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Chapter 1

Executive Summary

1.1 Summary of the Results

This deliverable focuses on methods that involve grasping actions developed in WP2.1 and the applica-
tion of motor actions to support visual perception. It consists of the following contributions:

• Chapter 2 describes our work on context-dependent transfer of grasps to different tasks (Sec. 2.1)
and on learning grasping affordances based on feature-action associations with different granularity,
order and semantics (Sec. 2.2). In Section 2.3 we describe an approach for grasping unknown objects
based on RGBD images. Finally, in Section 2.4 we report on several techniques for acquiring object
models needed for grasping. These range from object recognition and pose estimation (Sec. 2.4.1),
3D reconstruction (Sec. 2.4.2) to 3D shape pose estimation (Sec. 2.4.3) and dense 3D representations
(Sec. 2.4.4).

• Chapter 3 deals with learning object representation through physical interaction. We describe the
extension of learning object representations through pushing actions to deal with non-textured
objects (Sec. 3.1) as well as to exploit foveated vision to improve the learning results (Sec. 3.2).

• Chapter 4 describe a machine learning approach for one-shot action learning and recognition based
on RGBD images, optical flow and sparse coding techniques for action representation. The work is
extended to object recognition.

1.2 Links to other Workpackages

Since discrete movements are mainly investigated in WP2.2, we report on our research regarding learning
and sequencing of discrete movements in D2.2.2. Representations of discrete movements that involve
cooperation with other agents are investigated in WP4.1. Progress regarding cooperative discrete move-
ments is described in D4.1.2.
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Chapter 2

Grasping

2.1 Context dependent Grasping

In [REK+ed], we have investigated the role the task context plays for grasping. It is a common practice
that suitable grasps are computed off-line in simulation in a free floating environment (see top row of
Figure 2.1). These grasps are then applied in a specific task context, e.g., a table environment (see bottom
row of Figure 2.1). It remains unclear to what degree such a transfer is valid or reasonable. For example
Figure 2.1 shows a grasp that is not successful in a free floating environment but is successful in a table
environment.

We have investigated this transfer for two grippers – one of them being able to realize different grasp
types – with three objects in three different tasks contexts (free-floating, standing on table and lying on
table). Our investigations show that such a transfer is far from being straightforward. In particular, it
is not only that many grasps which work in the free floating environment cannot be applied in the other
two environments (where the trivial effect of collisions is ignored) but also that the table environment
makes a large set of grasps feasible which are not valid grasps in the free floating environment. We
then also evaluate the transfer from two simulated contexts to a real world context of picking an object.
From our results the advantages and need of context-dependent simulation becomes apparent which is
of importance for the proper use of simulators as a means to facilitate investigations of learning tasks by
simulation as done in the Xperience project.

Figure 2.1: Two simulated grasp sequences of the same grasp in two different contexts. In the top
sequence the grasp of the cup fails in the gravity-free environment while in the bottom sequence the cup
is successfully grasped when placed on top of a table.
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2.2 Learning Grasping Affordances with Features of Different
Granularity, Order and Semantic

In [TKK14], we investigate feature-action association where features vary according to their granularity
(spatial size, see Figure 2.2A), their order (first or second order spatial combination, see Figure 2.2B) and
their abstraction (being a surface patch, a surface patch with border label or a surface patch with border
label with additional direction information, see Figure 2.2C). These features correspond to different levels
of the visual hierarchy as extensively discussed in [KJK+13]). We combine the perceptual features with a
grasping action into particles and then apply a straightforward evaluation method based on neighborhoods
in the feature space extracting success probability and support for each particle and store these particles
in a data base. We then apply two learning mechanisms on the particles in the data base which allow for
the extraction promising grasp affordances for a novel scene. As a main result, we show that the same
learning algorithm leads to very different results depending on the structure of the perceptive features.
The particles found as promising for affordance prediction are building blocks for structural bootstrapping
processes on higher levels.

Note that [TKK14] is a significant extension of ideas already introduced in attachment [TK12] in deliver-
able 3.1.1. The work goes across WP 2.1, WP 2.3 and WP 3.1 since the interaction of feature extraction
and learning as part of structural bootstrapping processes is investigated.

Figure 2.2: Different features varying in terms of A) order, B) granularity and C) semantic abstraction.
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2.3 Grasping Unknown Objects Based on RGBD Images

In [GPTM13], we deal with the problem of grasping unknown objects. We use RGBD images to recover
a point cloud representation of the object to be grasped (power grasp at the moment). Our method
seeks object regions that match the curvature of the robots palm. The object point cloud is segmented in
smooth surfaces. A score function measures the quality of the graspable points on the basis of the surface
they belong to. A component of the score function is learned from experience and it is used to map
the curvature of the object surfaces to the curvature of the robots hand. The user can further provide
top-down information on the preferred grasping regions (e.g. a handle). We guarantee the feasibility of
a chosen hand configuration by measuring its manipulability. We prove the effectiveness of the proposed
approach by tasking the iCub to grasp a number of unknown real objects.

2.4 Object Models

2.4.1 Object Recognition and Pose Estimation in 2D Images

We developed a general framework for object recognition and pose estimation in 2D images, using 2D
examples as training data (i.e. without any explicit 3D model). The training data therefore consists of
a large number of annotated 2D pictures of the object of interest, observed from different viewpoints.
We used a probabilistic approach for modeling both the training and the test data. Our formulation of
the problem, as the maximization of the cross-correlation between the test view and the training images,
departs from traditional approaches by not focusing on one specific type of image features. The proposed
algorithm avoids relying on specific model-to-scene correspondences, allowing using similar-looking and
generally unmatchable features. We effectively demonstrated this capability by applying the method to
edge segments. The details of a first implementation were presented at DICTA 2012 [TP12a] and were
already reported in Periodic Project Report of Y2. The proposed algorithm was designed to recover a
complete description of the probability distribution of the pose of the object, in the 6 degree-of-freedom
3D pose space, thereby accounting for the inherent ambiguities in the 2D input data. This capability is
of particular interest for our robotic tasks, where this ambiguity in the 3D pose of the object may be used
in later stages of the overall application. We evaluated the capabilities of the method to perform pose
estimation of known objects in cluttered images, and we obtained interesting results on both synthetic
and real test images.

The overall framework has been extended to generalize the learned models to categories instead of in-
stances; those recent developments have been presented in a follow-up paper [TP13a]. Enhanced per-
formance has also been recently obtained by incorporating, into the visual object model, the actual
deformations of the appearance between the discrete training viewpoints [TP13b].

We extended this method for the task of self-recognition of a robot arm [TSP13]. Here, models of the
arm’s links are learned or constructed individually. Then, a variant of the above method [TP13a] is used
to produce pose hypotheses for all links, which are then jointly optimized using a message-passing scheme
along the kinematic chain.

2.4.2 3D Reconstruction

We developed a method for performing 3D reconstructions of scenes or objects, using multiple calibrated
2D views thereof. Although considerable research has already been done on this fundamental topic over
the years, we proposed an original approach to the problem. We used a probabilistic formulation of the
problem in the 3D, reconstructed space that allows the use of features that cannot be matched one-to-one,
or which cannot be precisely located, such as points along edges. The reconstructed scene, modelled as
a probability distribution in the 3D space, is defined as the intersection of all reconstructions compatible
with each available view. We introduce a method based on importance sampling to retrieve individual
samples from that distribution, as well as an iterative method to identify contiguous regions of high
density. This allows the reconstruction of continuous 3D curves compatible with all the given input views,
without establishing specific correspondences and without relying on connectivity in the input images,
while accounting for uncertainty in the input observations, due e.g. to noisy images and poorly calibrated
cameras. The technical formulation is attractive in its flexibility and genericity. The implemented
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system, evaluated on several very different publicly-available datasets, showed results competitive with
existing methods, effectively dealing with arbitrary numbers of views, wide baselines and imprecise camera
calibrations. This work [TP12b] was already mentioned in the Xperience Year-2 Periodic Progress Report.

2.4.3 3D Shape Pose Estimation

3D shape pose estimation is an essential component of robot perception. In our current stage, we estimate
the pose of 3D shapes by using registration algorithms. Despite intensive study, 3D shape registration
remains an open question. We developed a novel, highly efficient, robust and accurate 3D registration
method for 3D point clouds, which is currently a popular and important data format in practice.

For most existing registration algorithms, there are many obstacles to practical use in fully autonomous
systems. For instance, ICP usually requires manual assistance to provide a good initialization, and Gaus-
sian Mixtures and SoftAssign are too expensive for real-time tasks. Therefore, our novel algorithm is
developed to satisfy the practical need for better robustness and higher efficiency. Quite different from
previous registration methods, instead of computing correspondence and alignment in 3D space, our al-
gorithm first map points to a higher, possibly infinite-dimensional space by applying Kernel methods.
Registration is subsequently performed within feature space by aligning corresponding principal compo-
nents. The result is projected back into 3D pose space. The whole procedure is theoretically elegant
and efficient. Kernel PCA is used to avoid explicit computation in feature space, and SE(3) on-manifold
optimization is employed to enhance the generality (flexible to any number of dimensions) of our regis-
tration algorithm. Empirical results demonstrate that our method [3] (attached to Deliverable D2.3.2) is
quite accurate and robust to various challenging circumstances (e.g. large motion, presence of outliers),
and remarkably, it is much faster than other state-of-the-art methods with comparable performance. Our
immediate predecessor of this method [XSP13] used Gaussian mixtures and probability product kernel
functions.

2.4.4 Reduced, dense 3D Scene representation of RGB-D images

3D from 2D is useful (see sections above) but may remain limited. For this reason we have introduced
a novel, dense 3D representation called Super-Voxels for point cloud data, published in CVPR 2013
[PASW13]. The idea is based on the fact that unsupervised over-segmentation of an image into regions of
perceptually similar pixels, known as superpixels, is a widely used preprocessing step in computer vision.
Existing methods make use of projected color or depth information, but do not consider three dimensional
geometric relationships between observed data points which can be used to prevent superpixels from
crossing regions of empty space. To address this we have developed a novel over-segmentation algorithm
which uses voxel relationships to produce over-segmentations which are fully consistent with the spatial
geometry of the scene in three dimensional, rather than projective, space. This way consistent and much
reduced 3D representations can be produced and use for all kinds of different tasks (e.g. pose estimation,
object recognition, etc.). Additionally, as the algorithm works directly in 3D space, observations from
several calibrated RGB+D cameras can be segmented jointly.
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Chapter 3

Physical Interaction for Object
Learning

In earlier work [2, 1] reported in the first two periods we have shown how humanoid robots can leverage
their capability to physically interact with the world in order to support the autonomous visual segmen-
tation, learning and grasping of unknown objects in a cluttered environment. To do so, the robot first
generates object hypotheses based on its camera images, then pushes one of these possible objects and
verifies or discards the hypothesis based on an analysis of its motion.

3.1 Learning Textured and Non-textured Object Representa-
tions

This work was however restricted to textured objects whose surface contains enough visually significant
and unique points or regions that allow robust relocalization and estimation of the 3D motion that the
object underwent. Following the same general idea, we were able to devise a more general approach that
allows the interactive segmentation of textured as well as non-textured rigid objects.

Again, the first step is to generate object hypotheses based on the stereo images obtained from the
cameras of the robot. Three different criteria are used for this step: Firstly, we look for regular geometric
structures (planes, cylinders, spheres) amongst the 3D positions of Harris interest points, which is a
strong indicator for underlying textured objects. Secondly, we look for larger unicolored regions which
indicate a unicolored object or object part. Thirdly, we generate object hypotheses in image regions that
are visually salient but not yet covered by hypotheses of the first two kinds.

One of these object hypotheses is selected based on being reachable and higher than its direct neighbor-
hood, which indicates that it can probably be manipulated without collisions. The robot then tries to

Figure 3.1: ARMAR-III and the JSI robot executing explorative pushes in order to segment unknown
objects in slightly and very cluttered scenes.
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Figure 3.2: Interactive segmentation of unknown objects in clutter: The left image in each row shows the
initial object hypotheses, the following images show the segmentation results after one, two and three
pushes respectively.

move this object with a careful push, using its force sensors to react to unexpected collisions with other
objects or e.g. the table surface.

After the push, the object has to be re-localized. To this end, we generate a 3D point cloud from the
images using dense stereo matching. Each point consists of its 3D position and color (this is usually called
an RGBD point), and an object hypothesis is represented by the points lying in the region that it covers.
We try to match the RGBD points belonging to each object hypothesis in the new point cloud obtained
after the push. If the hypothesis can be matched well, has moved significantly and lies in an image region
that changed due to the push, we consider it a verified object. With the same criteria we then verify
or discard each individual point that belongs to the hypothesis, and add additional neighbouring points
as candidates that are tested in the course of further pushes. After 2-3 pushes, the object hypotheses
usually completely and correctly cover a real object. We showed that these segmentations allow to train
a simple object recognizer that provides good recognition results [SUA14].

3.2 Acquiring Object Models by Foveated Vision

In another extension of this work we show how the advantages of foveated vision can be exploited to im-
prove the learning of new object representations. The approach described in the attached paper [BU13]
generates initial object hypotheses in the peripheral view. The initial hypotheses are more accurately
investigated in the foveal view, which requires tightly integrated perception and motor control. Hypothe-
ses are validated, corrected and extended after interactive manipulation of the object by a teacher or the
robot itself. We compared different methods for validating the hypotheses in the foveal view and showed
the advantages of foveal vision compared to to the standard active stereo vision with a fixed field of
view for object learning and recognition. A representation of accumulated features that is built through
manipulation shows a particular advantage when an object is learned from several viewpoints.

9
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Figure 3.3: A typical object learning / recognition procedure. The upper row respectively shows the
peripheral and the bottom row the foveal view. The images in the first column contain the initial object
hypotheses as the head is turned towards hypothesis ”0”. Each of the following columns shows the scene
after moving the object, validating the initial hypothesis and accumulating the verified feature points for
learning or recognition.
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Chapter 4

Action Recognition and Object
Categorization

In [FGMO13] we describe machine learning methods that can be applied to recognize actions performed by
a human experimenter in front of a robot. We use RGBD images (either obtained through a Kinect device
or from stereo cameras) and 3D optical flow (scene flow) to build visual features. We then select features
using dictionary learning methods (sparsification). The main contribution of the paper is an effective
real-time system for one-shot action modeling and recognition; the paper highlights the effectiveness of
sparse coding techniques to represent 3D actions. We obtain very good results on three different data
sets: a benchmark data set for one-shot action learning (the ChaLearn Gesture Data Set), an in-house
data set acquired by a Kinect sensor including complex actions and gestures differing by small details,
and a data set created for human-robot interaction purposes.

In [FNMO14], we extend the work presented in [FNMO14] to object recognition. Also in this case we
use sparsity and a number of coding strategies to prepare data for classification. We follow the widely
accepted coding-pooling recognition pipeline (often used as a model of biological vision). In this paper we
show how to exploit ad-hoc representations in the coding and the pooling phases. We learn a dictionary
for each object class and then use local descriptors encoded with the learned atoms to guide the pooling
operator. We exhaustively evaluate the proposed approach in both single instance object recognition and
object categorization problems. From the applications standpoint we consider a classical image retrieval
scenario with the Caltech 101, as well as a typical robot vision task with data acquired by the iCub
humanoid robot.
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Object Learning through Interactive Manipulation and Foveated Vision

Robert Bevec and Aleš Ude

Abstract— Autonomous robots that operate in unstructured
environments must be able to seamlessly expand their knowl-
edge base. To identify and manipulate previously unknown
objects, a robot should continuously acquire new object knowl-
edge even when no prior information about the objects or
the environment is available. In this paper we propose to
improve visual object learning and recognition by exploiting
the advantages of foveated vision. The proposed approach first
creates object hypotheses in peripheral stereo cameras. Next
the robot directs its view towards one of the hypotheses to
acquire images of the hypothetical object by foveal cameras.
This enables a more thorough investigation of a smaller area
of the scene, which is seen in higher resolution. Additional
information that is needed to verify the hypothesis comes
through interactive manipulation. A teacher or the robot itself
induces a change in the scene by manipulating the hypothetical
object. We compare two methods for validating the hypotheses
in the foveal view and experimentally show the advantage of
foveated vision compared to standard active stereo vision that
relies on camera systems with a fixed field of view.

I. INTRODUCTION

To be able to successfully work in unstructured and
uncontrolled environments, autonomous robots must have the
ability to expand their library of known objects. Such robots
must therefore be able to detect and learn new objects when
no prior knowledge about them and the environment is avail-
able. Segmenting objects using only visual information has
proved very difficult [1], [2]. However, perturbing the scene
by for example pushing a hypothetical object introduces
additional information that makes this task more feasible [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12].

In this paper we propose to improve object recognition
in autonomous robots by learning and recognizing objects
using foveated vision. In biological systems, the fovea is a
part of the retina with a very high density of cone cells.
It is responsible for color vision and color sensitivity. The
density of cones slowly decreases toward the peripheral part
of the retina. This layout provides sharp central vision and a
relatively low average resolution over the entire field of view,
therefore reducing the need for computational resources, but
still achieving high precision vision in the fovea. Foveated
stereo vision in robots can be accomplished using two
cameras per eye with different focal lengths [13], [14],
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[15], [16]. This arrangement enables capturing wide-angle
peripheral and narrow-angle foveal images at the same time,
but requires gaze control in order to acquire the area of
interest in the foveal view. A practical advantage of such
an arrangement is that a robot can simultaneously analyze
the wide field of view of peripheral cameras – where it is
easier to find and track objects – and the narrower field of
view of foveal cameras – where objects images have higher
resolution and are therefore more suitable for recognition.

Some of the recently proposed methods rely on accurate
depth sensors to segment objects from the scene [7], [9], [17],
[11], [12], [18]. We chose to rely solely on stereo foveated
vision to learn object representations (Fig. 1) because such
systems are more generally applicable and are also closer to
human vision and depth perception.

In our previous work [10], [19] the robot learns and
recognizes objects using standard active stereo vision. It
generates hypotheses about the existence of objects and
tries pushing them to look for changes in the scene and
validate the object hypotheses. Object representations were
obtained by accumulating the confirmed features over several
snapshots and a bag-of-features type models [20] have been
acquired. Here we propose to extend this object learning
process by making use of foveated vision, thus adding the
confirmed object features acquired in the foveal view. In
our current experiments, the manipulation of objects has
been realized through human interaction. However, the robot

Fig. 1. Karlsruhe Humanoid Head [13] and the object test set used in the
experiments. The head is equipped with two cameras in each eye. One pair
of cameras models human peripheral vision, the other pair foveal vision.

2013 13th IEEE-RAS International Conference on
Humanoid Robots (Humanoids).
October 15 - 17, 2013. Atlanta, GA

978-1-4799-2618-3/13/$31.00 ©2013 IEEE 234



could also use it’s own manipulation capabilities to achieve
the same result. The developed approach requires no prior
knowledge about the objects or the environment and retains
the assumptions that the objects contain some distinctive
visual features and move as rigid bodies.

II. OVERVIEW

The following procedure is applied to learn new objects
and generate their representations for recognition:
• Generate object hypotheses in peripheral view: Find

smooth surfaces in the point cloud of stereo matched
visual features.

• Turn the head and eyes toward one hypothesis: The
centroid of the hypothesis should lie in the middle of
the foveal images.

• Generate an object hypothesis in foveal view: The
object takes up a large portion of the foveal images,
therefore all visual features represent a hypothesis.

• Generate data for hypothesis verification: The robot
requests a human teacher to move the object and val-
idates which features belong to the object due to the
resulting change in the scene. Additional features are
added if they move concurrently with the object.

• Turn the head and eyes toward the confirmed hy-
pothesis: The centroid of the manipulated object should
lie in the middle of foveal images.

• Validate the hypothesis in foveal view: The robot
validates which features belong to the object due to the
resulting change in the scene.

• Feature accumulation: The last three steps above can
be repeated several times to accumulate object features
from different viewpoints.

Note that in this procedure, the object manipulation step by
a human teacher could be replaced by robot manipulation as
in our other work [10].

III. OBJECT HYPOTHESES

A. Peripheral view

Object hypotheses in the peripheral view are created
within a point cloud generated by the peripheral stereo
vision. Initial point correspondences are found by matching
Harris interest points [21] and maximally stable extremal
regions (MSER) [22] in each eye. The Harris interest points
are found mostly on textured parts of the image. The MSER
detector balances that by finding salient points in areas with
less texture. The correct correspondences and precise 3-D
point positions are obtained by using epipolar geometry and
stereo calibration on an active camera system [23]. At each
3-D interest point a SIFT feature descriptor [24] is calculated,
which has shown robustness to scale, rotation, translation and
illumination changes.

The hypotheses are created by searching for smooth
surface patches within this point cloud. As in our previ-
ous work [10], [19], the robot looks for planar, spherical
and cylindrical surface patches using RANSAC [25]. This
iterative, nondeterministic model fitting algorithm chooses a
random subset of points, fits models of the possible surface

types and returns the parameters of the fitted surface that
includes the largest number of points within a tolerance of
that surface out of the entire point cloud. All of the points
belonging to the fitted surface are then excluded from the
point cloud and a search for a new hypothesis is started
again. When no good fits are found anymore, the remaining
points are clustered into groups of points lying close to each
other using X-means algorithm [26]. Each of these clusters
also represents a hypothesis if it retains enough points and
has a sufficient point per volume ratio. This allows the robot
to create a hypothesis for an object, even if no part of that
object corresponds to a smooth surface.

In order to prevent surface hypotheses spanning over
several objects, X-means clustering is applied to each hy-
pothesis. The hypothesis is divided into several hypotheses
if that is deemed appropriate by the algorithm. Erroneous
splitting of hypotheses is not a problem since all features that
move concurrently after interactive manipulation are later
joined together as a validated object. An example of initial
object hypotheses in the peripheral view is seen in Fig. 2. A
detailed description about the detection of planar, spherical
and cylindrical surface patches is given in [19].

B. Foveal view
Since a foveal image covers a much narrower field of view,

the object of interest will cover a larger portion of the foveal
than peripheral image. We can therefore assume that there
is no need to search for smooth surface patches, like in the
peripheral views, to create hypotheses. Instead, the entire
point cloud is considered as an object hypothesis. The foveal
camera pair naturally requires it’s own camera calibration
to find interest point correspondences and calculate the 3-
D position of points. An example object hypothesis in the
foveal view is seen in Fig. 2.

Fig. 2. Initial hypotheses in a typical scene with household objects. In
the peripheral view, each hypothesis is represented by points of the same
color. After the head has turned towards hypothesis ”0”, we see the initial
hypothesis in the foveal view, where a hypothesis consists of all features.

IV. GAZE CONTROL

In order to acquire the object hypothesis in the foveal view,
the robot must rotate the head and eyes so that the center of
the hypothesis appears in the foveal cameras. Hypothesis i
is first created in the peripheral view. It contains Ni points
corresponding to a smooth surface patch. The 3-D centroid
Pi of the hypothesis in the peripheral view is calculated as
follows

Pi =

∑Ni

n=1 xn

Ni
(1)
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Fig. 3. A typical object learning / recognition procedure. The upper row respectively shows the peripheral and the bottom row the foveal view. The
images in the first column contain the initial object hypotheses as the head is turned towards hypothesis ”0”. Each of the following columns shows the
scene after moving the object, validating the initial hypothesis and accumulating the verified feature points for learning or recognition.

Using direct kinematics equations, the robot calculates the
positions of all the hypotheses in the global coordinate
system. It then uses a virtual mechanism approach to cal-
culate the proper joint configuration to center the chosen
hypothesis in the foveal cameras and moves the head and
eyes accordingly [27].

V. OBJECT VALIDATION

After the robot has identified the object hypotheses and
turned its view towards one of them, it needs additional infor-
mation to validate or discard the hypothesis. This additional
information is provided by inducing motion on the object.
Changes in the scene can then be analyzed for simultaneous
feature motion, which is a very strong indicator of object
existence in the object definition given by Gibson [28].
In our system, the robot requests a human to move the
object hypothesis the robot is looking at. This is indicated
by displaying the hypothetical object feature points in the
acquired stereo image pair. Alternatively, the robot could
also use it’s own manipulation capabilities to try and push
the object hypothesis or perform some other manipulation.
A typical learning or recognition procedure is seen in Fig. 3,
where the initial hypotheses in the first column are validated
after changes in the scene in each of the following columns.

After the manipulation action is completed, the robot
recomputes the point cloud using Harris interest points and
MSERs as described in Section III.

A. Peripheral view

Our basic assumption is that the object moves as a rigid
body. The feature points contained in the hypothesis are
matched in the peripheral images after the change using a
SIFT descriptor. Due to occlusions or large rotations, some
of the features may not be matched at all. If enough matches
are found, we can test our assumption and find a rigid
body motion that corresponds to the motion induced by
manipulation. Since there will be false feature matches and

matches of points that didn’t belong to the object in the first
place, we use the RANSAC algorithm for finding the most
probable object rotation and translation, thereby filtering out
all feature correspondence matches not within the tolerance
of the transformation. The parameters of the transformation
can be estimated from three pairs of points before and after
the change. Let xn be the position of a feature point before
the change and x′n the position of the matched point after. If
the new feature position corresponds to the transformation

x′n = R · xn + t, (2)

where R is the rotation matrix and t is the translation
vector, it moved concurrently with this transformation. If
more than a minimum amount of features correspond to
this transformation, the hypothesis is considered as validated.
All of the features that move according to the estimated
rigid body transformation are considered confirmed object
features. In the following we call this process a rigid body
motion filter (RBMF).

All other feature matches from the point cloud, i. e.
features from the point cloud that do not belong to the initial
hypothesis, are also checked regarding the estimated rigid
body transformation. If they move as the object features,
these features are added as candidate features of the validated
hypothesis. If they are matched and move together with the
object also after the next manipulation, they are considered
confirmed. The first row in Fig. 3 shows an example of
successful object validation through several manipulations.

Even though in this paper we propose learning based on
foveal views, it is still necessary to track the motion of the
hypotheses in peripheral view as well. This is due to the fact
that after manipulation the object usually disappears from
the foveal view. The only way to get it back into the foveal
view is to perform a saccade towards the new object position,
which can be done by estimating the new object pose in the
peripheral view.
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B. Foveal view

The same process of hypothesis validation described for
the peripheral views can be used in the foveal view as
well. After the successful validation of the hypothesis in the
peripheral view, the head and eyes are turned toward the
hypothesis’ centroid. The new point cloud is computed in
the foveal view and matched to the one before the change
using SIFT descriptors. Matches are verified with the rigid
body motion filter described in Section V-A and the object
hypothesis is validated or discarded. The second row in Fig. 3
shows an example of successful object validation through
several manipulations.

We also suggest a simpler solution for use in the foveal
views to reduce the computational complexity of the vali-
dation procedure. Since RANSAC is a statistical method, it
needs many repetitions in order to provide a good solution
with high certainty [25]. Being a nondeterministic algorithm,
it does not guarantee the best solution even after an arbitrary
number of repetitions. Instead, we propose to make use of
the known movement of the head and eyes and assume that
the surroundings of the hypothesis does not move when the
human moves the object. We can therefore filter all static
features in the peripheral views, i. e. features that moved
according to the motion of the head-eye system, and confirm
all other features as features belonging to the object. The
assumption of static surrounding is much more justified in
foveal than peripheral views because foveal views contain
only a small portion of the scene.

Let xn be the position of a feature point before the
change and x′n the position of the matched feature point after
manipulation and head-eye rotation. Let RV be the rotation
matrix and tV the translation vector describing the change
of viewpoint from the previous gaze direction. We define
threshold ε as a minimum displacement that implies motion.
If statement (3) is true, the feature point has moved and
belongs to the validated hypothesis:

‖x′n −RV · xn + tV‖ ≥ ε. (3)

We call this method a static feature filter (SFF). Although
SFF requires a partially static scene, it provides a valid
alternative to the first approach. In Fig. 4 we can see how
successful these two methods are at filtering feature matches
and validating the hypotheses. In these examples, the initial
object hypotheses in foveal views (recall that our assumption
is that all feature points detected in foveal views belong
to the object) contained a large number of features found
in the background. The first row shows validation of the
initial hypothesis with rigid body motion filter (RBMF)
and the second row validation with the static feature filter
(SFF). Both approaches succeeded in eliminating most of
the spurious features, although SFF failed to discard a small
number of false matches on the box in the background.

VI. OBJECT LEARNING AND RECOGNITION

As in our previous work, the visual appearance of objects
is learned using a bag of features (BoF) model [20]. Firstly,
a visual vocabulary is created by clustering SIFT feature

Fig. 4. In the first row, the initial hypothesis in the foveal view is validated
with the rigid body motion filter and in the second row with the static feature
filter. The rigid body motion filter discards all the background features and
all false matches. The static feature filter requires a static background and
cannot filter false SIFT matches.

descriptors extracted from training images. To compute the
vocabulary, we use the SIFT feature descriptors extracted
while learning different objects from different viewpoints. To
represent an object, each SIFT descriptor that is confirmed
to belong to the object in the current view, is matched
with the closest descriptor in the vocabulary. A histogram
of descriptors from the vocabulary corresponding to object
features is built and later used for recognition.

To include color information, the robot also calculates a
saturation-weighted hue histogram [29] within the ellipse
spanned by the principal axes of the confirmed features. Both
the BoF and hue histograms are calculated for individual
viewpoints and for the accumulated representation after
each successful validation in foveal and peripheral views.
Combined, the histograms represent global color information
and descriptors of salient area in all relevant views.

Object recognition is realized by calculating the cor-
responding histograms of the initial or validated object
hypothesis as described in the previous paragraphs. A k-
nearest neighbors decision is based on the distance measure
between known objects in the database and the hypothesis.
The distance measure is a weighted sum of normalized
χ2 histogram distances of the BoF and hue histograms as
described in [10].

Some examples of object recognition for the initial hy-
pothesis in the foveal view are shown in Fig. 5. Objects
rich with features can be quite successfully recognized in
this stage already, even though there are a lot of features
belonging to the background included in the hypothesis
(upper left image). Smaller objects with fewer features are
sometimes classified as incorrect objects (unknown object in
the background, upper right image) or as the object in the
background itself (lower left image). When initial hypotheses
do not include many features from the background, they
are recognized rather successfully as shown later in the
experimental evaluation (lower right image).
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Fig. 5. Recognition of initial hypotheses in the foveal view depends greatly
on the amount of features in the background. In the upper left image we
have an unknown object in the background, but the object in the foreground
is correctly recognized, since it is very rich with features. In the upper right
image the object in the foreground has much fewer features and is therefore
incorrectly recognized. For the same reason, the object in the lower left
image is falsely recognized as the known object in the background. If there
are few features in the background, as seen in the lower right image, the
recognition of objects in the initial hypotheses can reach 93%.

VII. EXPERIMENTAL EVALUATION

We preformed several experiments to evaluate the gain of
using foveated vision for object learning and recognition.
We also compared the proposed filters (RBMF and SFF) for
validating hypotheses in the foveal images.

The robot first learned representations of 20 different
typical household objects (Fig. 1), where a human teacher
manipulated the objects. The objects were placed on a table
in sets of 5 at a distance approximately 1 meter from the
robot, as shown in Fig. 2. Using KUKA LWR manipulators,
this distance would be well within reach of the robot if push-
ing was done autonomously. There were some occlusions
present at times, but eventually each object was shown in
full extent. The system created initial hypotheses about the
objects and then learned a model for each. Each model was
learned through 6 consecutive manipulations. The human
teacher (the first author) moved the objects mainly laterally
to the image plane with small rotations. This ensured good
feature matching, but the objects were learned mainly from
one viewpoint. For the foveal view different representations
were learned, once using RBMF and once SFF.

For recognition, the sets of objects were randomly mixed
and placed back on the table. The robot tried recognizing the
initial hypotheses and then requested the human to move the
object it was facing. It followed the object through 3 consec-
utive manipulations in the scene and tried recognizing it after
each one. Table I shows the results of object recognition.

The results of recognition in peripheral views are signif-
icantly worse than in our previous work [10], where we
used the same camera pair as a standard active stereo vision
system. This is due to the increased distance of the objects
from the robot. In our experiments the objects were placed

TABLE I
OBJECT RECOGNITION RATE IN THE PERIPHERAL VIEW, FOVEAL VIEW

WITH RIGID BODY MOTION FILTER (RBMF) AND FOVEAL VIEW WITH

STATIC FEATURE FILTER (SFF) FOR THE INITIAL HYPOTHESES AND THE

FOLLOWING PUSHES.

init. hyp. 1 push 2 pushes 3 pushes
Peripheral 51 % 52 % 60 % 62 %
Foveal w. RBMF 60 % 95 % 95 % 95 %
Foveal w. SFF 60 % 100 % 100 % 100 %

approximately 50 cm further away form the cameras. The
recognition rate improves with each push, until it starts to
converge toward approximately 65 % and doesn’t improve
even after more pushes. At such a distance few object
features were found and even fewer matched. On average,
only 32 features were accumulated in the recognition stage,
describing each object after 3 pushes. A larger number of
features allows for more robust recognition under partial
occlusion in cluttered scenes [24].

Recognition rate using foveated vision varied a lot in the
initial hypothesis. Depending on the amount of clutter in
the view, features of the hypothesis might belong to the
background. Singulated objects were correctly recognized 93
% of the time, while dense clutter reduced this rate down to
27 %. On average, the initial hypothesis recognition rate in
our experiments was 60 %. Using the proposed approach,
background features were filtered our after the first push and
the recognition rate improved significantly.

Both of the proposed filters used the same initial hy-
potheses. Using RBMF, the validated hypothesis after the
first push was successfully recognized 95 % of the time.
This rate stayed stable with consequent pushes. It turned
out that there was just one particular object, which was
constantly recognized as another object from the database.
These recognition rates are significantly higher compared to
the rates in the peripheral view. On average, 181 features
described each object after 3 pushes, which is significantly
more than in the peripheral view.

Using SFF, the validated hypothesis after the first push was
successfully recognized 100% of the time. This rate remained
stable throughout the interactive recognition process. SFF is
not able to discard false descriptor matches and therefore
builds a richer representation than RBMF including false
positives. On average, 227 points described each object after
3 pushes, but as it turns out, a richer representation including
some false descriptor matches does not hurt the recognition
rates, since the proportion of false features is low. Some
of them were actually on the object itself and therefore
benefited the representation. The results prove that both
methods are valid options for hypothesis validation in foveal
views. Overall, our results confirm the usefulness of foveal
vision for object learning and recognition.

VIII. CONCLUSIONS

We developed a novel system for object learning and
recognition by manipulation, which can exploit the advan-
tages of foveal vision. Initial object hypotheses are generated
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Fig. 6. Our method does not require a static tabletop scene. The system
is able to learn new objects or recognize known objects in an arbitrary
environment. In the pictures above, we can see the object learning through
human interaction.

in the peripheral view and more accurately investigated in
the foveal view by turning the head and eyes toward the
hypothesis. Hypotheses are validated, corrected and extended
after interactive manipulation by a teacher or the robot itself.
We compared different methods for validating the hypotheses
in the foveal view and showed the advantages of foveal vision
compared to to the standard active stereo vision with a fixed
field of view for object learning and recognition.

A representation of accumulated features that is built
through manipulation shows a particular advantage when an
object is learned from several viewpoints. As it is evident
in Fig. 6, our methods works in an arbitrary environment
in cooperation with a human teacher and relies on only two
assumptions: that the object moves as a rigid body and that
is has distinctive visual features.
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[5] E. Stergaršek Kuzmič and A. Ude, “Object segmentation and learning
through feature grouping and manipulation,” in 2010 10th IEEE-
RAS International Conference on Humanoid Robots, (Nashville, Ten-
nessee), pp. 371–378, 2010.

[6] W. H. Li and L. Kleeman, “Segmentation and modeling of visually
symmetric objects by robot actions,” The International Journal of
Robotics Research, vol. 30, no. 9, pp. 1124–1142, 2011.

[7] T. Hermans, J. M. Rehg, and A. Bobick, “Guided pushing for object
singulation,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, (Vilamoura, Portugal), pp. 4783–4790, 2012.

[8] M. Rudinac, G. Kootstra, D. Kragic, and P. P. Jonker, “Learning and
recognition of objects inspired by early cognition,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, (Vilamoura,
Algarve, Portugal), pp. 4177–4184, 2012.

[9] L. Chang, J. R. Smith, and D. Fox, “Interactive singulation of objects
from a pile,” in IEEE International Conference on Robotics and
Automation, (St. Paul, Minnesota), pp. 3875–3882, 2012.

