are more likely to be useful for bootstrapping. A
low threshold instead, will lead to more category predictors,
but not all of them might be useful for bootstrapping a new
action success classifier.

To illustrate the effects of using the heuristic for creating
category predictors, we present the best bootstrapping results
of three sets of category predictors that are created using
different thresholds for the correlations between action success
predictors. For this, we chose as correlation thresholds T the
three values of:
1) T = 0.0 (i.e., the heuristic is not used)
2) T = 0.125 (approx. 1/2 of the category predictors created)
3) T = 0.5 (approx. 1/4 of the category predictors created)

For each of these three sets we present the average bootstrap
factors of bootstrapping all nine action success classifiers with
the best fit of the particular set of category predictors. We call
these three results ‘Best of C > T ’, where C is the correlation
between to action success predictors and T is the correlation
threshold 1) 0.0, 2) 0.125 or 3) 0.5 respectively. Additionally,
we present as expected performance of selecting a random
knowledge source the overall average of bootstrapping every
action success classifier with every possible category predictor
as input. Comparing this with the results of bootstrapping
with the best of C < T highlights the difference between
bootstrapping with the best and random knowledge source.
All four results are shown in Fig. 14.

It can be seen in Fig. 14, that the drop of achievable
performance through an increased thresholds is small. The
average achievable performance of the full set of category
predictors with threshold T = 0.0 and the 1/2 set of category
predictors with threshold T = 0.125 are almost identical. Even
when using the threshold T = 0.5, where only 1/4 of the
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Fig. 14. Illustration of the average bootstrap factor of different category
predictor sets over the course of learning action success classifiers from two
training samples to 100 training samples. The plot shows the average bootstrap
factor of all action success classifiers when bootstrapped with their individual
best knowledge source category from the set of category predictors created
according to the heuristic with a threshold of 1) 0.0 (i.e., no heuristic used), 2)
0.125 (only approximately 1/2 of the possible category predictors are created)
and 3) 0.5 (only approximately 1/4 of the possible category predictors are
created) The plot also shows the overall average bootstrap factor of all possible
action success classifier / category predictor combinations.

category predictors are created, the achievable bootstrap factor
does only drop slightly. Not surprisingly, the bootstrapping
factor of training each action success classifier with the best
knowledge source from either of the three sets is significantly
better than the bootstrapping overall average when using
an arbitrary pick of avalable action predictor as knowledge
source.

We can conclude that it is in general good to neglect a
significant proportion of category predictors. This is because
even a small number of category predictors based on highly
correlated actions will give good bootstrapping effects for most
action success classifiers.

G. Bootstrapping With All Available Category Predictor out-
puts As Knowledge Source at Once (Cn)

Here we present the results when using all category pre-
dictors created according to the heuristic using the higher
correlation threshold of 0.5 (see Fig. 15). This aproach of using
all available category predictors for bootstrapping at once has
been described in Section III-A3. As before, we added the
inputs multiple times, however, as there where more than six
inputs to add, we added each input exactly once.

When bootstrapping from all available action success pre-
dictions (An), we noticed that the learning and bootstrapping
performance was not as high as when bootstrapping from the
single best action success prediction (A1). We argued that
this was due to the curse of dimensionality. However, when
bootstrapping from all available category predictions (Cn),
the learning and bootstrapping performance remains high and
sometimes surpasses the results of learning with the single best
action success prediction or single best category prediction
input for bootstrapping (apart from the ‘Take’ action that does
degrade in performance). We argue that this is due to the
easier accessible knowledge captured by category predictors,
compared to the knowledge made available by action success
predictors. This effect can be seen when comparing Fig. 15
with the PCA part of Fig. 12.



PCA

Fig. 15. Illustration of the bootstrap factors of nine action success classifiers
in the PCA state space when learning with all existing category predictor
outputs as inputs for bootstrapping.

H. Candidate Selection For Bootstrapping

In the previous subsections we presented the results for
for bootstrapping each action with the input that is ‘best’ for
bootstrapping each action success classifier. This ‘best’ input
was selected for presentation after all alternatives have been
tested and compared by measuring the average accuracy of the
action success classifiers at each step from 2 to 100 samples.
This is not a valid approach in an online system and instead
the input has to be selected automatically and rapidly. Our
suggested approach to automatically selecting an appropriate
input for bootstrapping is based on the premise that the
suitability of a candidate input for bootstrapping becomes clear
almost instantaneously. If this was not the case, bootstrapping
of learning a new action success classifier and reaching high
accuracy after few training samples (i.e., bootstrapping as
presented in this paper) would not be possible.

Therefore, we suggest, to start by learning multiple action
success classifiers in parallel – one for each knowledge source
candidate. After few training samples, e.g., four to six training
samples, the agent could begin to neglect the weaker per-
forming bootstrapping inputs. A final decision can then be
made after between eight to 16 training samples, to select
the best current input for bootstrapping. With this approach
the selected input is not necessarily the actual best. however,
in our experiments the selection made by this approach is
always either the best choice or very close with < 5% relative
performance difference. Fig. 16 shows the bootstrap factors
for nine action success classifiers when bootstrapped with the
category predictor output that was leading to the best action
success classifier accuracy when learning from 10 training
samples. Comparing Fig. 16 with Fig. 12 shows that the
bootstrapping factors of this automatic approach to selecting
are similar to when using the best input as done in sections
III-A2 and III-A3. It can be noted from the labels which inputs
changed, and also, that the inputs that changed often belong to
the same cluster of correlations as the actual best. E.g., For the
‘Lift’ action the best category for bootstrapping (see Fig. 12)
is based on ‘Pull’ and ‘Push’ while the one selected here after
learning from ten samples is based on ‘Pour’ and ‘Push’. All
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Fig. 16. Illustration of the bootstrap factors of nine action success classifiers
in different state spaces when learning with the output of a single category
predictor for bootstrapping that was leading to the highest classifier accuracy
after ten training samples.

four actions ‘Lift’, ‘Pull’, ‘Push’ and ‘Pour’ are in the same
cluster of correlating actions in Fig. 13.

VI. DISCUSSION

In this paper we demonstrated the learning of action success
classifiers for means-end actions and investigated how this
learning process can be accelerated via bootstrapping. We
have presented a method to capture meaningful categorical
features of the environment like one object being ‘ontop’ or
‘inside’ another. We have showcased a heuristic to limit this
extraction of categories to the ones most likely to be useful to
the robot for bootstrapping learning action success predictors.
To quantify the bootstrapping performance we have introduced
a bootstrap factor. And finally, we have presented results
for bootstrapping the learning of success classifiers for nine
means-end actions using a variation of existing action success
predictors and category predictors as knowledge sources for
bootstrapping. To the best of our knowledge, this is the
first study that demonstrates bootstrapping in both successful
and unsuccessful cases, highlighting the conditions that are
necessary to exploit this approach to accelerating the learning
of action success classifiers, instead of showcasing a single
selected succesful scenario for bootstrapping.

We found that success predictors learnt for certain actions
implicitly capture a category, for example the category of
being ‘on top’, or ‘not on top’, or ‘inside’. We avoid calling
these concepts because a concept suggests a complex package
of information, e.g. knowledge of situations or associated
actions (see Barsalou [49], [50]), whereas we are talking
about something more restricted: a classifier determining the
presence of a critical aspect of a scene, e.g. spatial relationship
category. These implicit categories can be recognised by
category predictors and treated as explicit symbols to be used
as input to the learning of subsequent action success classifiers.

We demonstrated that using bootstrapping can significantly
speed up learning of new action success classifiers. This is
important, because there is a great deal to be learnt in order to
achieve a basic level of manipulation competence in everyday
environments, such as a child has. Spatial relationships are



only one small segment of the common sense knowledge that
is required (see [8]). Also, it typically takes a large amount
of data to ground knowledge in a robot’s own actions, and
this data is usually hard to generate (i.e. through time con-
suming real world experiments). Techniques that can reduce
the requirement for data are therefore beneficial. In the best
cases demonstrated in this paper, learning from ten samples
with bootstrapping can achieve similar accuracy as learning
from approximately 1000 samples without bootstrapping (see
left part of Fig. 8 and 6). At early stages of learning (i.e.,
with few training samples), bootstrap factors above 8.0 can
be reached (see Fig. 12) and bootstrap factors near 5.0 as the
average of each actions best bootstrapping result (see Fig. 14).
With this, bootstrapping with rather simple state spaces can
achieve similar results to learning with manually optimised
state spaces.

With our category predictors, we have presented a simple
form of extracting more symbolic descriptions of the environ-
ments. The next logical step would be to use these categories
within a larger cognitive architecture, where this symbolic
knowledge is not only used for bootstrapping of new actions,
but also to guide future interactions and for the development of
higher cognitive competences. Categories form a first step on
the path to high level concepts and a robot which has recently
acquired an ‘on top’ category symbol, for example, may be
motivated to generate further experience around this ‘on top’
category, which could lead to a new phase of development that
facilitates to the formation of higher level concepts like ‘tray’
or ‘carrying’.
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Abstract—Imitation learning has been proposed as the basis
for fast and efficient acquisition of new sensorimotor behaviors.
Movement representations such as dynamic movement primitives
were designed to enable the reproduction of the demonstrated
behaviors and their modulation with respect to unexpected ex-
ternal perturbations. Various statistical methods were developed
to generalize the acquired sensorimotor knowledge to new config-
urations of the robot’s workspace. However, statistical methods
can only be successful if enough training data are available. If
this is not the case, usually the teacher must provide additional
demonstrations to augment the database, thereby improving
the performance of generalization. In this paper we propose
an approach that enables robots to expand their knowledge
database autonomously. Efficient exploration becomes possible
by exploiting the structure of the search space defined by the
previously acquired example movements. We show in real-world
experiments that this way the robot can expand its database and
improve the performance of generalization without the help of
the teacher.

Keywords—imitation learning, reinforcement learning, dynamic
movement primitives, statistical generalization, training data, au-
tonomous database expansion.

I. INTRODUCTION

It has been suggested that imitation learning can provide
means to limit the huge state-action space of high degree of
freedom robots such as humanoids [1]. Through imitation a
robot can gain the first approximation of the desired movement,
which can later be improved by autonomous exploration. It
has been demonstrated that this way the robot can acquire
difficult to learn behaviors, e. g. the game of kendama, which
consists of two parts, throwing a ball up on an attached string
and catching it in a cup [2]. Based on these early works,
reinforcement learning of robot movements has started to be
seen as a viable approach to motion learning in robotics [3]–
[7], even in the case of high degree freedom humanoid robots.
Reinforcement learning algorithms such as PoWER (Policy
learning by Weighing Exploration with the Returns) [8] and
PI2 (Policy Improvement with Path Integrals) [5] are able to
deal with sensorimotor learning in high dimensional spaces.
Reinforcement learning focuses on how to acquire optimal
task performance in a given situation. Other researchers have
studied how to generalize the available movement primitives
to new situations [9]–[12] or represent multiple movements

within a dynamical system that can represent multiple con-
trol policies [13], [14]. The main difference between both
approaches is that in the first approach, the primitives are
combined on-line so that the optimal movement for the current
situation is generated, whereas the second approach generates
a representation of all movements off-line using a global
optimization approach.

The described approaches enable the robot to au-
tonomously improve single movements using reinforcement
learning and to generate new variants of the learned behaviors
using statistical techniques. In this paper we focus on how the
robot can autonomously acquire new example movements for
its database, which is the key to improving the performance of
the initially roughly learned behavior. Up to now generalization
mainly relied on the availability of the sufficient amount of
training data, which were provided by the demonstrator. In this
paper we show that firstly, the robot can exploit the structure
provided by the previously acquired example movements to
accelerate its learning process and secondly, that by adding
the newly acquired trajectories to the database of example
movements we can increase the performance of statistical
generalization. Note that successfully solving the first problem
does not necessarily mean the accuracy of generalization will
also be improved; statistical learning can only be successful
if we can ensure that the newly acquired data is correlated
with the existing pattern of motor primitives in the database.
Thus we must ensure that the new trajectories identified by
reinforcement learning are correlated with the ones that are
already in the database.

First we obtain a few training movements that solves the
given task in some specific situations. Then we apply statistical
generalization to compute relatively good initial approximation
of new situation inside learning space. As the next step the
reinforcement learning is used to refine the approximation
in few steps so the robot can accomplish the task correctly.
Every learned movement is then stored in the training base,
so that additional approximations of different situations can
be estimated more accurately and that reinforcement learning
can get faster results. When the learning space is fairly
revealed, which means that enough training data is acquired,
the statistical generalization itself offers movement that is good
enough and the reinforcement learning is not needed any more.978-1-4673-7509-2/15/$31.00 c©2015 European Union



II. ACQUISITION OF EXAMPLE DATABASE AND

GENERALIZATION

We use kinesthetic guiding [15] to acquire the initial
example movements. Lets assume that a set of S exam-
ple trajectories Mi, i = 1, . . . , S, has been collected by
kinesthetic guiding, and that all these trajectories result in
a successful execution of the desired task in different (but
related) situations. See Fig. 1 for an example where a human
demonstrator guided the robot to pour water from a bottle
into a glass located at different positions on the table and
with different quantities of water in the bottle across different
demonstrations. We call the vector defined by parameters
describing the task a query point (in the above example, the
query point consists of position of the glass on the table and
volume of the water in the bottle). Let qi ∈ R

m, i = 1, . . . , S,
be the query points associated with every demonstration, where
m is the dimensionality of these parameters. The example
trajectories Mi are represented as sequences of positions,
velocities and accelerations

{
yij , ẏij , ÿij ∈ R

dof
}

, measured
at times tij , j = 1, . . . , ni, ti1 = 0, where ni defines the
number of data points on the example trajectory Mi and dof
denotes the number of degrees of freedom on the trajectory.
Both Cartesian space and joint space trajectories can be used
to define the example data set. In experiments described in this
paper we use joint space trajectories.

Fig. 1. Acqusition of example movements by kinesthetic guiding.

The aim of generalization is to compute a trajectory that
solves the desired task at any given query point q. In the above
example, the output trajectory is the appropriate pouring move-
ment. We implemented two different approaches to statistical
generalization [9], [11]. In this paper we use the more efficient
but less accurate approach described in [11]. This approach
is based on dynamic movement primitives (DMPs) [16] and
Gaussian process regression (GPR) [17]. For every query point
q, GPR computes an approximation of the task solution

G{Mi,qi}S
i=1

: q �→
[

w
τ
g

]
, (1)

where w, τ , and g are the parameters defining a DMP that

describes the movement for the given query point q. For every
degree of freedom, the DMP is defined by a second order dy-
namical system consisting of a linear and nonlinear part, where
the linear part has a well-defined attractor dynamics, which
ensures the convergence of the system, while the nonlinear
part provides the ability to follow any desired trajectory on
the given time (phase) interval

τ ż = αz(βz(g − y)− z) + f(x), (2)

τ ẏ = z, (3)

τ ẋ = −αxx. (4)

Here y is the one of the robot’s degrees of freedom, z is
an auxiliary variable, and x is the phase variable common
across all of the robot’s degrees of freedom. αx, αz , and βz

are constants, which are specified so that the linear part of
system (2) – (4) converges to the unique equilibrium point,
which is at z = 0, y = g and x = 0, regardless of where the
movement has started. τ > 0 is the temporal scaling factor that
can be used to modulate the velocity of the movement. The
nonlinear part f of the system contains free parameters wk

that enable the robot to track any desired trajectory from the
initial position (y0, ẏ0) to the final equilibrium point (0, g, 0)

f(x) =

∑N
k=1 wkΨk(x)∑N
k=1 Ψk(x)

x, Ψk(x) = exp
(
−hk (x− ck)

2
)
.

(5)
Here ck are the centers of radial basis functions distributed
along the trajectory and hk > 0. They can be computed as
described in [9]. While αx, αz , βz , τ , and x are the same for
all of the degrees of freedom, z, y, g and the parameters wk

vary across the degrees of freedom. Note that since x converges
to 0, f(x) also converges to 0 and the system (2) – (4) becomes
linear as time tends to infinity (and consequently phase x to
zero). Given a new query point q, the algorithm of Forte et al.
[11] computes the DMP parameters for all degrees of freedom.
Thus w ∈ R

N×dof contains the weights wk associated with
every degree of freedom and vector g ∈ R

dof the final
configuration of every degree of freedom. τ is associated with
the phase variable and is therefore common across all of the
degrees of freedom.

The details of the described generalization approach can be
found in [11]. What is important for this paper is that for every
query point q, the generalization function (1) computes the
corresponding DMP. Thus statistical generalization provides a
low-dimensional parametrization of the solution space, which
can be exploited to accelerate the acquisition of new example
trajectories.

III. EXPANDING THE EXAMPLE DATABASE BY

AUTONOMOUS EXPLORATION

Although generalization can provide an estimate for the
trajectory (with respect to the demonstrated ones), which
can be used to accomplish the desired task, the computed
movement can of course only be good enough for successful
task accomplishment if enough training data are available.
Additional training examples need to be provided if the task
performance is not as good as expected. While a human teacher
could provide more data, it would be advantageous if the robot
could explore the solution space on its own and expand the



database autonomously. In this section we show how to realize
such autonomous exploration.