[10] A. Ude, D. Schiebener, N. Sugimoto, and J. Morimoto, “Integrating
surface-based hypotheses and manipulation for autonomous segmen-
tation and learning of object representations,” in IEEE International
Conference on Robotics and Automation, (St. Paul, Minnesota),
pp. 1709–1715, 2012.

[11] D. Katz, M. Kazemi, J. A. Bagnell, and A. Stentz, “Clearing a
Pile of Unknown Objects using Interactive Perception,” in IEEE
International Conference on Robotics and Automation, (Karlsruhe,
Germany), pp. 154–161, 2013.

[12] D. Katz, M. Kazemi, J. A. Bagnell, and A. Stentz, “Interactive
Segmentation, Tracking, and Kinematic Modeling of Unknown 3D
Articulated Objects,” in IEEE International Conference on Robotics
and Automation, (Karlsruhe, Germany), pp. 4988–4995, 2013.

[13] T. Asfour, K. Welke, P. Azad, A. Ude, and R. Dillmann, “The
Karlsruhe Humanoid Head,” in 2008 8th IEEE-RAS International
Conference on Humanoid Robots, (Daejeon, Korea), pp. 447–453,
2008.

[14] C. G. Atkeson, J. G. Hale, F. Pollick, M. Riley, S. Kotosaka, S. Schaul,
T. Shibata, G. Tevatia, A. Ude, S. Vijayakumar, E. Kawato, and
M. Kawato, “Using humanoid robots to study human behavior,” IEEE
Intelligent Systems and their Applications, vol. 15, no. 4, pp. 46–56,
2000.

[15] H. Kozima and H. Yano, “A robot that learns to communicate with
human caregivers,” in Proceedings of the First International Workshop
on Epigenetic Robotics, (Lund, Sweden), pp. 47–52, 2001.

[16] T. Shibata, S. Vijayakumar, J. Conradt, and S. Schaal, “Biomimetic
oculomotor control,” Adaptive Behavior, vol. 9, pp. 189–207, 2001.

[17] A. Aldoma, F. Tombari, J. Prankl, A. Richtsfeld, L. D. Stefano,
and M. Vincze, “Multimodal Cue Integration through Hypotheses
Verification for RGB-D Object Recognition and 6DOF Pose Estima-
tion,” in IEEE International Conference on Robotics and Automation,
(Karlsruhe, Germany), pp. 2096–2103, 2013.

[18] I. Lysenkov and V. Rabaud, “Pose Estimation of Rigid Transparent
Objects in Transparent Clutter,” in IEEE International Conference on
Robotics and Automation, (Karlsruhe, Germany), pp. 162–169, 2013.

[19] D. Schiebener, J. Morimoto, T. Asfour, and A. Ude, “Integrating
visual perception and manipulation for autonomous learning of object
representations,” Adaptive Behvior, vol. 21, no. 5, 2013.

[20] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
categorization with bags of keypoints,” in ECCV Workshop on statis-
tical learning in computer vision, (Prague, Czech Republic), 2004.

[21] C. Harris and M. Stephens, “A combined corner and edge detector,”
in Proceedings of the Fourth Alvey Vision Conference, (Manchester,
UK), pp. 147–151, 1988.

[22] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline
stereo from maximally stable extremal regions,” Image and Vision
Computing, vol. 22, no. 10, pp. 761–767, 2004.

[23] A. Ude and E. Oztop, “Active 3-D vision on a humanoid head,” in 2009
International Conference on Advanced Robotics (ICAR), (Munich,
Germany), pp. 1–6, 2009.

[24] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Key-
points,” International Journal of Computer Vision, vol. 60, no. 2,
pp. 91–110, 2004.

[25] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[26] D. Pelleg, A. Moore, and Others, “X-means: Extending k-means with
efficient estimation of the number of clusters,” in Proceedings of the
Seventeenth International Conference on Machine Learning, (Stanford,
California), pp. 727–734, 2000.
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Università degli Studi di Genova

Genova, Via Dodecaneso 35, 16146, Italia

Editors: Isabelle Guyon and Vassilis Athitsos

Abstract

Sparsity has been showed to be one of the most important properties for visual recognition purposes.

In this paper we show that sparse representation plays a fundamental role in achieving one-shot

learning and real-time recognition of actions. We start off from RGBD images, combine motion

and appearance cues and extract state-of-the-art features in a computationally efficient way. The

proposed method relies on descriptors based on 3D Histograms of Scene Flow (3DHOFs) and

Global Histograms of Oriented Gradient (GHOGs); adaptive sparse coding is applied to capture

high-level patterns from data. We then propose a simultaneous on-line video segmentation and

recognition of actions using linear SVMs. The main contribution of the paper is an effective real-

time system for one-shot action modeling and recognition; the paper highlights the effectiveness of

sparse coding techniques to represent 3D actions. We obtain very good results on three different

data sets: a benchmark data set for one-shot action learning (the ChaLearn Gesture Data Set), an

in-house data set acquired by a Kinect sensor including complex actions and gestures differing by

small details, and a data set created for human-robot interaction purposes. Finally we demonstrate

that our system is effective also in a human-robot interaction setting and propose a memory game,

“All Gestures You Can”, to be played against a humanoid robot.

Keywords: real-time action recognition, sparse representation, one-shot action learning, human

robot interaction

1. Introduction

Action recognition as a general problem is a very fertile research theme due to its strong applicability

in several real world domains, ranging from video-surveillance to content-based video retrieval and

video classification. This paper refers specifically to action recognition in the context of Human-

Machine Interaction (HMI), and therefore it focuses on whole-body actions performed by a human

who is standing at a short distance from the sensor.

Imagine a system capable of understanding when to turn the TV on, or when to switch the

lights off on the basis of a gesture; the main requirement of such a system is an easy and fast learn-
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ing and recognition procedure. Ideally, a single demonstration suffices to teach the system a new

gesture. More importantly, gestures are powerful tools, through which languages can be built. In

this regard, developing a system able to communicate with deaf people, or to understand paralyzed

patients, would represent a great advance, with impact on the quality of life of impaired people.

Nowadays these scenarios are likely as a result of the spread of imaging technologies providing

real-time depth information at consumer’s price (as for example the Kinect (Shotton et al., 2011)

by Microsoft); these depth-based sensors are drastically changing the field of action recognition,

enabling the achievement of high performance using fast algorithms.

Following this recent trend we propose a complete system based on RGBD video sequences,

which models actions from one example only. Our main goal is to recognize actions in real-time

with high accuracy; for this reason we design our system accounting for good performance as

well as low computational complexity. The method we propose can be summarized as follows:

after segmentation of the moving actor, we extract two types of features from each image, namely,

Global Histograms of Oriented Gradient (GHOGs) to model the shape of the silhouette, and 3D

Histograms of Flow (3DHOFs) to describe motion information. We then apply a sparse coding

stage, which allows us to take care of noise and redundant information and produces a compact and

stable representation of the image content. Subsequently, we summarize the action within adjacent

frames by building feature vectors that describe the feature evolution over time. Finally, we train a

Support Vector Machine (SVM) for each action class.

Our framework can segment and recognize actions accurately and in real-time, even though they

are performed in different environments, at different speeds, or combined in sequences of multiple

actions. Furthermore, thanks to the simultaneous appearance and motion description complemented

by the sparse coding stage, the method provides a one-shot learning procedure. These functions are

shown on three different experimental settings: a benchmark data set for one-shot action learn-

ing (the ChaLearn Gesture Data Set), an in-house data set acquired by a Kinect sensor including

complex actions and gestures differing by small details, and an implementation of the method on a

humanoid robot interacting with humans.

In order to demonstrate that our system can be efficiently engaged in real world scenarios, we

developed a real-time memory game against a humanoid robot, called “All Gestures You Can” (Gori

et al., 2012). Our objective in designing this interaction game is to stress the effectiveness of our

gesture recognition system in complex and uncontrolled settings. Nevertheless, our long term goal

is to consider more general contexts, which are beyond the game itself, such as rehabilitation and

human assistance. Our game may be used also with children with memory impairment, for instance

the Attention Deficit/Hyperactivity Disorder (ADHD) (Comoldi et al., 1999). These children cannot

memorize items under different conditions, and have low performances during implicit and explicit

memory tests (Burden and Mitchell, 2005). Interestingly, Comoldi et al. (1999) shows that when

ADHD children were assisted in the use of an appropriate strategy, they performed the memory

task as well as controls. The game proposed in this paper could be therefore used to train memory

skills to children with attention problems, using the robot as main assistant. The interaction with the

robot may increase their motivation to maintain attention and help with the construction of a correct

strategy.

The paper is organized as follows: in Section 2 we briefly review the state of the art. In Sec-

tion 3 sparse representation is presented; Section 4 describes the complete modeling and recognition

pipeline. Section 5 validates the approach in different scenarios; Section 6 shows a real application
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in the context of Human Robot Interaction (HRI). Finally, Section 7, presents future directions and

possible improvements of the current implementation.

2. Related Work

The recent literature is rich of algorithms for gesture, action, and activity recognition—we refer the

reader to Aggarwal and Ryoo (2011) and Poppe (2010) for a complete survey of the topic. Even

though many theoretically sound, good performing and original algorithms have been proposed,

to the best of our knowledge, none of them fulfills at the same time real-time, one-shot learning

and high accuracy requirements, although such requirements are all equally important in real world

application scenarios.

Gesture recognition algorithms differ in many aspects. A first classification may be done with

respect to the overall structure of the adopted framework, that is, how the recognition problem is

modeled. In particular, some approaches are based on machine learning techniques, where each

action is described as a complex structure; in this class we find methods based on Hidden Markov

Models (Malgireddy et al., 2012), Coupled Hidden Semi-Markov models (Natarajan and Nevatia,

2007), action graphs (Li et al., 2010) or Conditional Markov Fields (Chatzis et al., 2013). Other

methods are based on matching: the recognition of actions is carried out through a similarity match

with all the available data, and the most similar datum dictates the estimated class (Seo and Milanfar,

2012; Mahbub et al., 2011).

The two approaches are different in many ways. Machine learning methods tend to be more

robust to intra-class variations, since they distill a model from different instances of the same ges-

ture, while matching methods are more versatile and adapt more easily to one-shot learning, since

they do not require a batch training procedure. From the point of view of data representation, the

first class of methods usually extracts features from each frame, whereas matching-based methods

try to summarize all information extracted from a video in a single feature vector. A recent and

prototypical example of machine learning method can be found in Malgireddy et al. (2012), which

proposes to extract local features (Histograms of Flow and Histograms of Oriented Gradient) on

each frame and apply a bag-of-words step to obtain a global description of the frame. Each action is

then modeled as a multi channel Hidden Markov Model (mcHMM). Although the presented algo-

rithm leads to very good classification performance, it requires a computationally expensive offline

learning phase that cannot be used in real-time for one-shot learning of new actions. Among the

matching-based approaches, Seo and Milanfar (2012) is particularly interesting: the algorithm ex-

tract a new type of features, referred to as 3D LSKs, from space-time regression kernels, particularly

appropriate to identify the spatio-temporal geometric structure of the action; it then adopts the Ma-

trix Cosine Similarity measure (Shneider and Borlund, 2007) to perform a robust matching. Another

recent method following the trend of matching-based action recognition algorithms is Mahbub et al.

(2011); in this work the main features are standard deviation on depth (STD), Motion History Image

(MHI) (Bobick and Davis, 2001) and a 2D Fourier Transformation in order to map all information

in the frequency domain. This procedure shows some benefits, for instance the invariance to camera

shifts. For the matching step, a simple and standard correlation measure is employed. Considering

this taxonomy, the work we propose falls within the machine learning approaches, but addresses

specifically the problem of one-shot learning. To this end we leverage on the richness of the video

signal used as a training example and on a dictionary learning approach to obtain an effective and

distinctive representation of the action.
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An alternative to classifying gesture recognition algorithms is based on the data representation

of gesture models. In this respect there is a predominance of features computed on local areas of

single frames (local features), but also holistic features are often used on the whole image or on

a region of interest. Among the most known methods, it is worth mentioning the spatio-temporal

interesting points (Laptev and Lindeberg, 2003), spatio-temporal Hessian matrices (Willems et al.,

2008), Gabor Filters (Bregonzio et al., 2009), Histograms of Flow (Fanello et al., 2010), Histograms

of Oriented Gradient (Malgireddy et al., 2012), semi-local features (Wang et al., 2012), combination

of multiple features (Laptev et al., 2008), Motion History Image (MHI) (Bobick and Davis, 2001),

Space-Time shapes (Gorelick et al., 2007), Self-Similarity Matrices (Efros et al., 2003). Also,

due to the recent diffusion of real-time 3D vision technology, 3D features have been recently em-

ployed (Gori et al., 2012). For computational reasons as well as the necessity of specific invariance

properties, we adopt global descriptors, computed on a region of interest obtained through motion

segmentation. We do not rely on a single cue but rather combine motion and appearance similarly

to Malgireddy et al. (2012).

The most similar works to this paper are in the field of HMI as for example Lui (2012) and Wu

et al. (2012): they both exploit depth information and aim at one-shot learning trying to achieve

low computational cost. The first method employs a nonlinear regression framework on manifolds:

actions are represented as tensors decomposed via Higher Order Singular Value Decomposition.

The underlying geometry of tensor space is used. The second one extracts Extended-MHI as features

and uses Maximum Correlation Coefficient (Hirschfeld, 1935) as classifier. Features from RBG and

Depth streams are fused via a Multiview Spectral Embedding (MSE). Differently from these works,

our approach aims specifically to obtain an accurate real-time recognition from one video example

only.

We conclude the section with a reference to some works focusing on continuous action or ac-

tivity recognition (Ali and Aggarwal, 2001; Green and Guan, 2004; Liao et al., 2006; Alon et al.,

2009). In this case training and test videos contain many sequential gestures, therefore the temporal

segmentation of videos becomes fundamental. Our work deals with continuous action recognition

as well, indeed the proposed framework comprehends a novel and robust temporal segmentation

algorithm.

3. Visual Recognition with Sparse Data

One-shot learning is a challenging requirement as the small quantity of training data makes the

modeling phase extremely hard. For this reason, in one-shot learning settings a careful choice of

the data representation is very important. In this work we rely on sparse coding to obtain a compact

descriptor with a good discriminative power even if it is derived from very small data sets.

The main concept behind sparse coding is to approximate an input signal as a linear combination

of a few components selected from a dictionary of basic elements, called atoms. We refer to adaptive

sparse coding when the coding is driven by data. In this case, we require a dictionary learning stage,

where the dictionary atoms are learnt (Olshausen and Fieldt, 1997; Yang et al., 2009; Wang et al.,

2010).

The motivations behind the use of image coding arise from biology: there is evidence that sim-

ilar signal coding happens in the neurons of the primary visual cortex (V1), which produces sparse

and overcomplete activations (Olshausen and Fieldt, 1997). From the computational point of view

the objective is to find an overcomplete model of images, unlike methods such as PCA, which
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Figure 1: Overview of the recognition system, where video segmentation and classification are per-

formed simultaneously.

aims at finding a number of components that is lower than the data dimensionality. Overcomplete

representation techniques have become very popular in applications such as denoising, inpainting,

super-resolution, segmentation (Elad and Aharon, 2006; Mairal et al., 2008b,a) and object recogni-

tion (Yang et al., 2009). In this work we assess their effectiveness also for gesture recognition. Let

X = [x1, . . . ,xm] ∈ R
n×m be the matrix whose m columns xi ∈ R

n are the feature vectors. The goal

of adaptive sparse coding is to learn a dictionary D (a n×d matrix, with d the dictionary size and n

the feature vector size) and a code U (a d ×m matrix) that minimize the reconstruction error:

min
D,U

‖X−DU‖2
F +λ‖U‖1, (1)

where ‖·‖F is the Frobenius norm. As for the sparsity, it is known that the L1-norm yields to sparse

results while being robust to signals perturbations. Other penalties such as the L0-norm could be

employed, however the problem of finding a solution becomes NP-hard and there is no guarantee

that greedy algorithms reach the optimal solution. Notice that fixing U, the above optimization

reduces to a least square problem, whilst, given D, it is equivalent to linear regression with the

sparsifying norm L1. The latter problem is referred to as a feature selection problem with a known

dictionary (Lee et al., 2007). One of the most efficient algorithms that converges to the optimal

solution of the problem in Equation 1 for a fixed D, is the feature-sign search algorithm (Lee et al.,

2007). This algorithm searches for the sign of the coefficients U; indeed, considering only non-

zero elements the problem is reduced to a standard unconstrained quadratic optimization problem

(QP), which can be solved analytically. Moreover it performs a refinement of the signs if they are

incorrect. For the complete procedure we refer the reader to Lee et al. (2007).

In the context of recognition tasks, it has been proved that a sparsification of the data repre-

sentation improves the overall classification accuracy (see for instance Guyon and Elisseeff, 2003;

Viola and Jones, 2004; Destrero et al., 2009 and references therein). In this case sparse coding is

often cast into a coding-pooling scheme, which finds its root in the Bag of Words paradigm. In

this scheme a coding operator is a function f (xi) = ui that maps xi to a new space ui ∈ R
k; when

k > n the representation is called overcomplete. The action of coding is followed by a pooling stage,

whose purpose is to aggregate multiple local descriptors in a single and global one. Common pool-

ing operators are the max operator, the average operator, or the geometric Lp-norm pooling operator

(Feng et al., 2011). More in general, a pooling operator takes the codes located in S regions—for
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Figure 2: Region of Interest detection. Left: RGB video frames. Center: depth frames. Right: the

detected ROI.

instance cells of the spatial pyramid, as in Yang et al. (2009)—and builds a succinct representation.

We define as Ys the set of locations within the region s. Defining the pooling operator as g, the

resultant feature can be rewritten as: p(s) = g(i∈Ys)(u(i)). After this stage, a region s of the image

is encoded with a single feature vector. The final descriptor of the image is the concatenation of

the descriptors ps among all the regions. Notice that the effectiveness of pooling is subject to the

coding stage. Indeed, if applied on non-coded descriptors, pooling would bring to a drastic loss of

information.

4. Action Recognition System

In this section we describe the versatile real-time action recognition system we propose. The system,

depicted in Figure 1, consists of three layers, that can be summarized as follows:

• Region Of Interest detection: we detect a Region of Interest (ROI), where the human subject

is actually performing the action. We use the combination of motion and depth to segment

the subject from the background.

• Action Representation: each ROI within a frame is mapped into a feature space with a

combination of 3D Histogram of Flow (3DHOF) and Global Histogram of Oriented Gradient

(GHOG) on the depth map. The resultant 3DHOF+GHOG descriptor is processed via a sparse

coding step to compute a compact and meaningful representation of the performed action.

• Action Learning: linear SVMs are used on frame buffers. A novel on-line video segmen-

tation algorithm is proposed which allows isolating different actions while recognizing the

action sequence.

4.1 Region Of Interest Segmentation

The first step of each action recognition system is to identify correctly where in the image the

action is occurring. Most of the algorithms in the literature involve background modeling techniques
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(Stauffer and Grimson, 1999), or space-time image filtering in order to extract the interesting spatio-

temporal locations of the action (Laptev and Lindeberg, 2003). Other approaches require an a

priori knowledge of the body pose (Lv and Nevatia, 2007). This task is greatly simplified in our

architecture, since in human-machine interaction we can safely assume the human to stand in front

of the camera sensors and that there is no other motion in the scene. For each video in the data set,

we initially compute the frame differences within consecutive frames in a small buffer, obtaining

the set P of pixels that are moving. Relying on this information, we compute the mean depth

µ of the pixels belonging to P, which corresponds to the mean depth of the subject within the

considered buffer. Thus, for the rest of the video sequence, we select the region of interest as

ROI(t) = {pi, j(t) : µ− ε ≤ d(pi, j(t)) ≤ µ+ ε}, where d(pi, j(t)) is the depth of the pixel pi, j(t) at

time t and ε is a tolerance value. In Figure 2 examples of segmentation are shown. We determined

empirically that this segmentation procedure achieves better performance with respect to classic

thresholding algorithms such as Otsu’s method (Otsu, 1979).

4.2 Action Representation

Finding a suitable representation is the most crucial part of any recognition system. Ideally, an

image representation should be both discriminative and invariant to image transformations. A dis-

criminative descriptor should represent features belonging to the same class in a similar way, while

it should show low similarity among data belonging to different classes. The invariance property,

instead, ensures that image transformations such as rotation, translation, scaling do not affect the

final representation. In practice, there is a trade-off between these two properties (Varma and Ray,

2007): for instance, image patches are highly discriminative but not invariant, whereas image his-

tograms are invariant but not discriminative, since different images could be associated to the same

representation. When a lot of training data is provided, one could focus on a more discriminative

and less invariant descriptor. In our specific case however, where only one training example is pro-

vided, invariance is a necessary condition in order to provide discriminant features; this aspect is

greatly considered in our method.

From the neuroscience literature it is known that body parts are represented already in the early

stages of human development (Mumme, 2001) and that certainly adults have prior knowledge on the

body appearance. Many suggests that motion alone can be used to recognize actions (Bisio et al.,

2010). In artificial systems this developmental-scale experience is typically not available, although

actions can still be represented from two main cues: motion and appearance (Giese and Poggio,

2003). Although many variants of complex features describing human actions have been proposed,

many of them imply computationally expensive routines. Differently, we rely on simple features

in order to fulfill real-time requirements, and we show that they still have a good discriminative

power. In particular we show that a combination of 3D Histograms of Flow (3DHOFs) and Global

Histograms of Gradient (GHOGs) models satisfactorily human actions. When a large number of

training examples is available, these two features should be able to describe a wide variety of actions,

however in one-shot learning scenarios with noisy inputs, they are not sufficient. In this respect,

a sparse representation, which keeps only relevant and robust components of the feature vector,

greatly simplifies the learning phase making it equally effective.
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Figure 3: The figure illustrates high level statistics obtained by the proposed scene flow description

(3D-HOFs). Starting from the left we show the histogram of the scene flow directions

at time t, for a moving hand going on the Right, Le f t, Forward, Backward respectively.

Each cuboid represents one bin of the histogram, for visualization purposes we divided

the 3D space in n×n×n bins with n = 4. Filled cuboids represent high density areas.

4.2.1 3D HISTOGRAM OF FLOW

Whereas 2D motion vector estimation has been largely investigated and various fast and effective

methods are available today (Papenberg et al., 2006; Horn and Shunk, 1981), the scene flow compu-

tation (or 3D motion field estimation) is still an active research field due to the required additional

binocular disparity estimation problem. The most promising works are the ones from Wedel et al.

(2010), Huguet and Devernay (2007) and Cech et al. (2011); however these algorithms are compu-

tationally expensive and may require computation time in the range of 1.5 seconds per frame. This

high computational cost is due to the fact that scene flow approaches try to estimate both the 2D

motion field and disparity changes. Because of the real-time requirement, we opted for a simpler

and faster method that produces a coarser estimation, but is effective for our purposes.

For each frame Ft we compute the 2D optical flow vectors U(x,y, t) and V (x,y, t) for the x and

y components with respect to the previous frame Ft−1, via the Fanerbäck algorithm (Farnebäck,

2003). Each pixel (xt−1,yt−1) belonging to the ROI of the frame Ft−1 is reprojected in 3D space

(Xt−1,Yt−1,Zt−1) where the Zt−1 coordinate is measured through the depth sensor and Xt−1,Yt−1 are

computed by:

(

Xt−1

Yt−1

)

=











(xt−1 − x0)Zt−1

f

(yt−1 − y0)Zt−1

f











,

where f is the focal length and (x0,y0)
T is the principal point of the sensor. Similarly, we can

reproject the final point (xt ,yt) of the 2D vector representing the flow, obtaining another 3D vector

(Xt ,Yt ,Zt)
T . For each pixel of the ROI, we can define the scene flow as the difference of the two 3D

vectors in two successive frames Ft−1 and Ft :

D = (Ẋ ,Ẏ , Ż)T =

= (Xt −Xt−1,Yt −Yt−1,Zt −Zt−1)
T
.

Once the 3D flow for each pixel of the ROI at time t has been computed, we normalize it with respect

to the L2-norm, so that the resulting descriptors D1, . . . ,Dn (n pixels of the ROI) are invariant to the

overall speed of the action. In order to extract a compact representation we build a 3D Histogram
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of Flow (3DHOF) z(t) of the 3D motion vectors, where z(t) ∈ R
n1 and 3

√
n1 is the quantization

parameter of the space (i.e., the bin size). In addition we normalize each 3DHOF z(t) so that

∑ j z j(t) = 1; hence we guarantee that these descriptors are invariant to the subject of interest’s

scale.

Figure 3 shows that the movements toward different directions reveal to be linearly separable,

and the main directions are accurately represented: each cuboid represents one bin of the histogram,

and the 3D space is divided in n× n× n bins with n = 4. It is possible to notice how, in the Right

direction for example, all the filled bins lay on the semi-space defined by x< 0. Similar observations

apply all cases.

4.2.2 GLOBAL HISTOGRAM OF ORIENTED GRADIENT

In specific contexts, motion information is not sufficient to discriminate actions, and information

on the pose or appearance becomes crucial. One notable example is the American Sign Language

(ASL), whose lexicon is based mostly on the shape of the hand. In these cases modeling the shape

of a gesture as well as its dynamics is very important. Thus we extend the motion descriptor with

a shape feature computed on the depth map. If we assume the subject to be in front of the camera,

it is unlikely that the perspective transformation would distort his/her pose, shape or appearance,

therefore we can approximately work with invariance to translation and scale. We are interested

in characterizing shapes, and the gradient of the depth stream shows the highest responses on the

contours, thus studying the orientation of the gradient is a suitable choice. The classical Histograms

of Oriented Gradient (HOGs) (Dalal and Triggs, 2005) have been designed for detection purposes

and do not show the above-mentioned invariance; indeed dividing the image in cells makes each sub-

histogram dependent on the location and the dimension of the object. Furthermore, HOGs exhibit

a high spatial complexity, as the classical HOG descriptor belongs to R
(ncells×nblocks×n2). Since we

aim at preserving such invariance as well as limiting the computational complexity, we employed a

simpler descriptor, the Global Histogram of Oriented Gradient (GHOG). This appearance descriptor

produces an overall description of the appearance of the ROI without splitting the image in cells.

We compute the histogram of gradient orientations of the pixels on the entire ROI obtained from

the depth map to generate another descriptor h(t) ∈ R
n2 , where n2 is the number of bins. The scale

invariance property is preserved normalizing the descriptor so that ∑ j h j(t) = 1. Computing this

descriptor on the depth map is fundamental in order to remove texture information; in fact, in this

context, the only visual properties we are interested in are related to shape.

4.2.3 SPARSE CODING

At this stage, each frame Ft is represented by two global descriptors: z(t) ∈ R
n1 for the motion

component and h(t) ∈ R
n2 for the appearance component. Due to the high variability of human

actions and to the simplicity of the descriptors, a feature selection stage is needed to catch the

relevant information underlying the data and discarding the redundant ones such as background or

body parts not involved in the action; to this aim we apply a sparse coding stage to our descriptor.

Given the set of the previously computed 3DHOFs Z = [z(1), . . . ,z(K)], where K is the number

of all the frames in the training data, our goal is to learn one motion dictionary DM (a n1×d1 matrix,

with d1 the dictionary size and n1 the motion vector size) and the codes UM (a d1 ×K matrix)

that minimize the Equation 1, so that z(t) ∼ DMuM(t). In the same manner, we define the equal

optimization problem for a dictionary DG (a n2 ×d2 matrix) and the codes UG (a d2 ×K matrix) for
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Figure 4: The figure illustrates on the left the SVMs scores (Equation 2) computed in real-time at

each time step t over a sequence of 170 frames. On the right the standard deviation of

the scores and its mean computed on a sliding window are depicted. The local minima of

the standard deviation function are break points that define the end of an action and the

beginning of another one. See Section 4.3.2 for details.

the set of GHOGs descriptors H = [h(1), . . . ,h(K)]. Therefore, after the Sparse Coding stage, we

can describe a frame as a code u(i), which is the concatenation of the motion and appearance codes:

u(i) = [uM(i),uG(i)].

Notice that we rely on global features, thus we do not need any pooling operator, which is

usually employed to summarize local features into a single one.

4.3 Learning and Recognition

The goal of this phase is to learn a model of a given action from data. Since we are implementing

a one-shot action recognition system, the available training data amounts to one training sequence

for each action of interest. In order to model the temporal extent of an action we extract sets of

sub-sequences from a sequence, each one containing T adjacent frames. In particular, instead of

using single frame descriptors (described in Section 4.2), we move to a concatenation of frames: a

set of T frames is represented as a sequence [u(1), . . . ,u(T )] of codes. This representation allows

us to perform simultaneously detection and classification of actions.

The learning algorithm we adopt is the Support Vector Machine (SVM) (Vapnik, 1998). We

employ linear SVMs, since they can be implemented with constant complexity during the test phase

fulfilling real-time requirements (Fan et al., 2008). Additionally, recent advances in the object

recognition field, such as Yang et al. (2009), showed that linear classifiers can effectively solve the

classification problem if a preliminary sparse coding stage has previously been applied. Our exper-

iments confirm these findings. Another advantage of linear SVMs is that they can be implemented

with a linear complexity in training (Fan et al., 2008); given this property, we can provide a real-time

one-shot learning procedure, extremely useful in real applications.

The remainder of the section describes in details the two phases of action learning and action

recognition.
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Figure 5: The figure illustrates only the scores of the recognized actions via the method described

in Section 4.3.2. Blue dots are the break points computed by the video segmentation

algorithm that indicate the end of an action and the beginning of a new one.

4.3.1 ACTION LEARNING

Given a video Vs of ts frames, containing only one action As, we compute a set of descriptors

[u(1), . . . ,u(ts)] as described in Section 4.2. Then, action learning is carried out on a set of data that

are descriptions of a frame buffer BT (t), where T is its length:

BT (t) = (u(t −T ), . . . ,u(t −1),u(t))T
.

We use a one-versus-all strategy to train a binary linear SVM for each class As, so that at the end

of the training phase we obtain a set of N linear SVM classifiers f1(B̄), . . . , fN(B̄), where N is the

number of actions. In particular, in this one-shot learning pipeline, the set of buffers

Bs = [BT (t0), . . . ,BT (ts)]

computed from the single video Vs of the class As are used as positive examples for the action As.

All the buffers belonging to A j with j 6= s are the negative examples. Although we use only one

example for each class, we benefit from the chosen representation: indeed, descriptors are computed

per frame, therefore one single video of length ts provides a number of examples equal to ts − T

where T is the buffer size. Given the training data {B,y} where B is the set of positive and negative

examples for the primitive As, yi = 1 if the example is positive, yi =−1 otherwise, the goal of SVM

is to learn a linear function (wT ,b) such that a new test vector B̄ is predicted as:

ypred = sign( f (B̄)) = sign(wTB̄+b).

4.3.2 ON-LINE RECOGNITION: VIDEO SEGMENTATION

Given a test video V , which may contain one or more known actions, the goal is to predict the

sequence of the performed actions. The video is analyzed using a sliding window BT (t) of size T .

We compute the output score fi(BT (t)) of the i = 1, . . . ,N SVM machines for each test buffer BT (t)
and we filter these scores with a low-pass filter W that attenuates noise. Therefore the new score at
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time t becomes:

Hi(BT (t)) =W ⋆ fi(BT (t)) i = 1, . . . ,N, (2)

where the ⋆ is the convolution operator. Figure 4 depicts an example of these scores computed

in real-time. As long as the scores evolve we need to predict (on-line) when an action ends and

another one begins; this is achieved computing the standard deviation σ(H) for a fixed t over all the

scores Ht
i (Figure 4, right chart). When an action ends we can expect all the SVM output scores

to be similar, because no model should be predominant with respect to idle states; this brings to a

local minimum in the function σ(H). Therefore, each local minimum corresponds to the end of an

action and the beginning of a new one. Let n be the number of local minima computed from the

standard deviation function; there will be n+ 1 actions, and in particular actions with the highest

score before and after each break point will be recognized. We can easily find these minima in

real-time: we calculate the mean value of the standard deviation over time using a sliding window.

When the standard deviation trend is below the mean, all the SVMs scores predict similar values,

hence it is likely that an action has just ended. In Figure 5 the segmented and recognized actions

are shown together with their scores.

5. Experiments

In this section we evaluate the performance of our system in three different settings:

• ChaLearn Gesture Data Set. The first experiment has been conducted on a publicly avail-

able data set, released by ChaLearn (, CGD2011). The main goal of the experiment is to

compare our method with other techniques.

• Kinect Data. In the second experiment we discuss how to improve the recognition rate using

all the functionalities of a real Kinect sensor. Gestures with high level of detail are easily

caught by the system.

• Human-Robot Interaction. For the last experiment we considered a real HMI scenario: we

implement the system on a real robot, the iCub humanoid robot (Metta et al., 2008), showing

the applicability of our algorithm also in human-robot interaction settings.

For the computation of the accuracy between a sequence of estimated actions and the ground truth

sequence we use the normalized Levenshtein Distance (Levenshtein, 1966), defined as:

TeLev =
S+D+ I

M
,

where each action is treated as a symbol in a sequence, S is the number of substitutions (misclassi-

fications), D the number of deletions (false negatives), I the number of insertions (false positives)

and M the length of the ground truth sequence. More specifically, this measure computes the min-

imum number of modifications that are required to transform a sequence of events in another one.

It is widely used in speech recognition contexts, where each symbol represents an event. In action

and gesture recognition, when sequences of gestures are to be evaluated, the Levenshtein Distance

shows to be a particularly suitable metric, as it allows accounting not only for the single classifier

accuracy, but also for the capability of the algorithm to accurately distinguish different gestures in a

sequence (Minnen et al., 2006).
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Figure 6: On the left examples of 2 different batches from the ChaLearn Data Set (, CGD2011).

On the right the overall Levenshtein Distance computed in 20 batches with respect to

the buffer size parameter is depicted for both 3DHOF+GHOG features and descriptors

processed with sparse coding.

We empirically choose a quantization parameter for the 3DHOF, n1 equal to 5, n2 = 64 bins for

the GHOG descriptor, and dictionary sizes d1 and d2 equal to 256 for both motion and appearance

components. This led to a frame descriptor of size 189 for simple descriptors, which increases to

512 after the sparse coding processing. The whole system runs at 25fps on 2.4Ghz Core 2 Duo

Processor.

5.1 ChaLearn Gesture Data Set

We firstly assess our method on the ChaLearn data set for the One-Shot Gesture Recognition Chal-

lenge (Guyon et al., 2012), see Figure 6. The data set is organized in batches, where each batch

includes 100 recorded gestures grouped in sequences of 1 to 5 gestures arbitrarily performed at dif-

ferent speeds. The gestures are drawn from a small vocabulary of 8 to 15 unique gestures called

lexicon, which is defined within a batch. For each video both RGB and Depth streams are provided,

but only one example is given for the training phase. In our experiments we do not use information

on the body pose of the human. We consider the batches from devel 01 to devel 20; each batch has

47 videos, where L (the lexicon size) videos are for training and the remaining are used as test data.

The main parameter of the system is the buffer size T , however in Figure 6 it is possible to

notice that the parameter offers stable performances with a buffer range of 1− 20, so it does not

represent a critical variable of our method. Furthermore, high performance for a wide buffer length

range imply that our framework is able to handle different speeds implicitly. We compute the

Levenshtein Distance as the average over all the batches, which is 25.11% for features processed

with sparse coding, whereas simple 3DHOF+GHOG descriptors without sparse coding lead to a

performance of 43.32%. Notably, each batch has its own lexicon and some of them are composed

of only gestures performed by hand or fingers; in these cases, if the GHOG is computed on the entire

ROI, the greatest contribution of the histogram comes from the body shape, whilst finger actions

(see Figure 2, bottom row) represent a poor percentage of the final descriptor. If we consider batches

where the lexicon is not composed of only hand/fingers gestures, the Levenshtein Distance reduces

to 15%.