A straightforward approach to generate more data would be
to start with the initial approximation for the desired movement
as provided by statistical generalization at the given query
point and continue with one of the standard reinforcement
learning algorithms to find a better solution. There are several
problems with this straightforward approach:

• General reinforcement learning is model-free and it
might take a long time before a better solution can be
found.

• The solution is often not unique, e. g. a given amount
of water can be poured into a glass in many different
ways, therefore general reinforcement learning might
find a solution which is different from the solution
selected by the demonstrator. Significantly different
movements are not suitable for statistical generaliza-
tion.

To address the first problem, we exploit the parametrization
provided by the statistical generalization function (1). To ad-
dress the second problem we need to bias the search algorithm
towards the trajectory manifold defined by the generalization
function.

Another issue to be considered when augmenting the
database is that the performance of statistical generalization is
usually better if query points are uniformly distributed through-
out the desired query point space. In the proposed system,
once the robot determines that the accuracy of generalization is
insufficient, we systematically add new, uniformly distributed
queries to the database and determine the associated move-
ments using the structured reinforcement learning approach.

A. Exploiting the Structure of the Trajectory Space

Given a new query point, the generalization function (1)
can calculate the appropriate DMP. To improve the perfor-
mance of the generalization function, we propose to add
additional movements into the existing database of movements,
where additional movcements are generated by reinforcement
learning. By exploiting the available data, we can organize re-
inforcement learning around two different types of parameters:
query point q, which dimensionality is always low, and DMP
parameters (w, τ and g), which combined dimensionality is
high. As noted in [18], many tasks require high accuracy only
on a low-dimensional manifold of the complete movement
space. In all our practical examples, the dimensionality of the
query points was between 1 and 3.

We propose to compute the optimal movement at a new
query point in two steps. First we perform the search for
an optimal query point, from which the DMP parameters
are computed using Eq. (1). Since this exploration process is
limited to the trajectory manifold defined by (1), the obtained
DMP parameters can be further improved by exploration in the
full DMP parameter space. We considered two reinforcement
learning algorithms to implement these steps: PoWER [19]–
[21] which operates using terminal reward only, and PI2 [5],
[22], [23], which can also take into account intermediate
rewards. Intermediate rewards are important to ensure that the

shape of the new trajectory remains similar to the shape of
initial trajectories (see Section III-B).

Thus to learn the weights w that define the shape of the
movement, we propose to apply PI2. To learn the remaining
DMP parameters, i. e. the time duration of the movement τ
and the goal of the movement g, and to tune the initial query
point q, we use the PoWER algorithm.

B. Augmenting the Example Database

The search process of Section III-A enables the robot
to find a new movement M that solves the task at query
point q. We can now expand the example database used
to compute generalization function (1) with a pair (M,q).
However, not every movement is suitable to be added to the
database. Statistical learning can only be successful if the
movements in the database smoothly transition between each
other. Since generalization function (1) is smooth, it always
generates smooth movement patterns. Unfortunately, in general
it is not guaranteed that the optimal movement lies on the
manifold defined by the current estimate of the generalization
function. Hence we need to allow the robot to search also
outside of this manifold. This search can be accomplished by
reinforcement learning, but this could result in discontinuities
in the movement pattern because the solution is not unique
and the robot could find a different type of solution than the
ones in the database.

To ensure that this does not occur, we utilize the first move-
ment approximation computed by the generalization function
(1). This function computes the reference DMP ỹ, which is
guaranteed to transition smoothly between the neighboring
DMPs (movements) in the database. Let y denote the cur-
rent estimate for the desired movement. We can define the
immediate cost function r that can be used by PI2 as follows

r(t) = κ‖y(x(t))− ỹ(x(t))‖2 + ẏTΓẏ, (6)

where x is the common phase of the DMPs and Γ is the
regularization matrix. Such immediate reward ensures that new
trajectories generated by PI2 stay close to the generalized
trajectories, which results in smooth transitions between the
neighboring trajectories.

PI2 has only one free parameter, i. e. the exploration noise.
In general the exploration noise can be set significantly smaller
than usually because most of the exploration is expected to
occur in the query point space and not in the full parameter
space. We will omit the details of reinforcement learning
algorithm PI2 in this paper. See [5], [7] for more details about
PI2.

Let R be the terminal reward function and let r be the
immediate cost function for the desired task. Reinforcement
learning in the trajectory space parametrized by q and its
neighborhood can then be defined as follows:

1) Estimate the DMP (first approximation) for a new
query point q using statistical generalization (1).
Execute the resulting DMP and compute the terminal
reward. Use these data to initialize the PoWER algo-
rithm and use the weights w of the DMP to initialize
PI2 algorithm.



2) The learning process is stopped if the terminal reward
R is above a given threshold or the maximum number
of iteration has been reached. Otherwise continue
with one reinforcement learning epoch.

3) Repeat K times: obtain a new estimate q′ with
exploration noise. For each new q′, compute the DMP
parameters using statistical generalization (1) and add
the exploration noise. Execute the resulting DMP and
calculate the immediate costs and terminal reward
function R.

4) Use PoWER to compute new goal g and time du-
ration τ on the movement and use PI2 algorithm to
compute new weights w using the results of previous
K steps.

5) Use the output of PoWER and PI2 algorithms and
execute the DMP to get the terminal reward R.
Continue with step 2.

If the learning process has stopped due to the satisfactory
terminal reward, the newly calculated movement can be added
to the database of example movements.

Fig. 2. Experimental setup. Movements for 4 different glass positions (shown
in blue) with 2 different quantities of water were initially acquired. In red are
the positions on the table that were later added to the database. The scale used
in the experiments is in the background.

IV. EXPERIMENTAL RESULTS

In our experiments we focused on showing that the pro-
posed approach addresses the following two key issues: 1)
the generation of task solution trajectories that are similar to
the example trajectories in the existing database, and 2) aug-
menting the database with autonomously learned trajectories
to improve the accuracy of statistical generalization, thereby
increasing the overall performance of the task.

The robot’s experimental task was to learn how to pour
the same quantity of water (0.2 l) into a glass regardless of
the amount of water in the bottle (see also Fig. 1). For this
purpose we collected 8 initial movements at 4 different glass
positions, as shown in Fig. 2, with 2 different quantities of
water (0.3 l and 1 l) in the bottle. In this case the query point

q is defined as [x, y, v]
T

, where x and y denote the position of
the glass on the table and v denotes the volume of the water

in the bottle. We used the following terminal reward function

R =

{
5 · (0.2− |0.2−mg| −ms) 0 ≤ R ≤ 1

0 otherwise,
(7)

where mg is the amount of water in the glass and ms the
amount of spilled water. This way we ensure that the robot
learns how to pour without spilling. We used a scale to measure
the final amount of water in the glass and the force-torque
sensor in the wrist to estimate the amount of all water poured
from the bottle. The difference between the two quantities
provides the amount of spilled water.

The eight task demonstrations were used to provide initial
data for statistical generalization. The demonstrated trajectories
in joint space were encoded as DMPs with 20 radial basis
functions for each joint trajectory. It turned out that 20 is the
optimal number of radial basis functions depending on the
complexity and length of the pouring movements. Using the
learning process described in Section III, 40 new movements
together with the associated query points were added to the
database. On the average, the reinforcement learning process
of Section III needed about 10 executions of the pouring
behavior to find a new movement with satisfactory reward.
This relatively low number of trials was due to the fact
that algorithm can exploit the previously estimated structure
of the solution space. Lets analyze the shape of the newly
learned movements. Fig. 3 shows the trajectories at 9 different
positions on the table for the degree of freedom (5th joint),
at which the largest movement was performed during the
execution of the pouring behavior. The trajectories exhibit
similar shape and transition smoothly from one to another. Fig.
4 show the original and the autonomously learned trajectories
in 3-D Cartesian space after being transformed via forward
kinematics. Again we can see that the trajectories found via
reinforcement learning are qualitatively similar in shape to the
demonstrated trajectories. Note that the new trajectories are
smoother than the demonstrated trajectories, which is due to
the regularization term in reward function (6). Thus we can

Fig. 4. Similarity of the newly acquired movements. In red are the original
example trajectories obtained by kinesthetic guiding and in blue the newly
acquired trajectories generated by the proposed reinforcement leaning process.
All trajectories were originally determined in joint space and were mapped
onto 3-D Cartesian space via forward kinematics.
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Fig. 3. Similarity of the newly acquired movements. In red are the original example trajectories obtained by kinesthetic guiding and in blue the newly acquired
trajectories generated by the proposed reinforcement leaning process. For easier representation only trajectories of 5th joint, that is changing the most, are shown
in the graphs.

expect that the augmented movement database will be suitable
for statistical generalization.

To evaluate the performance of generalization, we tested
the accuracy of generalization at in-between query points
(shown in Fig. 5), that is at query points that do not exactly
coincide with the training query points. Fig. 6 illustrates the
generation of new trajectories by statistical generalization. As
expected, the generalized trajectories are smooth and similar
to the nearest trajectories in the database. Fig. 5 shows that
a considerable increase in performance can be achieved this
way. When new test movements were generated by statistical
generalization, which used only 8 initial movements as training
data, the average error of the glass filling process was 0.08
l. This was reduced to 0.02 l for cases in which statistical
generalization used also the newly acquired movements, that
is altogether 8 + 40 example movements. The amount of
spilled water was also reduced. With the initial 8 movements,
statistical generalization produced movements that caused 0.03
l of water to be spilled on the average. With the additional 40
example movements, there was no spilling with generalized
DMPs. We can thus claim that the proposed approach is
successful at finding new movements for the database and can
autonomously increase the performance of generalization.

V. CONCLUSION

The main result of this paper is a new approach to
autonomously augment the database of example movements,
which was initially obtained in a supervised manner, for
example by human demonstration. The newly acquired data
can be used to improve the accuracy of generalization and con-
sequently the performance of task execution. We demonstrated

experimentally that using the proposed approach, the robot can
improve its performance without additional help of the teacher.
We believe that our approach addresses one of the fundamental
problems of imitation, that is how to transition from directly
mimicking the teacher’s movements to practicing, where the
initial movements are modified and new data are added to the
existing knowledge base.

The integration of autonomous exploration with statistical
generalization also enabled us to define a new, structured
reinforcement learning algorithm, which can find new example
movements in the neighborhood of the estimated trajectory
manifold much quicker than standard reinforcement learning
algorithms. Compared to the method proposed in [6], which
also combined learning in low-dimensional spaces using value
function approximation with learning in high-dimensional
spaces using PI2, the approach proposed in this paper uses
the results of statistical generalization in addition, thereby
further increasing the speed of convergence. The key to this
accelerated convergence of the learning process lies in the
fact that thanks to statistical generalization function (1), a
significant part of the search process could be moved from
the high-dimensional trajectory space spanned by DMPs to
the low-dimensional space determined by query points, which
are defined as task-relevant parameters that characterize the
task. Another important issue is that statistical generalization
provides a reference movement, which can be used to define
immediate rewards in terms of the distance between trajectories
determined by reinforcement learning and the reference trajec-
tory. This is needed to ensure that the newly found trajectories
are similar to the trajectories in the database.

The developed system is of course not limited to the learn-
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Fig. 5. Results showing the improved performance with the increasing size of
the database. Points in the graphs are the test points situated in-between query
points. R denotes terminal reward (7), which is normalized to values between
zero and one. Demonstrated examples are marked as blue stars and are situated
in the corners of the search space. First graph shows terminal rewards at test
points where only 8 demonstrated examples were in the trajectory database.
Second graph shows terminal rewards at the same test points after additional
40 movements were refined and stored in the trajectory database.
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Fig. 6. Calculation of new joint trajectories using statistical generalization.
In black are the generalized trajectories and in color the closest neighboring
trajectories from the database.

ing of the pouring behaviour. There are only two components
that are action-specific: the definition of the query point space
and the definition of terminal reward functions R. Note that
the immediate reward function r of Eq. (6) is not dependent on
the actual behaviour to be learned. Due to space limitations,
the analysis in this paper focused on pouring. However, in our
previous papers [9], [11], [24] we showed that the algorithms
which form the basis of the proposed system can be applied to
learn many different behaviors including reaching, throwing,
drumming, and kendama.
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• Surface wiping use-case through non-rigid contact is demonstrated and evaluated.
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a b s t r a c t

In this paper we propose and evaluate a control system to (1) learn and (2) adapt robot motion for
continuous non-rigid contact with the environment. We present the approach in the context of wiping
surfaces with robots. Our approach is based on learning by demonstration. First an initial periodicmotion,
covering the essence of the wiping task, is transferred from a human to a robot. The system extracts and
learns one period of motion. Once the user/demonstrator is content with the motion, the robot seeks and
establishes contactwith a given surface,maintaining a predefined force of contact through force feedback.
The shape of the surface is encoded for the complete period ofmotion, but the robot can adapt to a different
surface, perturbations or obstacles. The novelty stems from the fact that the feedforward component
is learned and encoded in a dynamic movement primitive. By using the feedforward component, the
feedback component is greatly reduced if not completely canceled. Finally, if the user is not satisfied with
the periodic pattern, he/she can change parts of motion through predefined gestures or through physical
contact in a manner of a tutor or a coach.

The complete system thus allows not only a transfer ofmotion, but a transfer ofmotionwithmatching
correspondences, i.e. wiping motion is constrained to maintain physical contact with the surface to be
wiped. The interface for both learning and adaptation is simple and intuitive and allows for fast and
reliable knowledge transfer to the robot.

Simulated and real world results in the application domain of wiping a surface are presented on three
different robotic platforms. Results of the three robotic platforms, namely a 7 degree-of-freedom Kuka
LWR-4 robot, the ARMAR-IIIa humanoid platform and the Sarcos CB-i humanoid robot, depict different
methods of adaptation to the environment and coaching.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Learning by demonstration, as an approach of acquiring
trajectories in robotics [1], can only be effective if it enables
adaptation of the demonstrated policy to the current situation of
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the task or the environment [2]. For example, when learning a
wiping behavior,which is a rather trivial skill for humans, the robot
must acquire the correct characteristics of motion, but must also
maintain contact with the surface it is wiping. Such skill transfer
from a human to a robot, where not only the motion but also the
constraints imposed by the task are important, is the motivation
behind this paper. We propose a system that enables a robot to
learn actions which require continuous non-rigid contact with
the environment through human demonstrations and interactive
coaching. The coaching mechanisms enable a human teacher to
efficiently guide the robot towards a goal-directed execution.

Learning by demonstration often exploits the means of
encoding the motion characteristics of an action by generalizing
demonstrated trajectories from the performing subject and the
current situation. Different approaches exist, for example splines
and wavelets [3,4], which are effective for imitation learning, but
do not allow easy onlinemodulation. Another options are Gaussian
Mixture Regression [5] and Gaussian Mixture Models [6,7], used
to estimate the entire attractor landscape of a movement skill
from several demonstrations. To ensure stability of the dynamical
system towards an attractor point, a constraint optimization
problem in a nonconvex optimization landscape needs to be
solved. Yet another option is the use of HiddenMarkovModels [8].
Different dynamical systems can also be used.

Another type of dynamical systems are dynamic movement
primitives (DMPs) [9], which focus on the representation of single
movements by a set of differential equations. A DMP can represent
a control policy in a compact way and its attractor landscape
can be adapted by only changing a few parameters. Compared to
representations proposed in [6,7], only a simple system of linear
equations needs to be solved. DMPs can be used for representing
classes of movements using statistical learning techniques [2,10],
for combining trajectories in a dynamic way [11,12], and for
reinforcement learning [13–16]. In this paper we exploit the
DMP framework to enable continuous non-rigid contact with the
environment, based on force feedback.

Adaptation of learned trajectories to external feedback was
previously discussed in different settings and applications, using
different trajectory representations. The use of force feedback
to learn and improve task execution was widely considered in
robotics, see for example the book chapter by Villani and De
Schutter [17]. One of the best known approaches is the method
proposed by Hogan [18], where force feedback is used to change
the output velocity of a manipulator. This technology is the basis
for the DMP adaptation proposed in this paper.

DMPs themselves were already used for adaptation to forces.
In [19] the authors used an interaction force and the parallel
force/position control law to modulate the velocity of the
dynamical system. Pastor et al. [20,21] have also combined force
controllers and DMPs in an approach for modifying DMPs at the
acceleration level, allowing for reactive and compliant behaviors.
They used the demonstrated trajectory profiles as reference,
while [22] applied reinforcement learning to further optimize
the behavior. A modulation approach at the acceleration level
of a DMP for physically coupled dual-agent tasks was reported
by Kulvicius et al. [23], but the learning was applied to acquire
appropriate feedback gains instead of reference trajectories. On
the other hand, Gams et al. [24] utilized coupled DMPs with force
feedback at the velocity level. Combined with iterative learning
control, their approach can achieve the desired force interaction for
rigid contacts. Iteratively approaching a desired behavior has been
applied for in some programming by demonstration approaches.
For example, Sauser et al. [25] showed grasp adaptation through
human corrections, while Calinon and Billard [26] showed gesture
learning. On the other hand, iteratively approaching a desired
behavior was also shown in combination with DMPs in a peg-in-
hole task [27], where reference force-torque profiles were used as

means for autonomously improving the execution performance.
In this work the force controller was not applied within the
DMP framework. Haptic feedback for improving the teacher
demonstration was also used by Rozo et al. [28], who addressed
the problem of what to imitate based on the mutual information
between perceptions and actions. HMMs and GMR were used to
encode the demonstrations and for the robotic execution of the
learned tasks. Themethodwas augmented in order to be applicable
also for the task of pouring [29]. Adaptation of trajectories is not
limited to one-arm behaviors. An approach for bimanual operation
based on dynamical systems by adding local corrective terms was
discussed by Calinon et al. [30].

In this paper we consider the transfer of skills from a human
to a robot through coaching. The transfer is not limited to the
motion, but includes the execution of the task in contact with
the environment. We consider two problems of on-line motion
adaptation for the actual completion of the task. The first is the
adaptation to the external environment in order to achieve desired
forces of non-rigid contact throughout the complete trajectory.
The second is adapting the trajectories to the interventions of
an instructor, modifying the trajectories through physical contact
or with the use of predefined gestures. The interaction puts the
instructor into the role of a tutor who coaches the robot to achieve
the desired performance. Both adaptation to the environment and
coaching rely on the use of a unified trajectory representation,
i.e. the dynamic movement primitives (DMPs). The combination
creates an intuitive and user-friendly interface to learning and
modifying robotic trajectories with the potential of creating
complex object-interaction trajectories.

Not many papers describe adaptation of learned trajectories for
non-rigid contacts. Initial results of DMP adaptation methods, ex-
panded on in this paper, were presented in [31,32]. The approach
was expanded on by Ernesti et al. [33] to include transient mo-
tions and [34] to include structural bootstrapping from experience.
Wiping with a robot has also been studied from other perspec-
tives, including using dynamic models and operational space dy-
namics [35].

Coaching has been applied also in context of other robotic
tasks. Gruebler et al. [36] used voice commands as a reward func-
tion in their learning algorithm. Verbal instructions of non-experts
were used to modify movements obtained by human demonstra-
tion [37]. Physical contact was also used, for example, by Lee and
Ott [38] who used kinesthetic teaching with iterative updates to
modify the behavior of a humanoid robot. Coaching based on ges-
tures and obstacle avoidance algorithmswas applied to DMPs [39].
This approach is expanded on in this paper with force feedback.

In the next section we provide the basics of DMPs and the
algorithm of encoding them. Section 3 provides the core algorithm
of the adaptation approach. Three differentmethods are explained.
Coaching, as the means to adapt parts of the trajectory based on
the user input is explained in Section 4, followed by the results in
Section 5 and a discussion with conclusions.

2. Learning of periodic dynamic movement primitives

In this paper we build on periodic dynamic movement
primitives. For the sake of completeness we provide the basics of
the DMP notation and an algorithm for extracting the frequency
of the demonstrated signals. The algorithm of learning of weights
that encode a DMP follows. It is the basis for both adaptation to
external force and the coaching algorithms.

2.1. Periodic DMPs

The formulation of DMPs in this paper is based on [2]. For
a complete DMP overview see [9]. The description is for clarity
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limited to a single degree of freedom (DOF), i.e. one of the external
task-space coordinates, denoted by y. Temporally scaled velocity
is denoted by z. Note that DMPs can be applied to joint space
coordinates aswell. y and z should not bemistakenwith the axes of
a coordinate system, which are in this paper denoted by xp, yp, zp.

A nonlinear system of differential equations that defines a
periodic DMP is given by
ż = ⌦ (↵z (�z (g � y) � z) + f (�)) , (1)
ẏ = ⌦z. (2)
The nonlinear part of (1), f (�), known as the forcing term, is
comprised of a linear combination ofN radial basis functions �i(�)

f (�) =

NP
i=1

wi�i(�)

NP
i=1

�i(�)

r. (3)

Radial basis functions �i(�) are defined by
�i(�) = exp (hi (cos (� � ci) � 1)) . (4)
Parameter r is the amplitude control parameter, hi > 0 are the
widths of the kernels and ci spreads themequally along the phase�
from0 to 2⇡ inN steps. The parameters↵z, �z, > 0 and↵z = 4�z
make the system (1)–(2) critically damped. The system oscillates
as given by f (x) around the goal g . To realize multiple DOFs we use
separate sets of (1)–(2), and a single canonical system given by (5)
to synchronize them through the common phase.

The phase variable � provides the indirect dependency on time.
It can increase with constant rate, where the parameter⌦ denotes
the frequency

�̇ = ⌦. (5)
When learning the frequency does not have to remain constant,
but needs to be estimated, for example with adaptive frequency
oscillators as in [40,41]. In our case we used the system proposed
in [41] for online extraction of frequency of motion and to encode
one period ofmotionwith theweightswi, i = 1, . . . ,N , whereN is
the number of kernel functions. The frequency estimation is based
on a feedback structure containing an adaptive frequency oscillator
and an adaptive Fourier series.

The adaptive frequency oscillator is governed by the following
feedback structure

�̇ = ⌦ � Keo sin�, (6)

⌦̇ = �Keo sin�, (7)
eo = ydemo � ŷ, (8)

where K is the coupling strength, � is the phase of the oscillator,
eo is the input into the oscillator and ydemo is the input signal. The
feedback loop signal ŷ in (8) is provided by the Fourier series

ŷ =
MX

a=0

(↵a cos(a�) + �a sin(a�)). (9)

HereM is the number of components of the dynamic Fourier series
and ↵a, �a are the amplitudes associated with the series. They are
estimated as follows:

↵̇a = ⌘ cos(a�)eo, (10)

�̇a = ⌘ sin(a�)eo, (11)

where ⌘ is the learning constant and a = 0, . . . ,M .

2.2. Learning of DMPs

To encode a periodic trajectory as a DMP, we need to
determine the duration of one period of motion, for example by

using the above-described adaptive frequency oscillators. Once
the frequency of the demonstrated motion is established, we
need to learn the weights of the DMP to encode the shape
of the demonstrated motion. The latter is accomplished using
incremental locally weighted regression (ILWR) [42]. The target
data for fitting is constructed from the demonstration trajectory
ydemo, which is the desired trajectory ofmotion. The target function
for fitting, originating from (1)–(2) is therefore

ftarg = 1
⌦

2 ÿdemo � ↵z

✓
�z (g � ydemo) � 1

⌦
ẏdemo

◆
. (12)

It is obtained by matching y from (1)–(2) to ydemo, z to ẏdemo/⌦ ,
and ż to ÿdemo/⌦ . This means that we basically learn how to force
the otherwise critically damped spring–mass system given by the
linear part of (1)–(2) to follow the desired trajectory.

Given ftarg , wi is updated incrementally for each time-step j as

wi,j+1 = wi,j + �i,j+1Pi,j+1rej (13)

Pi,j+1 = 1
�

 

Pi,j �
P2
i,jr

2

�
�i

+ Pi,jr2

!

(14)

ej = ftarg,j � wi,jr. (15)

�i are the kernel functions. Pi, in general, is the inverse covariance
of wi [43]. The recursion is started with wi = 0 and Pi = 1. r is the
amplitude gain. The forgetting factor is defined by �  1. Useful
range of � is between 0.97 and 1. If � < 1, then the incremental
regression gives more weight to recent data, meaning that it tends
to forget older ones.

3. Adaptation to environment

Adaptation to the environment, as proposed in this paper,
assumes that the environment cannot change rapidly, i.e. an
object, such as a table or a kitchen sink, does not rapidly change
shape or height. The setting of the environment, on the other
hand, can be completely arbitrary. This assumption allows gradual
adaptation of motion through learning, and is the basis of the
proposed algorithm. If the environment does not change rapidly,
then a correct reference of motion (if followed) will achieve the
desired behavior. The referential trajectory is the output of the
DMP, and can be interpreted as a feed-forward control signal. This
is augmented with the feedback control loop for instantaneous
reaction, and to allow gradual adaptation. The use of the learned
feed-forward component (the output of the DMP) reduces the
need for feedback adaptation, which allows for greater accuracy.
Furthermore, the use of the DMP allows for standard DMP features,
such as easymodulationwith the change of only a few parameters.

In this paper we propose twomeans of applying force feedback
to change the output of the DMP, i.e. the feed-forward component
of the control signal. The first is in changing the reference for
learning a DMP. The second is in bootstrapping the force signal
directly into the DMP weight adaptation.

3.1. Changing the reference

The original use of DMPs allows the encoding of demonstrated
trajectories for imitation, i.e., the demonstrated trajectory is the
reference. If the reference is changing over time, so is the output
of the DMP. In this algorithm we exploit force feedback to change
the reference of the DMP, i.e. ydemo. The change of the reference
trajectory occurs through the change of the end-effector velocity as
a function of force, known as the velocity-resolved approach [17]

vr = Svvv + SF (Kief + Kpėf ), (16)

ef = F0 � Fm. (17)
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The variable vr stands for the resolved velocities vector, Sv for the
velocity selectionmatrix, vv for the desired velocities vector,Ki,Kp
for the force gain matrices, SF for the force selection matrix, Fm for
the measured force and F0 the desired force of contact. Essentially,
the selection matrices Sv and SF determine which directions of
motion are affected by the force. They are determined by the user,
who knows which directions of motion need to be altered.

To get the desired positions we use

yr = ydemo + SF

✓Z
vrdt

◆

= ydemo + SF

✓Z
Ki(F0 � Fm)dt + Kp(F0 � Fm)

◆
. (18)

Here yr is the resolved position (and possibly also orientation) of
the robot, taking the place of ydemo. We see in (18) that ydemo has
both an integral and a proportional feedback loop, with Kp being
the proportional gain. Combining the two allows for zero steady-
state error within the integral loop and faster reactions to possible
unforeseen perturbations within the proportional loop.

When wiping a flat horizontal surface, such as an average table,
(16)–(18) become less complex. In this case the robot needs to
establish contact in a vertical direction, typically z. We obtain:
Sv = 0, Ki = diag(0, 0, ki, 0, 0, 0), Kp = diag(0, 0, kp, 0, 0, 0),
SF = diag(0, 0, 1, 0, 0, 0). Only the desired end-effector height zp
is modified in each discrete time step 1t , and (16) becomes (19).

żp(t) = kief (t) + kpėf (t), (19)

ef (t) = F0(t) � Fz(t). (20)

Taking into account the initial condition and numerical
integration, it results in (21)

zp(t) = zp0 + kief (t)1t + kpef (t). (21)

Here zp0 is the initial zp value (starting height), ki and kp are
positive constants for force gains, Fz is the measured force in the
zp direction and F0 is the desired force of contact. The movement
is constant in �zp direction when there is no contact, or maintains
contact force F0 when an object is encountered.

The learning of the DMP in the direction that is being modified
by force, for example in zp direction as shown in (19)–(21), is done
by modifying the weights wi for the selected DOF (determined
by SF ) in every time-step by using incremental locally weighted
regression as given by (13)–(15). The demonstrated trajectory is
being constantly modified by the force feedback and therefore the
DMP weights are constantly re-evaluated until a steady-state is
reached. Since this approach uses the position of the end-effector
as input, and not the force, it has no difficulties with the noisy
measured force signal.

The admittance control scheme given by (16)–(18) is subject
to the gains Ki and Kp. High gains will result in fast reactions
when encountering a force. At the same time, being subject to time
discretization, specifically at low sampling rates, too high gains
may produce instabilities. A trade-off has to be made based on
the desired behavior. We empirically set Ki and Kp values and also
limited the force feedback to a maximum absolute value.

3.2. Direct adaptation of the DMP

The change of ydemo will inherently cause some delay typical
for feedback controllers. To cancel the delay of the algorithm that
changes the reference for learning, we exploit the incremental
weight fitting algorithm (13)–(15) for learning of periodic DMPs.
The basic idea here is that we replace the error signal for
weight fitting associated with imitation with a different signal, for
example the difference between the measured and desired forces
in force interaction.

Let’s assume that a given trajectory is encoded as a DMP with
weights w. The trajectory follows the demonstrated trajectory if
the error signal in (15) is equal to ej = 0, meaning that w does
not change.We now replace the imitation-related error signal (15)
with a force-dependent term

ej = kl(F0 � Fm). (22)

By using ej from (22) in (13), the weights of the DMP will
be updated whenever the measured and the desired forces are
different. Therefore it will adapt the trajectory to fulfil the
condition of (22), which is that the actual force of contact Fm is
the same as the desired force F0 in the given direction. Parameter
kl is a positive constant, determined empirically. Note that the
implementation of adaptation should take care that the values of
the inverse covariance Pi do not decrease to Pi ⇠= 0 as this will stop
the adaptation, given that the update of weights is multiplied by P .

A feedback term can also be added to the acceleration level of
the DMP for instantaneous reaction, changing (1) into

ż = ⌦ (↵z (�z (g � y) � z) + f (�) + d(F)) . (23)

The feedback term can be a simple proportional control law with
gain kfb > 0, for example d(F) = kfb(F0�F). In this paper we name
the trajectory adaptationmethod based on (22) the Direct method.

In simulation, where we can model the forces of contact with
displacement of the elastic environment with stiffness kenv, we can
rewrite (22) into F = kenv(y0 � y) = kenvy. Any difference of
forces at end-effectorwill therefore introduce a position difference
klkenv(y0 � y), which will through (13) reflect in f (�). From
(1)–(2) we can see that through integration of the DMP differential
equations, f (�) (and consequently y0 � y) is integrated twice,
which results in a slight delay.

From a physical standpoint, the linear part of (1) represents
accelerations of a spring–mass system, while f (�) provides the
modification for accelerations that force the system to follow the
desired trajectory (hence earning the name forcing term). In order
to exclude the above mentioned delay from position-difference
integration, we need to change (22) so that it provides proper
accelerations for the second order DMP spring–mass system. These
are calculated according to (12). We therefore write

ej = 1
⌦

2 k2ÿ � ↵z

✓
�z (g � k2y) � 1

⌦
k2ẏ
◆

, (24)

where k2y = klkenv(y0 � y) models the forces. In this paper we
name the trajectory adaptation method based on error signal (24)
the Derivedmethod.

Table 1 provides the basic characteristics and differences of the
three methods described in this section.

4. Coaching

During trajectory learning the demonstrator repeats several
periods of motion and the collected data are given as reference
to the incremental locally weighted regression. The trajectory
is learned, but it might not exactly perform the desired task,
as is often the case when giving instructions to another person
on how to perform something. When the resulting motion is
not satisfactory, the demonstrator can coach the other person,
specifying how to alter the motion in certain parts, or simply
showing the complete motion again.

In order to avoid re-learning of the complete trajectory, we can
exploit the same mechanism as was applied for the Direct method
to change only parts of the trajectory. We again rely on changing
(15). If ej = 0, there is no learning and the robot just repeats the
trajectory it learned during the demonstration. Again, for a single
degree of freedom, we change (15) into

ej = C(input), (25)
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Table 1

Properties, advantages and drawback of the variations of the DMP adaptation to the environment.

Chg. Ref. Direct Derived

Property Velocity-resolved approach (3.1) changes the
reference of DMP learning

Error of DMP learning (3.2) is defined with the
error of force tracking

Error of DMP learning is defined with the error of
force tracking, modified into accelerations of the
DMP spring–mass system

Advantage Classical velocity resolved approach with well
known stability properties and behavior

Simple; no additional parts of the algorithm;
core of the coaching algorithm.

Completely reduces the error

Drawback Subject to delay due to the integral part of the
force controller

Will not completely cancel out the error due to
the delay of integration

Subject to noise of the derivation that modifies
the error of force tracking

Fig. 1. Experimental setup for coaching of periodic motion on the Sarcos CBi humanoid robot using predefined gestures. A kinect RGB-D camera detected the posture of the
human next to the robot. The position and the choice of the arm (left or right) determined the coaching behavior.

making the error a function of the input, where input can be
either the force applied to the robot or the demonstrator’s pointing
gesture, visually illustrating in which direction to change the
trajectory. For the case of force input, (25) changes into

ej = klF , (26)

where parameter kl scales the measured force F . The measured
force in this case should be the force exerted by the coach on the
robot. If the robot is in contact with an object, for example when
wiping the table, one must distinguish between the forces that
arise from the contact with the table and as a result of friction, and
the forces applied by the human operator. A simple solution is to
decouple forces by direction.