We compared our method with several approaches. First of all a Template Matching technique,

where we used as descriptor the average of all depth frames for each action. The test video is split in
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Method TeLev TeLen

Sparse Representation (proposed) 25.11% 5.02%

3DHOF + GHOG 43.32% 9.03%

Template Matching 62.56% 15.12%

DTW 49.41% Manual

Manifold LSR (Lui, 2012) 28.73% 6.24%

MHI (Wu et al., 2012) 30.01% NA

Extended-MHI (Wu et al., 2012) 26.00% NA

BoVW (Wu et al., 2012) 72.32% NA

2D FFT-MHI (Mahbub et al., 2011) 37.46% NA

TBM+LDA (Malgireddy et al., 2012) 24.09% NA

Table 1: Levenshtein Distance on the ChaLearn Gesture Data Set. For SVM classification we chose

the appropriate buffer size for each batch according to the defined lexicon. TeLev is the

Levenshtein Distance, TeLen is the average error (false positives + false negatives) made

on the number of gestures (see text).

slices estimated using the average size of actions. In the recognition phase we classify each slice of

the video comparing it with all the templates. The overall Levenshtein Distance becomes 62.56%.

For the second comparison we employ Dynamic Time Warping (DTW) method (Sakoe and Chiba,

1978) with 3DHOF + GHOG features. We manually divided test videos in order to facilitate the

recognition for DTW; nevertheless the global Levenshtein Distance is 49.41%. Finally we report

the results presented in some recent works in the field, which exploit techniques based on manifolds

(Lui, 2012), Motion History Image (MHI) (Wu et al., 2012), Bag of Visual Words (BoVW) (Wu

et al., 2012), 2D FFT-MHI (Mahbub et al., 2011) and Temporal Bayesian Model (TBM) with Latent

Dirichlet Allocation (LDA) (Malgireddy et al., 2012).

Table 1 shows that most of the compared approaches are outperformed by our method except for

Malgireddy et al. (2012); however the method proposed by Malgireddy et al. (2012) has a training

computational complexity of O(n×k2) for each action class, where k is the number of HMM states

and n the number of examples, while the testing computational complexity for a video frame is

O(k2). Thanks to the sparse representation, we are able to use linear SVMs, which reduce the

training complexity with respect to the number of training examples to O(n× d) for each SVM,

where d is the descriptor size. In our case d is a constant value fixed a priori, and does not influence

the scalability of the problem. Therefore we may approximate the asymptotic behavior of the SVM

in training to O(n). Similarly, in testing the complexity for each SVM is constant with respect

to the number of training examples when considering a single frame, and it becomes O(N) for

the computation of all the N class scores. This allows us to provide real-time training and testing

procedures with the considered lexicons.

Furthermore our on-line video segmentation algorithm shows excellent results with respect to

the temporal segmentation used in the compared frameworks; in fact it is worth noting that the

proposed algorithm leads to an action detection error rate TeLen = FP+FN
M

equal to 5.02%, where

FP and FN are false positives and false negatives respectively, and M is the number of all test
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gestures. Considering the final results of the ChaLearn Gesture Challenge (Round 1),1 we placed

9th over 50 teams, but our method also fulfills real-time requirements for the entire pipeline, which

was not a requirement of the challenge.

5.1.1 MOTION VS APPEARANCE

In this section we evaluate the contribution of the frame descriptors. In general we notice that the

combination of both motion and appearance descriptors leads to the best results when the lexicon

is composed of actions where both motion and appearance are equally important. To show this, we

considered the 20 development batches from the ChaLearn Gesture Data Set. For this experiment,

we used only coded descriptors, since we have already experienced that they obtain higher perfor-

mance. Using only the motion component, the Levenshtein Distance is equal to 62.89%, whereas

a descriptor based only on the appearance leads to an error of 34.15%. The error obtained using

only the 3DHOF descriptors was expected, due to the nature of the lexicons chosen: indeed in most

gestures the motion component has little significance. Considering instead batch devel 01, where

motion is an important component in the gesture vocabulary, we have that 3DHOF descriptors lead

to a Levenshtein Distance equal to 29.48%, the GHOG descriptors to 21.12% and the combination

is equal to 9.11%. Results are consistent with previous findings, but in this specific case the gap

between the motion and the appearance components is not critical.

5.1.2 LINEAR VS NON-LINEAR CLASSIFIERS

In this section we compare the performances of linear and non linear SVM for the action recognition

task. The main advantage of a linear kernel is the computational time: non-linear SVMs have a worst

case training computational complexity per class equal to O(n3 ×d) against the O(n×d) of linear

SVMs, where n is the number of training examples, and d is the descriptor size. In testing, non linear

SVMs show computational complexity of O(n×d) per frame, since the number of support vectors

grows linearly with n. Moreover, non-linear classifiers usually require additional kernel parameter

estimation, which especially in one-shot learning scenarios is not trivial. Contrarily, linear SVMs

take O(d) per frame. For this experiment we used coded features where both motion and appearance

are employed. A non-linear SVM with RBF Kernel has been employed, where the kernel parameter

and the SVM regularization term have been chosen empirically after 10 trials on a subset of the

batches. The Levenshtein Distance among the 20 batches is 35.11%; this result confirms that linear

classifiers are sufficient to obtain good results with low computational cost if an appropriate data

representation, as the one offered by sparse coding, is adopted.

5.2 Kinect Data Set

In this section we assess the ability of our method to recognize more complex gestures captured by a

Kinect for Xbox 360 sensor. In Section 5.1, we noted that the resolution of the proposed appearance

descriptor is quite low and may not be ideal when actions differ by small details, especially on the

hands, therefore a localization of the interesting parts to model would be effective. The simplest way

to build in this specific information is to resort to a body part tracker; indeed, if a body tracker were

available it would have been easy to extract descriptors from different limbs and then concatenate

all the features to obtain the final frame representation. An excellent candidate to provide a reliable

1. The leaderboard website is: https://www.kaggle.com.
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Figure 7: On the right and bottom the two vocabularies used in Section 5.2; these gestures are

difficult to model without a proper body tracker, indeed the most contribution for the

GHOG comes from the body shape rather than the hand. On the left the Levenshtein

Distance.

body tracker is Microsoft Kinect SDK, which implements the method in Shotton et al. (2011). This

tool retrieves the 20 principal body joints position and pose of the user’s current posture. Given these

positions, we assign each 3D point of the ROI to its nearest joint, so that it is possible to correctly

isolate the two hands and the body from the rest of the scene (see Figure 7). Then, we slightly modify

the approach, computing 3DHOF and GHOG descriptors on three different body parts (left/right

hand and whole body shape); the final frame representation becomes the concatenation of all the

part descriptors. As for the experiments we have acquired two different sets of data (see Figure 7):

in the first one the lexicon is composed of numbers performed with fingers, in the second one we

replicate the lexicons devel 3 of the ChaLearn Gesture Data Set, the one where we obtained the

poorest performances. In Figure 7 on the left the overall accuracy is shown; using sparse coding

descriptors computed only on the body shape we obtain a Levenshtein Distance around 30%. By

concatenating descriptors extracted from the hands the system achieves 10% for features enhanced

with sparse coding and 20% for normal descriptors.

We compared our method with two previously mentioned techniques: a Template Matching

algorithm and an implementation of the Dynamic Time Warping approach (Sakoe and Chiba, 1978).

The resulted Levenshtein Distance is respectively 52.47% and 42.36%.

5.3 Human-Robot Interaction

The action recognition system has been implemented and tested on the iCub, a 53 degrees of free-

dom humanoid robot developed by the RobotCub Consortium (Metta et al., 2008). The robot

is equipped with force sensors and gyroscopes, and it resembles a 3-years old child. It mounts

two Dragonfly cameras, providing the basis for 3D vision, thus after an offline camera calibration

procedure we can rely on a full stereo vision system; here the depth map is computed following

Hirschmuller (2008). In this setting the action recognition system can be used for more general pur-

poses such as Human-Robot-Interaction (HRI) or learning by imitation tasks. In particular our goal

is to teach iCub how to perform simple manipulation tasks, such as move/grasp an object. In this

sense, we are interested in recognizing actions related to the arm-hand movements of the robot. We

define 8 actions, as shown in Figure 8, bottom row, according to the robot manipulation capabilities.
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Figure 8: Accuracy for actions sequences (see bottom row). We evaluated the performance on more

than 100 actions composed of sequences of 1 to 6 actions.

Each action is modeled using only the motion component (3DHOF), since we want the descriptor

to be independent on the particular object shape used.

In Figure 8 we show the accuracy based on the Levenshtein Distance; this measure has been

calculated on more than 100 actions composed of sequences of 1 to 6 actions. Notably the error

is less than 10%; these good results were expected due to the high discriminative power of the

3DHOFs (Figure 3) on the chosen lexicon, which leads to a linearly separable set.

6. All Gestures You Can: a Real Application

As pointed out in the previous sections, our approach was designed for real applications where real-

time requirements need to be fulfilled. We developed and implemented a “game” against a humanoid

robot, showing the effectiveness of our system in a real HRI setting: “All Gestures You Can” (Gori

et al., 2012), a game aiming at improving memory skills, visual association and concentration.

Our game takes inspiration from the classic “Simon” game; nevertheless, since the original version

has been often defined as “visually boring”, we developed a revisited version, based on gesture

recognition, which involves a “less boring” opponent: the iCub (Metta et al., 2008). Both the human

and the robot have to take turns and perform the longest possible sequence of gestures by adding

one gesture at each turn: one player starts performing a gesture, the opponent has to recognize the

gesture, imitate it and add another gesture to the sequence. The game is carried on until one of

the two players loses: the human player can lose because of limited memory skills, whereas the

robot can lose because the gesture recognition system fails. As described in the previous sections,

the system has been designed for one-shot learning; however, Kinect does not provide information

about finger configuration, therefore a direct mapping between human fingers and the iCub’s ones

is not immediate. Thus we set a predefined pool of 8 gestures (see Figure 9, on the left). The

typical game setting is shown in Figure 10: the player stays in front of the robot while performing

gestures that are recognized with Kinect. Importantly, hand gestures cannot be learned exploiting

the Skeleton Data of Kinect: the body tracker detects the position of the hand and it is not enough

to discriminate more complicate actions,—for example, see gesture classes 1 and 5 or 2 and 6 in

Figure 9.
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Figure 9: On the left the hand gestures. The vision system has been trained using 8 different actors

performing each gesture class for 3 times. On the right the game architecture. There are

three main modules that take care of recognizing the action sequence, defining the game

rules and making the robot gestures.

The system is simple and modularized as it is organized in three components (see Figure 9)

based on the iCub middleware, YARP (Metta et al., 2006), which manages the communication be-

tween sensors, processors, and modules. The efficiency of the proposed implementation is assured

by its multithreading architecture, which also contributes to real-time performances. The software

presented in this section is available in the iCub repository.2

The proposed game has been played by more than 30 different players during the ChaLearn

Kinect Demonstration Competition at CVPR 2012.3 Most of them were completely naive without

prior knowledge about the gestures. They were asked to play using a lexicon that had been trained

specifically for the competition (Figure 9). After 50 matches we had 75% of robot victories. This

result indicates that the recognition system is robust also to different players performing variable

gestures at various speeds. 15% of the matches have been won by humans and usually they finished

during the first 3-4 turns of the game; this always occurred when players performed very different

gestures with respect to the trained ones. A few players ( 10% of matches) succeeded in playing

more than 8 turns, and they won due to recognition errors. “All Gestures You Can” ranked 2nd in

the ChaLearn Kinect Demonstration Competition.

7. Discussion

This paper presented the design and implementation of a complete action recognition system to be

used in real world applications such as HMI. We designed each step of the recognition pipeline to

function in real-time while maximizing the overall accuracy. We showed how a sparse action repre-

2. Code available at https://svn.code.sf.net/p/robotcub/code/trunk/iCub/contrib/src/

demoGestureRecognition.

3. The competition website is http://gesture.chalearn.org/

A YouTube video of our game is available at http://youtu.be/U_JLoe_fT3I.
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Figure 10: The first two turns of a match. Left: the human player performs the first gesture of the

sequence. Center: iCub recognized the gesture and imitates it. Right: iCub adds a new

random gesture to the sequence.

sentation could be effectively used for one-shot learning of actions in combination with conventional

machine learning algorithms (i.e., SVM), even if the latter would normally require a larger set of

training data. The comprehensive evaluation of the proposed approach showed that we achieve

good trade-off between accuracy and computation time. The main strengths of our learning and

recognition pipeline can be summarized as follows:

1. One-Shot Learning: one example is sufficient to teach an new action to the system; this is

mainly due to the effective per-frame representation.

2. Sparse Frame Representation: starting from a simple and computationally inexpensive de-

scription that combines global motion (3DHOF) and appearance (GHOG) information over a

ROI, subsequently filtered through sparse coding, we obtained a sparse representation at each

frame. We showed that these global descriptors are appropriate to model actions of the upper

body of a person.

3. On-line Video Segmentation: we propose a new, effective, reliable and on-line video seg-

mentation algorithm that achieved a 5% error rate on action detection on a set of 2000 actions

grouped in sequences of 1 to 5 gestures. This segmentation procedure works concurrently

with the recognition process, thus a sequence of actions is simultaneously segmented and

recognized.

4. Real-time Performances: the proposed system can be used in real-time applications, as it

does require neither a complex features processing nor a computationally expensive training

and testing phases. From the computational point of view the proposed approach scales well

even for large vocabularies of actions.

5. Effectiveness in Real Scenarios: our method achieves good performances in a Human-Robot

Interaction setting, where the RGBD images are obtained through binocular vision and dis-

parity estimation. For testing purposes, we proposed a memory game, called “All Gestures

You Can”, where a person can challenge the iCub robot on action recognition and sequencing.

The system ranked 2nd at the Kinect Demonstration Competition.4

4. The competition website is http://gesture.chalearn.org/.
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We stress here the simplicity of the learning and recognition pipeline: each stage is easy to imple-

ment and fast to compute. It is shown to be adequate to solve the problem of gesture recognition; we

obtained high-quality results while fulfilling real-time requirements. The approach is competitive

against many of the state-of-the-art methods for action recognition.

We are currently working on a more precise appearance description at frame level still under the

severe constraint of real-time performance; this would enable the use of more complex actions even

when the body tracker is not available.
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Abstract: It is well known that image representations learned through ad-hoc dictionaries improve the overall results
in object categorization problems. Following the widely accepted coding-pooling visual recognition pipeline,
these representations are often tightly coupled with a coding stage. In this paper we show how to exploit ad-
hoc representations both within the coding and the pooling phases. We learn a dictionary for each object class
and then use local descriptors encoded with the learned atoms to guide the pooling operator. We exhaustively
evaluate the proposed approach in both single instance object recognition and object categorization problems.
From the applications standpoint we consider a classical image retrieval scenario with the Caltech 101, as well
as a typical robot vision task with data acquired by the iCub humanoid robot.

1 Introduction

If, from a methodological point of view, image
categorization is considered by many the very essence
of computer vision, its applicative aspects are equally
important. The possible application domains are
countless and include industry, communications, en-
tertainment, robotics, just to name a few. Not only
object categorization is one of the hardest tasks of ar-
tificial intelligence, but also, in domains such automa-
tion and cognitive robotics, visual recognition is a cor-
nerstone of very complex systems that include many
other components — pose estimation, grasp, manipu-
lation (Collet et al., 2011; Taylor and Kleeman, 2003;
Ekvall et al., 2003; Gordon and Lowe, 2006). For
these reasons, in the last decades the problem of de-
signing effective visual representations for classifi-
cation tasks has been given considerable attention.
Since it is nowadays acknowledged recognition algo-
rithms can be more effectively trained from examples
than programmed, visual recognition has been tack-
led by both the computer vision and machine learning
communities.

An important result of this joint effort are the so-
called hierarchical representations which achieve re-
markable performances in complex visual recognition
tasks once they are used in combination with super-
vised learning algorithms – see for example (Lazeb-
nik et al., 2006; Wang et al., 2010). Despite the
good results obtained on benchmark and challenges,

the application of these approaches to real scenarios
is still limited. The goal of this paper is to propose
an effective image representation pipeline which is
able to generalize to different contexts: from com-
mon computer vision datasets oriented to image re-
trieval, e.g. Caltech-101 (Fei-Fei et al., 2004), to real
Human-Robot Interaction (HRI) scenarios (Fanello
et al., 2013a).
A very influential method for representing the im-
age content is the so-called Bag of Words (BoW)
paradigm (Csurka et al., 2004) (also referred to as Bag
of Keypoints) based on a vector quantization of local
keypoints. This approach has been extended by the
work of Lazebnik et al. (Lazebnik et al., 2006), which
introduces the Spatial Pyramid Representation (SPR)
to preserve the spatial configuration in images, and
leads to a very popular framework within the visual
recognition community.
In classification tasks, it is well known that the spar-
sity of data representations improves the overall clas-
sification accuracy (Fanello et al., 2013c; Viola and
Jones, 2004; Huang and Aviyente, 2008; Destrero
et al., 2009), therefore Yang et al. (Yang et al., 2009)
improve the spatial pyramid pipeline by replacing the
vector quantization procedure with a sparse coding
step. Different extensions to (Yang et al., 2009) have
been proposed in the recent literature (Boureau et al.,
2010; Boureau et al., 2011; Feng et al., 2011; Jia et al.,
2012; Russakovsky et al., 2012; Chen et al., 2012)
— all these methods being based on an unsupervised



Figure 1: General pipeline for a visual recognition system. We contribute to the Pooling Stage, where we apply a Dictionary
Based Pooling (DBP) operator.

learning of an ad hoc dictionary of atoms.
A recent line of research showed how dictionaries
learned according to discriminative strategies may
produce very effective image representations and
should be used if labeled data are available. In (Kong
and Wang, 2012; Fanello et al., 2013c) the discrimina-
tive strategies involve the coding stage of the pipeline.
In this paper we show that discriminative dictionaries
can be employed also during the pooling stage, yield-
ing to image representations with an increased dis-
criminative power. We start off from a low-level set
of feature descriptors and we learn ad-hoc dictionar-
ies in a discriminative manner. Then, we use these
dictionaries to identify the region of the images be-
longing to a particular class of objects. The regions
are then pooled together in order to obtain a compact
and meaningful descriptor of the image.
The rest of the paper is organized as follows: in Sec-
tion 2 we review the background of our work. In Sec-
tion 3 we describe the method we propose; experi-
ments, results and applications are presented in Sec-
tion 4, while Section 5 is left to a final discussion.

2 Background

In this section we review a classification pipeline
commonly used in literature for multi-class image
recognition (Lazebnik et al., 2006; Yang et al., 2009;
Boureau et al., 2011). This will set the basis to discuss
the contributions of our approach.

2.1 Visual Recognition Pipeline

A general visual recognition pipeline based on the use
of coding and pooling techniques can be divided in
four main stages, as depicted in Fig. 1:

Local Features Extraction. The input image is first
described with a set of local features {xi}M

i=1. Very
popular examples are image patches, SIFT (Lowe,
2004), or SURF (Bay et al., 2008) (either sparse or
dense). Taking inspiration from (Fei-fei and Perona,
2005), in this work we compute SIFT descriptors on
a regular grid of image locations, thus each image is
represented with M descriptors xi ∈Rd , with d = 128.

Feature Coding. It is based on the use of a fixed
or data-driven dictionary D of K atoms. The goal is
to associate each image feature xi ∈ Rd with a code
ui ∈ RK estimated as:

ui =argmin
u
‖xi−Du‖2

F +λR(u)

s.t. C(u)
(1)

where ‖·‖F is the Frobenius norm, and C is a (pos-
sible) constraint. Vector Quantization (VQ) (Lazeb-
nik et al., 2006), Sparse Coding (SC) (Yang et al.,
2009) and Locality-constrained Linear Coding (LLC)
(Wang et al., 2010) are popular examples of coding
methods, that mainly differ in the choice of regular-
ization term R(u) and constraints C(u). Following
(Fanello et al., 2013c), in this work we use Sparse
Coding with ad-hoc dictionaries learned from the data
(Sec. 2.2).

Feature Pooling. A common approach to overcome
the locality of codes ui relies on the definition of a
pooling operator g that combines the contributions
of multiple image locations. Often, this operator
takes the codes located at S overlapping regions (e.g.
cells of the spatial pyramid), and for each region
pools the information in a single vector φs ∈ RK ,
φs = g(i∈Ys)(ui), where Ys denotes the set of locations
within the region s. The image is finally represented



Figure 2: Visual intuition of the Dictionary Based Pooling
operator. For each image we compute the weights of the N
classes related to each code ui, i = 1, . . . ,M. All the codes
are weighted according to the considered class. The max
pooling operator will select only relevant features for the
considered image.

with a descriptor zs ∈ RK×S which is the concatena-
tion of all φs. Examples of popular pooling opera-
tors are average pooling and max pooling. In this pa-
per, we propose instead the use of a pooling opera-
tor which is guided by the discriminative dictionaries
(Sec. 3).

Image Classification. The image descriptor is the
input of a final classification step. It has been shown
that sparse coding is very effective if combined with a
linear classifier (Yang et al., 2009), leading to com-
putationally efficient approaches. In what follows,
we adopt a linear Support Vector Machines (Vapnik,
1998) following a one-vs-all strategy.

2.2 Discriminative Adaptive Sparse
Coding

Our approach to sparse coding relies on learning dis-
criminative dictionaries. We follow the method pro-
posed in (Fanello et al., 2013c). In the remainder of
this section we briefly recall the procedure, referring
the interested reader to (Fanello et al., 2013c) for fur-
ther details.
Let us consider a multi-class problem with N classes
(objects) and let Xp = [x1, . . . ,xmp ] be the d ×
mp matrix whose columns are the training vectors
of the p − th class. Also, let us define Xp

=
[X1,X2, . . . ,Xp−1,Xp+1, . . . ,XN ] to be the concatena-
tion of the training matrices of all other classes q 6= p.
Dictionary learning is based on the minimization of
the functional:

E = ||Xp−DpUp||2F + ||Xp−DpUp||2F+
+λ||Up||1 +µ||Up||2

(2)

with respect to Dp,Up and Up. Dp is the d×K dic-
tionary of class p, Up ∈ RK×mp

is the codes matrix
of class p, while Up ∈ RK×mp

, with mp = ∑
N
q=1 mq,

q 6= p, are the coefficients related to all other classes.
In essence, when learning the dictionary of class p,
features belonging to it are constrained to have a
sparse representation thanks to the l1-penalty term,
while features of all other classes are forced to be as-
sociated with a more dense and smooth code vector.
λ and µ are the regularization parameters allowing to
control the importance of the two contributions.
As a consequence, features belonging to class p have
a higher response if encoded with dictionary Dp rather
than any other dictionary Dq, q 6= p, leading to a very
discriminative representation.

3 Dictionary Based Pooling (DBP)

The use of feature dictionary is usually limited to
the coding stage of the object classification pipeline.
In this work, instead, we propose to extend their use
to the pooling stage, exploiting their discriminative
power.
Similarly to (Fanello et al., 2013c), we consider a
global dictionary D = [D1, . . .DN ], of size d × KG,
where KG = K×N, composed as the concatenation of
all discriminative dictionaries previously computed.
A feature x ∈ Rd can be decomposed with respect to
dictionary and codes as x ' Du, with u a KG column
vector.
We can interpret each element of code u as the rele-
vance of each atom in the linear combination. Since
we know the correspondence between atoms of the
dictionary and classes, u can be seen as a concatena-
tion of blocks, each one including the responses of a
dictionary:

uT = [(u1)T, . . . ,(uN)T]; (3)

where up is a K-ary vector representing the response
of the p-th dictionary.
We evaluate the strength wp of code u with respect to
class p as

wp(u) =
K

∑
j=1
|u( j)p| (4)

where u( j)p denotes the j-th element of codes block
of class p.
As observed in the previous section, highest values
in u, and consequently in w, should directly denote a
particular affinity with the corresponding class. We
thus adopt these measures as weights within a pool-
ing operator working on a partition of the codes space
{Xp}N

p=1, induced by the association of codes with



Figure 3: The iCubWorld 1.0 Dataset. Samples of the 7
classes collected for the robot (top strip) and human (bottom
strip) datasets.

classes. Pooling is performed in each state of the par-
tition according to the following

g(i∈X p)(ui) = max
i
(wp

i (ui) ·ui) ∀p = 1, . . . ,N (5)

The weight wp
i represents a confidence measuring

how likely is that the code ui has been observed in
class p. Roughly speaking, they evaluate how much a
given class is able to “see” in a particular image. Fig.
2 shows a visual representation of this principle. On
the right, in particular, we report an image depicting
a tennis ball as “seen” by its true class (above) and
by the accordion class. Weights associated with the
correct class are clearly higher.
For each image, we can finally build a representa-
tion zn ∈ RKG×N that is the concatenation of all the
weighted responses followed by the max pooling op-
erator.

Combining the Spatial Layout and the Dictionary
Based Pooling. The spatial pyramid representation
leads to an image descriptor zs ∈ RKG×S, with S the
number of the pyramid cells (see Sec. 2.1), while
the proposed DBP generates a descriptor zn ∈RKG×N .
The final image representation z will be the concate-
nation of the two vectors: z = [zs,zn] ∈ RKG×(S+N).
It is common practice to normalize the data before
classification, and as a consequence the descriptors
become more peaky around zero. It has been exper-
imentally observed the benefit of using a power nor-
malization (Perronnin et al., 2010). Each component
of both zs and zn are exposed to the following power
normalization:

zs = sign(zs)|zs|α

zn = sign(zn)|zn|α
(6)

where 0≤ α≤ 1, in our experiments we set α = 0.5.
This is basically an explicit mapping to another fea-
ture space, where the highest code responses have less
impact in the descriptor.

4 Experiments

In this section we validate the proposed dictionary
based pooling method. We consider three datasets:

iCub World 1.0, iCubWorld Categorization1 and a
subset of the Caltech-101 (Fei-Fei et al., 2004). We
compare our approach with state of the art methods
(Yang et al., 2009; Fanello et al., 2013c), with the
goal of showing that our pooling stage can improve
the overall performances. We denote with:

• SC the method in (Yang et al., 2009).

• SC + DASC the approach proposed in (Fanello
et al., 2013c).

• DBP (SC + DASC + Dictionary Based Pooling)
the method described in Sec. 3.

4.1 Implementation Details

We provide here the details concerning the system pa-
rameters. As for the local feature extraction, we ex-
tract fixed-scale SIFT on patches of size 16×16 pix-
els, centered on a fixed grid every 8 pixels.
In the coding stage we set the global dictionary size
KG to 1024, while each class dictionary has K = KG

N
atoms. In this way we ensure a fair comparison with
the baseline methods, i.e. all the image representa-
tions have the same size. The regularization param-
eters λ and µ of Eq. 2, and the cost parameter C of
SVMs have been selected with a 5-fold cross valida-
tion on the training set (µ = 0.15 and λ = 0.1).

4.2 iCubWorld 1.0

We first evaluate the proposed method in a real
Human-Robot Interaction (HRI) setting, where the
goal is to recognize single instance of objects. The
dataset we refer to has been acquired with the iCub
humanoid robot (Metta et al., 2008), and is composed
of 7 classes with 500 frames per class, for both the
training and the test phase respectively.
Acquisitions have been made with respect to two dif-
ferent modalities, the Robot Mode and the Human
Mode (Fanello et al., 2013a; Fanello et al., 2013b)
(see Fig. 3). The Robot Mode dataset contains im-
ages acquired by iCub while handling an object of in-
terest. The robot moves the arm in order to observe
the object from multiple points of view. The Human
Mode dataset contains images depicting a human ac-
tor holding one of the seven objects in his hand and
showing it to the robot. The robot actively tracks the
object, which is presented to the robot from multiple
points of view.
The recognition has been performed per frame, tem-
poral information is not used. The results we obtained

1The iCubWorld 1.0 and iCubWorld Categorization
Datasets can be downloaded from http://www.iit.it/
en/projects/data-sets.html



Table 1: Accuracy results for the iCubWorld 1.0 Dataset,
for both Robot Mode (RM) and Human Mode (HM). We
show results when no pyramid is used (No SPM) and with
3-level pyramid (SPM).

Method Accuracy RM Accuracy HM

N
o

SP
M SC 70.65% 66.83%

SC + DASC 76.00% 69.57%
DBP 81.82% 77.57%

SP
M

SC 84.11% 75.44%
SC + DASC 84.33% 77.73%

DBP 86.04% 80.97%

Figure 4: The iCubWorld Categorization dataset. It con-
tains 10 classes acquired with a HRI scheme.

are summarized in Tab. 1 and show how, in this first
robotics scenario, dictionary based pooling boosts the
performances of the reference methods.

4.3 iCubWorld Categorization

For the second experiment we used a recent object
categorization dataset acquired with a HRI setting
(Fanello et al., 2013a). The modalities of the acquisi-
tion are similar to iCubWorld 1.0, but the focus is on
object categorization. It comprehends 10 object cat-
egories of different complexity with respect to shape
and textures. For each category 3 objects instances of
200 frames each are used for training and 200 frames
are used for the testing phase for each new object
instance. The particular complexity of this dataset
is due to the presence of structured clutter, mean-

Figure 5: The selection of 20 classes from the popular
Caltech-101 dataset, that we considered within the object
categorization experiments.

Table 2: Accuracy results for the iCubWorld Categorization
Data-Set. We show results when no pyramid is used (No
SPM) and with 3-level pyramid (SPM).

Method Accuracy

N
o

SP
M SC 38.07%

SC + DASC 39.37%
DBP 43.51%

SP
M

SC 44.01%
SC + DASC 44.89%

DBP 49.28%

Table 3: Accuracy results for the 20 classes of the Caltech-
101. We show results when no pyramid is used (No SPM)
and with 3-level pyramid (SPM).

Method Accuracy

N
o

SP
M SC 64.55%

SC + DASC 66.81%
DBP 73.62%

SP
M

SC 76.95%
SC + DASC 84.43%

DBP 86.24%

ing that the context/background does not improve the
recognition performances and it cannot be exploited
as in standard image retrieval data-sets (Fanello et al.,
2013a). In Tab. 2 we show the results for the cat-
egorization test (T 3 test in (Fanello et al., 2013a)).
Even in this challenging data-set the proposed ap-
proach outperforms the baseline methods.

4.4 Caltech-101

Finally we show that our method well generalizes also
to standard computer vision dataset oriented to image
retrieval problems. For this test we used a selection of
20 classes from the very popular Caltech-101 dataset
(Fei-Fei et al., 2004). The classes are the same used in
(Fanello et al., 2013c) and are depicted in Fig. 5. We
followed the standard evaluation procedure: for each
class we used 30 of the available images as training
set, while the others have been used for the test phase
(max 50 per class). Again even in absence of the spa-
tial pyramid, our method greatly improves the overall
accuracy. With a 3-level pyramid combined with the
DBP we obtain a substantial gain in the final accuracy.
Tab. 3 summarizes the results.

5 Discussion

In this work we dealt with the widely accepted
coding-pooling pipeline for visual recognition and



proposed a pooling method guided by the use of
discriminative dictionaries. We considered a typical
multi-class scenario and learned a dictionary for each
object class. Then, we used local descriptors encoded
with the learned atoms to guide the pooling stage: we
designed a pooling operator making use of weights
directly obtained from the coded descriptors.
We performed an extensive evaluations of the method
in both single instance object recognition and object
categorization problems, and stressed the representa-
tion we proposed considering a classical image re-
trieval scenarios – using the very popular Caltech 101
– as well as on a typical robot vision task – with data
acquired by the iCub humanoid robot. Results clearly
speak in favor of our approach, showing that the dic-
tionary based pooling strategy we proposed outper-
forms previous approaches. Our method is also com-
putationally effective thanks to compactness of the
description and usability with linear kernels.
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Abstract—We propose a grasping pipeline to deal with un-
known objects in the real world. We focus on power grasp, which
is characterized by large areas of contact between the object and
the surfaces of the palm and fingers. Our method seeks object
regions that match the curvature of the robot’s palm. The entire
procedure relies on binocular vision, which provides a 3D point
cloud of the visible part of the object. The obtained point cloud
is segmented in smooth surfaces. A score function measures the
quality of the graspable points on the basis of the surface they
belong to. A component of the score function is learned from
experience and it is used to map the curvature of the object
surfaces to the curvature of the robot’s hand.The user can further
provide top-down information on the preferred grasping regions.
We guarantee the feasibility of a chosen hand configuration by
measuring its manipulability. We prove the effectiveness of the
proposed approach by tasking a humanoid robot to grasp a
number of unknown real objects.

I. INTRODUCTION

Object manipulation is a crucial skill for humanoid robots
as it often enables more complex tasks such as human-robot
interaction or the development of service robots that work
in unstructured environments. The problem of robot grasping
has been widely studied in the literature and is still an active
research field. Obtaining reliable grasps is hard because of
the dimension of the configuration space, the difficulty in
retrieving accurate visual priors as well as the difficulty in
predicting contact forces. We aim at attacking some of these
problems through a complete framework capable of relating
the object visual properties to effective hand configurations.
Behavioral studies have demonstrated the reliance of human
grasping on 3D shape information [1]. Neurophysiologists
have also postulated the existence of a behavioral vocabulary
that connects 3D shape to action prototypes [2], highlighting
the importance of 3D information to generate effective grasps.
Inspired by these ideas, we decided to exploit stereo vision to
retrieve 3D cues about the object before grasping. A full 3D
model of the object is typically not available, as the robot can
only estimate the shape from a single viewpoint unless we em-
bark in relatively complicated active exploration procedures.
Even when complete models of known objects are provided
directly by the user, the robot may fail to recognize them or
will perceive new ones while exploring the environment. In
all these cases the robot will be able nevertheless to retrieve
3D information from a single view of the object. Therefore,
to obtain reliable grasps on unknown objects, we have to deal

*This work was supported by the European FP7 ICT project No. 270490
(EFAA), project No. 270273 (Xperience) and project No. 288382 (POETI-
CON++).

with incomplete 3D point clouds.
In Napier’s taxonomy [3], grasp actions are divided into power
grasps and precision grasps. Power grasp is characterized by
large areas of contact between the object and the surfaces of
the palm and fingers, and by little or no ability to perform
further movements with the fingers. Therefore if an object is
meant to be grasped stably, power grasp is usually chosen.
Differently, if sensitivity and dexterity are required, precision
grasp is preferable, whereby the object is held with the tips
of the fingers. When the task to perform is specific to the
object, as e.g. in tool use, the fingers need to be placed in
certain specific locations. In this case precision grasp is the
most flexible choice. On the other hand,when the object is
unknown, we cannot define complex object-specific tasks as
in e.g. requiring the robot to use a tool as in hammering,
cutting, pushing, etc. The only possible goal when dealing with
unknown objects is therefore to grasp them efficiently under
some stability condition. Since we are dealing with unknown
objects, in the following we focus on power grasp only.
Most of the algorithms that tackle the grasping problem
analyze and evaluate finger configurations to rank them as a
function of the expected grasp quality. However it has been
recently highlighted in [4] and showed in [5] that spreading the
fingers enclosing the object against the palm allows the hand to
grasp arbitrary objects, and that the thumb opposition is very
important to obtain stable grasps. As we are interested in power
grasp, we can exploit this suggestion restricting our search to
the most suitable area of the object on which to place the
palm. We carry out this analysis through vision, guaranteeing
that the palm’s shape matches the selected object surface, so
that even if the fingers close on an occluded region, the grasp
is likely to be stable. To do so, we exploit information on the
geometry of the object surface.
The relevant parameters of a successful grasp are the “where
and how” to grasp the object. In order to select them, we
exploit vision and kinematics information: vision serves to
localize the most promising surfaces on the object (“where”),
while kinematics determines the feasibility of a given config-
uration (“how”).
The main contribution of this work is the idea that matching
surface curvature of the object with the curvature of the robot
hand is sufficient to obtain effective grasps.We demonstrate
this claim by implementing and validating a complete com-
putational grasp pipeline on the iCub robot [6], in a scenario
involving objects of different shape and size.



Fig. 1. The figure illustrates the entire pipeline. We reconstruct the object in 3D obtaining a point cloud, which we then segment. We extract surface normals
and isolate connected smooth regions. We then rank the best points on the basis of a composite score function taking into account the object shape and size, and
eventually including top-down information.Subsequently the best end-effector position and pose are estimated on the basis of the robot manipulability measure.
If the grasp is successful, the score function is adjusted by updating the coefficients of an incremental Least-Square Support Vector Machine.

II. RELATED WORK

In general, robotic manipulation can be decomposed
into a number of subtasks, such as the identification of
the object, localization of the best grasping points on the
basis of the object shape, inverse kinematics, hand preshape
computation, force-closure fulfillment, adjustment of the
position of the hand and finally the evaluation of exerted
forces in relation to visual and haptic feedbacks. Making
sure that all these subtasks are effective and they do not
interact catastrophically is not easy. Not surprisingly, many
of the systems in the literature focus on specific aspects of
the problem, as for example, assuming that the contact points
and normals are known [7] or by looking for “graspable”
regions [8] without concerns of the feasibility of the hand’s
configuration. Conversely, we provide a complete pipeline
that spans the domain from data acquisition to the actual
grasping procedure.
Especially in the past, the literature addressed the grasping
problem only in terms of force-closure and form-closure,
looking for specific conditions on the contact wrenches that
assured a certain hand configuration to firmly hold any object;
according to [9], these approaches are called ‘analytical’ [10]
[11].
The analytical approaches though, usually assumed that
contact point locations were given without explicitly relating
the hand configuration to the object geometry. Lately in this
regard, more recent applications attempt to get around the
analytical approach limitations; these methods are called
‘empirical’ [9] and our method belongs to this category.
Among the most interesting empirical approaches, a few
methods create a direct mapping between object shape and
hand pose [12], [13]. Other techniques generate a certain
number of grasp hypotheses on the basis of specific heuristics,
and then evaluate them with machine learning algorithms such
as Artificiale Neural Networks [14] [15], simple maximum
likelihood algorithms [16], or kernel density estimation
methods [17]. Others assume a fixed number of possible grasp
configurations, and associate them directly to specific shape

properties [18] [19] [20]. All of them look for a suitable hand
configuration in terms of palm and fingers position. On the
contrary we exploit the work in [5], and we limit our search
to a suitable palm configuration (position and orientation).
We select the best palm pose on the basis of both visual and
kinematic cues.
Among the approaches focusing on power grasp, the most
similar to our work are Detry et al. [18], Boularias et al.
[21], Saxena et al. [8], Li et. al. [22] and Roa et al. [4].
The first three mentioned methods ([18], [21] and [8])
are comparable to our framework as they retrieve a good
end-effector position and orientation without taking into
account the finger positions. However our approach exploits
local surface curvatures to find the most suitable region for
a specific robotic palm. Li et al. [22] starts from a similar
concept by hypothesizing that the shape of an object has to
match the shape of the hand; however Li and colleagues start
from a fixed hand preshape, therefore they do not actively
search for a suitable palm configuration with respect to the
given object. Roa [4] uses the size of the hand as the main
feature to match the object’s surfaces. This approach is usable
only on complete 3D models, whereas our method has been
thought of specifically to deal with incomplete 3D point
clouds.
In the following, we thus describe a new method to match
the local curvature of the object to the surface of the robot’s
palm. We exploit the insight that, in order to obtain a reliable
grasp, the palm has to adapt to the surface of the object
with the most similar curvature. We further illustrate the
complete grasp pipeline starting from data acquisition to
the actual grasping procedure, exploiting along the way the
incomplete 3D point clouds obtained from stereo vision. We
show how we evaluate the appearance of the object to find
candidate grasping points and subsequently retrieve a feasible
hand configuration based on the robot’s kinematics. Not less
importantly, we show that our method is fast and reliable, and
can be easily applied to real world scenarios.



Fig. 2. Results for three different objects. Left column: 3D incomplete point
clouds with the minimum enclosing bounding box. Middle: object. Right:
segmented point cloud. The yellow dots are the best points after ranking,
whereas the red dot is the selected point. The palm/hand orientation is shown
where the red, green and blue arrows stand respectively for the x, y and z
axis of the robotic hand (see Fig. 3.

III. EXTRACTING GRASPING POINTS

Before deciding how to grasp an object, we need to define
where to grasp it. Usually the answer to this problem is not
unique; in fact, if one has to lift an object, he can put his
hand in several different positions. If we limit our analysis to
the power grasp, then the number of possible locations gets
smaller, but still, there is no a universally accepted rule on
where to take an object. Several factors influence how a person
performs a grasp [23]; some of them regard the object shape
and dimension, others regard the weight of the object and its
surface roughness as well as the task at hand. In our imple-
mentation of the grasp pipeline we take into account some of
these factors in the process of extracting a set of significant
points on the object surface. We first create a 3D point cloud of
the visible part of the object (from a single viewpoint), using
the stereo vision system of our humanoid robot – the iCub [6].
We subsequently compute a minimum bounding box enclosing
the point cloud, estimating the approximate dimension and
orientation of the object with respect to the robot’s root frame.
Unsupervised learning techniques are employed to segment the
reconstructed cloud in smooth regions. We finally look for
the regions that best approximate the robotic palm’s curvature.
As shown in [4] and [5], spreading the fingers and enclosing
the object against the palm significantly helps in obtaining a
stable grasp. Hence we limit our search to the most compatible
surfaces under the criterion that they have to match the palm
size and curvature. Firstly we guarantee that the hand lies
in a visible region, therefore we select, among the obtained
smooth regions, those large enough as compared to the size of
the palm. We then apply a uniform sampling on the selected
clusters of points, retrieving a smaller number of points along
with their normals. Each point here represents the center of a
planar region computed on the point’s neighborhood with an

area similar to the area of the robot’s palm. This set of points
is ranked with the help of a score function, which takes into
account the local shape properties around the points, as well as
simple heuristics on the object dimension. This defines the best
regions from where to extract grasping points. The user can
also provide top-down information to bias the point selection
process. Since vision is not enough to ensure a stable grasp,
we select a set of N points that got the highest scores, and
finally we pick a feasible hand configuration on the basis of
the robot manipulability. The complete pipeline is schematized
in Fig. 1.

A. Reconstructing and segmenting the point cloud

Three-dimensional information can significantly improve
the quality of robotic grasps, as it enables a more precise
estimation of cues such as surface curvatures and normals.
We rely on stereo vision algorithms in order to retrieve such
3D information. We use the Hirschmuller algorithm [24] to
estimate the depth map, and we project each pixel of the object
in the 3D space. We then estimate a minimum bounding box
enclosing the point cloud, in order to obtain the approximate
dimension of the object. We employ a technique based on
the convex hull of the point cloud, which is analyzed using
rotating calipers algorithms [25]. The next step selects where
to place the end effector. Here we would like to guarantee that
the hand lies in a region that is large enough with curvature
similar to that of the palm. We employ the Region Growing
Segmentation [26] that segments the object point cloud into
a set of smooth connected regions. This method starts with
the computation of surface normals as an estimation of the
normal of a plane tangent to the surface passing by each point.
This is obtained through a least-square fitting on each point’s
neighborhood [27]. Given a point p and its neighborhood P k,
the plane tangent to the surface can be defined as a couple
(x, n̄), where x is a point of the plane and n̄ is the normal
to the plane. We define the neighborhood P k of a point p as
the set of points that lies within a circular area having radius
equal to the radius of the robotic palm. The distance between
a point pi ∈ P k and the fitting plane can be expressed as

disti = (pi − x)n̄; (1)

in order to compute the plane parameters, we need to minimize
the distance disti for each point. If we impose that x is the
centroid of the neighborhood (i.e. x = 1

k

∑k
i=1 pi), then the

solution for n̄ can be calculated by analyzing the eigenvectors
and eigenvalues of the covariance matrix:

C =
1

k

k∑
i=1

(x− pi)(x− pi)T . (2)

Once the normals of all points have been computed, a seed
point p is chosen and every point pi ∈ P k is evaluated; pi will
be added to the current cluster only if it is locally connected
to the seed p, and if the angle between the normals of p and pi
is smaller than a specified threshold, otherwise it is added to
the list of potential seeds. The point cloud is thus subdivided
into several regions having similar curvatures. Later in order to
assure grasp stability, we select only the regions that contain
a sufficient number of points. This way we effectively impose
the condition that the hand is placed on a smooth and large
enough surface.



Fig. 3. Sampled orientations for a single point. The leftmost panel illustrates
the iCub end effector coordinate system: red is x, green is y and blue is z. The
same representation is employed in the middle and right panel: the hand z axis
is coded by a blue arrow, and the red and green arrows represent the x and y
hand axes sampled on the plane perpendicular to z. The middle panel shows
a synthetic and complete point cloud as taken from the KITObjectModels
WebDatabase [28],whereas the rightmost plot is and imcomplete point cloud
taken directly from the iCub stereo vision system.

B. Points evaluation

Appropriate end effector positions are ranked by means of a
score function which biases those with specific characteristics.
We choose the N points with the highest score as returned by
a function that weighs the object shape and dimension:

s(p) = w1 · v(p) + w2 ·m(p) (3)

where v(p) is an auto-adaptive function representing the eval-
uation of visual properties at the point p, and m(p) is a fixed
component that depends on the object dimension. m(p) can
integrate a user-defined task component. w1 and w2 are relative
weights which are chosen empirically; they are particularly
useful for balancing the two contributions.

1) Visual Component: The first part of the score function
takes into account the shape of the object. In particular, we
would like to grasp the object on a point which lies on a
surface having a curvature similar to the curvature of the
robot’s palm, so that the hand can adapt on the object. Since
good curvature values are not immediately computable, we
use machine learning to approximate a relation between the
robot’s hand curvature and the curvature of a surface centered
in a point p. In order to ensure that the hand will adapt on
the object, the neighborhood of the evaluated point p will
have the same area as the robot’s hand. We relate the local
curvature of the surface to a grasp success measure g, which
is evaluated on the basis of the robot’s own exploration. In
particular, the grasp success measurement is a binary value
(0 or 1), and is provided by a grasp detector mechanism. To
achieve such detection we exploit the intrinsic elasticity of the
iCub fingers; in particular we employ a technique that retrieves
a measure of contact occurring on the distal phalanxes by
comparing the actual joint position θj with the prediction θ̂j
provided by a linear model of the joint actuation, given as input
the motor position θm(j) [29]. High discrepancy between the
feedback and the prediction corresponds to increasing external
pressures; in this case we assign g = 1, otherwise g = 0. In
this respect, we were able to significantly improve the quality
of the detection by replacing the simple linear representation of
the map θ̂j = M(θm(j) with a map learned using Least Square
Support Vector Machine (LSSVM) [30]; the training phase was
carried out over a set of input-output pairs acquired while the

joints can move freely in the space without any contact with
the environment. This online evaluation leads to a cycle where
the score function is continuously updated on the basis of the
robot experience: at each grasp, the pair (c, g) composed of
the curvature c ∈ R computed on the surface centered at the
grasping point p and the grasp success measure g ∈ R is
added to the training set. We use Least-Square Support Vector
Machine [30] with Radial Basis Function Kernel to learn the
map between the curvature and the success of a grasp.

2) Modality Component: The location of the grasp point
on the object is an important element in choosing the grasping
location. For example, if the object has one dimension much
larger than the others, then selecting a point along the larger
dimension increases the chances of a stable grasp. The ratio-
nale is that grasping an object that is too large for the hand is
doomed to fail. On the contrary, if the object is too small, then
it would be better to place the hand on the top of it. Following
these considerations, we define three modality-specific biases,
which thus assign higher scores to the points that respectively
lie in the top, right, or left regions with respect to the robot’s
root frame.
Objects have also specific affordances, hence it is reasonable
to assume that the grasping mode depends on the task at hand.
Since we are dealing with power grasp of unknown objects,
we cannot define complex object-specific affordances. We have
to content ourselves with generic task biases as for instance
taking an object to give it to a person, or taking the object
to explore it as for learning tactile classification. To this aim,
we can simply analyze the position of the point with respect
to the rest of the object. For instance, if the task is to pass
an object to a person waiting with her hand open, palm up,
we can assume that the end-effector position is better located
on the top part of the object. We leave this choice to a user-
tunable parameter in our score function.
In addition, we would like the hand to reach far from the border
of the visible portion of the object since the computation of
the surface normals tends to be noisier at the borders. This
condition is easily satisfied by privileging points that lie far
from the corner points of the minimum bounding box. In
summary, given πj , j = 1, . . . , nc = 8 corner points of the
minimum enclosing bounding box, the preference for points
on the top part of the object can be formulated as follow:

t(p) =
√
|pz − cz|/dimz +

nc∑
j=1

‖p− πj‖
nc

, (4)

where pz is the z component of the point p, cz is the z
component of the center of the object, and dimz is the
dimension of the object along the z axis with respect to the
robot’s root frame.

IV. GRASP PARAMETER ESTIMATION

Once a number of suitable candidate points has been
computed as illustrated earlier, we have to determine the best
grasping point and the corresponding pose of the robot’s end
effector. This last step has to take into account the robot
kinematics in order to ensure a feasible grasp. For each
candidate point, we evaluate a set of possible orientations
in terms of their manipulability index; given this measure,
the most suitable point and orientation of the end-effector is
selected.



Fig. 4. Four different experiments with the same object. The object – a cylindrical container – is rotated respectively by 0 (A), −45 (B), 45 (C) and 90 (D)
degrees. The iCub on each quadrant. The rightmost plot on each case shows the segmented object. The color coding correctly shows that a single region is
detected. Grasping is successful in all cases.

We would like the hand to be parallel to the surface at the
contact point: given the robot kinematics depicted in Fig. 3
(left), where the RGB color convention (i.e. red-green-blue)
represents the x, y, and z axes respectively, we ask that the
z axis of the end effector is parallel to the surface normal
computed at the point under evaluation and directed opposite-
wise. We then sample the plane determined by the z axis
and passing through the point p by identifying n possible
orientations for the x and y axes (see Fig. 3). We make use of
Ipopt [31] to solve the inverse kinematics resulting in the joint
configuration that satisfies the desired position and orientation
of the hand using 10 degrees of freedom of the robot (7 for the
arm and 3 for the torso). Notably, using the algorithm in [32],
we find a reliable solution in only about 0.04 seconds, and can
consequently explore hundreds of possible robot configurations
in a handful of seconds. Each resulting joint configuration is
evaluated using the standard manipulability measure [33]:

w(θ) =
√
det(J(θ)J(θ)T ) (5)

where θ is the current joint configuration, and J is the Jacobian
matrix. Such measure is further improved with a penalty term
[34] that considers the distance from the joint limits:

P (θ) = 1− exp(−k
nj∏
j=1

(θj − l−j )(l+j − θj)
(l+j − l

−
j )2

) (6)

where θj is the current position of the j-th joint, l+j is the j-th
joint upper limit, l−j is the j-th joint lower limit and k is a
scaling factor that weights the behavior of the measure near
joint limits. Summarizing, we aim at finding a suitable position
and orientation of the end-effector, such that the associated
joint configuration θ maximizes the following quantity:

arg max
θ

(w(θ) + P (θ)). (7)

The manipulability measure, combined with the direction of
the normal, also defines the most suitable hand that should be
used for a given grasp.

V. EXPERIMENTS

We validate our framework by conducting three different
experiments. We start with a qualitative experiment, where we
show that the same object, rotated by different amounts, can
still be grasped reliably. Then we demonstrate that we can
learn the relation between the curvature of an object region
and its influence on a successful grasp. We finally perform
a large number of grasp actions on several objects lying in
different positions with respect to the robot, and we show
that the robot can grasp them with a high success rate. All
the experiments were conducted on the iCub, a 53 degrees of
freedom humanoid robot developed by the RobotCub project
[6]. In the context of these experiments we used 19 degrees of
freedom (DOF) in total, considering the 3 DOFs of the torso
along with the 7 DOFs of the arm and 9 DOFs of the hand.

A. Qualitative results - Rotating object

To demonstrate that our system is robust against objects
rotations, we run a qualitative test using an elongated cylin-
drical container as shown in Fig. 4, placed at four different
orientations with respect to upright direction: 0, −45, 45, and
90 degrees. It turns out that the modality component of the
score function correctly rewards points that are lateral to the
cylinder principal axis in the tested cases. As result, iCub
adapts the grasp action accordingly (see Fig. 4).

B. Quantitative results

1) Evaluating the Learned Map: The validation of the
learning procedure and the resulting map between local surface
curvature and the grasp success rate is carried out on a training
set of 100 data points. These points are collected on the
objects shown in Fig. 5. The 100 trials are performed imposing
w2 = 0, therefore only the curvature component is taken
into account to evaluate grasp success. The trials are carried
out choosing points with random curvature values in order to
explore the whole function domain. Fig.5 shows the results
of learning. The x and the y axes report, respectively, the
explored curvatures normalized between 0 and 1, and the grasp
success rate. From inspecting this function it is possible to



Fig. 5. Training set. Bottom-left: the learned map between object curvatures and success measure. Curvature is normalized between 0 and 1; these values
represent respectively the minimum and the maximum curvatures explored by the robot. Points with curvatures in the range of 0.1 and 0.2 are preferable as
they are likely to bring about successful grasps.

infer that surfaces with curvature values between 0.03 and
0.2 are suitable for the iCub’s palm, and usually lead to
successful grasps. Conversely, surfaces too flat or with higher
curvature tend to yield unsuccessful grasps. To verify whether
the maximum of the function identifies critical curvature, we
designed a dedicated experiment with two grasping sessions on
the cylindrical container (Fig. 6), which presents both flat and
curve surfaces. In the first session, we let the robot perform
30 grasps by choosing points with curvature close to the
limits of unsuccessful grasp (c > 0.3 as in Fig. 5). In the
second session, an additional set of 30 grasps is collected by
rewarding points with curvature close to the maximum. We
report a grasp success rate of 60% for the first session, and a
significantly higher rate (90%) in the second session, proving
that grasping performance considerably changes with respect
to the curvature of the chosen point. Notably, a relatively small
set of 100 samples is sufficient to learn the curvature map.

C. Evaluating the complete pipeline

The main objective of our work is that of endowing the
iCub with grasping skills to operate in a real, generally unstruc-
tured, environments. This requires many practical adjustments
to guarantee that the grasp actions are indeed reliable. To this
end a quantitative evaluation of the overall system is needed to
verify the performance of all components lumped together. As
in [21], a grasp is considered as successful only if the object
does not fall after being lifted. The experiment we present
here also demonstrates that the curvature map (learned earlier)
generalizes to novel objects. We execute 20 trials on each
object in the test set (Fig. 6), i.e. 80 trials in total, achieving
an overall success rate of 91.25%. Such accuracy (shown in
details in Fig. 6) makes the framework suitable to be employed
for robust manipulation tasks.
As grasping lacks a standardized benchmark, we compare our
approach with a simple “top” grasp (grasping the object always
from the top), which has been used e.g. in [35]. We tested
this more stereotyped grasp on the same objects showed in
Fig. 6 carrying out 20 trials per object as before. The success
rate for the cyclinder and the bottle was significantly lower
(15% for both) quite obviously because of their elongated

shape that makes the top grasp unsuitable. We also achieved
65% for the dog and 80% for the cube. These results confirm
the considerable performance gain of our complete grasping
pipeline.

VI. CONCLUSIONS

We presented a complete framework that addresses the
problem of grasping unknown objects in a humanoid robotic
settings. We start from visual information obtained through
stereo images. We exploit 3D information to acquire an incom-
plete point cloud, and we successively rank the best candidate
grasping points of the cloud accounting for the object visual
properties. In particular, we look for regions with curvature
similar to that of the robot’s palm. A suitable score function is
continuously updated with experience. We eventually choose
the end effector position and orientation on the basis of the
robot kinematics avoiding unsuitable configurations as defined
by the robot’s manipulability index. We demonstrate that this
score function accounts correctly for the visual and kinematic
aspects of grasping. More importantly, the entire pipeline
computes in a few seconds enabling its application in real
scenarios. Numerical results support these conclusions.
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J. Peters, and J. Piater, “Learning object-specific grasp affordance den-
sities,” IEEE International Conference on Development and Learning,
2009.

[18] R. Detry, C. Ek, M. Madry, J. Piater, and D. Kragic, “Generalizing
grasps across partly similar objects,” IEEE International Conference on
Robotics and Automation, 2012.

[19] A. Miller, S. Knoop, H. Christensen, and P. Allen, “Automatic grasp
planning using shape primitives,” IEEE International Conference on
Robotics and Automation, 2003.
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The history of computer vision now spans more than half a
century. However, general, robust, complete satisfactory solu-
tions to the major problems such as large-scale object, scene
and activity recognition and categorization, as well as vision-
based manipulation are still beyond reach of current machine
vision systems. Biological visual systems, in particular those
of primates, seem to accomplish these tasks almost effortlessly
and have been, therefore, often used as an inspiration for
computer vision researchers.

Interactions between the disciplines of “biological vision”
and “computer vision” have varied in intensity throughout
the course of computer vision history and have in some way
reflected the changing research focuses of the machine vision
community [32]. Without any doubt, the groundbreaking work
of Hubel and Wiesel [72] gave a significant impulse to the
computer vision community via Marr’s work on building
visual hierarchies analogous to the primate visual system
[109]. However, the insufficient computational resources that
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Fig. 1. Deep hierarchies and flat processing schemes

were available at that time and the lack of more detailed
understanding of the processing stages in the primate visual
system presented two insurmountable obstacles to further
progress in that direction.

What followed was a reorientation of mainstream computer
vision from trying to solve general vision problems to focusing
more on specific methods related to specific tasks. This has
been most commonly achieved in flat processing schemes (see
figure 1, right) in which rather simple feature-based descriptors
were taken as an input and then processed by the task-
dependent learning algorithms. The ties with the biological
vision faded, and if there were some references to biological-
related mechanisms they were most commonly limited to
individual functional modules or feature choices such as Gabor
wavelets.

While the progress on some specialized machine vision
problems and problem domains has been enormous (on some
tasks, these systems can easily surpass human capabilities),
artificial systems still lack the generality and robustness
inherent in the primate visual system. As we are gaining
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more and more insight into the functional mechanisms of the
visual cortex (largely due to the advanced imaging techniques
used in neuroscience), the time may be ripe to make a new
attempt at looking at the mechanisms that could bring the
capabilities of artificial vision, primarily in terms of generality
and robustness, closer to those of biological systems. This may
be a feasible enterprise also from the computational point
of view, particularly in the light of new developments of
computer architectures such as GPUs and multi-core systems.

In this paper, we will primarily focus on hierarchical
representations and functional mechanisms of primates. We
will look at different hierarchical levels of processing as well
as different information channels (e.g., shape, color, motion)
and discuss information abstractions that occur throughout the
hierarchy.

It is known that around 55% of the neocortex of the
primate brain is concerned with vision [44] and that there
is a hierarchical organization of the processing pipeline that
spans 8 to 10 levels (see figure 2). There is clear evidence
that neurons in the early visual areas extract simple image
features (e.g., orientation, motion, disparity, etc.) over small
local regions of visual space and that this information is then
transmitted to neurons in higher visual areas which respond
to ever more complex features with receptive fields1 covering
larger and larger regions of the visual field. Such hierarchical
structures, to which we refer as deep hierarchies (see figure 1,
left), exhibit a number of computational advantages compared
to the so-called flat processing schema (see figure 1, right).

Two important aspects are computational efficiency and
generalization: As the hierarchical levels build on top of
each other, they exploit the shareability of the elements to
efficiently arrive at more complex information units. Such
a design principle also contributes to common computations
(both during learning and inference) which results in highly
efficient processing as well as in lower storage demands.
Moreover, reusing commonalities that exist among different
visual entities and which are important perceptual building
blocks for achieving different tasks leads to generalization
capabilities and transfer of knowledge. For example, there is
strong neurophysiological evidence that a generic description
in terms of a variety of visual properties is computed in
areas V1–V4 and MT, covering around 60% of the volume
of visual processing in the primate neocortex (see [44] and
figure 2 where visual areas are drawn proportionally to their
actual sizes). These areas carry necessary information for a
completion of a number of different tasks, such as object
recognition and categorization, grasping, manipulation, path
planning, etc.

It is also evident that in the visual system of primates
there are separate (though highly inter-connected) channels
that process different types of visual information (color, shape,
motion, texture, 3D information), which contribute to the effi-
ciency of representation (avoiding the combinatorial explosion
of an integrated representation) and robustness (with respect
to the available information). These advantages cover multiple

1. The receptive field of a neuron is the region where certain stimuli produce
an effect on the neuron’s firing.

aspects and will be discussed in more detail in section 8.
However, although all neurophysiological evidence suggests

that in the primate visual system quite a number of levels
are realized, most existing computer vision systems are ‘flat’
and hence cannot make use of the advantages connected to
deep hierarchies. Here in particular the generalization and
scalability capabilities are crucial for any form of cognitive
intelligence. In fact, there is overwhelming neurophysiological
evidence that cognition and the concept of deep hierarchies
are linked [178]. As a consequence, we see the issue of
establishing deep hierarchies as one major challenge on our
way towards artificial cognitive systems.

Bengio [9] discussed the potential of deep hierarchies as
well as fundamental problems related to learning of deep hi-
erarchies. In particular, he emphasizes the problem of the huge
parameter space that has to be explored due the large number
of hierarchical levels. This learning problem can be alleviated
by (a) tackling intermediate representations as independent
learning problems as well as (b) introducing bias in terms
of basic connectivity structures expressed in the number of
levels or the locality of connectivity of individual units of such
deep structures. We believe that this paper can help to guide
the learning process of deep hierarchies for vision systems by
giving indications for suitable intermediate representations in
the primate’s visual system. In addition, we believe that useful
guidelines for connectivity patterns can be derived from the
biological model in terms of appropriate receptive field sizes
of neurons, number of levels being processed in the biological
model as well as the number of units in a certain hierarchical
level as indicated by area sizes in the primate’s visual cortex.

Despite the challenges connected to the learning of deep
hierarchies, there exists a body of work in computer vision
that made important contributions towards understanding and
building hierarchical models. Due to lack of space, a more
thorough review is outside the scope of this paper, and the
following list is far from complete. From the computational
complexity point of view, Tsotsos has shown that unbounded
visual search is NP complete and that hierarchical architectures
may be the most promising solution to tackle the problem
[189]. Several works have shown that efficient matching can
only be performed in several hierarchical stages, including
Ettinger [42], Geman et al. [59], [60], Mel and Fiser [114],
Amit [1] [2], Hawkins [69], Fidler et al. [45], Scalzo and Piater
[153], Ullman and Epshtein [192], DiCarlo and Cox [31],
Ommer and Buhmann [126], Serre and Poggio [157], Pugeault
et al. [138], and Rodrı́guez-Sánchez [144]. Among the more
known hierarchical models are the Neocognitron [54], HMAX
[141], [158], LHOP [46], 2DSIL [145] and Convolutional Nets
[101]. Recently, Bengio [9] published an exhaustive article on
learning deep architectures for artificial intelligence.

In summary, in this article, we want to argue that deep hier-
archies are an appropriate concept to achieve a general, robust,
and versatile computer vision system. Even more importantly,
we want to present relevant insights about the hierarchical
organization of the primate visual system for computer vision
scientists in an accessible way. We are aware that some of
our abstractions are rather crude from the neurophysiological
point of view and that we have left out important details of the
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processes occurring at the different levels2, but we hope that
such abstractions and the holistic picture given in this paper
will help to foster productive exchange between the two fields.

The paper is organized as follows: In section 2, we will
touch upon the aspects of the primate visual system that are
relevant to understand and model the processing hierarchy.
The hierarchy in the primate vision system is then outlined
from two perspectives. In the horizontal perspective (sections
3–6) we give a description of processing in the different areas
indicated in figure 2. In section 7, we give a vertical perspec-
tive on the processing of different visual modalities across the
different areas. In section 8, we then draw conclusions for the
modeling and learning of artificial visual systems with deep
hierarchical structures.

2 RELEVANT ASPECTS OF THE STRUCTURE
OF THE VISUAL CORTEX

In section 2.1, we provide a basic overview of the deep
hierarchy in the primate visual system. In section 2.2, we
also give an intuition of basic (mostly biological) terms
used in the following sections. Most data we present in the
following were obtained from macaque monkeys since most
neurophysiological knowledge stems from investigations on
these.

While the primate brain consists of approximately 100
cortical areas, the human brain probably contains as many
as 150 areas.3 There is a general consensus that the primary
sensory and motor areas in the monkey are homologous to
the corresponding areas in the human brain. Furthermore,
several other cortical areas in the monkey have an identified
homologue in the human (e.g. MT/MST, AIP). These areas
can be viewed as landmarks which can be used to relate other
cortical areas in the human to the known areas in the monkey.

It should be mentioned that a visual cortical area consists of
six layers, which do not correspond to the layers in artificial
deep models. In general, layer 4 is the input layer where
the inputs from earlier stages arrive. The layers above layer
4 (layers 2 and 3) typically send feedforward connections
to downstream visual areas (e.g. from V1 to V2), whereas
layers 5 and 6 send feedback projections to upstream areas
or structures (e.g. from V1 to the LGN and the Superior
Colliculus – see also section 3.2). At higher stages in the visual
hierarchy, the connectivity is almost always bidirectional. At
present, detailed knowledge about the precise role of cortical
microcircuits in these different layers is lacking.

2. For example, a heterogeneity of computations has been reported, includ-
ing summation, rectification, normalization [19], averaging, multiplication,
max-selection, winner-take all [150] and many others [89]. This is of great
interest for addressing how neurons are inter-connected and the subject of
much discussion but out of the scope of the present paper.

3. A region in the cerebral cortex can be considered to be an area based on
four criteria: (1) cyto- and myeloarchitecture (the microscopic structure, cell
types, appearance of the different layers, etc.), (2) the anatomical connectivity
with other cortical and subcortical areas, (3) retinotopic organization, and
(4) functional properties of the neurons. In far extrastriate cortex, where
retinotopic organization is weak or absent, the specific functional properties
of the neurons are an important characteristic to distinguish a region from the
neighboring regions.

2.1 Hierarchical Architecture

Here we give a coarse and intuitive summary of the processing
hierarchy realized in the primate visual system. A more
detailed description can be found in sections 3 – 6. Basic
data on the sizes of the different areas, receptive field sizes,
latency, organization etc. are provided in table 1.

The neuronal processing of visual information starts in the
retina of the left and right eye. Nearly all connections then
project to a visual area called LGN before it reaches the visual
cortex. We call these stages precortical processing and the
processing in these areas is described in section 3. The visual
cortex is commonly divided into three parts (figure 2 and table
1): the occipital part gives input to the dorsal and ventral
streams. The occipital part covers the areas V1-V4 and MT.
All areas are organized retinotopically, i.e., nearby neurons in
the visual cortex have nearby receptive fields (see table 1, 6th
column) and the receptive field size increases from V1 to V4
(see table 1, 3rd column). There are strong indications that
these areas compute generic scene representations in terms
of processing different aspects of visual information [84].
However, the complexity of features coded at the different
levels increases with the level of the hierarchy as will be
outlined in detail in section 4. Also it is worth noting that the
size of the occipital part exceeds the other two parts occupying
more than 62% of the visual cortex compared to 22% for the
ventral and 11% for the dorsal pathway [44] (see table 1, 2nd
column).4 In the following, we call the functional processes
established in the occipital part early vision indicating that
a generic scene analysis is performed in a complex feature
structure.

The ventral pathway covers the areas TEO and TE which
are involved in object recognition and categorization. The
receptive field sizes are in general significantly larger than in
the occipital part. There is a weak retinotopic organization
in area TEO which is not observed in area TE. Neurons’
receptive fields usually include the fovea (the central part of
the retina with the highest spatial resolution). In the ventral
path, the complexity of features increases up to an object
level for specific object classes (such as faces) [127], however
most neurons are responsive to features below the object
level indicating a coding scheme that uses multiple of these
descriptors to code objects and scenes [173].

The dorsal pathway consists of the motion area MST and
the visual areas in posterior parietal cortex. The dorsal stream
is engaged in the analysis of space and in action planning.
Similar to the ventral stream, the receptive field sizes increase
along the dorsal pathway and the complexity of stimulus
features increases progressively (e.g. from simple motion in
MT to more complex motion patterns in MST and VIP).
Moreover, the relation of receptive fields to retinal locations
weakens. Instead, higher areas encode the location of stimuli
in spatial or head fixed coordinates.

Besides the division into two pathways (ventral and dorsal)
it is worth noting that there are also two streams to be

4. These proportions are unknown for the human visual cortex because in
both the temporal and the parietal lobe new areas have probably evolved in
humans compared to monkeys.
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Fig. 2. Simplified hierarchical structure of the primate’s visual cortex and approximate area locations (summarized
from [44]). Box and font sizes are relative to the area size.

distinguished, the magnocellular (M–) and parvocellular (P–)
stream [73]. This distinction is already present at the ganglion
cell level, i.e., at the level of the output of the retina. P ganglion
cells are color sensitive, have a small receptive field and are
responsible for the high visual acuity in the central visual
field. M ganglion cells have lower spatial but higher temporal
resolution than P ganglion cells. The distinction between P and
M cells carries through LGN to the whole visual cortex. To a
first approximation, the P path is believed to be responsible for
shape and object perception while the M path can account for
the perception of motion and sudden changes [84]. Also the
strongly space-variant resolution from the fovea to the visual
periphery carries through most regions of the visual cortex.

It is worth noting that at every stage in the visual hierarchy,
neurons also exhibit selectivities that are present at earlier
stages of the hierarchy (e.g. orientation selectivity can be
observed up to the level of TEO).

It is in general acknowledged that the influence of extrinsic
information on the visual representations in the brain increases
with its level in the hierarchy. For example, there is no report
on any learning or adaptation processes in the retina and
also quite some evidence on a high influence of genetic pre-
structuring for orientation maps in V1 (see, e.g., [63]). On the
other hand, it has also been shown that learning can alter the
visual feature selectivity of neurons. However, the measurable
changes at the single-cell level induced by learning appear to
be much smaller at earlier levels in the visual hierarchy such
as V1 [155] compared to later stages such as V4 [140] or IT
[104].

2.2 Basic Facts on Different Visual Areas

Table 1 gives basic data on the different areas of the visual
system. The first column indicates the name of the area, the
second column the size in mm2 (see also figure 2 where
areas are drawn proportionally to their area size). The third
column indicates the average receptive field size at 5 degrees
of eccentricity. The fourth column indicates the latency to the
first response to a stimuli at the retina.

Figure 3 provides a summary of most of the terms that
follow in columns 5 through 7. The fifth column distinguishes
between contra- and bilateral receptive fields. Contralateral
(co in table 1) receptive fields only cover information from
one hemifield while bilateral (bl in table 1) receptive fields
cover both hemifields (figure 3b). The sixth column indicates
different schemas of organization: Retinotopic organization
(rt) indicates that the spatial arrangement of the inputs from
the retina is maintained which changes every time we move
our eyes, spatiotopic (st) indicates the representation of the
world in real-world coordinates (see figure 3a), clustered
organization (cl) indicates that there are larger subareas with
similar functions, columnar organization (co) indicates that
there is a systematic organization in columns according to
some organizational scheme (mostly connected to visual fea-
tures or retinotopy). The seventh column indicates different
kinds of invariances (see figure 3c-f): cue invariance (CI) refers
to the ability to obtain the same type of information from
different cues, a cell that responds to an object independently
of its size is called size invariant (SI), similarly for position
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Area Size (mm2) RFS Latency (ms) co/bi lat. rt/st/cl/co CI/SI/PI/OI Function
Sub–cortical processing

Retina 1018 0.01 20-40 bl +/-/-/- -/-/-/- sensory input, contrast computation
LGN 0.1 30-40 co +/-/-/- -/-/-/- relay, gating

Occipital / Early Vision
V1 1120 3 30-40 co +/-/-/+ -/-/-/- generic feature processing
V2 1190 4 40 co +/-/-/+ -/-/-/- generic feature processing

V3/V3A/VP 325 6 50 co +/-/-/+ -/-/-/- generic feature processing
V4/VOT/V4t 650 8 70 co +/-/-/+ +/-/-/- generic feature processing / color

MT 55 7 50 co +/-/-/+ +/+/-/+ motion
Sum 3340

Ventral Pathway / What (Object Recognition and Categorization)
TEO 590 3-5 70 co (+)/-/-/+ ?/-/-/? object recognition and
TE 180 10-20 80-90 bl -/-/+/+ +/+/+/+(-) categorization

Sum 770
Dorsal Pathway / Where and How (Coding of Action Relevant Information)

MST 60 >30 60-70 bl +/-/+/- I optic flow, self-motion, pursuit
CIP ? ? ? +/-/?/? +/?/?/? 3D orientation of surfaces
VIP 40 10-30 50-60 bl -/+/-/- I optic flow, touch, near extra personal space
7a 115 >30 90 bl (+)/-/-/- ?/?/+/? Optic flow, heading

LIP 55 12-20 50 cl +/-/-/- ?/-/-/- salience, saccadic eye movements
AIP 35 5-7 60 bl ?/+/+/? ?/+/+/? grasping
MIP 55 10-20 100 co +/-/?/? I reaching
Sum 585

TABLE 1
Basic facts on the different areas of the macaque visual cortex based on different sources [44], [28], [95], [142], [162] First column: Name of Area.