Pointing gestures can be used instead of the force. We used
active motion capture markers to first demonstrate a motion and
later use the samemarkers and their relative positions for tutoring.
We defined the following repulsive force field

ej(x) =
8
<

:

0 p > 0.1
(0.001/p2 � 0.1)/40 p  0.1, p1z > p2z
(�0.001/p2 � 0.1)/40 otherwise

(27)

where p stands for the distance between the robot and the closest
marker attached to the coach’s hand. Index iz is the zp axis location
of the ith marker. The given force field has no effect on the robot
if the closest marker is more than 10 cm away, whereas its effect
increases quadratically with proximity, effectively pushing the
robot away if p ⇡ 0. The relative location of the markers also

defines if the robot is being pushed away or pulled towards the
tutor. The given force field was determined empirically.

The design of the force field has a direct impact on the behavior
of the robot. Force fields have previously been applied to DMPs for
obstacle avoidance [44]. The same field can be used for coaching.
In this case we coach the robot through predefined gestures as
depicted in Fig. 1.

A 3-DOF DMP is defined by

ż = ⌦
�
↵z (�z(g � y) � z) + Cy + f

�
, (28)

where y, z , g , Cy, and f are three dimensional values (for
positions, additional dimensions can be added for orientations).
The definition of the coupling term Cy prescribes the behavior of
the robot. We designed the coupling term as a modified obstacle
avoidance coupling term Cy from [44], now given by

Cy = � s(ko � xk) exp(���) d. (29)

Here x is the Cartesian position of the end-effector, o is the
center position of the perturbation potential field (defined by hand
position), d is the perturbation direction (defined by the pointing
gesture), � and � are the scaling factors, � is given by

� = arccos
✓

(o � x)T ẋ

k(o � x)k kẋk
◆

(30)

s(r) is defined as

s(r) = 1
1 + e⌘(r�rm)

, (31)
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Fig. 2. The results of simulated trajectory adaptation using three different control
methods, with a tilted flat surface as a reference. The experiment started with the
robot already in contact with the surface. We can see the reference (red) and the
three resulting trajectories in the top plot. The errors of adaptation are shown in
the bottom plot. See the text for a description of separate lines. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

where ⌘ is the scaling factor and rm the distance at which the
perturbation field should start affecting the robot’s motion.

5. Results

In this section we discuss simulated and real-world results of
the adaptation to the environment and the coaching.

5.1. Simulated results

We first present the results of a comparison of the three
possibilities of adapting to the environment, namely by changing
the reference trajectory and the twomethods of DMP adaptation—
the Direct and the Derived methods.

The simulated experiment was designed to show adaptation of
all three methods to a tilted flat surface. In the top plot of Fig. 2
we can see red line depicting the reference, i.e. the table. As it is
tilted and the robot is moving left–right, it is a saw-signal. The
three output signals of the adaptation are also shown. The green
line depicts the trajectory when using the approach of changing
the reference for learning, as given by (16)–(18). Note that there
is some delay in the adaptation as a consequence of the velocity-
resolved force control approach of changing the reference. The
bottom plot shows that the error does not completely disappear,
but is reduced. The values of Ki, Kp were determined empirically.

The Direct and the Derived methods also need some time to
adapt but considerably reduce the error in the steady state. We
can see that the derived method, given by (24) and depicted in
blue, completely cancels out the error, unlike the direct method,
which is given by (22) and is depicted in black. This is because the
transformation of the error signal is in fact an inverse of the DMP
itself and the adaptation is therefore linear at the output, while the
directmethod uses a second order DMP system that receives linear
correction signals. As stated in Table 1, the derivedmethod utilizes
first and second order derivatives of the error signal, which could
prove extremely noisy.

5.2. Adaptation to environment

This task was performed using a Kuka 7 degree-of-freedom
LWR-4 robot, controlled at 500 Hz through Matlab Simulink. The
wiping motion was first transferred from a human to a robot
using an Optitrack motion capture system with markers on the
sponge. The recorded task-space motion was reproduced by the

Fig. 3. The complete 3-D trajectory resulting from the adaptation of the
demonstrated trajectory in pz direction using the approach of changing the
reference. The force results are depicted in Fig. 5.

Fig. 4. The top plot shows real world results of adaptation of motion in pz
direction (downwards). The resulting forces with the referential contact force
set to 6 N (dashed line) are shown in the bottom plot. As the robot performed
left–rightwipingmotion, some oscillations due to the contact are visible in the force
measurement.

Fig. 5. The trajectory of motion when adapting to a flat but tilted surface in the
top plot. The resulting forces show a clear hysteresis resulting from moving up or
down the slope in the bottom plot. The oscillations in the force plot are a result of
the delay of adaptation, caused by the integral part of the adaptation in (18).

robot while the method of changing the reference, given by (18),
ensured that the robot achieved the contact with a surface needed
for effective wiping. Fig. 3 shows the 3-D trajectory resulting from
an adaptation of the demonstrated motion to a flat, yet slightly
tilted surface. The tilting angle was set completely arbitrarily and
was not measured.

The force feedback signal for adaptation to a flat, horizontal
surface is shown in Fig. 4. The top plot shows the trajectory in the
zp direction. Once the adaptation has started, the robot approaches
the table at a finite speed, which was limited beforehand. The
bottom plot of Fig. 4 shows the forces. Some oscillations are the
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Fig. 6. Kuka LWR-4 7DOF robot wiping differently tilted surfaces and a curved surface. Top left: horizontal surface. Top right: right-tilted surface. Bottom left: left-tilted
surface. Bottom right: curved surface. Kuka LWR-4 robot experiments are also depicted in the accompanying video (see Appendix A).

result of friction from dragging the sponge left–right during the
wiping.

Fig. 5 shows the results of wiping a slightly tilted surface, with
the zp trajectory in the top plot and the force profile in the bottom
plot. Notice the hysteresis of resulting forces, which shows that
adaptation takes some time. The integral part of adaptation in
(18) introduces delays, which cause these force oscillations. Just
as in the simulated environment, the gains Ki, Kp determine the
behavior of the robot.

The real-world wiping experiment with different, arbitrarily
tiled flat surfaces and a curved surface is shown in Fig. 6.
All experiments on the Kuka LWR-4 robot are depicted in the
accompanying video (see Appendix A).

We also implemented the direct method, given by (22). In this
scenario the robot was already in contact with the surface and
the reference was a sinusoidal force trajectory. Fig. 7 shows the
results. A low value of kl was used in (22) for safety. A higher value
would reduce the time needed for adaptation, but a too high value
would make the contact unstable. The value used was determined
empirically.

5.3. Adaptation to the environment and coaching

In this section we show the results of changing only a part of
the trajectory using coaching. Results using force interaction are
presented first, followed by results based on coaching gestures.

Fig. 7. The results of adapting the robot trajectory using the direct method, with
a sinusoidal referential force. The experiment started with the robot already in
contact with the surface. The referential and resulting forces are in the top plot,
while the error signal, given by (22) is in the bottom plot.

Fig. 8 shows the robot end-effector trajectory before and after
coaching. The initial robot wiping motion is in green. The blue line
shows the trajectory of the robot during coaching, i.e. while the
humanwas pushing/pulling on it. The measured contact forces are
shown in Fig. 9. Four clear peaks of force show where the human
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Fig. 8. Left: X � Y plot of the end-effector motion depicts the initial motion in green, the motion during coaching in blue, and the final trajectory in red. Right: the same
result that led to a different trajectory. The approach of (32) was used. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 9. The top plot depicts the trajectory of motion in xp direction of the end
effector of the robot. The external forces applied by the tutor, depicted in the bottom
plot, modified the motion to achieve the intended result. The proposed method
provides smooth transition from non-coaching to coaching behavior.

pushed/pulled on the robot. The final wiping motion of the robot
after coaching is shown in red. The initial motion was performed
using a previously learned DMP, the one from Fig. 3. The robot
found and maintained a contact with a flat surface from the start
of the experiment. Coaching was applied in x direction only.

Instead of forces as the error of learning as defined in (26), we
can also use the position of the robot. By using impedance control
mode for the robot and setting a lower stiffness in the direction we
want to coach the robot, for example xp, it will move compliantly
in that direction if pushed/pulled. We can now use the difference
between the desired and the actual position as the error signal for
learning,
ej = xp,des � xp,act. (32)
The results are shown in the right plot of Fig. 8. It should be
noted that when the robot is compliant, contact forces with the
surface might affect its trajectory. While this might be solved by
changing the stiffness values during coaching and during pure
motion reproduction, in our experiment we kept the stiffness
constant.Modifying the stiffness is simply amatter of the interface.

The difference of plots in Fig. 8 comes from the compliance of
the robots. If the feedback term d(F) in (23) was set higher, the
robotwould givewaymuchmore, and the same principle as in (32)
could be applied. We observed that coaching became much more
intuitive when the robot was compliant.

When using gestures, we used pointing gestures to coach the
robot as defined in (28). We implemented this form of coaching
on the JST-ICORP/SARCOS humanoid robot CBi [45]. We used the
Microsoft Kinect sensor and the associated body tracker to capture
human coaching gestures. Fig. 1 shows the experimental setup,
where the body tracking results can be seen on the display in the
background.

To make coaching intuitive, the interface was set so that the
human coach can modify the trajectory by either pushing it away
fromhimusing his right hand or pulling it towards himwith his left
hand. The coaching direction was calculated using the wrist and
the elbow location. For the right hand, i.e. pushing the trajectory
away from the coach, the direction is given by

dR = xw,R � xe,R

kxw,R � xe,Rk , (33)

where the xw,R and the xe,R are the Cartesian positions of the right
handwrist and the right hand elbow in the robot’s base coordinate
system. For pulling the trajectory, the direction is given by

dL = � xw,L � xe,L

kxw,L � xe,Lk . (34)

Here xw,L and the xe,L are respectively the Cartesian positions of
the left hand wrist and the left hand elbow in the robot’s base
coordinate system.

The center of the potential field generated by each hand was
moved slightly away from the respective hand. For the right hand,
the origin of the potential field defined by the coaching gesturewas
moved in the direction of the coaching gesture
oR = xR + ⇠RdR, (35)
where ⇠R is the scalar that defines the distance between the hand
and the center of the coaching point in the direction of dR. Similar
equation is used also for the left hand which attracts the trajectory
towards the hand.
oL = xL � ⇠LdL. (36)
Here, the effective coaching point is moved in the opposite
direction of perturbation dL. With such modifications the effective
origins of potential fields are always in front of the human hands
in the direction of pointing at the distance defined by ⇠R and ⇠L.

To determinewhich hand is active,weuse the distance between
bothwrist positions xw,L, xw,R and the robot’s end-effector position
xp. The active hand is the one which is closer to the robot’s hand
position.

To show the applicability of the interface for online modifica-
tion of the initial rhythmic movement using human in the loop
coaching gestures, we first provide an example of pulling-in the
task space trajectory. The parameters were set to � = 10, ⌘ = 10,
rm = 0.15 and � = �10/⇡ .

The adaptation is not limited to task space. To update the
trajectories in joint-space when they are perturbed in task space,
with the coupling term denoted by Cy, a pseudo inverse of the task
Jacobian is used. This essentially maps the task space velocities
into the joint space velocities with q̇ = J

Ñ
ẋ. By applying a similar

transformation to Cy we obtain

Cq = J

Ñ
Cy (37)
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Fig. 10. Left: Task spacemotion of the robot’s end-effector, where human coachwasmodifying themotion pattern. The initial trajectory is in red and the final trajectory is in
green. The time evolution of the trajectory modification is indicated with gray line. Right: Joint space motion in time of the robot’s right hand, while coaching. Vertical lines
indicate the important events described in text. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. The four hand gesture for the coaching: 1-finger pointing, 2-finger pointing, a fist, and an open hand.

where Cq = [Cq,1 Cq,2 . . . Cq,j]T and j is the number of the robot’s
degrees of freedom. The components of (37) are now used for
updating the DMP weights wi using (14) and (13). In this way we
ensure that the joint space trajectories encoded by the DMPs are
properly modified according to the coach’s instructions.

Keeping the movement representation in the joint space is
beneficial because our initial movement trajectories, which are
encoded by DMPs, are usually acquired by kinesthetic guiding. By
using joint space trajectorieswe avoid losing information about the
selected robot configuration during human guiding on a redundant
robot.

Fig. 10-left shows the task space motion of the robot’s end-
effector in the (xp, yp) plane. We can see a successful modification
of the motion based on the human coaching gestures. In Fig. 10-
right we show the corresponding joint space trajectories as a
function of time. The teaching of the new motion pattern begins
after 5 s, indicated with the first vertical line. The joint space
trajectory was modified successfully to achieve the desired task
space motion. In Fig. 10-right we can see that at approximately
50 s the human coach stopped modifying the behavior and at
approximately 55 s the new motion pattern was switched back to
the original motion pattern. At this point the difference between
original motion trajectory and the modified motion trajectory is
even more evident.

5.4. Human–robot interface expansions

In this section we demonstrate the features of the complete
system using an advanced human–robot interface. The system
allows the initial transfer of motion, the adaptation to the
environment and coaching based on predefined gestures and force
interaction. It has been implemented on the humanoid robot
ARMAR-IIIa and is used to train periodic DMPs for a wiping task in
an online manner. Initially, a DMP is learned from a human wiping
movement which is demonstrated in a predefined work space.

Given the color of the wiping tool, the robot tracks the
movements of the tool using the stereo camera system of its active

head. For the subsequent force-based adaptation of the learned
DMP, we rely on the readings of the force torque sensor installed
at the humanoid’s wrist.

Using the implemented human–robot interface, the human
coach can change the learned and adapted DMP using hand ges-
tures. For the recognition of human hand gestures, the robot vi-
sually observes the predefined work space in order to localize
and track the fingertips of the coaching human hand. To do so,
a fingertip tracking algorithm is used which has been introduced
in [46]. The fingertips are described with regard to the principal
axes spanned by an ellipsoid which circumscribes the entire hand
area. Based on these positions a feature vector for the representa-
tion of hand gestures was derived. To recognize a gesture, the fea-
ture vector is compared with labeled examples which represent a
certain gesture. For each coaching mode we defined a distinctive
gesture: 1-finger pointing, 2-finger pointing, a fist, and an open
hand gesture. The different gestures are depicted in Fig. 11. The
1-finger pointing gesture generates a new target position which is
used to change the goal g of the DMP and thus the center of the
wiping motion. The results of changing the center of the wiping
motion are shown in Fig. 12.

In order to change the periodic pattern of the wiping motion,
the two-finger pointing gesture is used to pull the movements
of the robot towards the coaching hand. In contrast, a repelling
behavior is triggered using the fist which pushes the robots end-
effector away from the human hand. The pushing and pulling
behaviors are generated by a virtual potential field imposed
on the position of the human hand and, thus, creating virtual
forces for the coaching of the DMP. An open hand denotes the
approachmovement of the coaching hand and invokes a reduction
of the frequency with which the wiping motion is reproduced.
This facilitates the coaching for the human and allows a smooth
transition from vision-based to force-based coaching. The system
switches to force-based coaching once an external force is applied
on the robots wrist. Using the force-torque sensor, we can coach
and further adapt the DMP. During the force-based coaching, the
active head shifts its view towards the end-effector. The systems



A. Gams et al. / Robotics and Autonomous Systems 75 (2016) 340–351 349

Fig. 12. (xp � yp) plane trajectories of wiping and coaching on the ARMAR-IIIa
robot in the top plot. We can see that the center of the circular trajectory was
changed through the coaching interface. Separate directions of motion are depicted
in the lower plots. Reduction of the frequency during wiping can be observed in the
bottom plots.

Fig. 13. Coaching of the ARMAR-IIIa humanoid robot through the use of hand
gestures.

returns to the vision-based coaching once the human hand leaves
the currently observed work space. Fig. 13 depicts coaching of the
ARMAR-IIIa humanoid robot with predefined gestures.

6. Discussion and conclusion

The main advantage of learning the motion required for
sustaining a contact is that it allows the combination of feedback
and feed-forward control loops. While this by itself is nothing
new, the novelty stems from the fact that the feed-forward
component is autonomously learned and encoded in a dynamic
movement primitive. By using the feed-forward component, the
feedback component is greatly reduced if not completely canceled,
making the behavior exactly as desired. By exploiting the DMP
learning mechanisms, we remain in the framework which allows
easy modulation with only changing a small set of parameters.
Mitigating the need to create models beforehand, as they are
learned through exploration and coaching, allows non-experts to

effectively transfermotion to the robot by demonstrating everyday
tasks.

In comparison to other approaches, several sub-areas of
research need to be considered. Force control has been applied in
robotics in many different contexts. The benefit of our method is
that it allows easy and intuitive transfer of motion from a human
to the robot. This transferred motion adapts to the conditions of
the task—for example, that it needs to maintain contact with the
environment. As stated in the introduction, various techniques
exist for that, but the methods presented in this paper extend this
feature to a well developed and extensively applied framework.
The approach can be used on position controlled robots, or on
torque controlled robots, exploiting the properties of different
control methods, such as impedance control as depicted in Fig. 8.
On the other hand, it also allows the use of position controlled
robots, such as theARMAR-IIIa,with the only difference in behavior
due to lower bandwidths.