Second column: Size of area in mm2. ’?’ indicates that this information is not available. Third column: Average receptive field size in degrees at 5
degree of eccentricity. Fourth column: Latency in milliseconds. Fifth Column: Contra versus bilateral receptive fields. Sixth Column: Principles of

organization: Retinotopic (rt), spatiotopic (st), clustered (cl), columnar (co). Seventh Column: Invariances in representation of shape: Cue Invariance
(CI), Size Invariance (SI), Position Invariance (PI), Occlusion Invariance (OI). ’I’ indicates that this entry is irrelevant for the information coded in

these areas. Eighth Column: Function associated to a particular area.

invariance (PI). Finally, a cell that responds similarly to an
object irrespective of whether it is completely or partially
present is invariant to occlusions (OI).

3 SUB-CORTICAL VISION

In this section, we describe the primate sub-cortical vision sys-
tem. We begin with the retinal photoreceptors as the first stage
of visual processing (section 3.1), and follow the visual signal
from the eye through the Lateral Geniculate Nucleus (LGN)
(section 3.2). For all areas, we first give a neurophysiological
and then a functional perspective.

3.1 Base Level: Retinal Photoreceptors

The retina is located in the inner surface of
the eye and contains photoreceptors that
are sensitive only to a certain interval of
the electromagnetic spectrum, as well as
cells that convert visual information to
neural signals. The pictogram on the left

illustrates the space-variant retinal density of rods (gray) and
cones (blue) as described below, as well as the uniformly-small
receptive field sizes (around 0.01◦ of visual angle). Compare
this to the corresponding pictograms we consistently give in
the following sections.

Neurophysiological view: There are two kinds
of photoreceptors, rods and cones. Rods have a

high sensitivity to low levels of brightness (see icons at
the left). Cones, on the other hand, require high levels of
brightness. We can classify the cones as a function of their
wavelength absorbency as S (short wavelength = blue), M
(middle wavelength = green) and L (long wavelength = red)
cones. These three cone types allow for the perception of color
[13]. The resolution (i.e., the number of receptors per mm2)
decreases drastically with the distance from the fovea. This
holds for both rods and cones, except that there are no rods
in the fovea. Most cones are concentrated in and around the
fovea, while rods constitute the bulk of the photoreceptors at
high eccentricities.

Functional view: Because only a small part of the retina has
a high spatial resolution (the fovea), gaze control is required
to direct the eyes such that scene features of interest project
onto the fovea. Therefore, primates possess an extensive
system for active control of eye movements (involving the
FEF in the frontal lobe, LIP in the parietal lobe and the
Superior Colliculus in the midbrain). It is influenced both
by reflexive, signal-driven and by intentional, cognitively-
driven attentional mechanisms, and involves the entire visual
hierarchy. Attention models compute where to fixate [135],
[143] and some work even addresses learning to control
gaze, e.g., to minimize tracking uncertainty [6]. However,
in computer vision cognitively-driven attentional mechanisms
remain largely unexplored.
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Fig. 3. Summary of table 1 concepts: a) Retinotopic (rt)
and spatiotopic (st) organization; b) Contra- (co) versus
bilateral (bl) receptive fields; c) Cue Invariance (CI); d)
Size Invariance (SI); e) Position Invariance (PI); f) Occlu-
sion Invariance (OI)

3.2 Ganglion Cells and LGN

From the photoreceptors of the retina
information is passed through ganglion
cells and LGN to the primary visual
cortex. The left LGN receives input of
the right visual hemifield from both eyes,
and the right LGN receives input of the

left visual hemifield from both eyes. However, the information
from the two eyes remains still entirely separate in six different
neuronal layers (four P- plus two M-layers, three layers receive
input from the left eye, the other three layers from the right
eye) of the LGN; no binocular integration is done at this level.
Regarding spatial analysis, there are no significant differences
between retinal ganglion cells and their LGN counterparts
(there is even almost a one-to-one correspondence between
retinal ganglion and LGN cells [95]). In motion analysis, LGN
ganglion cells have lower optimal temporal frequencies, 4–
10 Hz vs. 20–40 Hz in retinal ganglion cells, which indicates
the presence of some low-pass filtering over retinal ganglion
cells [95]. The two prominent new features emerging at this
level are center-surround receptive fields and color opponency.
The visual cortex is also organized into layers, where most of
the feedforward connections (i.e. connections to a higher stage
in the hierarchy) originate from the superficial layers and most
of the feedback connections originate from the deeper layers.
However, virtually nothing is known about the role of these
different cortical layers in stimulus processing.

3.2.1 Center-Surround Receptive Fields

Neurophysiological view: Luminance sensitive cells
with a center-surround receptive field come in two

types: on-center/off-surround cells are sensitive to a bright spot
on a dark background; off-center/on-surround cells are sensi-
tive to the inverse pattern. Both are insensitive to homogeneous
luminance. These cells are magnocellular (M) neurons and are
involved in the temporal analysis.
Functional view: Center-surround receptive fields can be
modeled by a difference of Gaussians and resemble a Laplace
filter as used for edge detection [68]. They thus emphasize
spatial change in luminance. These cells are also sensitive to
temporal changes and form the basis of motion processing.
Notably, the transformation into a representation emphasizing
spatial and temporal change is performed at a very early stage,
immediately following the receptor level, before any other
visual processing takes place.

Most of the current computer vision techniques also in-
volve in the earliest stages gradient-like computations which
are essential parts of detectors / descriptors such as SIFT,
HOG/HOF, etc.

3.2.2 Single-Opponent Cells
Neuropsysiological view: Single-opponent cells
are color sensitive and compute color differences,
namely L-M (L for long wavelength and M for
middle wavelength, symbol “-” stands for oppo-

nency) and S-(L+M) (S stands for short wavelength), thereby
establishing the red-green and the blue-yellow color axes. They
have a band-pass filtering characteristic for luminance (gray
value) stimuli but a low-pass characteristics for monochro-
matic (pure color) stimuli. These cells are parvocellular (P)
neurons and are somewhat slower but have smaller receptive
fields, i.e. higher spatial resolutions, than the magnocellular
neurons. They are particularly important for high acuity vision
in the central visual field.
Functional view: Single-opponent cells can be modeled by a
Gaussian in one color channel, e.g. L, and another Gaussian
of opposite sign in the opposing color channel, i.e. -M. This
results in low-pass filtering in each color channel. The color
opponency provides some level of invariance to changes in
brightness and is one step towards color constancy.

4 GENERIC SCENE REPRESENTATION IN THE
OCCIPITAL CORTEX
All areas in the occipital cortex (except MT) are organized
retinotopically with orientation columns as basic units (see
table 1, 6th column). MT is also organized retinotopically, but
with depth and motion columns. Note that the visual system
is not organized in a strictly sequential hierarchy but there are
shortcuts between levels of the hierarchy. There is a stream
V1 → V2 (→ V35) → V4 to the ventral pathway and another
stream V1 → V2 → MT to the dorsal pathway (figure 2).
However, there also exist cross connections between V4 and
MT.

The latency of the visual signal increases with each level
by approximately 10 ms, and the receptive field sizes increase
gradually (see table 1, 3rd and 4th column). In general, the

5. Not much is known about the role of V3, therefore we have not given
any detailed information in this paper about V3.
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magnocellular pathway provides most of the input to the dorsal
visual stream and the parvocellular pathway provides most of
the information to the ventral pathway, but this is certainly not
an absolute distinction.

4.1 Area V1
V1 is the first cortical area that processes
visual information. Thus, the features it
is sensitive to are more complex than in
LGN but remain relatively simple: edges,
gratings, line endings, motion, color, and
disparity.

4.1.1 Edges, Bars, and Gratings
Neurophysiological view: V1 contains cells that
respond preferentially to edges, bars, and gratings,
i.e. linear oriented patterns. They are sensitive to
the orientation of the patterns and, in case of

gratings, to their spatial frequency (for a review, see [127]).
Some cells are more sensitive to edges or single bars while
others prefer gratings. There are two types of such cells, simple
and complex cells. The former are sensitive to the phase of a
grating (or exact position of a bar), the latter are not and have
a larger receptive field.
Functional view: The original proposal by Hubel and Wiesel
to achieve the phase-invariant orientation tuning characteristic
of complex cells was simply to add the responses of simple
cells along the axis perpendicular to their orientation, see
[167] for a computational model. Later authors have attributed
the behavior of complex cells to a MAX-like operation [48]
(producing responses similar in amplitude to the larger of the
responses pertaining to the individual stimuli – see, e.g., [141])
or to a nonlinear integration of a pool of unoriented LGN cells
[115]. In computational models, simple cells can self-organize
from natural images by optimizing a linear transformation
for sparseness, i.e. only few units should respond strongly
at any given time [125], or statistical independence [8] –
however, it has been noted that linear models may not be
sufficient for modeling simple cells [149]. Complex cells can
be learned from image sequences by optimizing a quadratic
transformation for slowness, i.e. the output of the units should
vary as slowly over time as possible [38], [10]. On a more
technical account it has been shown that Gabor wavelets are a
reasonable approximation of simple cells while the magnitude
of a Gabor quadrature pair resembles the response of complex
cells [82]. Gabor wavelets have also been very successful in
applications such as image compression [29], image retrieval
[108], and face recognition [202]. In fact, it has been shown
using statistics of images that Gabor wavelets (and the simple
cells in V1) construct an efficient encoding of images [164].

4.1.2 Point Features
Neurophysiological view: V1 also contains cells
that are sensitive to the end of a bar or edge or
the border of a grating. Such cells are called end-
stopped or hypercomplex [127].

Functional view: In V1, end-stopped cells might help to solve
the aperture problem the system is faced with in motion as

well as disparity processing (see section 4.1.3) since they can
detect displacement also in the direction of an edge [127].
Like complex cells, hypercomplex cells can be learned from
image sequences by optimizing slowness [10].

In computer vision, interest point detectors (which are not
subject to the aperture problem due to the fact that they analyze
local regions with occurrence of different orientations) of vari-
ous kinds [107], [116] have been used since these features have
turned out to be discriminative and stable, which is important
for matching tasks and fundamental in many computer vision
problems (pose estimation, object recognition, stereo, structure
from motion, etc.). In this regard, it is interesting that V1 is
dominated by detectors (simple and complex cells) for linear
features (edges, bars, gratings). A possible reason might be
that most meaningful features in natural scenes are actually
edges which also allow for a complete reconstruction of the
input signal (see, e.g., [39]).

The rather infrequent occurrence of neurons sensitive to
point features at this low-level stage of visual processing
suggests that primate vision does not necessarily rely on point
features for bottom-up visual processing. Stereo and motion
processing on the basis of edge and line features further
suggests that the aperture problem is not solved by V1, but
involves subsequent cortical layers for spatial integration.

4.1.3 Absolute Disparity
Neurophysiological view: V1 is the first area
containing neurons that receive input from both
eyes [84] (neurons in LGN are still monocular)
and are able to compute disparity. In V1, this is

still absolute disparity (i.e., the angular difference between
the projections of a point onto the left and right retinas
with reference to the fovea). Calculating disparity and thereby
depth can be done in V1 without monocular contours in
the image, as it is evident from our ease at interpreting
random-dot stereograms [83]. There are also neurons in V1
that are sensitive to disparity in anticorrelated stereograms
[26], in which the contrast polarity of the dots in one eye is
reversed compared to the other eye. However, these neurons
do not contribute to the depth perception and may have other
functions.
Functional view: A prominent model for disparity estimation
in V1 is the energy model, which is based on Gabor wavelets
with slight phase or positional shifts [50]. Disparity is, of
course, only one cue for depth perception, although an early
one (in terms of processing and development, see [87]) and
operational at close distance. On higher levels and at farther
distances, cues such as occlusion, motion parallax etc. are
used [84] which however are processed in higher-level areas
of the primate brain’s dorsal and ventral visual streams (see
section 4.4). Also from a developmental perspective there are
significant differences with pictorial depth cues developing
only after approx. 6 months [87]. This is very much linked
to the observation that statistics of natural scenes are linked
to laws of perceptual organization, an idea first formulated
by Brunswick [17] which has then later been confirmed
computationally (see [200] for a review). This line of thought
opens the perspective to formulate the problem of deriving
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pictorial depth cues in computer vision systems as a statistical
learning problem. Disparity is not only important for depth
perception but also for gaze control [84], object grasping and
object recognition. It has been shown that disparity tuned units
can be learned from stereo images by maximizing mutual
information between neighboring units, because depth is a
feature that is rather stable across space [7].

In computer vision, stereo is a whole field of research, with
many methods based on point features, which are convenient
since their matches fix all degrees of freedom (see, e.g., [16]).
However, there are approaches in computer vision that also
use phase-differences of Gabor wavelets [49].

4.1.4 Local Motion
Neurophysiological view: Neurons in areas V1 and
V2 are not only involved in static scene analysis
but also in motion analysis. A fraction of simple
and complex cells in V1 are direction selective,

meaning that they respond only if the stimulus pattern (grating)
moves in one direction and not the other [127]. However,
only complex cells have spatio-temporal frequency tuning. The
direction selective cells belong to the M-pathway and project
mostly to area MT [118]. The aperture problem is not solved
at that stage of processing.
Functional view: Estimating motion, or optic flow, is actually
quite related to estimating disparity, since the latter can be
viewed as a special case of the former with just two frames
that are displaced in space rather then in time. The algorithms
in computer vision as well as models of V1 are in general
correspondingly similar to those discussed for estimating
disparity (see section 4.1.3). For V1 (mainly simple cells),
motion processing is usually conceptualized and modeled by
spatiotemporal receptive fields [195], [179]. Complex cell-
like units learned by optimizing slowness are motion direction
selective, much like physiological neurons [10].

It is interesting to note that spatiotemporal features such
as motion have been demonstrated to be the first features
developmentally present in humans for recognizing objects
(even sooner than color and orientation) [204].

4.1.5 Double-Opponent Cells
Neurophysiological view: About 5–10% of
V1 cells are dedicated color-coding cells (for
reviews see [23], [161]). In addition to single-
opponent cells similar to those in LGN, which
respond to local color (on a blue-yellow or

red-green axis), V1 has double-opponent cells. These cells,
whose existence used to be debated and is now supported
with growing evidence (e.g., [22]), have a spatial-opponency
structure within each color channel in addition to the oppo-
nency between different color channels. Such cells respond
particularly well to a spot of one color on a background of
its opponent color, and are thought to play a crucial role
in perceptual color constancy. It is therefore not surprising
that color contrast effects, i.e. a shift of perceived color of a
stimulus away from the color of the background, have been
observed in V1 [127]. The receptive fields of these cells are
rarely circularly symmetric and therefore also show some

orientation tuning, but their spatial resolution is low. Some
double-opponent cells are also orientation selective. On the
other hand, simple and complex cells, although not considered
as coding color, are often sensitive to the orientation of
equiluminant stimuli, i.e. edges or gratings defined only by
color contrast and not luminance contrast. This shows that
they are sensitive to color, but they do not code the color
polarity but only orientation. We therefore see that color and
form processing are largely (but not completely) separated in
V1.
Functional view: Double-opponent cells form the basis of
color contrast and color constancy, because they allow the
system to take the color context into account in determining
the perceived color [23]. It is interesting that double-opponent
receptive fields can be learned from natural color images by
optimizing statistical independence [20], which suggests that
they are organized by an information optimization process and
are therefore functionally driven.

In contrast to low-level color normalization in computer
vision, which is based primarily on operations applied the
same way to each pixel (see, e.g., [47]), it is evident from
human color perception that the achievement of color con-
stancy involves local and global processes spanning all levels
of the hierarchy, as already indicated by Helmholtz (see [199]
and section 7.1).

4.2 Area V2

V2 is a retinotopically-organized area that
mostly receives its input from V1. In V2,
the segregation between M and P pathways
is largely preserved although not complete
[84]. Like V1, V2 contains cells tuned to
orientation, color, and disparity. However,

a fraction of V2 cells are sensitive to relative disparity (in
contrast to absolute disparity arising in V1), which means
that they represent depth relative to another plane rather
than absolute depth. The main new feature of V2 is the
more sophisticated contour representation including texture-
defined contours, illusory contours, and contours with border
ownership.

4.2.1 Texture-Defined and Illusory Contours

Neurophysiological view: Some V2 cells are sen-
sitive to texture-defined contours, with an orienta-
tion tuning that is similar to that for luminance-
defined contours [127]. V2 cells are also sensitive
to illusory contours [84]. These can arise in var-
ious contexts, including texture or disparity dis-
continuities, or in relation to figure-ground effects
such as the Kanizsa triangle (see icons at the left).6

Functional view: This is a step towards greater invariance of
shape perception, since contours can be defined by a greater
variety of cues.

6. V1 also responds to illusory contours but has longer latencies and might
be driven by feedback from V2.
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4.2.2 Border Ownership

Neurophysiological view: Borders (i.e., contours)
are mostly formed by the projections of two or
more surfaces that either intersect or have gap
between them in 3D. In most cases, such borders

belong only to one of the surfaces that meet at the border, and
border ownership pertains to the assignment of which surface
(or region) a border belongs to. Border ownership was already
identified as an important visual information by [90], although
with a different term, belongingness. Border ownership, which
was largely neglected in computational approaches to vision,
is especially crucial for diffusion and filling-in mechanisms
with which missing and ambiguous visual information can
be reduced and rectified to a great extent. Discovery of cells
sensitive to border ownership was quite recent. In 2000, Zhou
et al. [206] found that 18% of the cells in V1 and more than
50% of the cells in V2 and V4 (along the ventral pathway)
respond or code according to the direction of the owner of
the boundary. However, the mechanisms by which neurons
determine the ownership is largely unclear.
Functional view: The fact that border ownership sensitive
neurons differentiate the direction of the owner 10–25 ms after
the onset of the response and that border ownership sensitivity
emerges as early as V1 (although to a lesser extent) suggests
that border ownership can be determined using local cues that
can be integrated by lateral long-range interactions along a
boundary. However, as shown recently by Fang et al. [43], the
process might also be modulated or affected from higher-level
cortical areas with attention.

4.2.3 Relative Disparity

Neurophysiological view: V2 also includes
disparity-sensitive cells. However, contrary to
disparity-sensitive cells in V1, those in V2
are sensitive to relative disparity, which is

the difference between the absolute disparities of two points
in space. Relative disparity is for example the difference in
disparity between a point at the fixation plane (zero disparity)
and a point closer to the observer (near disparity). It is known
that stereopsis relies mostly on the processing of relative
disparity [130].
Functional view: With sensitivity to relative disparity in V2,
it becomes possible to compare depth of objects and reason
about their 3D spatial relationships.

4.3 Area V4

In contrast to MT (see section 4.4) which
seems to be dominated by M-pathway
input, V4 seems to combine input from
the M as well as the P pathway since
blocking either M or P pathway reduces
activity of most cells in V4 [84].

V4 neurons respond selectively to orientation, color, dispar-
ity and simple shapes. They continue the process of integrating
lower-level into higher-level responses and increasing invari-
ances. For instance, V4 cells respond to contours defined by

differences in speed and/or direction of motion with an ori-
entation selectivity that matches the selectivity to luminance-
defined contours [127] (a few such cells are also found in V1
and V2 but with longer latencies, which again suggests that
they are driven by feedback from V4). Prominent new features
in V4 are curvature selectivity and luminance-invariant coding
of hue.

4.3.1 Curvature Selectivity
Neurophysiological view: Some V4 cells are
tuned to contours with a certain curvature (with
a bias towards convex contours [131]) or vertices
with a particular angle [127]. This selectivity is

even specific to the position of the contour segment relative
to the center of the shape considered, thus yielding an object
centered representation of shape. V2 also has cells that respond
to curves (contours that are not straight lines), but their
response can be explained by their tuning to edges alone,
which is not the case for V4 neurons.
Functional view: Experiments in monkeys where area V4
was ablated showed that V4 is important for the perception of
form and pattern/shape discrimination. V4 neuronal responses
represent simple shapes by a population code that can be
fit by a curvature-angular position function [131]. In this
representation, the object’s curvature is attached to a certain
angular position relative to the object center of mass. Most V4
neurons represent individual parts or contour fragments.

4.3.2 Color Hue and Luminance Invariance
Neurophysiological view: Color coding cells in
V4 differ from those in V2 in that they code for
hue, rather than color opponency along the two
principal color axes, and that the tuning to hue is

invariant to luminance [24]. Even though specialized to color,
many of these cells also show a prominent orientation tuning.
Functional view: Luminance invariant tuning to hue is already
a form of color constancy, and the orientation tuning of
color coding cells indicates some level of integration between
color and form perception, although V4 neurons are clearly
segregated into two populations, one for color and one for
form processing [177].

4.4 Area MT
The middle temporal (MT) area is ded-
icated to visual motion and binocular
depth processing. The vast majority of
neurons in area MT are sensitive to
moving stimuli. Neurons are tuned to
direction and speed of motion [112].

Receptive fields are about 10 times larger than in V1 so
that MT neurons integrate a set of motion signals from V1
over a larger area. The receptive fields show characteristic
substructures of different motion sensitivity in different parts
of the receptive field [106]. Many MT neurons are also
sensitive to binocular disparity [30]. Activity in MT directly
relates to perceptual motion [152] and depth [14] judgments.
Area MT is retinotopically organized with motion and depth
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columns similar to orientation and ocular dominance columns
in V1.

MT is not only important for perception but also for motor
control, particularly for smooth pursuit eye movements. MT
together with MST provides the main velocity signal in the
feedback control loop [37], [94] through output connections
into oculomotor structures in the brain stem.

4.4.1 2D motion
Neurophysiological view: MT neurons compute
a mid-level representation of motion by com-
bining inputs from V1 neurons that respond to
local motion [165], [118]. Some MT cells solve
the aperture problem and encode the direction
of motion independent of the orientation of the
moving stimulus [117]. MT cells encode the speed
rather than spatiotemporal frequency as V1 cells

do [133]. In calculating motion signals, MT neurons follow a
coarse-to-fine strategy in which responses to moving stimuli
are fast, but imprecise, and become more refined over time
[129].
Functional view: After initial measurements of local spa-
tiotemporal energy (in V1), the combination of motion mea-
surements is required to solve the aperture problem, derive 2D
motion direction, and estimate speed. This results in a mid-
level representation of motion in the visual field that is more
faithful to the true motion and more robust against noise than
earlier visual areas such as V1 and V2. The spatial smoothing
that is inherent in the combination of motion over large
receptive fields is partially reduced by disparity information
in the combination of motion signals [99].

4.4.2 Motion Gradients and Motion-Defined Shapes
Neurophysiological view: Some MT cells are
selective to higher order features of motion such
as motion gradients, motion-defined edges, lo-
cally opposite motions, and motion-defined shapes
[127]. These selectivities are aided by disparity
sensitivity. Disparity helps to separate motion
signals from objects at different distances, retain
motion parallax and compute transparent motion

and three-dimensional motion surfaces.
Functional view: MT constructs a representation of motion-
defined surfaces and motion on surfaces.

5 OBJECT RECOGNITION AND CATEGORIZA-
TION: THE VENTRAL STREAM
Lesion studies have demonstrated that the ventral pathway is
critical for object discrimination [193], whereas the posterior
parietal cortex is important for spatial vision. The most widely
used partitioning of the inferior temporal cortex (IT) is be-
tween the more posterior part, TEO, and the more anterior
part, area TE, based on the presence of a coarse retinotopy in
TEO but not in TE (see table 1) as well as a larger receptive
field size of neurons in the latter area over the former.7 Two

7. Many more functional subdivisions have been proposed for IT, including
separate regions encoding information about faces, color or 3D shape, but the
correspondence with the anatomical subdivisions is unclear at present.

types of neurons have been identified in IT [174]: Primary
cells respond to simple combinations of features and are a
majority in TEO; Elaborate cells respond to faces, hands and
complex feature configurations and have a high presence in
area TE.

5.1 Area TEO
Neuropsysiological view: TEO (also known as
PIT for Posterior IT) neurons are orientation-
and shape-selective. It has been shown that TEO
neurons mostly respond to very simple shape

elements. The main difference between TEO and TE is the
coarse retinotopic organization in TEO, which is absent in TE.
The receptive fields of TEO neurons are still relatively small
(3-5 deg) and located around the fovea or in the contralateral
hemifield.

Functional view: TEO is responsible for medium
complexity features and it integrates information
about the shapes and relative positions of multiple
contour elements. TEO integrates contour elements
but with a higher degree of complexity over V4.
This integration is non-linear and it includes in-
hibitory inputs (in addition to the excitatory ones).
Shape tuning is position and size invariant, and it
supports part-based shape theories [127].

5.2 Area TE
Neuropsysiological view: Area TE (also known
as AIT for Anterior IT) can be characterized by
a marked increase in the complexity of the visual
features that drive the neurons with respect to the

previous areas in the ventral pathway (Sec. 4). It is suggested
that shape-selective TE neurons integrate the output from the
previous areas. The receptive fields of visual neurons in TE
range from 10 to 20 degrees of visual angle, and the average
response latencies are around 70–80 ms.

Although 2D shape is the primary stimulus dimension to
which TE neurons respond, other object attributes are encoded
in TE as well: color [183], disparity [183], texture [183], and
3D shape [81]. At least for color and 3D shape it has been
demonstrated that the processing of these object properties is
largely confined to specific subregions in TE [80], [184].

Tanaka and co-workers [174] made a critical contri-
bution by developing the stimulus-reduction method
(see figure 4). After having measured the responses
of TE neurons to real-world objects, they system-
atically reduced the image of the most effective
object in an effort to identify the critical feature to
which the TE neurons were responding. For many
TE neurons, the critical feature was moderately
complex, i.e. less complex than the entire image but
more complex than simple bars or spots (figure 4).

In some cases, the neurons driven by the critical features
were clustered in what might be considered cortical columns
[183]. These findings have led to the hypothesis that TE
neurons do not explicitly code for entire objects but only for
object parts. Therefore, the read-out of TE needs to combine
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information from many TE neurons to build an explicit object
representation.

Functional view: Many properties of TE neurons (e.g. in-
variances, see table 1, 7th column) correspond well with the
properties of visual object recognition. Several studies have
demonstrated that the trial-to-trial variations in the firing rate
of TE neurons correlate with the perceptual report of rhesus
monkeys in various tasks, including object recognition [119],
color discrimination [111] and 3D shape discrimination [196].

A neural system capable of object recognition has to fulfill
two seemingly conflicting requirements, i.e. selectivity and
invariance. On the one hand, neurons have to distinguish
between different objects in order to provide information about
object identity (and object class in the case of categorization)
to the rest of the system, by means of sensitivity to features
in the retinal images that discriminate between objects. On
the other hand, this system also has to treat highly dissimilar
retinal images of the same object as equivalent, and must there-
fore be insensitive to transformations in the retinal image that
occur in natural vision (e.g. changes in position, illumination,
retinal size, etc.). This can be achieved by deriving invariant
features that are highly robust towards certain variations by
discarding certain aspects of the visual data (as, e.g., SIFT
descriptors [107]). From a systematic point of view, it would
be however advantageous to not discard information, but
to represent the information such that the aspects that are
invariant are separated from the variant parts such that both
kinds of information can be used efficiently (see, e.g., [31]
and section 8.2).

TE neurons generally show invariance of the shape pref-
erence to a large range of stimulus transformations (though
in general not in the absolute response levels). The most
widely studied invariances of TE neurons include invariance
for position (PI, cf. table 1, 7th column) and size (SI), but
other stimulus transformations can also evoke invariant shape
preferences: the visual cue defining the shape (cue invariance
CI; [183]), partial occlusion (occlusion invariance OI; [183]),
position-in-depth [79], illumination direction [92] and clutter
(overlapping shapes, [183]). Rotation in depth evokes the most
drastic changes in the retinal image of an object, and also
the weakest invariance in TE, since most TE neurons show
strongly view-dependent responses even after extensive train-
ing. The only exception might be faces, for which both view-
dependent and view-invariant responses have been documented
[183].

TE neurons typically respond to several but not all exem-
plars of the same category, and many TE neurons also respond
to exemplars of different categories [198]. Therefore object
categories are not explicitly represented in TE. However,
recent readout experiments have demonstrated that statistical
classifiers (e.g. support vector machines) can be trained to
classify objects based on the responses of a small number
of TE neurons [183], [88]. Therefore, a population of TE
neurons can reliably signal object categories by their combined

Fig. 4. TE neurons respond to critical features of objects
that can be quite complex; more complex than edges or
bars but less complex than objects [174].

activity.8 It is surprising that relatively little visual training
has noticeable physiological effects on visual perception, on
a single cell level as well as in fMRI [93]. For instance
morphing objects into each other increases their perceived
similarity, which is thought to be a useful mechanism for
learning invariances [51].

6 VISION FOR ACTION: THE DORSAL STREAM

The dorsal visual stream (see Figure 2) contains a number
of areas that receive visual information from areas such as
MT and V3A, and project mostly to the premotor areas in the
frontal lobe, bridging between the visual and motor systems.
The areas located in the dorsal stream are functionally related
to different effectors: LIP is involved in eye movements, MIP
in arm movements, AIP in hand movements (grasping) and
MST and VIP in body movements (self-motion).9

6.1 MST
Neurophysiological view: Area MST receives its
major input from area MT (see figure 2). Like
MT, MST has many neurons that respond to visual
motion. Receptive fields in MST are much larger

than those of MT, often covering substantial portions of the
visual field without a clear retinotopic arrangement. Many
MST neurons respond selectively to global motion patterns
such as large-field expansions or rotations [176]. Thus, MST
neurons integrate motion in different directions from within
the visual field. The structure of the receptive fields, however,
is very complex and often not intuitively related to the pattern
selectivity [34]. MST neurons are tuned to the direction of self-
motion, or heading, in an optic flow field [132], [100]. MST
neurons carry disparity signals [148] and receive vestibular
input [15], [67] both consistent with their involvement in self-
motion estimation.

Area MST is also involved in smooth pursuit
eye movement [37], where it employs non-visual
(extraretinal) input [122]. Using this extraretinal
information, some MST neurons cancel the retinal

effects of eye movements and respond to motion in the world
rather than to motion on the retina [41]. This is also seen in
Area V3A [57].
Functional view: Area MST is concerned with self-motion,
both for movement of the head (or body) in space and

8. In contrast, an explicit category representation is present in the prefrontal
cortex [53] and surprisingly also in the posterior parietal cortex (area LIP,
[52]). Category information even occurs earlier, is stronger and more reliable
in parietal cortex than in the prefrontal cortex [169].

9. Note that since not much is known about area 7a we have not discussed
this area in detail.
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movement of the eye in the head. The selectivity of MST
neurons to optic flow patterns generates a population-based
map of heading in MST [100]. Rather than representing the
distribution of particular features in a retinotopic map of
the visual field, as lower areas such as V1, V2, V4 or MT
do, MST creates a new reference frame that represents self-
motion in different directions in space. The organization is not
retinotopic, but heading is represented in retinal coordinates,
i.e, left or right with respect to the direction of gaze. The
access to extraretinal eye movement information enables MST
to estimate heading during combinations of body movement
and eye movement.

The estimation of self-motion from optic flow is a common
requirement in robotics. Solutions to this problem rely on the
combination of many motion signals from different parts of
the visual field as well as from non-visual areas relevant for
heading estimation.

6.2 Caudal Intraparietal Area (CIP)

θ
Neuropsysiological view: CIP10 receives strong
projections from area V3A and projects to LIP
and AIP [121]. In [163], [170] it was reported
that CIP neurons respond selectively to tilted

planar surfaces defined by binocular disparity (first-order
disparity). Some CIP neurons are also selective for the 3D
orientation of elongated stimuli [151]. CIP neurons can show
cue invariance for the tilt of planar surfaces, which means
that the preference for a particular tilt is preserved when
different depth cues signal the tilt (disparity, texture and
perspective [190]). Results [188] suggest selectivity for zero-
order disparity (position in depth) of CIP neurons. More
recently, [86] also reported selectivity for curved surfaces
(second-order disparity) in one monkey. CIP neurons do not
respond during saccadic eye movements. No data exist on the
size and shape of the CIP receptive fields nor on response
latencies of CIP neurons.

Functional view: It is convenient to make a distinction
between different orders of depth information from disparity
[71]. Zero-order disparity refers to position-in-depth of planar
surfaces (or absolute disparity, no disparity variation along the
surface, see section 7.3) first-order disparity refers to inclined
surfaces (tilt and slant, linear variations of disparity along the
surface), and second-order disparity refers to curved surfaces
(concave or convex, a change in the variation of disparity over
the surface). CIP contains neurons that encode zeroth-, first-
and possibly second-order disparities, which suggests that it is
an important visual intermediate area that may provide input
to visuomotor areas such as LIP and AIP. Not much is known
about about the internal organization of CIP.

10. Note that since receptive field sizes of CIP neurons are unknown we
have not drawn a corresponding figure as for the other regions.

6.3 Lateral Intraparietal Area (LIP)

Neurophysiological view: LIP is situated
between visual areas and the motor sys-
tem, receiving information from the dor-
sal and the ventral stream and projecting
to other oculomotor control centers in
the frontal lobe (FEF) and the superior

colliculus [103]. LIP neurons respond before saccadic eye
movements into the receptive field, and electrical microstim-
ulation of LIP can evoke saccadic eye movements [181].

The visual responses in LIP are related to the salience of the
stimulus [65], which led to the suggestion that LIP contains
a salience map of the visual field, that guides attention and
decides about saccades to relevant stimuli [11]. Moreover,
LIP has been implicated in several other cognitive processes:
decision formation [160], reward processing [136], timing [76]
and categorization [52]. A more recent series of studies has
also demonstrated that LIP neurons can respond selectively to
simple two-dimensional shapes during passive fixation [156], a
property that had been primarily allocated to the ventral visual
stream.

Functional view: The representation of space in
LIP exemplifies several key properties of spatial
processing in the dorsal stream. LIP neurons
have visual receptive fields that represent loca-
tions on the retina, i.e. they represent stimuli in a

retino-centric coordinate system. However, a few milliseconds
before a saccadic eye movement, some LIP neurons become
sensitive to stimuli at locations where their receptive field
will be after the saccade [36]. This remapping of activity
between the current and the future receptive field seems
like a transient shift of the receptive field before a saccade.
Moreover, although LIP receptive fields are basically in retino-
centric coordinates, the activity of the cells is modulated
by eye position, i.e., some cells respond more strongly to
stimuli in their receptive field when the animal looks to
the right than when it looks to the left, and vice versa [4].
The combination of retino-centric receptive fields and eye
position modulation provides a population code in LIP that can
represent the location of a stimulus in head-centric coordinates,
i.e. can perform a coordinate transformation [207], [137]. This
transformation allows, for example, for a combination of visual
with auditory spatial input for the localization of sights and
sounds [3].

LIP is one of the most studied areas in the dorsal stream.
Despite more than two decades of single-cell studies, a consid-
erable controversy exists with respect to the role of area LIP in
high-level cognitive control processes such as motor planning,
attention, decision formation, etc. However, LIP is believed
to be a core area for spatial representation of behaviorally
relevant stimuli. Visual (and auditory) input is transformed
into a spatial representation in which each neuron uses eye-
centered coordinates but in which the entire population forms
a head-centric representation that encodes stimulus location
even when the eye position changes. At the single neuron level,
remapping of activity across saccades ensures continuity of the
visual representation despite the eye movement.
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6.4 Ventral Intraparietal Area (VIP)

Neuropsysiological view: Area VIP is
connected with a wide range of visual,
somatosensory, and premotor (mouth
representation) areas. VIP neurons are
multi-modal, in the sense that they can
be activated by visual, tactile, vestibular

and auditory stimulation, and smooth pursuit eye movements
[21]. The tactile receptive fields are generally located on the
skin of the head and face, and visual and tactile receptive fields
frequently match in size and location: a neuron that responds
to tactile stimulation of an area around the mouth will also
respond to visual stimuli approaching the mouth. It has been
proposed that VIP encodes near-extrapersonal space [21]. The
receptive fields of VIP neurons vary from purely retinocentric
to purely head-centered [35], including also receptive fields
that are intermediate between retinocentric and head-centered.
Furthermore, some VIP neurons respond to complex motion
stimuli, such as the direction of heading in optic flow displays.

Functional view: Area VIP is likely
to be involved in self-motion, control
of head movements, and the encoding
of near-extrapersonal (head-centered)
space which link tactile and visual
fields.

6.5 Medial Intraparietal Area (MIP)

Neuropsysiological view: MIP mainly
projects to the dorsal premotor cortex
(PMd). Neurons in this area typically re-
spond selectively during a delayed reach
task, in which monkeys are instructed
to reach to a target on a touch screen

after a certain time delay in order to receive a reward. MIP
neurons will respond to particular reaching directions but not
to others, and this neural selectivity is primarily eye-centered.
When monkeys are free to choose the target, the MIP and
PMd show increased spike-field coherence, suggesting direct
communication between these brain areas [134].

Functional view: The activity of MIP neu-
rons mainly reflects the movement plan towards
the target, and not merely the location of the
target or visual attention evoked by the target

appearance [55]. MIP neurons also respond more when the
animal chooses a reach compared to when the animal chooses
a saccade towards a target, indicating that MIP encodes
autonomously selected motor plans [25].

6.6 Anterior Intraparietal Area (AIP)

Neuropsysiological view: The main inputs to
AIP arise in LIP, CIP and the ventral pathway
[12], whereas the output from AIP is directed
towards the ventral premotor area F5, which is

also involved in hand movements. Reversible inactivation of
AIP causes a profound grasping deficit in the contralateral
hand [56]. Sakata and co-workers showed that AIP neurons

frequently discharge during object grasping [151], with a
preference for some objects over other objects. Some AIP
neurons respond during object fixation and grasping, but not
during grasping in the dark (visual-dominant neurons), other
AIP neurons do not respond during object fixation but only
when the object is grasped, even in the dark (motor-dominant
neurons), whereas a third class of AIP neurons responds
during object fixation and grasping, and during grasping in the
dark (visuo-motor neurons, [120]). AIP encodes the disparity-
defined 3D structure of curved surfaces [168]. However, ex-
periments with monkeys indicate that the neural coding of
3D shape in AIP is not related to perceptual categorization
of 3D shape [196]. In contrast, most 3D-shape-selective AIP
neurons also respond during object grasping [180], suggesting
that AIP represents 3D object properties for the purpose of
grasping (i.e., grasping affordances).

Functional view: Neurons in AIP are sensitive to
the 2D and 3D features of the object and shape
of the hand (in a light or dark environment)
relevant for grasping. In other words, area AIP

might be involved in linking grasping affordances of objects
with their 2D and 3D features. The extraction of grasping
affordances from visual information is also currently a highly
researched area in robotics since picking up unknown objects
is a frequent task in autonomous and service robotics.

7 THE VERTICAL VIEW: PROCESSING OF DIF-
FERENT VISUAL MODALITIES
Based on the knowledge we gained in sections 3 – 6 on the
brain areas involved in the processing of visual information,
we can now summarize the processing of different visual
modalities such as color (section 7.1), 2D and 3D shape
(section 7.2 and 7.3), motion (section 7.4) as well as the
processing for object recognition (section 7.5) and actions
(section 7.6) in a ’vertical view’, emphasizing the hierarchical
aspects of processing of visual information. Figure 5 gives
an overview of this vertical (per modality) as well as the
horizontal (per area) view.

7.1 Color
Color can be an extremely informative cue and has always
been used as one of the basic features in psychophysical visual
search experiments. Efficient search can be performed with
heterogeneous colors (up to nine distractors) as soon as they
are widely separated in color space [203].

Neurophysiologically color processing is characterized by a
steady progression towards color constancy (see figure 5, 3rd
column). The three cones types (L, M, S) have a broad and
largely overlapping wavelength tuning, and their firing rate is
heavily affected by luminance. The single-opponent cells in
LGN establish the two color axes red-green and blue-yellow,
thereby sharpening the wavelength tuning and achieving some
invariance to luminance. Double-opponent cells provide the
means to take nearby colors into account for color contrast. In
V4 hue is encoded, which spans the full color space. The final
step is IT where there exists an association of color with form
[205]. In TEO (closer to V4) most of the neurons are activated
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Fig. 5. Overview over the processing in the visual system. The icons of the text are arranged according to areas and
modalities. The general layout follows figure 1, left. The yellow, blue and red rectangles have a size proportional to
those of the corresponding areas. Connectivity is indicated in the vicinity, with the downwards arrowheads indicating
the source area and the upwards arrowheads indicating the destination area. All but the retina → LGN connection are
mirrored by feedback connections.

maximally by a simple combination of features such as bars
or disks varying in size, orientation and color [175]. Elaborate
cells (a majority in sub-area TE) respond to combinations of
different features (shape and texture, shape and color, texture
and color, texture and color and shape) [175].

There are a number of relevant insights that can be drawn
from the neurophysiological evidence presented in the sections
before. Color processing is taking place in a, to a large
degree separated, pathway that only merges in general shape
representations on the level of TE. Color is a cheap but also
brittle feature for computer vision purposes. Its efficient use
for object recognition depends on achieving color constancy
which can still be seen as a challenge in computer vision
applications. In the primate visual system, this is only achieved
at rather late stages (V4 and beyond), hence involving a
large part of the visual hierarchy. This is very different from

color normalization schemes on a pixel level predominant in
computer vision. A hierarchical representation might be able
to provide means to provide mid– and high level cues for
achieving color constancy.

7.2 Two-Dimensional Shape

Processing of 2D shape is characterized throughout the visual
system by increasing receptive field sizes, increasing complex-
ity of relevant features, and increasing degree of invariance
(see figure 5, 4th column).

The receptive field sizes are tiny in the retina and can be
as large as half the visual field in IT (see Table 1, second
column). But it is not only the size that increases, the receptive
fields also get more complex and dynamic. In the early areas,
receptive fields tend to show a linear response. Beginning in
V1, cells have a non-classical receptive field, i.e. the response
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of these cells is modulated by the surrounding, which implies
contextual effects. In V4, strong attentional effects have been
shown, resulting in different responses of a cell for identical
stimuli, if the task and thereby the attentional state changes
[84]. In IT, receptive fields are very large but the selectivity
can be influenced by clutter and other objects in the scene
[147]. For isolated objects on a blank background, receptive
fields are very large; for an object on a cluttered background
or among many distractors, receptive fields are relatively small
which indicates a tight connection between detection and
segmentation.

The features that drive cells in the visual system also
gradually increase in complexity. They are simply spots in
retina and LGN, primarily bars or edges in V1, particular
curves in V4, then more complex patterns and object parts
in TEO and TE. The general notion is that the more complex
features are built up from the simpler ones, e.g. simple cells
that are sensitive to bars can be combined from on- and off-
center cells that are sensitive to spots.

Early on does the visual system try to make responses
invariant to frequently occurring but irrelevant variations [201].
That starts already in the retina where several mechanisms are
in place to achieve a high degree of luminance invariance,
so that we can see in the darkness of the night and the
brightness of a sunny day. Some position invariance is first
achieved in V1 by the complex cells, which are sensitive to
bars and edges of certain orientations, like simple cells, but
which are less sensitive to the position of the stimuli. This
position invariance increases throughout the visual system and
in IT, objects can be moved around by 10 degrees or even more
without degrading the selectivity of some of the IT cells [185],
[75]. There is also increasing size invariance. In addition to
invariances to illumination and to geometrical transformations,
invariance is also achieved with respect to the cues used to
define objects (see table 1, 7th column). Edges are the primary
features used to represent objects, it seems. In V1 they are
defined as boundaries between dark and light, or between
different color hues; in V2 contours may also be defined by
texture boundaries and these cells respond to illusory contours;
in V4 contours may even be defined by differences in motion.

Representing and recognizing a 2D shape requires more
than a collection of edges. The edges must be integrated
somehow into one coherent percept. This is known in neuro-
science as the binding problem [186], [84]. It is thought that
there must be a mechanism that binds together the elementary
features to one object, because otherwise one would mix the
features of one object with those of another one and perceive
something that is not there (this actually happens in humans
in case of fast presentation times [187]). Possible solutions
to the binding problem are tuning of cells to conjunctions of
features, spatial attention, and temporal synchronization. The
latter idea assumes that somehow the visual system manages
to synchronize the firing of those neurons that represent the
same object and desynchronize them from others [166], which
could also explain the fairly limited number of objects we
can process simultaneously. The binding problem is related to
segmentation. Responses that represent also border ownership,
like in V2, and responses that are specific to the relative

position of an edge with respect to the object center, like in
V4, are probably relevant for both processes.

7.3 Three-Dimensional Shape
The brain computes the third dimension (depth) from a large
number of depth cues. Binocular disparity is one of the
most powerful depth cues. Importantly, only second-order
disparities (see section 6.2) are independent of eye position
(vergence angle) and distance [71], thereby constituting a very
robust parameter to estimate the three-dimensional layout of
the environment.

The neural representation of 3D shape emerges gradually
in the visual system (see figure 5, ’3D shape’ column). A
few general principles can be identified. First, at progressively
higher stages in the visual system, the neurons become tuned
to more complex depth features, starting with absolute dis-
parity in V1 [27]. Along the ventral stream, new selectivity
emerges for relative disparity in V2 [182], first-order disparity
in V4 [70] and finally second-order disparity in IT [70],
[80]. Along the dorsal stream areas V3 and V3A encode
primarily absolute disparities [5], area MT encodes absolute,
relative and first-order disparity [97], [191], [123], area CIP
encodes primarily first-order disparity [190], and AIP second-
order disparities [168]. As with every other visual feature
representation, the receptive fields of the neurons become
larger and the latencies become longer. Secondly, at every level
in the hierarchy the neural selectivity of the previous level(s)
is reiterated such that at the highest levels in the hierarchy
(e.g. IT cortex) selectivity for zero-, first- and second-order
disparities can be measured [81].

Thirdly, in the visual hierarchy there seems to be a consid-
erable amount of parallel processing of 3D shape information.
Thus the end-stage areas of both the ventral and the dorsal
visual stream (area AIP), each contain a separate represen-
tation of 3D shape [79], [168]. These representations are
distinct because the properties of 3D-shape selective neurons
differ markedly between IT and AIP: the coding of 3D shape
in AIP is faster (shorter latencies), coarser (less sensitivity
to discontinuities in the surfaces), less categorical and more
boundary-based (less influence of the surface information)
compared to IT [180], [77]. Finally, the two neural repre-
sentations become more tailored towards the behavioral goal
that the two processing streams support: in IT the 3D-shape
representation subserves categorization of 3D shapes [197],
but in AIP most 3D-shape selective neurons also respond
during grasping [180]. In contrast, selectivity for anticorrelated
disparities (in which each black dot in one eye corresponds to
a white dot in the other eye and no depth can be perceived)
is present in V1 [26], MT [96] and MST [171], weak in V4
[172] but absent in IT [78] or AIP [180], presumably because
the latter areas are not involved in eye movements, which are
strongly modulated by anticorrelated disparity [110].

7.4 Motion
The pattern of motion that is induced on the retina when one
moves through the environment provides information about
one’s own motion and about the structure of the environment
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[61]. The motion pathway extracts this information from the
optic flow.

The first steps of motion analysis in V1 involve the
computation of local spatiotemporal motion energy from the
dynamics of the retinal image [195], [179]. A mid-level
representation in area MT computes basic motion features
such as 2D direction and speed based on the V1 inputs
[165]. This computation needs to solve several difficult prob-
lems. First, local motion energy calculation by spatiotemporal
receptive fields in V1 measures only the direction normal
to the orientation of a moving bar or grating (the aperture
problem). Secondly, spatiotemporal receptive fields cannot
calculate speed but only spatiotemporal frequency. Speed
tuning corresponds to orientation in spatiotemporal frequency.
Most V1 neurons respond to a specific combination of spatial
and temporal frequency whereas truly speed-tuned neurons
respond to a preferred speed v over a range of spatial and
temporal frequency s.t.: v = df/dt. Both problems are solved
in MT by combining signals from many different V1 cells
[165], [133]. However some complex cells in V1 have also
been found to already solve these problems [128].

As indicated in figure 5 (6th column), the spatial integration
that is needed to perform this integration leads to larger recep-
tive fields in MT and thus has the effect of spatially smoothing
the motion pattern. However, this smoothing is well adapted
to the structure of the optic flow and preserves self-motion
information [18]. Different weighting of inputs within the MT
receptive fields moreover allows new motion features to be
computed such as differential motion (differences between
motion directions at adjacent positions in the visual field),
motion edges, and gradients of the motion field [127]. These
higher order motion signals are directly related to properties
of surfaces in the scene. An important signal that carries this
information is motion parallax, i.e. the difference in speed of
two objects at different distances from a moving observer. The
sensitivity of MT neurons to motion edges and locally opposite
motion can be used to extract motion parallax from the optic
flow. Motion processing is combined with disparity analysis in
MT in order to separate motion signals from different depths
[99].

The extraction of information about self-motion is a func-
tion of area MST. MST neurons have very large, bilateral
receptive fields and respond to motion patterns. The patterns
include expansion, contraction, rotation, and more generally
speaking, spirals [176], [34]. One way to look at MST is
thus in terms of pattern analysis. However, MST is better
understood in terms of self-motion analysis [100]. Self-motion
describes the translation and rotation of the eye of the observer
in space, i.e. the 6 degrees of freedom of any rigid body
motion. Single MST neurons are tuned to particular self
motions, i.e. to particular translation directions (e.g. forward
or rightward) and to rotations as well as to combinations
of rotation and translation [100], [67]. MST thus contains a
representation of self-motion.

Motion processing is linked to smooth pursuit eye move-
ments. When one tracks a moving target with the eyes,
the target is stable on the retina while the background is
sweeping across the retina. The target, however, is perceived

to move and the background is perceived as stable. Some
cells in MST respond to motion in the world rather than
motion on the retina, by combining visual information with
extraretinal information about ongoing eye movements [41].
This combination of visual and extraretinal signals is also
useful for self-motion analysis when one does not look in the
direction of movement but fixates and tracks an object in the
visual field [99]. Vestibular input about the state of self-motion
is also combined with vision in MST [67].

In summary, the analysis of motion in the primate visual
system proceeds in a hierarchy from V1 (local spatiotemporal
filtering) to MT (2D motion) to MST (self-motion, motion in
world coordinates). Along this hierarchy several computational
problems are solved, the features become more complex, re-
ceptive fields become larger, and spatial integration of motion
signals increases. The representation shifts from one of motion
in the visual field (V1, MT) to one of motion in the world
and motion of oneself in the world (MST). Also along this
hierarchy, visual motion processing is combined with disparity
(MT, MST), eye movement information (MST), and vestibular
signals (MST). The representation becomes thus less tied to
the image and more to the action of the body.

7.5 Object Recognition

Object recognition goes beyond simple 2D-shape perception
in several aspects: integration of different cues and modalities,
invariance to in-depth rotation and articulated movement,
use of context. It is also important to distinguish between-
class discrimination (object categorization) and within-class
discrimination of objects.

Some integration of different cues is done already for
2D-shape perception. For instance, edges can be defined by
luminance in V1, by textures in V2 and by differences in
motion in V4. However, color and shape seems to be processed
rather independently until high up in the hierarchy. Motion
is processed early on, but it is used for object recognition
in a different way than for shape perception. For instance,
one can recognize familiar people from great distance by their
characteristic gait. Other modalities, such as sound and odor,
obviously also contribute to object recognition.

It appears that the units in IT pull together various features
of medium complexity from lower levels in the ventral stream
to build models of object parts. Precise granularity of these
parts has not been established at present time, although there
are indications that they span different sizes of receptive fields
and are possibly tuned to different levels of feature invariance
(abstraction) [174]. Computational models that can predomi-
nantly be described as compositional hierarchies (the hierar-
chical organization of categorical representations) define/learn
units that are not inconsistent with these findings. For example,
it has been shown that features that have been learned (in an
unsupervised manner) at the level that roughly corresponds to
IT contain sufficient information for reliable classification of
object categories (this can be related to readout experiments
[74]). Some of the related computational models could also
help in making predictions regarding the need for massive
feedback (from IT to LGN/V1) and alleviate the problems
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with the stimulus-reduction method as these stimuli could be
generated through a learning procedure [46].

Rotation in depth usually changes the shape of an object
quite dramatically. However, a small fraction of IT neurons
can exhibit some rotation invariance and speed of recognition
of familiar objects does not depend on the rotation angle
[79]. A particular case are face sensitive neurons which
can show a rather large invariance to rotations in depth.
Representations of the same object under different angles are
presumably combined into a rotation invariant representation
like simple cell responses might be combined into a complex
cell response. Comparing unfamiliar objects from different
perspectives seems to require mental rotation and requires
extra time that is proportional to the rotation angle [154].

Context plays a major role in object recognition [124] and
can be of different nature – semantic, spatial configuration
or pose – and is, at least partially, provided by higher areas
beyond IT. A simple example are the words ‘THE’ and ‘CAT’,
which can be written with an identical character in the center
with a shape somewhere between an ‘H’ and an ‘A’. We
recognize this very same shape immediately in the appropriate
way depending on the context of the surrounding two letters.
But we are also faster to recognize a sofa in a living room
than floating in the air or a street scene. Interestingly, objects
also help to recognize the context and context may be defined
on a crude statistical level [124].

Some people have perfectly good object recognition capabil-
ities but cannot recognize faces, a deficit known as prosopag-
nosia, although they can recognize people by their clothes or
voices. The FFA (fusiform face area) seems the brain structure
for face recognition [85]. There is evidence that prosopagnosia
not only affects face processing but that it is a deficit in telling
apart instances from the same category. For instance bird-
watcher with prosopagnosia cannot tell birds apart anymore
and car experts cannot make fine car distinctions [58].

It is interesting that in human subjects highly selective neu-
rons have been described that may support object recognition.
For example, recordings from epileptic patients in the medial
temporal lobe have shown that single neurons reliably respond
to particular objects, like the tower of Pisa, in whatever image
[139].

7.6 Action Affordances

To supply visual information to the planning and control of
action, the visual system extracts specific action-relevant fea-
tures in hierarchical processing along the occipital and dorsal
pathways. This processing is characterized by successively
increasing complexity, multi-sensory integration, and a shift
from general visual representations to representation specific
for particular effectors and actions. Moreover, this processing
is to some degree independent of conscious perception, such
that lesion patients may be able to interact correctly with
objects they fail to recognize and vice versa [64].

Early stages in the dorsal stream hierarchy (V1, V2, MT) are
concerned with visual feature extraction (location, orientation,
motion,) and the estimation of action-relevant objects features,
such as surface orientation, from different cues (motion: MT,

stereo: CIP). These features are encoded in a retinotopic frame
of reference. Hierarchically higher areas encode information in
spatiotopic or head-centric reference frames, sometimes at the
single cell level (as in area VIP [35]) and often in a population
code (areas MST, LIP, 7A, MIP) [137]. A major function of
the dorsal stream thus lies in coordinate transformations.

These transformations are necessary because the planning
of action with different effectors needs to consider targets in
different reference frames. Eye movements are best encoded
in a retinocentric representation but reach movements need a
transformation to arm coordinates, and hence a representation
of the target in space. It is not always clear what the best
encoding for a particular action is, but the areas in the parietal
cortex provide a number of parallel encodings for different
tasks.

A further issue for these transformations lies in the combi-
nation of vision with other sensory or motor signals. Along
the processing in the dorsal stream visual information is
combined with vestibular (in MST, VIP), auditory (in LIP),
somatosensory (in VIP), and proprioceptive or motor feedback
signals (MST and VIP for smooth eye movements, LIP for
saccades, MST/VIP/7A/MIP for eye position). Since these sig-
nals come in different sensory representations, the combination
with vision requires extensive spatial transformations.

Eventually, higher areas in the dorsal stream construct spa-
tial representations that are specialized to provide information
for specific actions: LIP represents salience in the visual scene
as a target signal for eye movements, MIP and AIP provide
information for reaching (target signals) and grasping (shape
signals). LIP and VIP provide information for the control
of self-motion. Therefore, the processing of action-relevant
visual information in the dorsal stream is characterized by a
separation of functions, unlike processing in the ventral stream,
which is focused on the perception of objects.

8 WHAT CAN WE LEARN FROM THE VISUAL
SYSTEM FOR COMPUTER VISION?
What can we learn from the primate visual system for
computer vision systems as well as the learning of deep
hierarchies? We believe that there are at least four design
principles of the former that could be advantageous also for
the latter: hierarchical processing11, separation of information
channels, feedback and an appropriate balance between prior
coded structure and learning.

8.1 Hierarchical Processing

One prominent feature of the primate visual system is its
hierarchical architecture consisting of many areas that can
roughly be ordered in a sequence with first a common early
processing and then a split into two interacting pathways, see
Figure 2 and 5. Each pathway computes progressively more
complex and invariant representations. What are the possible
advantages of such an architecture?

11. In Introduction, we listed several authors who have in various ways
studied and demonstrated this principle.
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Computational efficiency: The brain is a machine with an
enormous number of relatively simple and slow processing
units, the neurons. Thus, significant performance can only be
achieved if the computation is distributed efficiently. A visual
hierarchical network does this spatially as well as sequentially.
The spatial partitioning results in localized receptive fields, and
the sequential partitioning results in the different areas that
gradually compute more and more complex features. Thus,
computation is heavily parallelized and pipelined. On a PC,
this is less of an issue because it has only one or few but very
fast processing units. However, this might change with GPUs
or other computer architectures in the future and then the high
degree of parallelization of hierarchical networks might be a
real plus.

Computational efficiency in the primate visual system also
arises from the fact that a lot of processing is reused for several
different purposes. The occipital part, which constitutes most
of the visual cortex, provides a generic representation that
is used for object recognition, navigation, grasping, etc. This
saves a lot of computation.
Learning efficiency: Equally important as the computational
efficiency during the inference process is the learning effi-
ciency. Hierarchical processing helps in that it provides several
different levels of features that already have proven to be
useful and robust in some tasks. Learning new tasks can
build on these and can be fast because appropriate features
at a relatively high level are available already. For instance
invariance properties can simply be inherited from the features
and do not have to be learned again.

Hierarchical processing, in particular in conjunction with the
progression of receptive field sizes (see Table 1, column 3),
offers mechanisms that may alleviate the overfitting problem.
Namely, small size receptive fields in the lower hierarchical
layers limit the potential variability of the features inside the
receptive fields and consequently confine the units to learn low
dimensional features, which can be sampled with relatively
few training examples [46]. The process is recursively applied
throughout the hierarchy resulting in a controlled progression
in the overall complexity of units on the higher layers. This
corresponds to an implicit regularization.

It is important to note that biological visual systems mature
in complexity and sophistication in an intertwined process of
development (through growing neural substrate) and learning
(tuning of neural units) in a sequence of stages. From the
computational point of view, this has important implications
that deserve more attention in the future.
The world is hierarchical: Even within the brain is the
visual system extreme in that has such a deep hierarchy. This
may have to do with the complexity of the vision problem
or the importance vision has for us. But it might also be a
consequence of the fact that the (visual) world around us is
spatially laid out and structured hierarchically. Objects can be
naturally split into parts and subparts, complex features and
simple features, which makes hierarchical processing useful.
Nearby points in the visual field are much more related than
distant points, which makes local processing within limited
receptive fields effective at lower levels.

8.2 Separation of Information Channels

Another prominent feature of the visual system is the sepa-
ration of information channels. Color, motion, shape etc. are
processed separately, even in separate anatomical structures,
for quite some time before they are integrated in higher areas.
Some of these features are even duplicated in the dorsal and
the ventral pathway but with different characteristics and used
for different purposes. We believe this has at least two reasons:
availability of information and efficiency of representation.
Availability of information: Depending on the circumstances,
some of the information channels may not be available at all
times. If we look at a photograph, depth and motion are not
available. If it is dark, color is not available. If it is foggy
high resolution shape information is not available, and motion
and color might be the more reliable cues. A representation
that would integrate all cues at once would be seriously
compromised if one of the cues is missing. Separating the
information channels provides robustness with respect to the
availability of the different information cues.
Efficiency of representation: Separating the information
channels naturally results in a factorial code; an integrated
representation would yield a combinatorial code, which is
known to suffer from the combinatorial explosion and also
does not generalize well to new objects. If we represent
four colors and four shapes separately, we can represent 16
different object more efficiently, i.e. with fewer units, than
if we would represent each object as a unique color/shape
combination. And also if we have seen only a few of the 16
possible combinations, we still can learn and represent unseen
combinations easily.

It has been suggested that the binding problem, which arises
because different neurons process different visual features
of the same object (e.g. color and shape), is solved by
means of neuronal synchronization in the temporal domain
[40], [146]. In this ‘binding by synchronization’ hypothesis,
neurons throughout the cortex encoding features of the same
object would show synchronous activity, which would act as
a ’label’ that would indicate that the different features belong
to the same object. However, experimental support for the
synchronization hypothesis has been mixed [98], [33], [159],
and no experiment has unambiguously proven that synchrony
is necessary for binding.

8.3 Feedback

While we have outlined in this paper a hierarchical feedfor-
ward view on visual processing, it is important to remember
that within the visual cortex there are generally more feedback
connections than forward connections. Also lateral connec-
tions play an important role. This hints at the importance
of processes like attention, expectation, top-down reasoning,
imagination, and filling in. Many computer vision systems try
to work in a purely feed-forward fashion. However, vision is
inherently ambiguous and benefits from any prior knowledge
available. This may even imply that the knowledge of how the
tower of Pisa looks influences the perception of an edge on
the level of V1. It also means that a system should be able to
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produce several hypotheses that are concurrently considered
and possibly not resolved [102].

8.4 Development and Learning of Visual Processing
Hierarchies
In this paper, we focused on a description of and lessons to
be learned from the end product, the functional visual system
of the adult primate. We do not have the space here to discuss
what is known about the development [194] and learning of
biological visual processing hierarchies (e.g., [105], [113]).
However, there are some fairly obvious conclusions relevant
to computer vision.

First, in contrast to most deeply hierarchical computer vision
systems, the primate visual processing hierarchy does not
consist of a homogeneous stack of similar layers that are
trained either bottom-up or in a uniform fashion. Rather, it
consists of heterogeneous and specialized (horizontal) layers
and (vertical) streams that differ considerably in their func-
tions. Thus, a conceptually simple, generic vision system may
not be achievable. It may be that biology has instead chosen
to optimize specialized functions and their integration into a
perceptual whole. It remains to be seen however, whether the
specialization of cortical areas is due to fundamentally differ-
ent mechanisms or to differences in the input and the particular
combination of a very small set of learning principles (see, e.g,
[31], [91]).

An aspect of these heterogeneous layers and streams that
should be of interest to computer vision is that these dis-
tinct functional units and intermediate representations provide
structural guidance for the design of hierarchical learning
systems. As discussed by Bengio [9], this constitutes a way
of decomposing the huge end-to-end learning problem into a
sequence of simpler problems (see also p. 2).

Secondly, biological vision systems arise due to interactions
between genetically-encoded structural biases and exposure
to visual signals. One might argue that this is precisely
how today’s computer vision systems are conceived: The
computational procedure is designed by hand, and its param-
eters are tuned using training data. However, inhomogeneous
processing hierarchies require dedicated learning methods at
various stages. Mounting evidence for adult cortical plasticity
suggests that the influence of learning on cortical processing
is much more profound than the tuning of synaptic strengths
within fixed neural architectures [66], [62].

9 CONCLUSION

We have reviewed basic facts about the primate visual system,
mainly on a functional level relevant for visual processing. We
believe that the visual system still is very valuable as a proof
of principle and a source of inspiration for building artificial
vision systems. We have in particular argued for hierarchical
processing with a separation of information channels at lower
levels. Moreover, concrete design choices which are crucial for
or potentially facilitate the learning of deep hierarchies (such
as the structure of intermediate representations, the number
of layers and the basic connectivity structure between layers)
can be motivated from the biological model. Main stream
computer vision, however, seems to follow design principles
that are quite different from what we know from primates.
We hope that the review and the thoughts presented here
help in reconsidering this general trend and encourage the
development of flexible and multi-purpose vision modules that
can contribute to a hierarchical architecture for artificial vision
systems.
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Abstract

Unsupervised over-segmentation of an image into re-
gions of perceptually similar pixels, known as superpix-
els, is a widely used preprocessing step in segmentation
algorithms. Superpixel methods reduce the number of re-
gions that must be considered later by more computation-
ally expensive algorithms, with a minimal loss of informa-
tion. Nevertheless, as some information is inevitably lost, it
is vital that superpixels not cross object boundaries, as such
errors will propagate through later steps. Existing meth-
ods make use of projected color or depth information, but
do not consider three dimensional geometric relationships
between observed data points which can be used to pre-
vent superpixels from crossing regions of empty space. We
propose a novel over-segmentation algorithm which uses
voxel relationships to produce over-segmentations which
are fully consistent with the spatial geometry of the scene
in three dimensional, rather than projective, space. Enforc-
ing the constraint that segmented regions must have spa-
tial connectivity prevents label flow across semantic object
boundaries which might otherwise be violated. Addition-
ally, as the algorithm works directly in 3D space, observa-
tions from several calibrated RGB+D cameras can be seg-
mented jointly. Experiments on a large data set of human
annotated RGB+D images demonstrate a significant reduc-
tion in occurrence of clusters crossing object boundaries,
while maintaining speeds comparable to state-of-the-art 2D
methods.

1. Introduction
Segmentation algorithms aim to group pixels in images

into perceptually meaningful regions which conform to ob-

ject boundaries. While they initially only considered low-

level information from the image, recent semantic segmen-

tation methods take advantage of high-level object knowl-

edge to help disambiguate object borders. Graph-based ap-

proaches, such as Markov Random Field (MRF) and Condi-

tional Random Field (CRF), have become popular, as they

merge relational low-level context within the image with

object level class knowledge. While the use of such tech-

niques have met with significant success, they have the

drawback that the computational cost of inference on these

graphs generally rises sharply with increasing number of

nodes. This means that solving graphs with a node for every

pixel quickly becomes intractable, which has limited their

use in applications which require real-time segmentation.

The cost of solving pixel-level graphs led to the devel-

opment of mid-level inference schemes which do not use

pixels directly, but rather use groupings of pixels, known

as superpixels, as the base level for nodes [9]. Superpixels

are formed by over-segmenting the image into small regions

based on local low-level features, reducing the number of

nodes which must be considered for inference. While this

scheme has been successfully used in many state-of-the-art

algorithms [4, 15], it suffers from one significant disadvan-

tage; mistakes in the over-segmentation which creates the

superpixels generally cannot be recovered from and will

propagate to later steps in the vision pipeline.

Due to their strong impact on the quality of the even-

tual segmentation [5], it is important that superpixels have

certain characteristics. Of these, avoiding violating object

boundaries is the most vital, as failing to do so will de-

crease the accuracy of classifiers used later - since they will

be forced to consider pixels which belong to more than one

class. Additionally, even if the classifier does manage a cor-

rect output, the final pixel level segmentation will necessar-

ily contain errors. Another useful quality is regular distri-

bution over the area being segmented, as this will produce a

simpler graph for later steps.

In this paper, we present a novel method, Voxel Cloud

Connectivity Segmentation (VCCS), which takes advantage

of 3D geometry provided by RGB+D cameras to gener-

ate superpixels which conform to object boundaries bet-

ter than existing methods, and which are evenly distributed

in the actual observed space, rather than the projected im-

age plane. This is accomplished using a seeding method-
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ology based in 3D space and a flow-constrained local it-

erative clustering which uses color and geometric features.

In addition to providing superpixels which conform to real

geometric relationships, the method also can be used di-

rectly on point clouds created by combining several cal-

ibrated RGB+D cameras, providing a full 3D supervoxel

(the 3D analogue of superpixels) graph at speeds sufficient

for robotic applications. Additionally, the method source

code is freely distributed as part of the Point Cloud Library

[11] (PCL) 1.

The organization of the paper is as follows: first, in Sec-

tion 2 we give an overview of existing methods. In Sec-

tion 3 we present the 3D supervoxel segmentation algo-

rithm. In Section 4 we present a qualitative evaluation of

the method segmenting 3D point clouds created by merging

several cameras. In Section 5 we use standard quantitative

measures on results from a large RGB+D semantic segmen-

tation dataset to demonstrate that our algorithm conforms

to real object boundaries better than other state-of-the-art

methods. Additionally, we present run-time performance

results to substantiate the claim that our method is able to

offer performance equivalent to the fastest 2D methods. Fi-

nally, in Section 6 we discuss the results and conclude.

2. Related Work

There are many existing methods for over-segmenting

images into superpixels. These can be generally classified

into two subsets - graph-based and gradient ascent meth-

ods. In this section, we shall briefly review recent top-

performing methods.

Graph-based superpixel methods, similar to graph-based

full segmentation methods, consider each pixel as a node in

a graph, with edges connecting to neighboring pixels. Edge

weights are used to characterize similarity between pixels,

and superpixel labels are solved for by minimizing a cost

function over the graph. Moore et al. [8] produce superpix-

els which conform to a regular lattice structure by seeking

optimal paths horizontally and vertically across a bound-

ary image. This is done using either a graph cuts or dy-

namic programming method which seeks to minimize the

cost of edges and nodes in the paths. While this method

does have the advantage of producing superpixels in a reg-

ular grid, it sacrifices boundary adherence to so, and fur-

thermore, is heavily dependent on the quality of the pre-

computed boundary image.

The Turbopixels [7] method of Levinshtein et al. uses a

geometric flow-based algorithm based on level-set, and en-

forces a compactness constraint to ensure that superpixels

have regular shape. Unfortunately, it is too slow for use

in many applications; while the authors claim complexity

linear in image size, in practice we experienced run times

1https://github.com/PointCloudLibrary/pcl/

over 10 seconds for VGA-sized images. Veksler et al. [13],

inspired by Turbopixels, use an energy minimization frame-

work to stitch together image patches, using graph-cuts to

optimize an explicit energy function. Their method (re-

ferred to here as GCb10) is considerably faster than Tur-

bopixels, but still requires several seconds even for small

images.

Recently, a significantly faster class of superpixel meth-

ods has emerged - Simple Linear Iterative Clustering[1]

(SLIC). This is an iterative gradient ascent algorithm

which uses a local k-means clustering approach to effi-

ciently find superpixels, clustering pixels in the five dimen-

sional space of color and pixel location. Depth-Adaptive

Superpixels[14] recently extended this idea to use depth im-

ages, expanding the clustering space with the added dimen-

sions of depth and point normal angles. While DASP is

efficient and gives promising results, it does not take full

advantage of RGB+D data, remaining in the class of 2.5D

methods, as it does not explicitly consider 3D connectivity

or geometric flow.

For the sake of clarity, we should emphasize that our

method is not related to existing “supervoxel” methods

[1, 8, 13], which are simple extensions of 2D algorithms

to 3D volumes. In such methods, video frames are stacked

to produce a structured, regular, and solid volume with time

as the depth dimension. In contrast, our method is intended

to segment actual volumes in space, and makes heavy use

of the fact that such volumes are not regular or solid (most

of the volume is empty space) to aid segmentation. Existing

“supervoxel” methods cannot work in such a space, as they

generally only function on a structured lattice.

3. Geometrically Constrained Supervoxels
In this Section we present Voxel Cloud Connectivity

Segmentation (VCCS), a new method for generating super-

pixels and supervoxels from 3D point cloud data. The su-

pervoxels produced by VCCS adhere to object boundaries

better than state-of-the-art methods while the method re-

mains efficient enough to use in online applications. VCCS

uses a variant of k-means clustering for generating its label-

ing of points, with two important constraints:

1. The seeding of supervoxel clusters is done by par-

titioning 3D space, rather than the projected image plane.

This ensures that supervoxels are evenly distributed accord-

ing to the geometry of the scene.

2. The iterative clustering algorithm enforces strict

spatial connectivity of occupied voxels when considering

points for clusters. This means that supervoxels strictly can-

not flow across boundaries which are disjoint in 3D space,

even though they are connected in the projected plane.

First, in 3.1 we shall describe how neighbor voxels are

calculated efficiently, then in 3.2 how seeds are generated

and filtered, in 3.3 the features and distance measure used
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for clustering, and finally in 3.4 how the iterative clustering

algorithm enforces spatial connectivity. Unless otherwise

noted, all processing is being performed in the 3D point-

cloud space constructed from one or more RGB+D cameras

(or any other source of point-cloud data). Furthermore, be-

cause we work exclusively in a voxel-cloud space (rather

than the continuous point-cloud space), we shall adopt the

following notation to refer to voxel at index i within voxel-

cloud V of voxel resolution r:

Vr(i) = F1..n, (1)

where F specifies a feature vector which contains n point

features (e.g. color, location, normals).