For learning, the exploration of the trajectory space uses the
learning algorithm of the DMPs, which is computationally light
and allows for quick adaptation. In the case of periodic motions,
this can be in the rank of a few periods [40]. The method of
direct DMP adaptation, which was also applied in the context of
coaching, observes similar principles as iterative learning control,
and could be considered an instance of it. It enables direct learning
of the weights of DMP kernel functions instead of the signal. Again,
remaining in the DMP framework has beneficial properties for
robot control.

For motion adaptation by coaching, our approach thus retains
the beneficial properties of DMPs with time-invariance and the
means of modulation, but additionally enables the modulation
of complex motions through intuitive coaching gestures. An ad-
vanced but intuitive coaching interface, which was demonstrated
on the ARMAR-IIIa robot, has proven to be a viable solution.

Adaptation to the environment, as presented in this paper, ex-
ploits the knowledge of the demonstrator to determine the needed
references and directions for adaptation. An open research issue
remains, how such adaptations can be performed autonomously.
While a complex cognitive reasoning system behind this is beyond
the scope of this paper, simple conditions could greatly improve
the autonomy of adaptation. For example, in the context of wiping,
we could direct the robot to increase the force of contact with the
surface in case the wiping does not actually remove the identified
dirt. Vision systems, specifically using RGB-D sensors, are also ef-
ficient at detecting surfaces. These surfaces could be the targets of
wipingwhen awiping command is issued. Any such augmentation
of the interface can greatly improve the user experience.

In the paper we proposed and evaluated several methods for
adaptation of DMPs based on force feedback. We have shown that
all can be effectively used for acquiring and maintaining non-rigid
contacts with the environment. They thus offer a viable solution
for an inclusion in future household assistants. In the future we
will combine the method of DMP adaptation, effectively applied
to coaching, to modify feed-forward models of complex tasks.
For example, one might update the demonstrated DMP so that
the postural stability of the robot is observed. Another possible
application of our approach is the learning of the required torque
signals for robot control.
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Bio-inspired Learning and Database Expansion

of Compliant Movement Primitives

Tadej Petrič1,2, Luca Colasanto1, Andrej Gams2, Aleš Ude2 and Auke J. Ijspeert1

Abstract— The paper addresses the problem of learning
torque primitives – the torques associated to a kinematic
trajectory, and required in order to accurately track this
kinematic trajectory. Learning torque primitives, which can
be interpreted as internal dynamic models, is crucial to achieve
at the same time 1) high tracking accuracy and 2) compliant
behaviour. The latter improves the safety concerns of working
in unstructured environments or with humans. In the proposed
approach, first learning by demonstration is used to obtain
the kinematic trajectories, which are encoded in the form of
Dynamic Movement Primitives (DMPs). These are combined
with the corresponding task-specific Torque Primitives (TPs),
and together they form new task-related compliant movements,
denoted as Compliant Movement Primitives (CMPs). Unlike
the DMPs, the TPs cannot be directly acquired from user
demonstrations. Inspired by the human sensorimotor learning
ability, we propose a novel method which can autonomously
learn task-specific Torque Primitives (TPs) associated to given
kinematic trajectories in the form of DMPs. The proposed
algorithm is completely autonomous, and can be used to rapidly
generate and expand the database of CMPs motions. Since the
CMPs are parameterized, statistical generalisation can be used
to obtain an initial TP estimate of a new CMP motion. Thereby,
the learning rate of new CMPs can be significantly improved.
The evaluation of the proposed approach on a humanoid robot
CoMan performing reaching task shows fast TP acquisition and
accurate generalization estimates in real-world scenarios.

I. INTRODUCTION

One of the key skills that a humanoid robot should posses

is the ability to learn new motor behaviours based on human

demonstration [1]. The most common way of learning new

behaviours is programming by demonstration (PbD) [2],

which can be done by using different sensory systems, e.g.,

visual [3] or kinematics guidance [4]. The key advantage of

PbD in joint space is that the robot kinematics is already

adapted to the task and the posture is preserved even when

redundant robots are used. Different methods have been

proposed for PbD. Dynamic Movement Primitives (DMPs)

[5] are generally used for learning kinematic trajectories. To

execute the desired DMP trajectory accurately, an underlying

robot controller that guarantees accurate tracking is usually

employed. For example an impedance controller with high

gains in the feedback loop as in [6]. However, using high

gains makes robots inherently unsafe for interaction with the

Research leading to these results was supported by Sciex-NMSCH project
14.069, European FP7 ICT project Xperience (no. 270273) and project
WALK-MAN (No. 611832).

1 Biorobotics Laboratory, École Polytechnique Fédérale de
Lausanne (EPFL), Station 14, CH-1015 Lausanne, Switzerland
tadej.petric@epfl.ch

2Dept. for Automatics, Biocybernetics and Robotics, Jožef Stean Institute
(JSI), Jamova cesta 39, 1000 Ljubljana, Slovenia

environment or humans, due to the high interaction forces

that may occur during unforeseen contacts [7]. Moreover,

in the case of humanoid robots this might also lead to an

unsuspected fall.

Different approaches can be used to minimise the inter-

action forces and at the same time assure accurate trajec-

tory tracking. For example, combining high gain impedance

control for accuracy together with proximity sensors or

an artificial skin for detecting contacts [8]; by using bi-

articular mechanical structures based on artificial pneumatic

muscles [9] or by accurate inverse dynamic models for

control algorithms with active compliance [10]. However,

changing mechanical structures or adding artificial skin to the

system will increase its overall price. On the other hand, it is

impossible to obtain an accurate generic dynamical model,

even for a simple task like table wiping, due to the unknown

parameters – for example the friction between the sponge

and the table.

To overcome the problem of using impedance control by

using dynamical models we propose a novel method which

can learn missing dynamic parameters of a given task, and

encode them as task-specific torque primitives. Hence, there

is no need for modelling the task dynamics. Moreover, if

a dynamical model is available, our method compensates

for uncertainties with the learned torque primitives. By

learning the task-specific torque primitives, the control of the

robot allows 1) accurate trajectory tracking and 2) compliant

behavior, which is the result of using a low gain feedback

loop in an underlying impedance controller. While accurate

tracking is required for proper task execution, compliant

behaviour is essential for ensuring safe interaction with the

environment or, most importantly, humans [7].

To enable both accurate trajectory tracking and com-

pliant behaviour, the DMP [11]–[14] framework needs to

be extended toward torque-controlled robots. Inspired by

the human sensory motor ability [15]–[18], where hand

kinematics are learned from errors in extent and direction

in an extrinsic coordinate system, and dynamics are learned

from proprioceptive errors in an intrinsic coordinate system,

we propose an extension by augmenting the DMP framework

with Torque-Primitives (TP). The combination of a DMP and

a TP forms a Compliant Movement Primitive (CMP) and

represents a new model-free control approach, while keeping

modulation and parametrization properties of the position-

based DMPs.

The first step of gaining the CMPs is to learn the desired

motion trajectory in DMPs. Different approaches were estab-

lished in the past, allowing to learn motions (off-line or on-
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line) by using for example kinesthetic or haptic guidance [4],

[19]. Once the desired motion is obtained, the corresponding

TPs need to be acquired. Our contribution is achieving

this goal by using a low impedance control loop combined

with a recursive regression method that uses the difference

between the desired and the actual movement to update the

TPs. Hence the acquisition of the TPs is autonomous. In

each subsequent time step, and through a few iterations, the

TPs are learned. TPs are employed as feedforward terms,

essentially representing new learned task-specific dynamics

and allowing the robot to accurately and compliantly execute

the desired motion. The proposed approach is similar to one

observed in humans [17], where the kinematic trajectory is

learned in Cartesian space (DMPs) and the task dynamics in

the joint space (TPs).

While the proposed approach eliminates the need for

dynamical modeling, the CMPs still have to learn TPs for

each task variation. However, since the CMPs are structured,

they can be added into a database and statistical general-

ization (as in [20]) can be used to generate new instances

to previously unexplored regions within the database. This

also significantly improves the rate of learning, because the

initial TPs for a new motion is the outcome of the general-

ization and hence potentially already a good approximation,

depending on the size of the database and the actual query.

This allows rapid autonomous expansion of the database of

CMPs allowing the robot to perform different variations of

the same task in a compliant manner without the need of any

analytic models of the task or programming experts.

II. LEARNING OF COMPLIANT MOVEMENT

PRIMITIVES

We define Compliant Movement Primitives (CMPs) h(t)
as a combination of kinematic trajectories encoded in Dy-

namic Movement Primitives (DMPs) and corresponding task-

specific dynamics encoded in Torque Primitives (TPs)

h(t) = [pd(t), τf (t)], (1)

where pd are the desired task-space trajectories encoded

in the DMPs, and τf are the corresponding task-specific

feedforward joint torques encoded in TPs. In the proposed

approach the kinematic motion trajectories are first obtained

by human demonstration and encoded as DMPs [5], [12].

Next the corresponding torques are obtained using recursive

regression based on error learning. The corresponding Torque

Primitives (TP) are encoded as a linear combination of radial

basis functions. Since DMPs are encoded in task-space, the

error mapping of the recursive regression for the joint-space

of TPs is done using the Jacobian transpose. A pair of a DMP

and a TP now describes a Compliant Movement Primitive

(CMP).

A. Cartesian Motion Trajectories

The following equations for encoding Cartesian motion,

i.e. the motion of the end-effector, are valid for one DOF, for

multiple DOF the equations are used in parallel. For a point-

to-point movement the trajectory for each DOF is described

by the following system of nonlinear differential equations

that specifies the attractor landscape of a trajectory y towards

the anchor point g

τ ż = αz(βz(g − y)− z) + f(x), (2)

τ ẏ = z, (3)

τ ẋ =
−αxx

1 + h
, (4)

where x is the phase variable and h is used for modifying the

execution speed, i.e., usually to slow it down. Therefore it

is usually referred to as the slow-down feedback parameter.

Note that when controlling more DOF, the phase variable x

is common for all DOFs, while (2) and (3) are separate for

each DOF. τ is the temporal scaling parameter, αz , βz and

αx are defined such that the system converges to the unique

equilibrium point. Usually αz = 4βz , which makes system

critically damped. The nonlinear term f(x) is given by

f(x) =

∑N

i=1
ψi(x)wi∑N

i=1
ψi(x)

x, (5)

where parameters wi define the dynamics of the second-

order differential equations system. They are estimated with

regression such that the DMP encodes the desired trajectory.

The basis functions ψi(x) are given by

ψi(x) = exp(−hi(x− ci)
2). (6)

N radial basis functions with a width hi > 0 and centres ci
are distributed along the trajectory.

B. Joint Torque Trajectories

The Torque Primitives are learned recursively by executing

the encoded DMP motion while using low gain impedance

control. The desired motion p̈d, ṗd, pd encoded in DMPs is

executed using the following control law

τu = J
T (Kpe+Kdė+Kië) +NKnq̇ + τf (s), (7)

where, J
T is the Jacobian transpose, N is the null-space

matrix, e, ė and ë are the differences between desired and

actual position p, velocity ṗ and acceleration p̈, respectively

and Kp, Kd, Ki and Kn are the constant gain matrices

selected such that the robot behaves compliantly, i.e. set

to match the low impedance control requirements. For de-

tails on Cartesian DMPs including rotations see [21]. The

τf (s) is vector of feedforward torque trajectories τf (s) =
[τf,1(s), τf,2(s), ..., τf,j(s), ..., τf,M (s)]T , where M is the

number of DOF. For one DOF, τf,j(s) it is given by

τf,j(s) =

∑N

i=1
ψi(s)wi,j∑N

i=1
ψi(s)

, (8)

where the phase s goes form 1 towards 0, similarly to the

DMP phase from (4), resulting in

τ ṡ = −αss. (9)

Note that unlike the DMPs, the TPs cannot be time invariant,

and cannot be stopped, i.e., the torque does not scale linearly.

Therefore an execution time must always be provided in
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advance, i.e., set by parameter τ . However, for each move-

ment variant, e.g., the same movement but at a different

speed, a new TP has to be obtained. A library of TPs for a

separate motion, or a library of complete CMPs can be build.

Generalization and/or graph search can be used to execute

new, previously not explicitly learned movements, see details

in [22].

However, in some cases, when the desired movement are

not covered by the database, the method which can au-

tonomously learn new CMPs needs to be used. To learn new

CMPs we propose a new method that recursively updates

the weights wi,j of TPs. The recursive regression method is

given by

wi,j(t+ 1) = wi,j(t) + ψiPi,j(t+ 1)ǫj(t), (10)

Pi,j(t+ 1) =
1

λ

(
Pi,j(t)−

P 2

i,j(t)
λ
ψi

Pi,j(t)

)
, (11)

(12)

where Pi,j is the covariance. The initial parameters are set

to Pi = 1, wi = 0, λ = 0.995 and the update rate is defined

similar as in [23], with

ǫ(t) = J
T (αt(pd(t)− p(t)) + βt(ṗd(t)− ṗ(t))). (13)

Here the rate of learning is defined by setting the pa-

rameters αt and βt. The error vector is defined as ǫ =
[ǫ1, ǫ2, ..., ǫj , ..., ǫM ], where M is the number of DOFs. Note

that each DOF is updated separately using (10)-(11). The

learning, i.e., the motion execution with learning, is repeated

as long as the desired error metric is not below the desired

threshold. Once the required accuracy of motion is met,

either only the TP or the complete CMP can be added into

the database.

III. AUTONOMOUS DATABASE EXPANSION

Autonomous learning of CMPs simplifies the execution

of dynamically versatile tasks while ensuring accurate and

compliant execution of the motion. However, since torques

are not linearly scalable, TPs have to be learned for every

variation of the task. These include, for example, different

speeds, payloads, goals, etc. This new learning can be,

however, avoided or at least significantly accelerated by using

statistical generalization techniques, which can generate first

approximations of the TPs based on a given query point. In

case the generalized TPs satisfy the given error criteria, they

can be immediately added to the database of motion. If not,

the recursive regression method (Section II) can be applied

using the generalized TP for the initial approximation, vastly

reducing the number of needed iterations of motion.

Assuming that the robot should accurately track the de-

sired trajectory encoded in DMPs, the sum of task space

error throughout the iterations is used to determine if the

new TPs should be added to the database, i. e. HTP
x . The

error metric is defined by

ep =

L∑
j=1

||e(j)||, (14)

where e(j) is the vector of absolute difference between the

actual task space position p, and the desired position (DMP)

pd. L is the number of steps inside one movement execution

(iteration).

By encoding the torque signals as TPs, we obtain a set of

M examples

HTP

x = {wτ k, ck}, k = 1, 2, ...,M, (15)

where a CMP, defined by weights wq in DMP and weights

wτ in TP is used to execute a task, defined by the query c,

with a low feedback gain and thus in a compliant manner.

By using Gaussian process regression (GPR) for statistical

regression

FHTP
x

: c 7−→ [wq,wτ ]. (16)

we can compute the appropriate TP parameters for the

given query c i. e., for the task variation. For the details on

generalization for DMPs see [20] and for CMPs see [22];

The process of learning TPs repeats as long as the ep>ec,

where ec is a predefined constant. Once the following criteria

is met, the TPs are added into the database of motion HTP
x .

With the proposed approach, the database of CMPs can be

autonomously expanded.

IV. EXPERIMENTAL EVALUATION

The proposed method was evaluated in simulations and on

a real humanoid robot CoMaN developed by at the Italian

Institute of Technology [24].

The method was evaluated in three different scenarios.

First, demonstrating the ability to learning new torque primi-

tives while moving an arm to reach towards a certain point in

space in a well structured and unconstrained space. Second,

learning new torque primitives while using the previous expe-

rience by applying statistical generalisation. Third, learning

of torque primitives while transferring a skill from human

tutor in an unstructured environment to perform a hammering

task.

The experimental setup and the initial robot pose used for

the first task can be seen in Fig. 1. We denote the initial

robot Cartesian position as p0 = [0, 0, 0]. The robot was

commanded to reach a desired point in space. This task was

chosen because it is similar as the one used in studying

human learning of sensory motor ability reported in [17].

To compare the behaviour of the proposed controller to

human sensory motor ability, we have choose 8 different end

points on a px − py plane equally spaced on a circle with

radius of 14 cm. The Cartesian reaching trajectories were

then encoded in the DMPs as parts of CMPs. The desired

trajectories are shown as red-doted lines in Fig. 2. To learn

the proper torque primitives an algorithm ,i.e. Section II, was

employed. Note that the desired trajectories are encoded in

the Cartesian space, i. e. task-space, and the corresponding

torque primitives are encoded in the joint space, see Eq. (7).

The mapping of the task-space error e to the joint-space

was done by using the task-space Jacobian transpose. The

learning of the TPs was done recursively using Eq. (10)-(13)
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Fig. 1. Sequence of motion for one representative example, i.e. moving to the left. The top row shows the sequence of motion for the first iteration where
the TPs are zero, and the bottom plot shows the sequence of motion after learning of TPs.
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Fig. 2. Results from the real CoMan robot shows eight different reaching
examples. The desired trajectory is shown with doted red line, initial trial
is shown with blue line, grey thin lines show the intermediate learning
iterations and the black thick line shows the learned behaviour. The I
indicates the number of iterations needed for successful learning of TPs,
i. e. once the error e was smaller than the desired threshold, see Eq. (14).

in each time step. Note that each executed motion started

from the same initial position.

The learning results for all 8 examples are shown in

Fig. 2, where we can see the difference between the initial

movement execution (blue lines) and the last iteration of

learning (black lines). We can see that in all eight examples

the proposed approach was able to significantly improve the

tracking accuracy by updating the TPs. Note that in this

example no inverse dynamics or friction compensation of

the robot arm was used.

The successful learning is also shown in the Fig. 1, where

we compare the behaviour on one representative example,

i.e. moving to the left. The top row of Fig. 1 shows the

sequence of motion for the initial movement execution where

the initial torque primitives were zero. It can clearly be seen

that without TPs the impedance control with low gains is

not able to track the desired motion. However, if the TPs are

learned using the proposed human inspired controller, we

can see in the bottom sequence of Fig. 1, that the tracking is

significantly improved. In fact, we can see perfect matching

between the desired (yellow dotted line) and actual position

(red line).

Although learning of the TPs simplify the execution of dy-

namically versatile task, TPs still need to be learned for every

variation of task execution. If no prior knowledge is used

during the learning, this might be a time consuming task.

However, by storing the known examples into the database,

and applying statistical generalization for estimating the

initial TPs for the first trial, we can significantly improve the

rate of learning. In fact if the initial approximation already

satisfied given criteria it can immediately be added into the

database of CMPs motions. Otherwise, the proposed learning

of TPs can be applied to update them accordingly.

The evolution of torques for one representative example,

i.e. moving sideways towards g = [0.1,−0.1], for all four

joints of the right hand, of TPs for both learning without

or with a prior knowledge with generalization, is shown in

Fig. 3. The left hand side plots shows the evolution of torques

of learning without generalisation, and the right hand side

plots shows the evolution with the use of prior knowledge

and statistical generalization.

The red doted line shows the initial state of TPs, the blue

lines shows the TPs during learning iterations and the black

line shows the TPs once the learning criteria was met. We

can see on the left side that 5 iterations were needed for

learning reaching the desired criteria, i. e. desired accuracy

of motion. On the other hand on the right side we can see

that with the use of statistical generalization the initial TPs

were already close to the final solution. Therefore, fewer
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Fig. 3. The comparison between learning of TPs without (left hand side)
and with (right hand side) prior knowledge, using statistical generalization
for initial TPs estimation. The evolution of torques is shown for one
representative example, i.e. moving to the side g = [0.1 − 0.1]. The
red doted line shows the initial TPs, blue line shows TPs during learning
iterations, and black line shows learned TPs.

learning iterations were needed for satisfying the criteria.

By using statistical generalization to define the initial torques

and further applying recursive regression for updating TPs

to minimise the error shows also that the proposed algorithm

has the ability to re-learn the torques if needed.

By combining the statistical generalization based on prior

knowledge in the database and the recursive regression

algorithm for updating the TPs, we can rapidly extend

the database with exploration. An example showing rapid

database expansion with learning of TPs is shown in Fig. 4,

where the database of CMPs was gradually expanded. The

learning sequence is indicated with Roman numbers. Note

that for the first trajectory, i. e. I, the database was empty,

therefore the behaviour is similar as in the Fig. 2. For the

second case, i. e., II, only the knowledge from case I was

in the database, therefore the initial TPs were completely

wrong. Nonetheless, the proposed approach was able to

update the TPs to meet required criteria, which show that

the proposed approach has the ability to re-learn the TPs

if needed. This also shows that the proposed approach can

cope with sudden changes in the task dynamics and re-adapt

if needed.

The ability to re-learn is also one of the key features that

a human possess. It was shown in [17] on a similar reaching

experiment as presented here but with humans, that they also

have to adapt to changes in the task dynamics, i.e. if the task

dynamic is different than before even humans have to re-

learn. From Fig. 4, we can also see that once more knowledge

is present in the database, the initial TPs estimations are

better, from which follows that fewer iterations for updating

TPs are needed to meet the required criteria.

In general the learning rate of the proposed algorithm

not only depends on the initial TPs state but also on gains

αt and βt. If these gains are too high, the system might

potentially be destabilised, or vice versa, if they are too low,
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Fig. 4. Results from the real CoMan robot shows eight different reaching
examples using prior knowledge for initial TPs approximation. The sequence
of learning is determined with the Roman number. The desired trajectory is
shown with doted red line, initial trial is shown with blue line, grey thin lines
shows the intermediate learning iterations and the black thick line shows
the learned behaviour. The I indicates the number of iterations needed for
successful learning of TPs, i.e. once the error e was smaller than desired
treshold, see Eq. (14)
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Fig. 5. The average error and the standard deviation for all eight
examples for both cases, i.e. with and without prior knowledge and statistical
generalization. -

the learning rate would not be efficient. In our experiments

we set them empirically to αt = 1 and βt = 0.5, which

resulted in slightly faster learning rate than reported for the

human experiment [17]. In Fig. 5 we can see the learning

rate for both cases, i.e. with and without using the prior

knowledge for initial TPs estimation. We can see on the plot

that learning is almost twice as fast if the initial TPs are

defined using statistical generalization.

Since CMP is combined with low gain impedance con-

trol, we can also assume that interaction forces in case

of collision with an unforeseen object will be significantly

smaller compared to the impedance control with similar

tracking performance. Note that to achieve similar tracking

performance with only impedance control the robot would

be stiff. To investigate the performance in case of a collision,

we chose a task of hammering. Here the robot needs to

learn the tool dynamic, i.e. the dynamics of the hammer, and

then interact with the environment. In case of hammering the

impact with the environment is instantaneous.

The results of learning the skill of hammering are shown

in Fig. 6. The top plot shows the adaptation of kinematic
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Fig. 6. Learning if dynamics while learning skill of hammering. Top plot
shows the z motion in Cartesian space. The red doted line is the desired
trajectory, the blue lines shows the learning iterations and the black doted
line is the table height. Bottom plot shows the estimated impact force.

motion and the bottom plot shows the estimated interaction

forces. Since no dynamical model was used, the robot had to

learn the complete dynamical model of the hand and the tool,

i. e. the hammer. This also explains why the robot was not

able to track the desired trajectory in the first two iterations.

Once the TPs were properly adapted to the task dynamic,

the tracking error was small up to the point of contact with

environment. Since low impedance control with CMPs was

used, the interaction force is mainly a result of inertia of the

robot and the hammer.

V. CONCLUSIONS

We have showed that the proposed approach (CMPs) can

successfully learn both the kinematic trajectory in Cartesian

space encoded as a DMP and the corresponding dynamics

encoded as a TP. The main contribution of this paper is a new

approach for autonomously learning previously unknown

TPs based on a given DMP and storing them in a database.

Moreover, we propose to exploit previous experiences and

statistical learning to accelerate the learning of TPs. We

demonstrated that this way we can significantly improve

the rate of learning and rapidly expand the database of

TPs/CMPs. The proposed approach significantly improves

the tracking accuracy of the low gain impedance control.

Low gain impedance control implies low impact forces in

case of unforeseen collisions, which makes robot safer for

working in unstructured environment or with humans. As

such, the proposed approach enables simple and computa-

tional inexpensive control of dynamically challenging tasks.

The obtained results can be related to the findings of studies

on human sensorimotor learning abilities.
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Emergent structuring of interdependent affordance

learning tasks using intrinsic motivation and

empirical feature selection
Emre Ugur, Member, IEEE, and Justus Piater, Member, IEEE

Abstract—This paper studies mechanisms that produce hierar-
chical structuring of affordance learning tasks of different levels
of complexity. Guided by intrinsic motivation, our system detects
easy tasks first, and learns them in selected environments which
are maximally different from the previously encountered ones.
Easy tasks are learned from observed low-level attributes of the
environment, and provide abstractions over these attributes. As
learning progresses, the system shifts its focus and starts learning
harder tasks not only from low-level attributes but also from
previously-learned abstract concepts. Therefore, hard tasks are
autonomously placed higher in the hierarchy if the easy task
concepts are identified as distinctive input attributes of hard
tasks. Use of abstract concepts allows hard tasks to be learned
faster than learning them from scratch, i.e., from low-level
perception only. We tested our system with the tasks of learning
effect predictions for poke and stack actions using a dataset that
includes 83 real-world objects. On the basis of a large number of
runs of the method, our analysis shows that the hierarchical task
structure emerged as expected, along with a consistent learning
order. Furthermore, a significant bootstrapping effect in learning
speed of the stack action was observed with the discovered
hierarchy, albeit only when fully-learned poke actions were used
from the beginning.

Index Terms—intrinsic motivation, affordance, bootstrapping,
discriminative learning, structure learning, transfer learning, re-
use of concepts, prediction hierarchies, feature selection, diversity
maximization

I. INTRODUCTION

One hallmark feature of bootstrapped learning is that learn-

ing problems stack in the sense that higher-level learners use

as input attributes concepts produced by lower-level learners.

These higher-level attributes should allow faster learning than

if the higher-level concepts had to be learned from the lower-

level attributes alone. Consider an example where the robot

learns stackability affordances, i.e. learns to detect if two given

objects would stably stack on top of each other. In this case,

the robot needs to explore a high-dimensional search space if

it learns from low-level shape features of these objects such

as curvatures of different sides. On the other hand, if the

robot uses previously learned high-level abstractions, such as

rollability, it would learn which objects can be stacked on top

of each other by associating rollability and stackability from

fewer examples, This is achieved because the robot already

learns and encodes part of object-robot-environment dynamics

in the higher-level attribute of rollability, and can re-use this

E. Ugur and J. Piater are with University of Innsbruck, Institute of
Computer Science, Innsbruck, Austria.

attribute to bootstrap other related learning problems that share

similar characteristics.

In this paper, we formulate the skill learning problem as

learning inter-dependent affordances where a robot is expected

to detect affordances of different complexities by learning the

relations between objects, actions and effects. In our system

the affordance detection is achieved by predicting what kind

of effect would be created on an object given the visual

properties of the object and the action applied. Following

the re-use idea, an expert can design a system which learns

simple affordances first, and gradually shifts its focus to more

complex affordances taking advantage of the learned simple

affordances. However in a life-long learning scenario where

the objects in the environment are unknown and changing, and

any arbitrary action can be added to the robot repertoire any

time, the difficulty of affordances cannot be known in advance

by the experts. A truly developmental agent should discover

the best means to organize its learning strategy so that the

skill re-use is most effective without such prior knowledge. In

other words, the agent should should simultaneously discover

the learning order and the re-use structure of affordances.

Discovering the learning order of affordances means real-

izing an exploration strategy that shifts the focus of learn-

ing from simple to complex affordances. Since the robot

learns from observations of the consequences of its actions

on different objects, this exploration strategy practically cor-

responds to selecting the ‘best’ actions and objects in an

active learning setting in a potentially open-ended system. For

action selection, we used Intrinsic Motivation (IM) approach,

which guides the robot with intelligent exploration strategies.

IM is regarded as a set of active learning mechanisms for

developmental robots, which enables efficient and effective

learning in high-dimensional search spaces [1]. IM approach

[2] in developmental robots [3] was inspired from curiosity

based motivation mechanisms in human development, and has

recently been effectively applied to cognitive robots where

object knowledge is developed through self-exploration [4]

and social guidance [5]. This approach adaptively partitions

agent’s sensorimotor space into regions of exploration and

guides the agent to select the regions that are in intermediate

level of difficulty. This is achieved by maximizing reduction

in prediction error, in other words by maximizing the learning

progress. In this paper, we propose to use this approach to

guide the robot to explore different affordances by adaptively

selecting the actions to execute, and updating the models of

the affordance predictions based on the results of these actions.
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Through IM approach, we aim to achieve a developmental

progression similar to those of infants in learning simple-to-

complex skills and affordances.

In order to actively select which objects to interact with,

on the other hand, we used a heuristic which maximizes the

diversity of the objects used in training. In each learning step,

the object, which is maximally different from the objects that

are already used in previous learning steps, is selected with

the aim to cover the variety in the object space.

Discovering the re-use structures of affordance corresponds

to autonomously selecting the set of affordances that are useful

in learning and predicting other affordances. Practically, this

corresponds to deciding input/output links among affordance

predictors. Our solution to this problem is inspired from

Eleanor J. Gibson who was a developmental psychologist

studying on mechanisms of affordance learning in biological

systems. She argued that learning affordances is neither the

construction of representations from smaller pieces, nor the

association of a response to a stimulus. Instead, she claimed

that learning is “discovering distinctive features and invariant

properties of things and events” [6]. Learning is not “enriching

the input” but discovering the critical perceptual information

in that input. Following this idea, we identify distinctive

inputs for each affordance predictor, and establish connection

between output of an affordance predictor and input of another

predictor only if the former affordance is discriminative in

predicting the latter one. We formalized this through a relevant

feature selection mechanism that selects the most relevant,

non-redundant, and minimal set of inputs, which in turn can

achieve maximal prediction accuracy.

In summary, we study the mechanisms that enable au-

tonomous structuring of affordance learning tasks. Our system

starts in a flat form as shown in Fig. 1(a) where output of each

affordance predictor can be potentially used as an input of

any other predictor. As learning progresses the robot actively

updates these connections by selecting the most distinctive

inputs of the corresponding action predictors. In detail, in

each learning step, the robot selects the most ‘interesting’

action to perform based on Intrinsic Motivation, the most

different object to explore based on diversity maximization,

and updates the predictor of the corresponding action along

with its distinctive inputs based on the observed effect on

the object. We demonstrate these mechanisms, namely (i) the

IM based selection of actions, and (ii) diversity maximization

based selection of objects, and (iii) the use of the most dis-

tinctive inputs in affordance predictions, enable emergence of

a hierarchical structure, similar to the one shown in Fig. 1(b).

With this, the system autonomously discovers which tasks

should be learned first, and which ones become simpler if

expressed in terms of other tasks without any prior knowledge

on the relative complexity of these tasks.

The rest of this paper is organized as follows. First, a

summary of related work on affordances, re-use of learned

concepts, and intrinsic motivation based robotics work is given

in the next section. Next, representation of affordances, and

mechanisms of active action, object and connection selection

are detailed in Section III. In Section IV, the discovered

learning order of predictors and evolution of the input/output

(a) Flat prediction (b) Hierarchical prediction

Fig. 1. (a) shows a flat affordance learning structure, where the affordances
are predicted based on low level object features, action parameters, and all
other perceived affordances. (b) shows a simple hierarchical structure where
simple affordance predictions can be used to detect complex affordances.
This paper aims automatic discovery of such a hierarchical structure where
the lower level predictors are learned first, and connected to the higher level
predictors autonomously.

connections are given along with the results on speed-up in

learning complex affordances with the emerged structures.

Finally, in Sections V and VI, we discuss how a number of

assumptions can be addressed and how our system can be

extended to handle more complex learning spaces.

II. RELATED WORK

Affordances, which were introduced by James Gibson in

his ecological approach to visual perception [7], provide the

agents a ‘direct’ means to perceive the action possibilities

provided by the environment, and act on them. As detecting

action possibilities and reasoning on them are crucial in

robotics, affordances concept has been very influential in the

last decade. Affordance research in robotics can be coarsely

divided into two categories: learning affordances from passive

observations or through robots own interaction with the world.

The research in the first category does not involve the robot

in active learning. For example Koppula et al. [8] studied

learning of object affordances along with human activities

using Markov Random Fields where the nodes encode the

sub-activities and affordances; and the edges correspond to

the learned relations between these components. Myers et al.

[9] labelled tool parts with multiple affordances and learns

generalizable affordance detectors. Schoeler and Worgotter

recently studied generalizing object affordances through ef-

fective transfer of part functionalities in real world objects

[10]. The research in the second category, which involves

learning affordances in the form of object-action-effect re-

lations has been widely studied in robotics in recent years

[11, 12, 13, 14, 15]. While all different kinds of clustering

and classification methods are used in literature, the standard

learning setup includes a robot that actively explores the object
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in the environment. It interacts with objects using generally

pre-defined set of behaviors, observes the effects generated by

these behaviors, and learns the relations between the behaviors,

behavior parameters, object properties and generated effects.

Then, given a goal, the robot can chain effect predictions

to find the sequence of behaviors, effectively generating a

plan to reach that goal. Our approach in this paper belongs

to the second category as we also study learning effects of

actions of the robot on different objects using self-discovered

effect categories that were transferred from previous robot

interactions[12, 16].