3.1. Adjacency Graph

Adjacency is a key element of the proposed method, as

it ensures that supervoxels do not flow across object bound-

aries which are disconnected in space. There are three def-

initions of adjacency in a voxelized 3D space; 6-,18-, or

26-adjacent. These share a face, faces or edges, and faces,

edges, or vertices, respectively. In this work, whenever we

refer to adjacent voxels, we are speaking of 26-adjacency.

As a preliminary step, we construct the adjacency graph

for the voxel-cloud. This can be done efficiently by search-

ing the voxel kd-tree, as for a given voxel, the centers of

all 26-adjacent voxels are contained within
√
3 ∗ Rvoxel.

Rvoxel specifies the voxel resolution which will be used for

the segmentation (for clarity, we shall simply refer to dis-

crete elements at this resolution as voxels). The adjacency

graph thus constructed is used extensively throughout the

rest of the algorithm.

3.2. Spatial Seeding

The algorithm begins by selecting a number of seed

points which will be used to initialize the supervoxels. In

order to do this, we first divide the space into a voxelized

grid with a chosen resolution Rseed, which is significantly

higher than Rvoxel. The effect of increasing the seed res-

olution Rseed can be seen in Figure 2. Initial candidates

for seeding are chosen by selecting the voxel in the cloud

nearest to the center of each occupied seeding voxel.

Once we have candidates for seeding, we must filter out

seeds caused by noise in the depth image. This means that

we must remove seeds which are points isolated in space

(which are likely due to noise), while leaving those which

exist on surfaces. To do this, we establish a small search

radius Rsearch around each seed, and delete seeds which do

not have at least as many voxels as would be occupied by

a planar surface intersecting with half of the search volume

(this is shown by the green plane in Figure 1). Once filtered,

we shift the remaining seeds to the connected voxel within

the search volume which has the smallest gradient in the
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Figure 1. Seeding parameters and filtering criteria. Rseed deter-

mines the distance between supervoxels, while Rvoxel determines

the resolution to which the cloud is quantized. Rsearch is used to

determine if there are a sufficient number of occupied voxels to

necessitate a seed.

search volume. Gradient is computed as

G(i) =
∑

k∈Vadj

‖ V (i)− V (k) ‖ CIELab

Nadj
; (2)

we use sum of distances in CIELAB space from neighbor-

ing voxels, requiring us to normalize the gradient measure

by number of connected adjacent voxels Nadj . Figure 1

gives an overview of the different distances and parameters

involved in seeding.

Once the seed voxels have been selected, we initialize the

supervoxel feature vector by finding the center (in feature

space) of the seed voxel and connected neighbors within 2

voxels.

3.3. Features and Distance Measure

VCCS supervoxels are clusters in a 39 dimensional

space, given as

F = [x, y, z, L, a, b, FPFH1..33], (3)

where x, y, z are spatial coordinates, L, a, b are color in

CIELab space, and FPFH1..33 are the 33 elements of Fast

Point Feature Histograms (FPFH), a local geometrical fea-

ture proposed by Rusu et al. [10]. FPFH are pose-invariant

features which describe the local surface model properties

of points using combinations of their k nearest neighbors.

They are an extension of the older Point Feature Histograms

optimized for speed, and have a computational complexity

of O(n · k).
In order to calculate distances in this space, we must

first normalize the spatial component, as distances, and thus

their relative importance, will vary depending on the seed

resolution Rseed. Similar to the work of Achanta et al., [1]

we have limited the search space for each cluster so that it
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Figure 2. Image segmented using VCCS with seed resolutions of 0.1, 0.15 and 0.2 meters.

ends at the neighboring cluster centers. This means that we

can normalize our spatial distance Ds using the maximally

distant point considered for clustering, which will lie at a

distance of
√
3Rseed. Color distance Dc, is the euclidean

distance in CIELab space, normalized by a constant m. Dis-

tance in FPFH space, Df , is calculated using the Histogram

Intersection Kernel [2]. This leads us to a equation for nor-

malized distance D:

D =

√

λD2
c

m2
+

μD2
s

3R2
seed

+ εD2
HiK , (4)

where λ, μ, and ε control the influence of color, spatial dis-

tance, and geometric similarity, respectively, in the cluster-

ing. In practice we keep the spatial distance constant rela-

tive to the other two so that supervoxels occupy a relatively

spherical space, but this is not strictly necessary. For the

experiments in this paper we have color weighted equally

with geometric similarity.

3.4. Flow Constrained Clustering

Assigning voxels to supervoxels is done iteratively, using

a local k-means clustering related to [1, 14], with the signifi-

cant difference that we consider connectivity and flow when

assigning pixels to a cluster. The general process is as fol-

lows: beginning at the voxel nearest the cluster center, we

flow outward to adjacent voxels and compute the distance

from each of these to the supervoxel center using Equation

4. If the distance is the smallest this voxel has seen, its la-

bel is set, and using the adjacency graph, we add its neigh-

bors which are further from the center to our search queue

for this label. We then proceed to the next supervoxel, so

that each level outwards from the center is considered at the

same time for all supervoxels. We proceed iteratively out-

wards until we have reached the edge of the search volume

for each supervoxel (or have no more neighbors to check).

This amounts to a breadth-first search of the adjacency

graph, where we check the same level for all supervoxels

before we proceed down the graphs in depth. Importantly,

we avoid edges to adjacent voxels which we have already

checked this iteration. The search concludes for a super-

voxel when we have reached all the leaf nodes of its adja-

cency graph or none of the nodes searched in the current

level were set to its label. This search procedure, illus-

trated in Figure 3, has two important advantages over ex-

isting methods:

1. Supervoxel labels cannot cross over object boundaries

that are not actually touching in 3D space, since we only

consider adjacent voxels, and

2. Supervoxel labels will tend to be continuous in 3D

space, since labels flow outward from the center of each

supervoxel, expanding in space at the same rate.

Once the search of all supervoxel adjacency graphs has

concluded, we update the centers of each supervoxel clus-

ter by taking the mean of all its constituents. This is done

iteratively; either until the cluster centers stabilize, or for a

fixed number of iterations. For this work we found that the

supervoxels were stable within a few iterations, and so have

simply used five iterations for all presented results.

4. Three Dimensional Voxel Segments
The proposed method works directly on voxelized point

clouds, which has advantages over existing methods which

operate in the projected image plane. The most important

of these is the ability to segment clouds coming from many

sensor observations - either using multiple cameras [3] or

accumulated clouds from one [6]. Computationally, this is

advantageous, as the speed of our method is dependent on

the number of occupied voxels in the scene2, and not the

number of observed pixels. As observations will have sig-

nificant overlap, this means that it is cheaper to segment

the overall voxel cloud than the individual 2D observations.

For instance, the scene in Figure 5 comes from 180 Kinect

observations (640x480), and yet the final voxel cloud (with

Rvoxel = 0.01m) only contains 450k voxels.

Additionally, while VCCS will become more accurate as

cloud information is filled in by additional observations, 2D

methods must necessarily segment them independently and

therefore cannot make use of the added information. Most

2 We should note that while the initial voxelization of the cloud does

take more time with a larger cloud, it remains insignificant overall
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Figure 3. Search order for the flow constrained clustering algorithm (shown in 2D for clarity). Dotted edges in the adjacency graph are not

searched, as the nodes have already been added to the search queue.

importantly, even with methods that use depth information,

such as that of Weikersdorfer et al. [14], it is not clear how

one would combine the multiple segmented 2d images, as

superpixels from sequential observations will have no rela-

tion to each other and will have conflicting partitionings of

space in the merged cloud.

5. Experimental Evaluation
In order to evaluate the quality of supervoxels gener-

ated by VCCS, we performed a quantitative comparison

with three state-of-the-art superpixel methods using pub-

licly available source code. We selected the two 2D tech-

niques with the highest published performance from a re-

cent review [1]: a graph based method, GCb10 [13]3, and

a gradient ascent local clustering method, SLIC [1]4. Ad-

ditionally, we selected another method which uses depth

images, DASP[14]5. Examples of over-segmentations pro-

duced by the methods are given in Figure 6.

5.1. Dataset

For testing, we used the recently created NYU Depth

Dataset V2 semantic segmentation dataset of Silberman

et al. [12]6. This contains 1449 pairs of aligned RGB

and depth images, with human annotated densely labeled

ground truth. The images were captured in diverse cluttered

indoor scenes, and present many difficulties for segmenta-

tion algorithms such as varied illumination and many small

similarly colored objects. Examples of typical scenes are

shown in Figure 6.

5.2. Returning to the Projected Plane

RGB+D sensors produce what is known as an organized

point cloud- a cloud where every point corresponds to a

pixel in the original RGB and depth images. When such a

3http://www.csd.uwo.ca/˜olga/Projects/
superpixels.html

4http://ivrg.epfl.ch/supplementary_material/RK_
SLICSuperpixels/index.html

5https://github.com/Danvil/dasp
6http://cs.nyu.edu/˜silberman/datasets/nyu_

depth_v2.html

Figure 4. Example of hole-filling for images after returning from

voxel-cloud to the projected image plane. Depth data, shown in

the top left, has holes in it, shown as dark blue areas (here, due

to the lamp interfering with the Kinect). The resulting supervox-

els do not cover these holes as shown in the bottom left, since the

cloud has no points in them. To generate a complete 2D segmen-

tation, we fill these holes in using the SLIC algorithm, resulting in

a complete segmentation, seen in the top right. The bottom right

shows human annotated ground truth for the scene.

cloud is voxelized, it necessarily loses this correspondence,

and becomes an unstructured cloud which no longer has any

direct relationship back to the 2D projected plane. As such,

in order to compare results with existing 2D methods we

were forced to devise a scheme to apply supervoxel labels

to the original image.

To do this, we take every point in the original organized

cloud and search for the nearest voxel in the voxelized rep-

resentation. Unfortunately, since there are blank areas in

the original depth image due to such factors as reflective

surfaces, noise, and limited sensor range, this leaves us with

some blank areas in the output labeled images. To overcome

this, we fill in any large unlabeled areas using the SLIC al-

gorithm. This is not a significant drawback, as the purpose

of the algorithm is to form supervoxels in 3D space, not su-

perpixels in the projected plane, and this hole-filling is only

needed for comparison purposes. Additionally, the hole fill-
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Figure 5. Over-segmentation of a cloud from the RGB-D scenes dataset[6]. The cloud is created by aligning 180 kinect frames, examples

of which are seen on the left side. The resulting cloud has over 3 million points, which reduces to 450k points at Rvoxel = 0.01m and

100k points with Rvoxel = 0.02m. Over-segmentation of these take 6 and 1.5 seconds, respectively (including voxelization).

Figure 6. Examples of under-segmentation output. From left to right- ground truth annotation, SLIC, GCb10, DASP, and VCCS. Each is

shown with two different superpixel densities.
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Figure 7. Boundary recall and under-segmentation error for SLIC,

GCb10, DASP, and VCCS.

ing actually makes our results worse, since it does not con-

sider depth, and therefore tends to bleed over some object

boundaries that were correctly maintained in the supervoxel

representation. An example of what the resulting segments

look like before and after this procedure are shown in Fig-

ure 4.

5.3. Evaluation Metrics

The most important property for superpixels is the abil-

ity to adhere to, and not cross, object boundaries. To mea-

sure this quantitatively, we have used two standard met-

rics for boundary adherence- boundary recall and under-

segmentation error[7, 13]. Boundary recall measures what

fraction of the ground truth edges fall within at least two

pixels of a superpixel boundary. High boundary recall indi-

cates that the superpixels properly follow the edges of ob-

jects in the ground truth labeling. The results for bound-

ary recall are given in Figure 7. As can be seen, VCCS

and SLIC have the best boundary recall performance, giv-

ing similar results as the number of superpixels in the seg-

mentation varies.

Under-segmentation error measures the amount of leak-

age across object boundaries. For a ground truth segmenta-

tion with regions g1, ..., gM , and the set of superpixels from

an over-segmentation, s1, ...sK , under-segmentation error

is defined as

Euseg =
1

N

⎡

⎣

M
∑

i=1

⎛

⎝

∑

sj |sj∩gi

|sj |
⎞

⎠−N

⎤

⎦ , (5)

where sj | sj∩gi is the set of superpixels required to cover a

ground truth label gi, and N is the number of labeled ground

truth pixels. A lower value means that less superpixels vio-

lated ground truth borders by crossing over them. Figure 7

compares the four algorithms, giving under-segmentation

error for increasing superpixel counts. VCCS outperforms

existing methods for all superpixel densities.

5.4. Time Performance

As superpixels are used as a preprocessing step to re-

duce the complexity of segmentation, they should be com-

putationally efficient so that they do not negatively impact

overall performance. To quantify segmentation speed, we

measured the time required for the methods on images of

increasing size (for the 2D methods) and increasing number

of voxels (for VCCS). All measurements were recorded on

an Intel Core i7 3.2Ghz processor, and are shown in Fig-

ure 8. VCCS shows performance competitive with SLIC

and DASP (the two fastest superpixel methods in the litera-

ture) for voxel clouds of sizes which are typical for Kinect

data at Rvoxel = 0.008m (20-40k voxels). It should be

noted that only VCCS takes advantage of multi-threading

(for octree, kd-tree, and FPFH computation), as there are

no publicly available multi-threaded implementations of the

other algorithms.

6. Discussion and Conclusions
We have presented VCCS, a novel over-segmentation al-

gorithm for point-clouds. In contrast to existing approaches,

it works on a voxelized cloud, using spatial connectivity

and geometric features to help superpixels conform better

to object boundaries. Results demonstrated that VCCS pro-

duces over-segmentations which perform significantly bet-

ter than the state-of-the-art in terms of under-segmentation

error, and equal to the top performing method in boundary

recall. This is fortunate, as we consider under-segmentation

error to be the more important of the two measures, as

boundary recall does not penalize for crossing ground truth

boundaries- meaning that even with a high boundary recall

score, superpixels might perform poorly in actual segmenta-

tion. We have also presented timing results which show that

VCCS has run time comparable to the fastest existing meth-

ods, and is fast enough for use as a pre-processing step in

online semantic segmentation applications such as robotics.

203120312033



�

����

����

����

����

10000

�����

�	
��
����

��
	
�
�	

��

����
����
�����

� ��� � ��� � ���
� ��5

�

���

����

����

����

����

� 	��! "# $"��%�

��
	
�
�	

��

&���

���
���

�

'�
��
(�
�

��
��
�'
��

��
��
��
��
�

�'
��
��
��
�

��
��
��
'�
�

Figure 8. Speed of segmentation for increasing image size and

number of voxels. Use of GCb10 rapidly becomes unfeasible for

larger image sizes, and so we do not adjust the axes to show its run-

time. The variation seen in VCCS run-time is due to dependence

on other factors, such as Rseed and overall amount of connectivity

in the adjacency graphs.

We have made the code publicly available as part of the

popular Point Cloud Library, and intend for VCCS to be-

come an important step in future graph-based 3D semantic

segmentation methods.
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Abstract

It has become a common practice to use simulation to generate large databases of good grasps for
grasp planning in robotics research. However, the existence of a generic simulation context that enables
the generation of high quality grasps that can be used in several different contexts such as bin-picking
or picking objects from a table, has to our knowledge not yet been discussed in the literature.

In this paper, we investigate how well the quality of grasps simulated in a commonly used ”generic”
context transfers to a specific context, both, in simulation and in the real world.

We generate a large database of grasp hypothesis for several objects and grippers, which we then
evaluate in different dynamic simulation contexts e.g., free floating (no gravity, no obstacles), standing
on a table and lying on a table.

We present a comparison on the intersection of the grasp outcome space across the different contexts
and quantitatively show that to generate reliable grasp databases, it is important to use context specific
simulation.

We furthermore evaluate how well a state of the art grasp database transfers from two simulated con-
texts to a real world context of picking an object from a table and discuss how to evaluate transferability
into non-deterministic real world contexts.

1 Introduction

For more than a decade, data-driven grasp planning approaches have been used in the research community
and the main focus has been on how to online select good grasps from a grasp-database generated using
heuristics or simulation [1–5]. Only little attention has been payed to the simulated context in which these
databases were generated and how well the generated grasps actually perform in contexts which are different
from the simulated context, e.g., grasps that have been generated in a free floating environment and then
are applied to an object placed on a table.

Furthermore, object pose uncertainties due to model and sensor limitations may negatively influence the
grasp execution. Pose uncertainties can be compensated for in the offline calculation of the grasps [6–8] by
evaluating either the quality of neighboring grasps or the quality of the neighborhood grasp contacts, where
a neighboring grasp can be simulated by applying a small displacement to the object before executing the
target grasp in simulation. The basic idea is that a high average quality of grasps in the neighborhood of
the target grasp reflects a high robustness toward uncertainties in the execution of the target grasp.

The above approach of calculating the robustness of a grasp target by evaluating the outcome of the
neighborhood using small perturbations, assumes that the calculated neighborhood of grasps—whether done
in simulation or with another heuristic—captures the same neighborhood as if the grasps were executed in
the real world. This is problematic since the success of a grasp executed in the real world can be dependent
on the environmental context, e.g., when the object is standing on a table, lying in water or leaning against
a wall. This is illustrated in Fig. 1 where the same grasp is executed in two different environments, in one
it succeeds and in the other it fails. It is obvious that changes in the environment can result in collisions
between gripper and environment and therefore some grasps that are successful in one environment will fail



Figure 1: Two simulated grasp sequences of the same grasp but in two different contexts. The top sequence
fails to grasp the cup in the gravity free environment. In the bottom sequence the cup is successfully grasped
when placed on top of a table.

in another due to collision. This specific form of grasp failure can be effectively handled during the online
selection of a grasp by testing gripper geometry for collision against a virtual model or the sensor information
available. Thus, changes in grasp success space due to collisions are not of great importance in respect to
predicting grasp success outcome.

However, the interaction forces between the object to be grasped and the environment may differ substan-
tially in different contexts, which may result in different outcomes of attempting the same grasp. The reason
is that pose uncertainties imply that the fingers will not be synchronously placed at the target contacts on
the object, which will cause the object to move during the grasp. The movement will be constrained by
the environment and hence different environments or contexts may influence the success of a specific grasp
attempt.

In this paper, we investigate the transferability of grasp successes from both a simulated context to
another simulated context as well as the transfer from a simulated context to a real world context. Our
motivation is not only to understand how the simulated context affects the success of a given grasp, but also
to understand how the success neighborhood of a grasp is affected when transferred to a new context. The
influence on the neighborhood when transferring a grasp is important for several reasons:

1. Grasp quality estimation: the neighborhood is used to calculate the robustness quality of a grasp,
which describes how much pose uncertainties affect the success likelihood of a grasp.

2. Continuous grasp representation: some grasp database representations such as grasp densities [9] rep-
resent not a single successful grasp, but a complete continuous grasp success space which include the
grasp neighborhood successes.

3. Uncertainties in execution: when executing a grasp from a grasp database, then the actual executed
grasp will likely be a grasp from the neighborhood of the selected grasp due to pose uncertainties.

We investigate the transferability of the grasp neighborhood by randomly generating grasp configurations
that are simulated in different environments. Comparing the outcome of hundreds of thousands of grasps
simulated in different environments enables us to get insight into the nature of the transferability of a grasp
database, which allows us to qualitatively show the importance of using context specific simulation when
computing grasp databases for data-driven grasp planners. In addition, we will present a quality measure for
the context transferability of a grasp database and use it to compute the transferability for several chosen
objects and contexts.

We furthermore provide real world results that show that context-aware generated grasp databases have
a better grasp success transferability/predictability than context-unaware databases. We discuss and present



Figure 2: Typical data-driven grasp planning approach.

a quality measure for transferability to real world contexts which differ from simulated contexts by being
non-deterministic and noisy.

In Section 2, we introduce related work within data-driven grasping and how it is commonly used in
the community. Then in Section 3, we discuss transferability and how we can measure it, firstly when
considering transfer between simulated contexts and secondly when considering transfer between simulated
and real contexts. We introduce the setup, objects, grippers and control strategies in Section 4 which is
followed by a description of how we compute the grasps in Section 5. In Section 6 the results are presented
and a detailed analysis is followed in Section 7.

2 Related Work

State of the art grasp planning algorithms often rely on offline computed databases of feasible grasps
generated using kinematic and/or dynamic simulation [1–5]. These grasp databases are used in online
grasp/motion planning where the best grasp is chosen to be used in a specific context. The main steps in
the generation of a grasp-database and its usage is outlined in Fig. 2. In the following, we first address the
offline phase depicted on the left side of Fig. 2 followed by the online phase depicted to the right.

In the offline computation a sampling strategy is chosen to sample the parameter space of the system.
This is defined by at least the pose of the gripper, the configuration of the gripper fingers (the grasp preshape)
and the maximum joint torques. Additional parameters such as max finger velocity or the trajectory of the
base of the gripper can also be used depending on the policy used to perform the actual grasping execution.
The sampling can be selected arbitrarily, it can use grasp preshapes [10] and directly sample the base of the
gripper in SE(3) or use more biased sampling approaches that generate or plan samples based on the object
geometry and/or gripper kinematics [11,12].

The sampled parameters are used to initiate the grasp simulation which consist of the gripper and an
object. When a single grasp has been generated, the simulator is started and a grasping policy is used
to control the fingers into a grasp. This policy is typically simple and often dependent on which type of
simulation is used e.g., kinematic or dynamic. In this work we use the dynamic rigid body grasp simulator
in RobWork [13].

The simulation may be terminated due to a number of different criteria, which themselves involve the
determination of whether the grasp was successful or not. In a kinematic simulation, analytic stability
measures such as the maximum enclosing ball in the grasp wrench space [14], are computed based on contact
points and used to describe if a grasp is stable. These measures also apply to dynamic simulations, but
here the stability might also be determined by performing a lifting motion with the gripper and object as in
[15]. If the object is not dropped after moving the gripper, then a stable grasp has been computed. Notice,



that in a dynamic simulation, the object may be lost during lifting due to forces from the environment, e.g.,
gravity or contacts with other objects.

After simulating sampled grasps the grasps are labeled and filtered before they are added to the grasp
database, see bottom left in Fig. 2. Intuitively, only successful grasps of a certain quality should be added
to the grasp database. However, for some applications it is important to include low quality grasps in order
to maintain enough coverage of the object [16]. The grasp quality might be based on a grasp wrench space
(GWS) analysis [14], on tactile based quality metrics [17] or any other form of quality measure [18] that can
be computed offline. The main importance is to store grasps that will maximize the likelihood of success
when used in an actual application.

For the simulated-to-simulated transfer experiments done in this paper, no quality other than success
and failure is used. These are defined by trying to move the object after it is grasped. If the grasp can
withstand the accelerations during movement then the grasp is successful.

In the online computation (the right block in Fig. 2), the context is changed. We have a robot with a
limited reach, we have obstacles that limit the grasping possibilities, sensors that are imperfect and other
constraints imposed by the task, that we wish the robot to perform. The main problem is then to select
a grasp from the grasp database which is feasible in spite of these limitations and constraints. In general
the online selection of a grasp from a grasp database should maximize the likelihood of success. In practice,
grasps with highest offline computed qualities are typically used. A more advanced online grasp selection
approach was presented in [2], were an online scoring function that favors grasp configurations that are
furthest away from obstacles was used. The scoring function reduced unwanted collisions with other objects
in the environment enabling safer grasping in cluttered environments.

Several learning approaches to grasping [19,20] use simulated grasp databases as training data. The main
goal is typically to use learning to infer a feasible grasp when presented with some form of input, which could
be point cloud data, images, or simply the geometry of an object.

In [4], a grasp database “the Columbia Grasp Database” is presented and it is used for grasp planning
in [?]. The database is generated using dynamic simulation of grasps in an obstacle free environment and
the grasp configurations where calculated by the authors’ eigen-based grasp planner.

In [1], the grasp database is generated based on a kinematic simulation of closing the gripper fingers
around the object in an obstacle free environment. The authors do not comment on the context independence
of the database but point out that a gripper with tactile feedback is necessary to execute grasps generated
with their approach. In [2], the same approach is used to generate the grasp database, but here the authors
do not mention the use of tactile feedback in their experimental setup.

The use of tactile sensors to online guide the grasp stability has been investigated in several papers [21–23]
and shows great promise. However, the performance of tactile sensor hardware is far from ideal and typical
issues are drift, low sensitivity range, low durability, detection of sliding, detection of measuring normal and
measuring sheer forces. Reliable and general reactive grasping therefore still remains a challenge.

However, all above approaches rely on databases generated in a context independent simulation. To relies
on the quality of those grasps it is necessary to have either a perfectly calibrated setup with no uncertainties
or an online grasp execution that rely on tactile feedback to correct for uncertainties. Both of these properties
in a setup are non-trivial and the latter is still not solved and is actively researched.

This paper is an extension on the conference paper [24] presented at the conference RAAD13. The
original paper addressed the issues concerning the transfer of grasps that are computed in contexts that
differ from the contexts they are used in. Simulated experiments where provided to document this transfer
issue. In this paper we have extended the simulated experiments and provided results on transferring grasps
from two different simulated contexts to a real world context. We furthermore show that context-aware
generated grasp databases have a significantly better transferability than context-unaware databases.

3 On Quantifying Transferability

In this section we discuss how to quantify transferability both from simulated to simulated contexts and
from simulated to real world contexts. Simulation to simulation quantification is easier due to ground truth



Figure 3: Grasp sequence demonstrating the difference between successful grasp configurations (the blue
area) and stable grasp configurations (grasps on the black area). The two blue areas, depict the artificial
grasp success space in two different environments A and B. The grasp sequence demonstrate the convergence
of a successful grasp configuration into a stable grasp configuration in environment A. The success space of
environment B suggests that grasps g3 and g2 should result in failure in environment B and are therefore
not transferable from A to B.

knowledge of the virtual world and the deterministic way of simulation. In Section 3.1 we define a measure
that exploits the deterministic behavior of simulation to evaluate the same grasps in two different contexts.
Quantifying transferability from simulation to real world is more difficult due to the non-deterministic way
of sensor and process noise in the real world. Hence, in Section 3.2 we describe a quantification method that
is based on a continuous success evaluation instead of the binary success-failure outcome used in simulation.

3.1 Quantifying Transferability in Simulation

The transferability measure that we present in this section requires a set of grasps that have been executed
in multiple contexts. The binary outcomes (success, failure) of these grasp experiments then define the
transferability.

This is illustrated in Fig. 3 where the neighborhood (blue area) of successful grasp experiments in one
context A is different from the neighborhood of successful grasp experiments from another context S. The
green point illustrates the target grasp gs which belongs to the set of stable grasps Gstable (black line/area)
and the arrows illustrate three grasps (g1, g2, g3) chosen from the neighborhood of gs. In context B grasps
(g2, g3) are no longer part of the neighborhood of successful grasps (indicated as red arrows) and therefore
fail. We define the transfer of a grasp from one context to another to be successful in the case of g1, but
unsuccessful in the case of (g2, g3).

If we think of transferability as a measure that determines how well we can predict outcomes of grasp
experiments in one context, given the knowledge of the outcomes of the same experiments from another
context, then we can borrow metrics from the machine learning literature and pose the measure of transfer-
ability as a classification problem. If we consider the execution of the same grasp in two different contexts
then we may have four possible outcomes: (success, success), (failure, success), (success, failure) and (failure,
failure). These are illustrated in a confusion matrix in Table 1 as true positive (TP), false negative (FN),
false positive (FP) and true negative (TN). In the above example g1 thus belongs to TP and g2, g3 belong
to FP.



Table 1: A confusion matrix element that illustrate the outcome of transfer between two contexts sfloat and
s1. High values in TP and TN indicate high transferability of grasp results from one scenario to the other.

Results in sfloat
success failure

R
es

u
lt

s
in
s 1 success TP=74 (true pos-

itives), the num-
ber of grasp simu-
lations that where
successful in both
scenarios

FN=113 (false
negatives), the
number of grasp
simulations that
failed in sfloat but
succeeded in s1

failure FP=539 (false
positives), the
number of grasp
simulations that
succeeded in sfloat
but failed in s1

TN=2507 (true
negatives), the
number of grasp
simulations that
failed in both
sfloat and s1

The probability that a selected successful grasp from sfloat will also be successful in s1 is then TP/(FP +
TP ).

We use the Matthews correlation coefficient (MCC) [25] as the transferability measure. It is based solely
on the confusion matrix and produce a value between −1 and 1, where 1 indicate perfect prediction, 0
indicate a random prediction and −1 indicate an inverse prediction of a binary classification. It can be
calculated directly from the confusion matrix as shown in (1).

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(1)

3.2 Quantifying transferability in real experiments

As discussed in the previous section we think of transferability as a measure that determines how well we
can predict the outcome of a grasp executed in one context, based on the knowledge of the outcome of a
grasp executed in another typically simulated context. In the real world the outcome is a continuous success
probability rather than a binary success/failure outcome. Hence, we need to compute a prediction of the
success probability in the simulated context which, if good, would correlate with the real world success
probability.

There exist several grasp quality metrics that describe the quality of a grasp as a continuous value.
Some try to estimate success probability of a grasp by evaluating successes or quality over the neighborhood
of grasps [6, 7, 16], others use heuristics typically based on grasp stability in relation to the grasp wrench
space [14, 18] to determine grasp quality. Common for all quality metrics should be that a higher grasp
quality correlates with a higher success probability. The Spearman rank correlation coefficient is capable
of capturing this relationship between two variables. It essentially measure if the increase of the value on
one variable does also reflect an increase (any increase) in the other variable. It is defined as the Pearson
correlation coefficients over the ranked variables:

ρ =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
(2)

where xi, yi are the ranked values and x̄, ȳ are the mean of the rank variables. If there are no correlation
then ρ yields 0. If there is a increasing monotonic trend in the data then ρ yields 1 and when there is a



decreasing monotonic trend then ρ yields -1.
For quality metrics that directly estimate success probability, we would expect a linear relationship

between simulated grasp quality and the real world success probability. It would therefore be more accurate
to use the Pearson correlation coefficient in such scenarios since this captures the linear dependency between
two variables. The Pearson correlation coefficient is defined in Equation 2 but with xi, yi as sampled values
and x̄, ȳ as the sampled means.

4 System Description

In this section we present the objects, grippers and the different simulated and real contexts used in this
paper.

4.1 Objects and grippers

Three objects (see Fig. 4) were selected from the KIT Object-Models Web Database1. The objects are
common household objects which are sufficiently different to provide interesting comparisons.

Figure 4: Object from the KIT object database. From left to right: corny object, cup-object and tomato
object.

The grippers used to grasp these objects are the Schunk parallel gripper (PG 70) and the Schunk Dex-
terous Hand (SDH-2), which are both shown in Fig. 5. The PG 70 gripper has two fingers coupled into one
Degree Of Freedom (DOF), that is, one DOF moves both fingers. The fingers can move up to 6.8 cm apart
and the contact surface is approximately 2×3 cm and covered by rubber.

Figure 5: PG 70 gripper (left) and the SDH-2 (right).

The SDH-2 is a 3-fingered dexterous hand with two DOF per finger and one coupled DOF to control the
base rotation of two of the three fingers. The SDH-2 has six contact surfaces covered with rubber, each of

1http://wwwiaim.ira.uka.de/ObjectModels



them measuring approximately 2×3 cm. However, for precision grasps only the three contact surfaces on the
distal joints are normally used.

For the PG 70, we choose only one preshape with the maximum distance of 6.8 cm between its jaws. Four
preshapes were chosen for the SDH-2 which are shown in Fig. 6. These different preshapes enables different
grasping options, and as such are important when characterizing the grasp affordances of the gripper.

Figure 6: Four preshapes used with the SDH-2 dexterous hand. From left to right: cpar, cparsmall, cball,
ccyl. The top row is the initial preshape before grasping, the bottom row is the target configuration that the
hand will move to during grasping.

We use preshapes because:

• Using preshapes is a simple and direct way of providing multiple ways of grasping an object. The
grasping process reduces to the sequence: (open hand, move towards object, close hand), which is
already supported by the software of the SDH-2.

• Preshapes do not require additional parametrization. This property is important when sampling ran-
dom grasps since the dimensionality of the search space is not extended by any gripper parameters
such as the individual joint configurations.

4.2 Contexts

The context describe the environment and task in which grasps are being executed. We have evaluated grasps
in four different contexts where the first three are simulated environments and the last is a real environment:

• float - the object is placed in a simulated gravity free environment with no obstacles.

• table - a simulated environment with gravity is used and the object is placed on a planar surface in
one of its canonical poses.

• full - the object is placed randomly on a table in an environment that closely models the real environ-
ment and task.

• real - the object is placed randomly on a table in a real world environment and picked up by a robot
with a dexterous gripper.

5 Computation of Grasp Affordances

We compute complete grasp affordances by evaluating randomly sampled gripper poses in the neighborhood
of an object. Each of these sampled poses, combined with a preshape of the gripper, represents a grasp
hypothesis, which can be evaluated in simulation. The outcome of the simulation may be one of {success,
failure or collision}, where success represents a successful grasp of the object (indicated by the fact that the
gripper is still in contact with the object after grasping it) and failure represents a grasp where the gripper
has no contact with the object after trying to grasp or lift it; collision represents a grasp, where the gripper
is in collision with the object or the environment in the initial state of the simulation.



The evaluation of a grasp hypothesis is performed using a dynamics grasp simulator from RobWork [13].
The main simulation process of a single grasp is:

1. Set the initial scene configuration, e.g., gravity, friction, poses of obstacles and objects.

2. Place the gripper in a sampled pose relative to the object and set the gripper configuration to one of
the preshapes.

3. Test if the gripper collides with object or environment.

4. Start the simulation and set the target gripper configuration (preshape dependent) of the gripper
controller.

5. If a grasp is obtained, lift the object and compute the success criteria.

We shall now discuss these steps in more detail.

5.1 Initial scene configuration

The initial scene configuration for generating the grasp-databases use a free floating environment, in which
no gravity or obstacles are present. In such an environment the object can freely slide into or out of a grasp.

To investigate the transfer of grasp affordances of an object from the free floating environment we repeat
the grasp simulation, but with the object placed on a table. Two canonical poses of each object are used to
create two different table environments per object.

5.2 Object specific sampling strategy

The sampling of the gripper configuration and the choice of sampling strategy necessarily influence the result-
ing set of grasp affordances and the overall success probability. Typically, the primary goal of grasp planning
is to maximize the grasp success probability by exploiting knowledge of gripper, object and environment.
This tends to generate grasp databases that only represent a small subset of the complete set of successful
grasps.

In this work, we need an approximation of the complete set of grasp affordances that are possible on
a specific object. Thus, an unbiased sampling strategy that explores SE(3) fully is preferred. Uniform
random sampling in SE(3) would therefore be ideal but it is also impractical because of the large number of
simulations necessary to cover SE(3). Instead a sampling strategy that is biased toward the object geometry
is used. This effectively reduces the number of required simulations without reducing the success space too
much.

Beside geometric models of the object the sampling also requires the approach vector of the gripper to
be placed in the same direction as the positive z axis of the gripper Tool Center Point (TCP) frame. The
sampling effectively encapsulates the idea that the gripper needs to point toward some part of the object
geometry before it is able to successfully grasp the object.

First a random point p is selected from a uniform distribution over the surface of the object. Then
an orientation R is selected from a uniform distribution in SO(3) and used to define the temporary target
pose (p,R). The pose is then translated along the z axis by a randomly generated value d in the interval
[−0.04 m; 0.04 m]. 4 cm was determined from the size of the fingers of the biggest gripper. If the tool center
point was placed more than 4 cm away from the triangle surface then the chance of generating a valid grasp
configuration is very low. Hence, a larger value would only increase the computation time without increasing
the number of generated grasps. The final pose is therefore:

Tpose = (p− (R · [0, 0, 1]T ) · d,R) (3)
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Figure 7: The floating pose is illustrated on the left, followed by two canonical poses on the table (side and
upright). Top row: Corny object. Middle row: Cup object. Bottom row: Tomato object.

5.3 Collision filtering and labeling

For each sampled grasp configuration a collision detection between gripper and object/environment is per-
formed before doing the actual simulation. If a grasp is colliding with the object then it will not be added
to any database. If a grasp is colliding with the environment then it will be added and labeled Colliding.

In a grasp-planning context, all colliding grasps will be left out of the database, but for this work we need
to evaluate the transfer of success between grasp-databases and the colliding grasps will be needed to create
meaningful statistics. That is any successful or failed grasp from database A that are labeled as colliding in
database B should be left out when computing the transfer statistics between A and B.