Re-use of learned affordances and relational affordances

have been addressed by only a few studies. Transfer of learned

single-object affordances to bootstrap learning of paired-object

affordances was studied by Moldovan et al. [17, 18]. The

authors first used Bayesian Networks (BN) to learn (object,

action, effect) relations from single and paired-object interac-

tions, where relative position and orientation were encoded ex-

plicitly. Single-object action rules were transferred in learning

paired-object action models when objects do not interact with

each other. A relational knowledge representation model was

derived from the BN affordance models, and later generalized

to arbitrary number of objects. The system, which learned

probabilistic rules for push and grasp actions in single and

paired-object settings, were able to generalize its predictions

to multi-object settings. Different from our model, Moldovan

et al. focused on generalizing the rules that encode the position

and orientation relations between objects; whereas our focus is

to learn complex affordances that encode non-linear relations

between arbitrary features of objects. In [18], the authors

extended their system to continuous settings, however high-

level shape primitives such as cubes and cylinders were pre-

defined, whereas our system can discover such primitives from

low-level shape features. Fichtl et al. also used predictions of

action effects as inputs in predicting effects of other actions

[19]. In a setting with 9 simulated actions, they used effect

predictions of one or two actions in predicting effects of other

actions. They showed that bootstrapping in learning speed

can be achieved in the initial phases of learning especially

if the learning problem is hard. This study is similar to ours

as we also use of outputs of predictors as inputs of other

predictors. However, our system can discover the input/output

structure itself, and co-develop affordance predictors in an

active learning setting that is guided by Intrinsic Motivation.

Intrinsic Motivation (IM) was first used as a ‘manipulation

drive’ that explains why monkeys spend time on mechanical

puzzles for long durations without any extrinsic reward [20],

Activities that do not directly serve the goals of survival or

material advantage such as play, curiosity, interest in novel

stimuli and surprising events are said to be driven by intrinsic

motivations [21, 22]. In order to achieve an open-ended

development like infants, this mechanism has been heavily

utilized in robotics in the last decade. Law et al. [23] realized

a staged development with iCub that models an infant from

birth to 6 months. iCub, through motor babbling driven with

a novelty metric, started from uncontrolled motor movements,

passed through several distinct behavioral stages, and achieved

reaching and basic manipulation of objects, similar to the

human infants. Ivaldi et al. [5] proposed a system where the

iCub humanoid robot learned object properties by actively

choosing among objects to explore, actions to execute and

caregivers to interact. This socially guided intrinsic motivation

framework [24] that combined robot’s manipulatory actions

with social guidance significantly increased object recognition

performance, and could be directly used to increase speed

of affordance learning. Hart and Grupen [25, 26] realized

a longitudinal development, where a robot self-organized its

sensorimotor space by assembling basic actions into hier-

archical programs in a bottom-up way, and by learning to

apply these programs in novel contexts in a top-down fashion.

The staged learning of behaviors was guided by an intrinsic

rewards mechanism that maximizes detection of and acting

on affordances with the corresponding behaviors. Hart and

Grupen’s work was focused on behavior formation in a staged

progression with mechanisms similar to accommodation and

assimilation [27] through the so-called affordance discovery

motivator with emphasis on closed-loop control programs as

coupled dynamical systems. Other researchers used intrinsic

motivation for autonomous acquisition of motor skills [28],

and for autonomous selection of tasks to explore based on

a measure of competence progress [29]. Please see Baldas-

sarre et al. [21] for a recent Electronic Book (eBook) that

compiled large number of interdisciplinary articles on Intrinsic

Motivation within Neuroscience, attention, robotics, and social

interactions research.

We previously studied intrinsic motivation and relevance

based affordance learning in [30], and bootstrapping complex

affordance learning with learned simple affordances in [31].

The method, discussions, and analysis of the system have

been significantly extended in this paper as follows. First of

all, the main components of our system, namely IM-based

action selection, diversity-based object selection, and relevance

based distinctive input selection are first time combined and

analyzed in an integrated framework. Second the current work

rigorously analyzes the proposed approach by running the

algorithm large number of times with different configurations,

and by providing the statistics obtained from these several

runs. Finally, all material presented in the results section is

new, and supported by more thorough discussions.

III. ACTIVE LEARNING OF AFFORDANCES

A. Affordance representation

In this paper, affordances of an object (affo) correspond to

the list of effects generated by the set of available actions:

affo = (εoa1
, εoa2

, ...)

where εoa1
is the discrete effect created on object o by action

a1. For example, a lying cylinder affords rollability when

pushed from one side, pushability when pushed from another

side, and liftability when grasped. The affordances of this

cylinder is represented by the list of effects created with push

and grasp actions, i.e. {rolled, pushed, lifted}.

A robot can predict the effect of an action on an object

based on the visual properties of the object and/or through

reasoning over how the object is affected from other actions.
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Fig. 2. Input/output links of the affordance predictors in a setup with three
low-level features and three single-object actions.

In this paper, we will call the first source of information as

‘low-level features’ of objects, and the second source as ‘high-

level features’. While the low-level features such as size and

shape are previously defined by the programmer, the high-level

features will be learned by the system. These features are used

as inputs to Pred operator that predicts the effect of action ai
on object o as follows:

εoai
= Predai

(o) = Predai
(feato, affo\εoai

)

Above, feato = (fo
1
, fo

2
..) corresponds to the low-level fea-

tures. High-level features, on the other hand, are represented

by affo, which encodes ‘other affordances’, i.e. the effect

predictions for other actions:

affo\εoai
= {Predai

(o)|ai 6= aj}

Actions that involve interaction with single objects and with

pairs of objects are called single-object actions and paired-

object actions, respectively. Likewise, affordances that are

offered by single objects and pairs of objects are called single-

object affordances and paired-object affordances, respectively.

Fig. 2 gives the general input/output structure for an affor-

dance prediction system in a setup that includes three different

types of pre-defined low-level features, and three single-object

actions. Each predictor takes low-level features and the effect

predictions of other actions as inputs. The links illustrated

by the dashed lines correspond to only potential connections,

which are selectively established by the learning system only

if the corresponding links are necessary for predictions. While

establishing the links, cyclic dependencies are not allowed

because a predictor can produce an output only if all its inputs

are available. In our previous work [30] we did not need to

disallow cyclic dependencies because predicted features were

attached to object identities, obliterating the need to re-predict.

Note that outputs of predictors before initialization are fixed

to non-existing effect categories (-1).

For simplicity, we described the effect prediction mecha-

nism using actions that involve interactions with single objects.

This prediction mechanism also supports actions that involve

more than one object. In multi-object case, features and affor-

dances of all the involved objects are used as input attributes

of the corresponding action predictor. Fig. 3 illustrates the

Fig. 3. Input/output of the affordance predictors in a setup with two low-
level features, one single-object actions, and one paired-object action. In order
to give a clear picture, we used a two action setting and showed only the
important information.

potential links in a setup with two low-level features, one

single-object action, and one paired-object action. In paired-

object actions, the predictor takes the following form:

ε(o1,o2)ai
= Predai

(feato1 , feato2 , aff(o1,o2)\ε(o1,o2)ai
) (1)

Paired-object affordances, therefore, correspond to the col-

lection of effects obtained from single-object actions for each

object, and paired-object actions for each pair:

aff(o1,o2) = (εo1a1
, εo1a2

, ...εo2a1
, εo2a2

, ..., ε(o1,o2)ai
, ε(o1,o2)aj

)

Multi-class Support Vector Machines (SVMs) with Radian

Basis Function kernels and optimized parameters are used

to learn these predictors [32]. Although we used a batch

version of SVM as implemented in LibSVM library [33] for

practicality, incremental versions, which are more suitable in

active learning setups, were also shown to be provide similar

performance [34]. Our focus in this paper is how to discover

the connection structure and learning order of these predictors.

Therefore the details of prediction mechanisms have minor

importance, and one can replace SVMs with their favorite

classification method as long as the following active learning

principles are preserved.

B. General learning approach

We followed an active learning approach to train the com-

plete prediction system. This learning is achieved in episodes,

whose major steps are summarized in Fig. 4. In the first step,

the action that has the highest learning progress is selected

for exploration. Next, a number of objects that are maximally

different from the previously selected objects are selected.

Based on the observed effects on these objects, the effect

predictor of the corresponding action is updated by updating

the SVM classifiers described in previous paragraph. During

this update, the input links for this predictor are also found

and these established connections are registered to the system.

C. Active selection of actions

The first step of each episode is to select which action to

explore next. As mentioned in Section I, we used Intrinsic
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Fig. 4. Summary of one learning episode.

Motivation (IM) criteria in active selection of the action.

In its original formulation [3], IM can adaptively partition

exploration space into distinct regions and guide the agent

towards the regions that are neither too complicated nor too

simple. The medium difficulty is formalized by guiding the

agent to regions that provide maximal learning progress. In a

similar manner, our system actively selects the actions with

maximal learning progress. Learning progress (LP ) of an

action is defined based on the actual increase in the mean

prediction accuracy of the predictor of the corresponding

action(Predai
):

LPai
(t+ 1) = γai

(t+ 1)− γai
(t+ 1− τ)

where γai
(t + 1) and γai

(t + 1 − τ) are defined as the

current and previous mean prediction accuracies of the effect

predictor, and τ is a time window, set to 2.

Here we define mean prediction accuracy by setting a

smoothing parameter θ to 5:

γai
(t+ 1) =

∑θ

j=0
γai

(t+ 1− j)

θ + 1

where predictor accuracy of the action (γai
(t)) is equal to

the ratio of the correct predictions on objects explored by the

action at step t. This is only a local measure that approximates

the real accuracy. We used this local accuracy measure in our

online incremental learning setup as the robot cannot access

to ground truth, i.e. it cannot know the effect categories of the

objects without actually executing its actions on all of them

in a real setting.

Finally, the next action to be explored is selected based on

the above learning progress criteria using ǫ-greedy strategy

[35].

atsel =

 ar if t < tinit

ar if ζ < ǫ

argmaxai
LPai

(t) otherwise

where atsel denotes the selected action at learning step t, 0 ≥
ζ ≥ 1 is a uniform random number, and ǫ is set to 0.10. This

IM based action selection strategy requires an initial random

exploration phase where the learning progress (LP ) of each

predictor is initialized. tinit is empirically set to 48 interactions.

D. Active selection of objects

After selecting the action, the system needs to decide which

objects to interact with this action. For this, we propose a

heuristic that maximizes the diversity of the objects used in

training of the corresponding predictor. The system chooses

an object from the available set of objects with maximal

distance to the set of already interacted objects (Oused). The

distance between pairs of objects can be computed by calcu-

lating the distance between feature vectors that represent the

corresponding objects. However, each object feature channel is

represented in a different metric, therefore the distance would

depend on the relative weighting of the features in different

channels. Here, we propose a heuristic that selects computes

the Euclidean distance in a randomly selected feature channel

space:

osel = argmax
o1∈O\Oused

∑
o2∈Oused

distc(o1, o2)

where O, Oused, and O\Oused correspond to the set of all

objects, the set of objects used for training the corresponding

predictor, and the set of the objects not used yet. c corre-

sponds to the feature channel where distance is calculated,

and is uniformly sampled from the set of low-level features

{size, shape, distance}. If the predictor of the selected action,

Predasel
, takes input from other effect predictions, a random

effect prediction from the corresponding set ({εai
|ai 6= asel})

is used instead:

osel = argmax
o1∈O\Oused

∑
o2∈Oused

‖εo1ai
− εo1ai

‖

In each episode, we chose four objects if asel is a single-

object action, and four pairs of objects if asel is a paired-

object action. Empirically, we observed that this active object

selection strategy is effective only if it is applied in the

initial training steps for each predictor. If it is applied for

complete training, the choice of objects degenerates probably

because the whole range of diversity cannot be represented

by the available features, thus the overall performance of

the predictors decrease. Therefore, we applied this active

object selection strategy in the first 12 steps, which is a

value empirically found. After 12 steps, osel is always selected

randomly from O\Oused.
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Fig. 5. Objects used in the experiments.

E. Active selection of input connections

The input connections of the Predasel
(therefore input/out-

put connections of the whole system) are updated in this

step. For this, the minimal set of input connections that can

achieve maximum available prediction accuracy for Predasel

is selected. One of the feature selection methods, which

generates near-optimal feature sets [36], namely Sequentialfs,

is used for this purpose. Each input connection in our system

correspond to either a low-level feature channel or prediction

of another action. The algorithm starts with an empty input

set. At each iteration, a new input is selected and added to

the input set of previous iteration. In order to select this

new input, all candidate inputs are separately added to the

previous input set and separate candidate input sets are formed.

Then, the candidate input sets are evaluated through 10-fold

cross-validation on trained predictors. The best performing

candidate set is then transferred to the next iteration. In the

experiments, we eliminated the ones that have no effect in

accuracy increase, finalizing the most distinctive inputs for

each trained predictor Pred. Therefore, we expect minimal

redundancy in the input connections. Finally, in order to avoid

cyclic predictions, the output of Predai
is not considered as a

potential/candidate input for Predaj
, if the output of Predaj

is previously selected as an input for Predai
.

IV. EXPERIMENT SETUP

1) Low-level object features: The system can visually de-

tect the objects in the environment using the depth information

of Kinect sensor, and compute a number of features from

the point cloud data. feat represents the continuous low-level

feature vector that combines various visual properties of the

object. It is composed of three different channels, which are

feature vectors themselves:

feato = (dimo, shapeo, disto)

dim represents the dimensions of the object in three dif-

ferent axes. shape corresponds to the distribution of normal

vectors obtained from the local surfaces on the point cloud.

Normal vectors are obtained using Point Cloud Library[37],

normal estimation package. This distribution is encoded by

histograms of normal vectors, where each component in dif-

ferent axis is regarded separately. 8 bins are used to discretize

the distribution in each axis, making the total size of shape

feature vector is 3 × 8 = 24. Finally, in order to capture

the local discontinuities and distribution of distances in the

neighborhood of each voxel, we use dist feature channel. For

each voxel, the neighboring voxels are identified in the 2-

d depth image, and distances to the neighbors are computed

along each four direction. For each direction, we created a

histogram of 20 bins with bin size of 0.5cm, obtaining a

4× 20 = 80 sized vector for the dist.

2) Actions: The robot 1 is equipped with a number of

manually coded actions that enable single and multi object

manipulation. The robot can poke a single object from dif-

ferent sides using front-poke, side-poke, and top-poke actions.

It can also stack one object on the other using stack action,

where it grasps the first object, moves it on top of the other

one and releases it.

3) Interaction Dataset: An interaction dataset, which is

composed of (object, action, effect) tuples, is generated to

run and analyze our method. 83 objects with different sizes,

shapes, and affordances were used for this purpose (Fig. 5).

The low-level visual features of these objects were computed

by placing them on the table and by extracting the point

cloud using the Kinect sensor. A number of sample robot

interactions that involve some of these objects are given in

Fig. 6 and Fig. 4 where different effects can be observed.

With three single-object actions, and one paired-object action,

the total number of possible interactions with these objects

is 3 × 83 + 1 × (83 × 83) = 7138. As we aim for a

systematic analysis of the system behavior with large number

of learning runs, we would like to collect and store the dataset

1The robot system is composed of a 7 DOF Kuka Light Weight Robot
(LWR) arm placed on a vertical bar similar to human arm, a A 7 DOF 3
fingered Schunk gripper mounted to the robot arm, and a Kinect sensor placed
over the ‘torso’ with a view of the table in front of the robot. Because the
main focus of this paper is not on physical execution of the robot, we will
omit the details concerning the robot setup.
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Fig. 6. Sample interactions observed during stack action execution on
different object pairs.

in the beginning, and use the interaction samples whenever

necessary. On the other hand, making over 7000 interactions

is not feasible in the real world. It is also not critical to validate

our method as our method is designed as a general approach

for inter-dependent affordance learning rather than solving

specific affordance problems in real-world settings. Therefore,

we used a human expert, who observed the actions of the

robot on different objects, and generalized his observations to

other objects in order to manually fill-up the effect fields of

the interactions 2.

4) Action effects: The effect of an action on a single object

depends on various properties of the object being interacted.

The same poke action generates different effects on different

objects or even on the same objects in different orientations.

For example, when poked from side, a lying cylinder will roll

away, an upright thick cylinder will be pushed, an upright

thin cylinder will topple down, and a lying hollow cylinder

will stay still if the robot finger would go through the hole.

When paired-object actions are considered, the effect depends

on the properties of both objects and the relations between

these properties. For example, while an ‘inserted-in’ effect

is generated when a small cylinder is stacked on an upright

bigger hollow cylinder, a ‘tumbled’ effect is observed if the

big cylinder is not upright. Based on our previous work

where effect categories were self-discovered in single-object

2Predicting the effects of actions on different objects without any ref-
erence to the real world performance of the robot has the risk of creating
a human-biased interaction dataset. In order to reduce this risk, the human
physically ‘simulated’ the actions on objects when it was difficult to assess the
effect. For example, it is difficult to predict whether containers of similar sizes
would be inserted, stacked or tumbled, when one is released on top of another
one. To disambiguate these situations, the human expert dropped the object
physically from some height with a small offset, and stored the generated
effects. While this approach should be enough to collect the interaction dataset
for our purpose, if one aims to verify a real-robot solution, the uncertainty in
action level should be better addressed by the actual execution of the actions.
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Fig. 7. The action selected for exploration and learning in each iteration
of online learning of affordances. As shown, more complex actions, e.g.
stack, are learned later based on Intrinsic Motivation selection mechanism.
This might be due to the fact that learning stack affordance is more difficult
compared to others, and stack prediction of the effect of stack action requires
learning of high-level attributes, i.e. single-object affordances, of both objects.
Note that before the time-point shown with vertical line, the system is in its
random exploration phase, i.e. randomly selects the actions to learn.

actions[12] and in paired-object actions[16], and based on our

observations obtained from the sample real-robot executions

mentioned in the previous paragraph, the following effect

categories are defined:

• Poke-effects: {pushed, rolled, toppled, resisted, nothing}
• Stack-effects: {stacked, inserted, covered, tumbled}

V. EXPERIMENT RESULTS

Using the database of 83 objects, 4 actions, and their corre-

sponding effects, we applied active learning of affordances

method to discover the learning order (Section V-A) and

prediction structure (Section V-B) of the affordance learn-

ing system. Furthermore, we verified that with the structure

emerged, the learning of complex affordances significantly

speeds up especially in the beginning of the learning trials

(Section V-C).

In order to statistically analyze the system, we generated

50 separate learning runs that start with random seeds. In

other words, our analysis provides the results from 50 different

affordance prediction structures that are trained with the same

method but with different random seeds. These seeds affect

action and object selection in different ways. First of all, in

each run, the objects and actions are shuffled to avoid the

effect of position of the elements in the lists. Next, ǫ-greedy

action selection strategy, random channel selection in object

distance calculation, and finally random object selection all

use random selection from uniform distributions.

A. Discovered exploration and learning order

This section provides the obtained learning order of the

affordance predictors. The learning order of predictors can

be analyzed by examining the order and frequency of the

corresponding actions that are selected during each iteration of

the online learning of the complete system. The selected action

for exploration in each learning step is shown in Fig. 7. As the
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Fig. 8. The number of times each action is selected in each learning step. (a) The lines and shades correspond to mean and standard deviation of 50 runs,
respectively. (b) The learning episodes are divided into 6 portions, and statistical analysis on action selection is performed across 80 samples × 50 runs. Means
and standard deviations are provided by the bars and lines over bars. ∗ and ∗∗ correspond to significance levels of p < 0.05 and p < 0.01, respectively.

effect of paired-object actions depend on the relations between

the properties of two objects, stack is a more complicated

action, difficult to learn. As shown, the less complex poke

actions are learned first, and more complex stack action is

learned later. Prediction of the stack action can also benefit

from simple-affordances (as we will show in the next section).

Thus, stack action is explored and learned automatically after

all other simpler actions are explored. In the figure, the stack

action is observed to be explored also in the beginning of the

learning in a number of steps either because of momentarily

increases in local accuracy or due to the ǫ-greedy strategy.

Fig. 8 provides a more detailed statistical analysis of the action

selection strategy of the system, where the number of times

each action is selected in each learning step is provided in

mean and standard deviation. As shown, after the random

exploration phase, the system quickly loses its focus on stack

action. There are two visible peaks in exploration: first, front-

poke action and then top-poke action are explored and learned

with visible peaks in frequency. Side-poke is also explored

more compared to stack action in the beginning. Only towards

end (275 interactions) exploration of the stack action takes

lead while others are not learned anymore. This figure clearly

shows that the system shifts its focus to stack action after

learning all other simpler actions, however there was no such

significant difference in learning order in between side-poke

and stack actions. This requires further analysis of the behavior

of the system.

We plotted the local prediction accuracy γ evolution of each

action in Fig. 9. As shown, the learning progresses of poke

actions are high initially. After around 100 interactions, the

learning progress of side-poke and front-poke slows down,

however the system continues learning from top-poke action.

The learning progress for side-poke and front-poke starts

increasing again after 200 interactions, while the learning

progress of stack action is lower in general. After all actions

Fig. 9. The evolution of prediction accuracy of each predictor during online
learning. The lines and shades correspond to mean and standard deviation of
50 different runs, respectively.

are learned sufficiently and there is no further progress, the

learning progress of stack action increases.

B. Discovered affordance prediction structure

This section gives the results of the structure evolution of

the affordance prediction system. Recall that the prediction

structure is defined over the most distinctive inputs that are

discovered to be most effective in predicting affordances. The

ratio of the types of distinctive features used in prediction

in different phases of the active learning are shown in Fig.10.

Each plot in this figure corresponds to the evolution of the used

features and affordances for a different action. One can notice

the following emergent structuring properties and tendencies:
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(a) Links to front-poke action predictor
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(b) Links to side-poke action predictor
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(c) Links to top-poke action predictor
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(d) Links to stack action predictor

Fig. 10. Evolution of the distinctive features for prediction, where dashed lines correspond distance, shape and dimension features, and solid lines correspond
to the predicted affordances. The percentages are computed across 50 runs.

• Shape and dim low-level features are used by almost the

predictors in order to predict action effects. Shape fea-

tures, i.e. distribution of the normal vectors, are probably

important in distinguishing rollable objects from pushable

objects. Dimension related properties are also important

in order to differentiate objects that are toppled by front-

or side-poke actions. It is peculiar that dim feature is also

found to be important and used for prediction of top-poke

action effect because size of the objects should have no

influence on how they are affected from top-poke action.

With a closer inspection, we found out that walls of

some hollow objects were not detected by the perception

system, and these hollow objects were perceived as very

thin objects.

• Dist low-level feature was originally designed to capture

the characteristics related to hollowness of the objects.

However, probably shape features capture convexity and

concavity good enough, therefore poke action predictors

did not heavily use dist features.

• Most of the front-poke, side-poke and stack action predic-

tors used predictions of top-poke action predictor. Top-

poke predictor would predict if the object is hollow or

not, therefore we were expecting that it would be used for

predicting stack effects. Top-poke predictor also encodes

rollability to different directions, probably that was why

it was used by other poke action predictions.

• Around 25% of the front-poke predictors used side-poke

and stack predictions, and around 25% of the side-poke

predictors used front-poke and stack predictions. This

result shows that no strict hierarchy appeared between

front-poke and side-poke effect predictors. On the other

hand, around 50% of stack action predictors used pre-

dictions from front-poke and side-poke predictors. We

can suggest that differences in maturation order of differ-

ent predictors caused differences in different structuring

strategies.

For illustrative purposes, we weighted directed links in be-

tween predictors based on the frequencies provided in Fig. 10,

and obtained the connectivity graph provided in Fig. 11(a). As

shown in the plots, each low-level feature affects affordance

predictions in different levels, and shape features are observed

to be the first discovered distinctive features, i.e. selected input
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(a) Connectivity graph with weighted links (b) Connectivity graph when loose links are removed

Fig. 11. Discovered structure, i.e. input and output connections.

connections, especially in the initial phases of development

for all actions. However, more important in the context of this

paper, affordances are observed not to be used in the initial

phases, and all of them are only found to be used in predicting

effect of stack action, i.e. predicting stackability affordances.

Note that stack predictor starts using single-object affordances

after around 30 samples, probably because the single-object

affordance prediction was not good enough before that time-

point.

For illustration purpose, we removed the links that have

weights below 25%. In other words, we removed the links

if those links exist in less than 25% of the learning runs.

When the graph is re-arranged, a loose but clear hierarchical

prediction structure emerges as shown in Fig. 11(b).

C. Bootstrapping effect in stack learning

In this section, we analyzed the bootstrapping effect that is

achieved by discovering use of single-object affordances for

predicting paired-object affordances. In order to analyze this

effect, we compared the learning speed with and without use of

inputs from other effect predictions in predicting stack effects.

The system, where effect predictions of other actions along

with low-level features are used, is called ‘with-affordance-

input’. The system where only low-level features are used in

learning and predicting effects of stack actions will be called

‘without-affordance-input’.

When the learning speed of stack affordances is compared

with- and without-affordance-inputs in an active learning set-

ting where all affordances are learned as above, we noticed

no significant difference between learning speeds. We argue

that the bootstrapping is generally achieved in the beginning

of learning the bootstrapped systems are shown to make better

predictions with even small number of learned interactions. As

soon as the number of samples get higher, the bootstrapping

effect is reduced. In our system, stack predictor is trained along

with other predictors, and in the initial phases of its training, it

does not receive correct inputs from other predictors; therefore

we could not achieve such bootstrapping effect.

Next we analyzed the case, where stack predictor learning

starts after learning all poke predictors. Here, we assume here

that the system learned the learning order and structure of

affordance predictors, and transfer the learned knowledge for

new objects. Therefore, in this setting, the predicting poke

actions is learned first, and the outputs of the learned predictors

are used as potential inputs. The predictions from poke actions

are also used in active object selection in order to compute

the distance between objects and to maximize the diversity in

training set. We again performed 50 learning runs both with-

and without-affordance-inputs in learning stack effect predic-

tions. In this setting, we can see a significant bootstrapping

effect in learning as shown in Figs. 12(a) and 12(b). Mean and

standard deviation of the group of trained predictors with- or

without-affordance-inputs are shown with the bold line and

the filled areas. As shown in the figures, initial and final

mean accuracies and variances of two different cases are same.

Still, the expected bootstrapping effect in the beginning of the

learning steps are clearly visible in both figures. At the bottom

of each figure, the difference in accuracies between with- and

without-affordance-inputs is given, which is confirmed with

double-side t-test with p < 0.01. The boxes at the bottom

in Fig. 12(a) show that the accuracy of with-affordance-

inputs case becomes 10% higher with 40 training samples,

compared to without-affordance-inputs case with significance

level of p < 0.01. As shown, the bootstrapping effect quickly

increases in the beginning and remains same for some time.

The bootstrapping effect is more significant when the accuracy

is computed with novel pairs. Novel pairs of objects {(o1, o2)}
for stack action corresponds to objects, where {o1} and {o2}
have never been experienced in bottom and top roles during

stacking, respectively. The effect becomes visible after 18 pairs

instead of 22 pairs; and increases to a maximum value of 13%
compared to 10%. This also shows that use of affordances as

inputs in learning and predicting other affordances provides

significant generalization capabilities.

VI. DISCUSSION

In this paper, the action and effect categories are known

by the system. From a developmental point of view, these

categories should be learned by the robot as it is not possible

to predict and design the categorization that is suitable for

the embodiment of the robot especially for unbounded set of

complex actions. Therefore, we believe that it is necessary to

discuss how such categorization can be achieved by interacting

systems. In this section, we will summarize our previous
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(a) Test with all pairs.

(b) Test with novel pairs.

Fig. 12. The evolution in prediction accuracy of stack effect predictor. The
accuracy is computed by using all object pairs in (a) and by using only the
novel object pairs in (b). The black bars show the amount of difference in
prediction accuracies between learning systems with and without affordance
inputs, in significance level of p < 0.01.

studies where categorization in action and effect spaces were

self-discovered by a manipulator robot.

a) Action categorization: We previously showed that

a robot that was initialized with a basic reach- and enclose-

on-contact movement capability, can discover a set of action

primitives by exploring its movement parameter space [38, 11].

In that work, the robot was assumed to have only two basic

movement mechanisms: a basic finger enclose behavior akin

to infants palmar grasp reflex, and one basic arm action, that

generates simple arm movements to transport the hand to the

vicinity of an object. The contact information, sensed during

the approach and possibly after the finger enclosure, is used

to cluster the executed movements, yielding a set of action

primitives such as push, ‘release’, and grasp. In order to learn

more complex actions, such as ‘move-object-over-another’,

we realized an imitation learning strategy where the robot

observed and encoded complex demonstrations into a series

of previously learned primitives with the help of a cooperative

tutor [11]. In that work, inspired from infant development

and motionese framework [39], we equipped the robot with

mechanisms that can detect motion related cues such as pauses

in order to more easily segment the demonstrated behavior

into chunks that can be replicated by previously discovered

action primitives. We argue that simple action categories can

be discovered through exploration, and more complex actions

that are composed of simple categories can be learned through

imitation learning.

b) Effect categorization: Effect categories are gener-

ally obtained in an unsupervised way by applying clustering

methods to continuous effect space. We previously discussed

that such clustering is sensitive to relative weighting of the

effect features that are encoded in different units and channels.

Furthermore, discovered effect categories should be instrumen-

tal for the latter predictions and reasoning; and completely

unsupervised clustering does not provide any guarantee for

this. Therefore, we proposed a 2-level clustering algorithm

that takes into account the representational differences between

different perceptual channels and utilizes a verification step

that makes sure that the discovered effect categories can be

predicted by the robot [38, 12]. In detail, in the lower level,

channel-specific effect categories are found by clustering in

the space of each channel, discovering separate categories

for channels such as touch, position and shape. In order

to ensure the predictability of the channel-specific effect

categories, classifiers are trained. If a channel-specific effect

category is found not to be predictable, the clustering is re-

done with less number of desired clusters. After finding the

final channel-specific effect categories, in the upper level these

categories are combined to obtain all-channel effect categories

using the Cartesian product operation. The final categories

are only accepted if they are predictable. The discovered

effect categories for push action were ‘disappeared=rolled’,

‘grasped&disappeared’, ‘grasped’, and ‘pushed’. Similar ideas

were also used by others, where categorization was also based

on the ability to predict the outcome of action execution in

Mugan and Kuipers [40], and categories were utilized if they

appear in the learned rules in Pasula et al. [41]

With increasing complexity of actions, finding effect cate-

gories becomes more difficult. In finding effect categories of

stack action for example, we observed that a naive clustering

in continuous effect space was not effective as the interacting

objects can generate various effects difficult to separate due to

the complex interactions between them [16]. In that case, ap-

plying further exploratory actions on the objects after stacking

helped the system to handle this complexity. For example, after

a stack action, if the robot poked both of the objects one by

one, effect categories were found to be distinguishable when

observations obtained from the following poke actions were

also taken into account. Some discovered effect categories for

stack action were ‘stacked’, ‘inserted-in’, and ‘tumbled’ at the

end.

VII. CONCLUSION

In this paper, we studied how interdependent affordance

learning tasks can be autonomously structured along with

the learning order of its components. In an online learning

framework, we showed that intrinsic motivation mechanism,
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which select the next action to explore based on learning

progress of the model of that action, can discover such a

learning order where paired-object affordance learning fol-

lows maturation of single-object affordances learning. Next,

we showed that by using the most discriminative features

for affordance prediction, the expected hierarchical structure

emerged autonomously where the learning system discovered

that predictions of the single-object affordances are connected

to the paired-object affordances. We validated our approach

in a real dataset composed of 83 objects and pairs of these

objects along with the effects of three poke actions and

one stack action. The results show that hierarchical structure

and learning order emerged from the learning dynamics that

is guided by Intrinsic Motivation mechanisms and feature

selection approach.

The results further show that a bootstrapping effect in

learning speed of affordances could be achieved with such

a hierarchical structure. This was probably achieved as simple

affordances, which were used as inputs to complex affor-

dances, provide more abstract and generalizable knowledge

compared to low-level visual features. Bootstrapping effect

was visible when generalization was required from learning of

small number of samples, and disappeared in the latter steps

as the system could learn equally well from low-level features

with large number of training samples. Bootstrapping effect

was also more significant in more difficult tasks such as when

the predictors were tested in novel situations. In our system,

the learning order of affordances was not strict, and determined

based on the IM criteria with an approximate measure of

future learning progress. Therefore, the hierarchical structure

only appeared after initialization of learning progress through

some exploration of all actions, and the initial bootstrapping

effect was not observed in this emergent structuring setting.

Other factors such as motor complexity of actions are also

important in deciding which action to explore first, and can

be used to achieve a more strict learning order, and therefore

more significant bootstrapping effect.

In our framework, the system forms forward models [42]

that enable it to predict the changes in the environment in

terms of discrete effect categories. Generative models have

been shown to be effective in learning (object, action, effect)

relations and in making inferences on any element of the

these relations. For example, they can infer the required action

given the desired (object, effect) pair or they can predict

the effect given (action, objects) pair [13]. We discuss that

our ‘discriminative’ model still provides powerful mechanisms

as it can effectively map the continuous object feature and

behavior parameter spaces to the corresponding effects [43]

possibly using complex non-linear functions without any initial

categorization of object properties as in [13, 17]. Furthermore,

while bi-directional relations are not explicitly encoded in our

system, we showed that our robot was able to make predictions

in different directions, and made plans that involved sequence

of actions on automatically selected objects[12].

Our proposed framework, which exploits the idea of active

selection of actions, objects, and connections, is very general

and can be directly applied for a wide-variety of robot learn-

ing tasks and to different robotic platforms. It can also be

extended to continuous actions where action parameters such

as poke direction are used as inputs of the predictors, and to

continuous action effects where powerful regressors are used

for prediction.
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