5.4 Grasp simulation

The final step before adding a non-colliding grasp to the database is the grasp simulation. Both pose and
configuration of the gripper have been sampled and no collisions with environment or object was detected.
The simulation is initialized with the scene configuration and the sampled parameters. When the simulation
starts, a penalty based grasp controller guides the fingers toward a closing configuration. Closing configura-
tions for the four preshapes of the SDH-2 are shown in Fig. 6. A grasp is successful if the object gets caught
between the fingers and if it stays there under a 10 cm movement with a maximum acceleration of 3m/s2 in
the positive z-axis of the world coordinate frame (gravity works in the direction of the negative z-axis). This
is termed a lifting operation, which only makes sense in the table environments where the objects needs to
be lifted free of the table.



Figure 8: The successes of grasping the Corny object in the same 5000 grasp simulations but performed in
different contexts. From left to right: free-float, on table (side pose) and on table (upright pose).

6 Experimental Results

In this section, we first provide experimental results on the transfer between two simulated contexts in
Section 6.1 and secondly, we provide results on the transfer from simulated contexts to a real world context
in Section 6.2.

6.1 Simulation Results

We provide simulation results in terms of complete sets of grasp affordances for three objects (see Fig. 4)
using the PG 70 parallel gripper and SDH-2 hand in two different contexts, namely the rather artificial
free-floating context shown in left column of Fig. 7 and the more application-oriented context, where the
object is placed on a table (see the middle and right column of Fig. 7). The table environments have a
gravity of 9.81m/s2 and the viscous Coulomb friction between table and object is set to 0.3N/(m/s). All
simulated environments for all objects are illustrated in Fig. 7.

Fig. 8 illustrates the successful outcomes of the same 5000 grasp hypotheses in the three different contexts
of the corny object grasped with the SDH-2 using the preshape cpar. It is clear that the added table constraint
significantly reduces the number of successful grasps. However, it is not clear if successes from the constrained
environments (center and right image) will also be successes in the floating environment. In the following,
we use the confusion matrices introduced in Section 3.1 to evaluate how well successes and failures in the
floating simulations transfer to successes and failures in the table environments, and vice versa.

Table 2: Success percentages of the simulated outcomes. In each major column, the left sub-column shows
the percentages of success if collisions are not included, and the right column shows the success percentages
if collisions are included.

SDH-2 PG 70
cpar cparsmall cball ccyl c0

o c
o
r
n
y sfloat 43.1% 25.0% 45.5% 5.2% 70.3% 38.0% 52.9% 28.0% 12.3% 0.7%

sside 5.8% 0.4% 0.0% 0.0% 5.8% 0.2% 5.3% 0.3% 0.1% 0.0%
supright 42.1% 7.2% 41.5% 1.9% 70.9% 9.3% 51.9% 8.9% 14.4% 0.4%

o c
u
p

sfloat 54.5% 42.6% 47.7% 6.0% 79.8% 61.1% 61.7% 45.7% 41.5% 3.7%
sside 47.0% 5.8% 48.4% 1.7% 72.5% 5.4% 47.3% 6.0% 44.0% 1.6%
supright 45.0% 4.7% 65.4% 2.3% 81.9% 4.9% 47.7% 4.9% 70.4% 3.5%

o t
o
m

a
to sfloat 48.5% 24.9% 30.4% 5.5% 84.9% 72.0% 72.3% 59.9% 3.8% 0.3%

sside 22.7% 2.3% 10.9% 0.3% 34.4% 1.9% 32.8% 3.4% 2.4% 0.1%
supright 43.4% 6.6% 23.1% 1.4% 75.3% 7.5% 63.1% 10.4% 17.2% 0.6%

Multiple datasets were generated for each gripper. For the SDH-2 the datasets are characterized by a
triple (oi, sj , ck), where oi is the object, sj is the specific scene (free floating or on table with different poses),
and ck is the grasp strategy, which includes the number of fingers and the preshape used. The parallel gripper
is simpler, and only one grasp strategy is used. Hence we describe datasets generated with the PG 70 by a
pair (oi, sj).



Table 3: Confusion matrices of successes and failures from floating environment and the specific table
environment (sside, supright). See Table 1 for a detailed explanation of a single cell.

SDH-2 PG 70
cpar cparsmall cball ccyl c0

o c
o
r
n
y sside

159 221
933 5298

0 0
1 1495

74 113
539 2507

97 222
721 4991

0 1
0 1499

supright
6271 861
1660 8183

1777 100
284 2379

8586 761
1127 2712

6296 830
1587 5017

327 46
34 2182

o c
u
p sside

4876 916
1903 4621

1548 126
241 1546

1459 407
303 406

893 314
474 871

1568 81
175 1924

supright
3483 1219
1683 4059

2093 207
155 1061

1574 657
195 297

917 540
449 1146

3119 396
78 1399

o t
o
m

a
to sside

1019 228
1310 2923

246 31
214 2045

445 112
570 494

1063 278
1212 1531

30 35
43 2568

supright
1518 119
538 1591

547 82
219 1874

2167 91
261 477

2019 112
607 602

113 434
53 2584

Table 4: Quality estimates based on the MCC correlation coefficient of the confusion matrices in Table 3.
SDH-2 PG 70

cpar cparsmall cball ccyl c0

ocorny
sside,MCC 0.17 - 0.13 0.12 -
supright,MCC 0.70 0.83 0.64 0.65 0.87

ocup
sside,MCC 0.55 0.79 0.34 0.39 0.86
supright,MCC 0.45 0.78 0.25 0.35 0.79

otomato
sside,MCC 0.43 0.64 0.26 0.33 0.42
supright,MCC 0.67 0.72 0.67 0.52 0.32

For each floating environment experiment (oi, sfloat, ck) 100.000 grasp simulations2 were generated using
the sampling approach presented in Section 5.2. The overall success probabilities of the simulations are
available in Table 2. These indicate the size of the success space of the grasp datasets in the individual
contexts. Two success probabilities are given. The first shows the percentage of grasp successes from
all grasps that were not initially in collision, the second shows the percentage of grasp successes from all
grasps including the colliding ones. The latter is only interesting for evaluating how many grasps out of
the database can actually be applied. It cannot be used to state anything on transferability since collisions
are easily predicted online using collision detection between gripper geometry and a virtual model of the
environment or sensor data.

In the same table the success probabilities of the simulations of the table environments (sside, suprigt) are
also shown. These simulations use the same grasp hypotheses as in the floating environment, but performed
in the specific contexts (e.g., the object was placed upright on the table).

That the exact same grasps have been executed in the different contexts enables us to calculate the
transferability measure presented in Section 3.1. Table 3 show the confusion matrices from which the
transferability is calculated and the transferability quality of each confusion matrix is presented in Table 4.

6.2 Real world experiments

The real world experiments were performed using the Rump object illustrated in Fig. 9. The Rump object
weighs approximately 600 grams and was designed as a typical industrial object with a size to match the

2For the tomato object the actual number of samples is slightly lower.



Figure 9: The Rump object used in the real world experiments.

SDH gripper.
The grasping setup is illustrated in Fig. 10 where the SDH gripper is mounted on a universal robot arm

UR-6-85-5-A that has a reach of approximately 1 m and a payload of 5 kg. In-between gripper and robot
end-effector a Schunk 6D force torque sensor is mounted that is used for collision detection.

A single grasp database consisting of 434 grasps of the rump object using the SDH was used for the real
world experiments. These grasps were generated using a state of the art filtering method [16] which not only
keeps high quality grasps but also keeps grasps that increase the number of directions that the object can be
reached from. For each grasp in the database, three different simulated quality metrics were computed. One
used the radius of the maximum enclosing ball in the grasp wrench space [14]. The other two were based
on directly computing the grasp success probability in two different contexts, namely a floating context and
the full context.

The grasp database was used in a repetitive process that first located the Rump object on the table
using a CAD based object localization algorithm. The localization used RGB-D information captured from
a Microsoft Kinect camera which was converted into a point cloud and thereafter all points below and all
points above 50cm the largest plane was filtered away. The remaining points was clustered and an Iterative
Closest Point (ICP) algorithm was used to fit the CAD model of the Rump to each cluster. The best fit was
assumed to be the correct match.

After detecting the pose of the object, a suitable grasp from the database was chosen to be executed. If
grasping was successful, then a new random drop pose above the table was calculated and the robot would
execute motions to reach the drop pose. Finally, the grasp of the object would be released. If the grasp was
unsuccessful then another grasp would be selected for execution. If all grasp attempts for a specific object
pose would fail, a user would intervene. It should be noted that only grasps that were kinematically feasible
would be selected. Meaning that for a grasp hypothesis to be selected it should have valid inverse kinematics
(reachable), it should not collide with object or environment and there should exist a collision free path to
reach the grasping configuration and to lift the object up from the table.

For each grasp execution attempt, the outcome (success/failed) was saved and used to later compute a
success probability of each grasp. These success probabilities were then compared and correlated with the
three different quality metrics.

A total of 2100 grasp experiments were performed in the real setup using 164 grasps out of the 434 grasps
in the database. From these 164 grasps only 44 grasps have been used in more than 13 experiments. The
grasp used most often had been used 106 times. Our correlations are based on these 44 grasps and the data
is visualized in the graphs in Fig. 11.

The transferability measure based on the Spearman and Pearson correlation coefficients have also been
computed for these two datasets. These are available in the Table 5. The table shows that the full context
generated success probabilities correlate significantly better than the float based method, measured with
both Pearson and Spearman correlation coefficients.



Figure 10: The UR-6-85-5-A robot arm mounted with a Schunk Dexterous Hand (SDH). The object in the
lower right corner is the Rump object.

Table 5: Correlation between simulated grasp quality in two different contexts and the actual success prob-
ability achieved in real world use of the grasps.

float context full context
Pearson 0.30 0.67
Spearman 0.18 0.41

7 Analysis of results

In this section, we first discuss the results on transferring grasp outcomes from one simulated context to
another in Section 7.1 thereafter we discuss the transfer of the continuous grasp outcome from simulated
context to real world experiments in Section 7.2.

7.1 Simulation to simulation results

The MCC metric is used directly on the confusion matrices of Table 3 (see Table 1 for explanation). Note
that in Table 3 collisions with the table are filtered away. The results are shown in the rows of Table 4.

The results show that the quality of the prediction depends highly on both the gripper and the ob-
ject/context that is used. In about half the contexts the MCC is around 0.80, indicating a fairly good
transfer. In the other half the quality ranges from 0.1 to 0.5, indicating a positive correlation, but a much
weaker transfer.

It is important to mention that in certain contexts quite a number of grasps that are not successful in
the free-floating environment are successful in the constrained environment. This implies that in certain
scenarios, context-specific control strategies need to be taken into account. For example, the movement of
a flat object on a table when touched by one of the fingers might be utilized in the grasping process (see
Fig. 1). These context-specific constraints cannot be accounted for in a free-floating scenario and need to be
learned in the specific context.

In summary, the results show that grasp simulation in free-floating scenarios gives often a fairly reliable
but also frequently a rather unreliable prediction of grasp success in more constrained scenarios. In certain
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Figure 11: (top) Correlation between float based robustness quality and success probability in the real world.
(bottom) Correlation between success probability achieved in a simulation of the full context and the success
probability in the real world.

contexts (Cpar, Otomato,side), (Cpar, OCorny,side) and (Cball, OCorny,side) the prediction is so bad that the
chances of choosing a successful grasp from sfloat which will also be successful in s1 is less than 20 %. This
is calculated by the relationship between TP and FP values of the confusion matrices in Table 3. Hence,
grasp databases should ideally be generated in a context-specific fashion.

7.2 Simulation to real world results

The correlation results in Table 5 show that the ”full context” simulation has the best transferability. This
was expected since the ”full context” should model the real setup to a larger detail compared to the ”float
context”.

Fig. 11(bottom) provides further insight into the transferability for the ”full context” where there is a
tendency that samples are located in the upper left area of the correlation space, which suggest a systematic
overestimation of success probability. The result of the float context is shown in Fig. 11, where there is a
tendency in regard to over estimation for grasps with a very low success probability.

8 Conclusion

Data-driven grasp planning has become increasingly popular and some grasp databases are available for
public download [3, 26]. When using a grasp target gs from such a database, in systems with uncertainties,



then it is most probable that the executed grasp will lie in the neighborhood of gs. Hence, it is important
to incorporate the transferability of the neighborhood of a grasp when using grasp database.

Moreover, in this paper we showed that it is quite likely that grasps performed on objects in different
contexts have different outcomes. Hence, one should take care when using a grasp database in a context
other than the context in which it was generated.

We specifically investigated the transfer between an unconstrained, free-floating environment and more
constrained environments, which is important for applying learned grasp knowledge in novel contexts. For
several different simulated contexts, we showed that the grasp success likelihood depends highly on the
context that the object is embedded in and we used the Mathews correlation metric to evaluate how good
this transfer is.

We also discussed how to evaluate transferability between simulated and real contexts and computed the
transferability between two different simulated contexts to a real world context using a state of the art grasp
database. These results should motivate the use of the detailed context in the simulation of grasps.

Further investigations on grasp transfer could include more real world experiments and a deeper analysis
on the discrepancies between simulation and real world. Also evaluating the transferability of state of the
art grasp quality metrics for different contexts, grippers and objects could provide further insights in how to
choose a suitable grasp quality metric.
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Physical Interaction for Segmentation of Unknown Textured and
Non-textured Rigid Objects

David Schiebener, Aleš Ude and Tamim Asfour

Abstract— We present an approach for autonomous inter-
active object segmentation by a humanoid robot. The visual
segmentation of unknown objects in a complex scene is an
important prerequisite for e.g. object learning or grasping, but
extremely difficult to achieve through passive observation only.
Our approach uses the manipulative capabilities of humanoid
robots to induce motion on the object and thus integrates
the robots manipulation and sensing capabilities to segment
previously unknown objects. We show that this is possible
without any human guidance or pre-programmed knowledge,
and that the resulting motion allows for reliable and complete
segmentation of new objects in an unknown and cluttered
environment.

We extend our previous work, which was restricted to
textured objects, by devising new methods for the generation
of object hypotheses and the estimation of their motion after
being pushed by the robot. These methods are mainly based on
the analysis of motion of color annotated 3D points obtained
from stereo vision, and allow the segmentation of textured
as well as non-textured rigid objects. In order to evaluate
the quality of the obtained segmentations, they are used to
train a simple object recognizer. The approach has been
implemented and tested on the humanoid robot ARMAR-III,
and the experimental results confirm its applicability on a wide
variety of objects even in highly cluttered scenes.

I. INTRODUCTION AND RELATED WORK
The ability of a humanoid robot to adapt to situations

that it has not explicitly been programmed for is crucial
for its usefulness in future assistive tasks in human-centered
environments. Many of these not-yet-experienced situations
for a robot will arise due to the appearance of objects that
it has not encountered before but now needs to deal with.
In such situations, the robot needs to autonomously make
itself familiar with these new objects. The first two crucial
steps in this process, whatever outcome may be expected,
are to locate and segment the new objects. Once they are
segmented, a visual descriptor can be learned that allows
later recognition, and essential information for grasping and
manipulation is provided.

The focus of this work is to present our approach for
the autonomous, interactive discovery and segmentation of
textured and non-textured unknown objects in a cluttered
environment by a humanoid robot. To demonstrate its use-
fulness, we use the obtained segmentations to learn visual
descriptors of the new objects and show that they allow
reliable recognition.

D. Schiebener and T. Asfour are with the Institute for Anthropomatics and
Robotics, High Performance Humanoid Technologies Lab (H2T), Karlsruhe
Institute of Technology (KIT), Karlsruhe, Germany. A. Ude is with the
Humanoid and Cognitive Robotics Lab, Jožef Stefan Institute, Ljubljana,
Slovenia.
schiebener@kit.edu, asfour@kit.edu, ales.ude@ijs.si

The segmentation of unknown objects from a complex
unknown background has turned out to be very difficult, if
not impossible, if a robot is restrained to passive observation.
On the other hand, individual motion of an object is a strong
cue that usually dissolves any visual ambiguities, manifests
clear object borders and thus vastly facilitates segmentation.
Usually, such helpful motion does not happen on its own
when needed, therefore the robot has to create it itself. This
fundamental idea has been pioneered by the authors of [1]
who detect the sudden spread of optical flow from the hand
of a robot when it touches and starts to move another object.
The pushing motion is pre-programmed, and the obtained
segmentation is not used for anything.

In [3], an articulated object is pushed to explore its
kinematic properties, i.e. joints and solid parts, exploiting
the observed relative 2D motion of local visual features.
Again, the robot motion is pre-programmed. In [4], an object
is pushed and segmented, which allows for the learning
of a visual descriptor. Yet this approach is restricted to
symmetric objects in simple scenes. [5] focuses on the
singulation of individual objects from a pile by pushing
them systematically, and [6] sorts colored bricks from clutter,
strongly leveraging physical interaction for separating them.
In [7] and [5] heuristics are proposed for systematically
pushing clusters of objects in order to separate them.

Fig. 1: Interactive object segmentation performed by the hu-
manoid robot ARMAR-III [2]. By pushing unknown objects,
they can be segmented from the environment based on the
induced motion.



In our previous work (see [8], [9], [10], [11]) we used local
visual features (SIFT[12] and later also color MSER[13]) to
create initial object hypotheses. Those features are grouped
based on their lying on a common regular geometric 3D
structure (planes, later cylinders and spheres) as well as
spatial proximity. One of these hypothetical objects is then
pushed, and by observing the 3D motion of the local visual
features, an object hypothesis can be verified by checking if
it moves as a rigid body. This also permits to analyze each
single local feature for concurrent motion and thus verify
the individual features of the hypothesis. Other features that
move consistently with the hypothesis are added and thus
after two or three pushes a complete object segmentation
in terms of the contained local features is achieved. We
also demonstrated that this allows for the creation of object
descriptors for recognition. In [14], we extended this concept
by using the obtained object detection and segmentation to
initialize a reactive grasping approach that enables the robot
to grasp the formerly unknown object using tactile and haptic
feedback without the need for a good 3D model for grasp
planning.

While these results are very encouraging, our approach
was always restricted to objects which have a sufficiently
textured surface that offers enough distinctive local visual
features to relocalize the object after it has been pushed.
Most of the related approaches are also based on local
visual features, with the exception of [15], where unicolored
cylinder- and box-shaped objects are segmented interactively,
tracking their edges in the image and depth data obtained
from a Kinect sensor.

Based on the idea of interactive segmentation that we
followed in our earlier work, we have now developed a
different approach that enables the segmentation of textured
as well as non-textured rigid objects, which we present in this
paper. The only remaining restrictions are that the object can
be moved by the robot, that it is not completely transparent
or looks exactly like the background, and of course that it
has an appropriate size with relation to the field of view and
resolution of the cameras of the robot.

The following section will give an overview of our ap-
proach, which will be explained in detail in sections III and
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Fig. 2: System overview: Our approach can be divided into
two main phases. First, the robot generates object hypotheses
and tries to verify one of them by moving it. If an object has
been discovered, the segmentation is improved and different
views can be learned in the course of several further pushes.

IV. In section V we present the results of our experiments on
the humanoid robot ARMAR-III, and section VI concludes
the paper.

II. PHYSICAL INTERACTION FOR
SEGMENTATION

Physical interaction enables a humanoid robot to overcome
the problems that usually arise if an unknown object is to be
segmented in a complex scene that causes visual ambiguities.
If the robot is e.g. confronted with a heap of unknown
objects, there is probably no certain and infallible criterion
to tell two objects apart that can be analyzed by observation
only (at least none has been discovered yet). However, if
an object moves, it can in principle be distinguished clearly
from its environment.

To cause such helpful motion, the robot needs to induce it
on the object somehow. The most simple and foolproof way
to do so is to carefully push the object. This requires an idea
about the existence and location of the object, which we can
not take for granted when dealing with unknown objects in an
unknown local environment. Consequently, the robot needs
the ability to discover possible objects and estimate their lo-
cation before being able to examine them. Our approach for
generating object hypotheses is described in section III-A.

When such an object candidate has been pushed by the
robot, there are two possible outcomes: If it moved, the
robot can segment it, learn its appearance and examine it
further. If it did not move, we have to assume that the
robot did not actually push an object but something else that
does not move. Thus, we implicitly define an ”object” as a
physical entity that can be moved (and seen) by the robot.
The problem of determining the motion of the object after
it has been pushed is not trivial and has only been solved
for special cases until now; we present our new and more
general solution in section IV-A.

When the motion of the object has been determined, it can
be exploited to acquire a complete and certain segmentation
of the object in the camera image. We showed in our previous
work [9] that if the object motion is known, it is simple to
check for each local visual feature if it moved concurrently.
But we do not want to rely on the existence of local features
(i.e. texture), and we want an actual segmentation that tells
for each pixel of the camera images whether it belongs to the
object or not. Section IV-B describes how this is achieved.

III. INITIAL OBJECT DISCOVERY

A. Generation of object hypotheses

The first step in our approach for interactive segmentation
is to create object hypotheses, i.e. to analyze the camera
images of the robot for possible unknown objects. One of
these hypotheses is then chosen for pushing and subsequent
verification. A criterion for finding object candidates that
has proven to be useful in our previous work is grouping
of local features that lie on a common regular geometric
structure like a plane, cylinder or sphere. Such a structure
frequently indicates an underlying object. Another indica-
tion for promising candidates are unicolored regions of a



Fig. 3: A relatively simple and a confusing scene with their
respective saliency images. As can be seen, the algorithm
for saliency computation is not of much use in scenes
where objects and background are equally rich in colors and
contrasts.

size within the dimensions we would expect an object to
have (about 5-50 cm in diameter). While these two criteria
are certainly useful, we want to be able to detect objects
independently of their appearance, therefore we complement
these criteria with the generic concept of visual saliency.

Saliency is a bottom-up trigger for attention, a psycho-
logical concept that has been applied in computer vision to
support other tasks by restraining the analysis of images
to regions that ”stand out” in a certain respect (cf. [16]
[17]). We use the saliency detector proposed in [18] to
calculate a saliency map for the whole camera image. In
that work, saliency is defined as the difference of an image
region to its neighborhood, which is calculated at different
scales using band-pass filters. The filters are realized using a
Difference of Gaussian (DoG) filter G(x, y, σj)−G(x, y, σk)
with σj > σk. Summing up all edge images at different
scales is equivalent to using a filter that is the sum of all
filters, which can be simplified as follows:
N∑

n=1

G(x, y, σn)−G(x, y, σn+1) = G(x, y, σ1)−G(x, y, σN )

Thus the resulting saliency image is calculated as S =
|G(σ1) ∗ Img −G(σN ) ∗ Img|, i.e. the difference of the
image after being filtered with a Gaussian kernel with the
lowest and highest desired standard deviation. This is done
for all three color channels of the RGB image, and the
results are added. We choose σ1 = 80px which limits the
size of detected regions to a size that corresponds to the
maximal extent we expect objects to have in the image,
and σN = 10px which smooths out the fine textures that
are already accounted for by the hypotheses generation for
textured objects.

The resulting salient image regions that are not yet
occupied by object hypotheses from the first two criteria
(unicolored regions, and local features lying on a regular
geometric structure) are used to generate additional object
hypotheses. In practice, the first two criteria covered most of
the objects we tried, but for those which do not clearly fall
into one of the two categories the saliency detection turned
out to be a useful complement.

Figure 3 shows the saliency map calculated for different
images. As can be seen, in simple scenes it does indeed
yield the regions occupied by actual objects. In contrast, if
the scene has a rather confusing background, the saliency
detection is clearly overburdened and not helpful anymore.
The two criteria based on local features and unicolored
regions also return very many hypotheses in such a scene.
In general, in a nontrivial image the separate use of all three
criteria will usually yield a large number of initial object
hypotheses.

This is not a fatal problem, as the robot could just
systematically try all hypotheses, including those that result
e.g. from the tablecloth. But it would save a lot of time to
filter the hypotheses beforehand. As we are only interested
in things that can be pushed, an additional criterion can be
applied in order to keep only those hypotheses that seem to
allow pushing. A simple heuristic for estimating if this is
the case is to check whether a candidate object is higher
than its direct neighborhood. We calculate a dense depth
map from the stereo camera images of the robot using semi-
global block matching (SGBM) [19]. The resulting 3D points
are transformed into world coordinates. The camera image
is subdivided into regular bins for which we calculate the
average height of the contained points and compare them
to their eight direct neighbor cells. Doing this at different
scales and adding up the results, we obtain a map that gives
a value for the relative local height of the image regions.
This map is used to filter the object hypotheses and keep
only those that lie in a region which is higher than its direct
surroundings. Figure 4 illustrates this relative local height
map and its effect on the hypothesis generation.

As we do not want to rely on the existence of local
visual features, we use color and shape to describe the object
hypotheses. To this end, we calculate a dense depth map
from the stereo camera images and annotate the resulting 3D
points with their color in the image. This kind of point cloud
is usually referred to as RGBD (RGB+depth) data. After the
initial object hypotheses have been generated, each one is
represented by the RGBD points in the image region that
it occupies. These point clouds will be used throughout the
rest of the paper.

B. Pushing for Verification

One of the initial hypotheses is chosen to be pushed in
order to verify that it is indeed an object and, in case of
success, to segment it. We choose the hypothesis that is
closest to an optimal location in front of the robot that allows
flexible manipulation by both arms, has at least a minimal
size, and is higher than its direct surroundings. This is a



Fig. 4: Suppression of object hypotheses that do not lie in a region that is higher than its direct surroundings. The first image
shows a complex scene that leads to the creation of very many initial object hypotheses. The second image displays the
map quantifying the relative local height of the image regions. The third image demonstrates the selective effect of applying
this criterion: the original image has been multiplied with the height map, thus the high regions are highlighted while lower
regions appear dark. The right image shows the remaining initial hypotheses that lie in high regions.

pragmatical choice if the robot does not have any other
intention than exploring the objects in front of it. If the object
is to be grasped later, it is particularly reasonable to choose
one that is higher than its local neighborhood. If the robot
is interested in a specific kind of object, other criteria may
be appropriate.

The push is planned in such a way that the object is kept
in front of the robot and within the camera images. To this
end, a central point in front of the robot is defined towards
which the object is pushed over a fixed distance to ensure
sufficient motion. The motion has to be significant enough
to be distinguishable from noise, and as the object extent is
unknown, the actual outcome is hard to predict. Therefore
the intended motion length should not be too small: values
in the range of 10-20 cm turned out to work reliably.

The arm that is better suited to execute this push is chosen
based on a reachability analysis [20]. The hand approaches
the object on a trajectory significantly above it to avoid
collisions with other objects. It is then lowered besides the
object, and the force-torque sensor in the wrist is used to
react to unplanned collisions during that phase (for details
see [14] or [11]). The object is pushed, the hand is lifted
again and moved out of sight. Afterwards, we analyze if the
object has moved and determine its translation and rotation.

C. Detection and Analysis of Change in the Scene

Now we have to find the object that moved by comparing
the point clouds before and after the push, which is the most
important and most difficult subtask within our segmentation
approach. This is due to the fact that (besides the general
difficulty of the matching of point cloud subsets) we do not
know which part of the point cloud is the object, neither for
the cloud before nor the one after the push. Thus, we have
to use the difference between them to determine both the
subset constituting the object and the transformation that it
underwent.

As a first step, we determine which part of the point cloud
changed due to the push. This can easily be achieved by
comparing the old and new camera images and calculating
the difference image. Yet that is only possible if the camera

pose before and after pushing is virtually the same. On our
robot ARMAR-III, the precision and repeat accuracy of the
joints is high enough to allow that; we only need to shift
the new image by up to four pixels in all directions when
comparing it with the old one, and choose the modified
position that causes a minimal difference. On other robots
such a precise motion might not be possible, in which case
an alternative is to align the two point clouds and find the
points that are far away from their nearest neighbor or have
a different color. Both methods yield comparable results and
enable us to divide the old and new point cloud into a part
that is unchanged and a part where a change occurred.

A first result we get immediately from this difference is an
answer to the question if anything happened at all. If nothing
changed in the scene, the robot was evidently unable to move
the potential object or did not hit anything at all. In this case,
the robot tries pushing another object candidate. If a change
in the scene is detected, all initial object hypotheses are
analyzed on whether they lie in image regions that changed.
Each object hypothesis is represented by a set of RGBD
points, and if more than half of them lie in a region that
changed due to the push, the hypothesis will be analyzed
for having moved; otherwise it is discarded. In addition to
the initial hypotheses, we create new ones from the points
that changed. This is done by determining 2-5 clusters1

amongst these points using x-means, a variant of k-means
that automatically chooses the number of clusters [21]. These
new hypotheses frequently match the actual object better than
the initial ones, although usually not perfectly either.

IV. OBJECT SEGMENTATION

A. Estimation of the Object Motion

All the hypotheses that lie in parts of the scene which
changed may correspond to the object (or one of several
objects) that moved, and therefore they are examined further.

1There have to be at least two clusters, as a moving object causes change
in the image regions of its old and new position (which may overlap though).
More clusters may be appropriate if several objects move, or if there are
false foreground regions due to errors in the background subtraction.



Each hypothesis consists of a set of 3D points with associated
color information from the point cloud recorded before the
push and has to be relocalized within the new point cloud.
The probably most popular approach for matching (also
referred to as registration) of 3D point clouds is the Iterative
Closest Point (ICP) algorithm [22]. To register a point cloud
with another, two steps are repeated iteratively:

• The nearest neighbor of every point of the first point
cloud is determined in the second point cloud

• Based on these correspondences, the 3D transformation
that minimizes the mean squared distance between all
the pairs is calculated and applied to the first point cloud

These two steps are repeated iteratively until the improve-
ment, i.e. the relative reduction of the mean square distance,
lies below a threshold, or a maximal number of iterations
has been executed. The algorithm reduces the mean square
distance between the point sets in each step and converges
to a local minimum.

In our implementation, we define the distance between two
points as the weighted sum of their cartesian distance and
their distance in normalized RGB space. The weighting is
such that the maximal possible color distance is equivalent
to a cartesian distance of 10 cm.2 As we use both shape
and color information, we avoid the problem of mismatching
in case of similar shapes which would otherwise occur
frequently, as the shapes of artificial household objects are
mostly dominated by planar surfaces.

When trying to determine the transformation that a hy-
pothetical object underwent during the push, we first try to
register the hypothesis with the new point cloud by initializ-
ing ICP with its original pose ( = position and orientation).
If a good match is found, i.e. the resulting (cartesian + RGB)
distance is small and the determined transformation indicates
that the hypothesis did not move significantly, we consider it
to be unchanged. If the determined transformation indicates
that the object has moved, or only a bad match was found,
it has to be relocalized. The one serious disadvantage of
ICP is that it converges to a local optimum, therefore its
initialization is decisive for finding the correct match of the
object hypothesis after a push. Starting the registration at
the original position frequently fails in complex scenes if
the object moved over a large distance.

Thus, we execute ICP several times with different initial
estimates of the new object pose, and keep the resulting
transformation that yields the best match. As the object
may have been moved over a large distance, finding it
again requires an appropriate choice of the initial poses for
ICP. To this end, we detect image regions that resemble
the hypothesis in terms of color histogram similarity and
initialize the alignment there. If the object surface contains
stable local visual features, those can be used to get an

2This parameter allows to balance the relative importance of color and
shape matching. The weight of the color component should not be too small
to avoid mismatching due to similar shapes. If it is set too high, the risk of
mismatches due to similar color rises. Empirically, values between 5 and
30 cm produced reasonable behavior. The choice may also depend on the
precision of the 3D sensor and the sampling density.

initial estimation of the motion, too. The necessary number
of different initial positions can be reduced by taking into
account the direction of the push, which must not be done
in a too restrictive manner as the caused object motion is
rather unpredictable.

The best transformation returned by the differently initial-
ized registration attempts is refined by another execution of
ICP on a reduced point set where all those points are left out
that still have a large distance to their nearest neighbor. The
resulting final transformation is used to decide whether the
estimated object motion is accepted, and if this is the case,
to determine the object segmentation.

B. Verification, Correction and Extension of the Segmenta-
tion

After the motion of an object hypothesis has been esti-
mated, the robot needs to decide whether the determined
match and transformation are plausible. A hypothesis is only
accepted, i.e. considered to correspond to an actual object,
if it meets the following three criteria: First, the estimated
motion has to be large enough to be sure that it is not
due to noise or a slight mismatching3. Secondly, the match
must be good, i.e. the average distance of the hypothesis
points to their respective nearest neighbors in cartesian and
normalized RGB space must be below a threshold. Thirdly,
the relocalized hypothesis must lie mostly in image regions
that have changed. This removes mismatches where by pure
chance a good alignment to some part of the scene could
be found, e.g. a part of the table surface that was matched
to another part of the table after the object has been moved
onto it.

The remaining hypotheses do most likely belong to an
actual object that has been moved by the robot. But of course
we must assume that they do not cover the object completely,
and that they also contain points that do not belong to the
object. We remove the latter ones by checking each point of
the hypothesis: After applying the estimated object motion,
a point must match its nearest neighbor in the scene point
cloud well with respect to cartesian and color distance. It
also has to lie in a region that changed due to the push. If
both of these criteria are met, the point is considered to be
verified, otherwise it is removed from the hypothesis.

After removing the false points, we try to extend the
hypothesis to cover the whole object. To this end, we add all
those points to it as candidates that lie close to the verified
points and within the image region that changed. By pushing
the object again and repeating the steps described before,
these new candidate points can be verified or discarded, and
new candidates can be added. Depending on the object size
and the quality of the initial hypothesis, it usually takes two
or three pushes until the whole object is contained in the
hypothesis and thus segmented completely.

Usually, more than one object hypothesis is verified by
the first push and the subsequent analysis. This happens

3Given the precision of our stereo calibration and a distance of 50-80 cm
between camera and object, a threshold of 3 cm turned out to be definitely
safe.



Fig. 5: Examples of object segmentations in different scenes.
The first image in each row shows the initial object hypothe-
ses, the second to fourth images show the verified hypothesis
after one, two and three pushes.

in particular when several actual objects are moved. We
choose the hypothesis containing the maximal number of
confirmed points for the second push. After that, we discard
the hypotheses that did not move again, and from the
remaining ones we keep only the one with the maximal
number of confirmed points and continue examining it as
long as desired. If the robot did indeed move several objects,
all of them can be segmented, but for the sake of simplicity
we only observed one in our experiments. As long as the
objects undergo different 3D transformation, they can easily
be separated based on their different motion. It may happen
though that two objects move exactly alike, in which case
they are subsumed in one hypothesis. Most likely they are
separated when pushed several times from different direc-
tions. Heuristics for systematical pushing to this end have
been proposed in [5] and [7]. When two objects contained
in one hypothesis are separated, the hypothesis will follow
the object that is matched better after the motion, which is
usually the bigger one.

Pushing an object several times will reveal different sides
of it, thus the creation of a multi-view object descriptor
is possible, although some sides will probably never be
observed. In section V-D we demonstrate that the obtained
segmentations are well suited to train an object descriptor
that allows for reliable recognition.

V. EXPERIMENTAL EVALUATION

A. System Setup

We have implemented and tested our approach on the
humanoid robot ARMAR-III [2]. The video accompanying
this paper shows an interactive object segmentation executed
by it. The robot has an active stereo camera system in its
head, and its arms have seven degrees of freedom each and
are equipped with force-torque sensors in the wrists. The
cameras provide color images with a resolution of 640×480
pixels. About 85% of the stereo images overlap, and after
calculating the dense depth map we use only every second
pixel in x and y direction for the point cloud, thus we obtain
around 65000 RGBD points that we work with.

The computational effort is dominated by the relocal-
ization of the object hypotheses using the ICP algorithm,
in which the computational complexity is proportional to
n log(m), with n being the number of points of the object
hypothesis and m the overall number of points in the scene.
On a 3 year old standard PC with a quadcore processor, the
computations after each push took between 2 and 5 seconds,
depending on the size and number of moved objects.

An important aspect in comparison to some related work
is that in our case the robot itself executes the object pushing,
and we do not use an artificial setup where the camera always
has an undisturbed view of the object. This is the reason
why we do not try to track the object during the push, as the
robot’s hand frequently occludes large parts of it.

B. General Observations

Our approach aims at making it possible to segment rigid
objects independently of their appearance or shape, thus we



tested it with a large variety of items. They can roughly
be classified by their visual appearance as being strongly
textured, sparsely or partially textured, multicolored but
(almost) non-textured, unicolored, reflective (e.g. polished
metallic objects or mirrors), or transparent. As far as we
know, the related work in this field (including ours) has so
far either depended on local features, i.e. texturedness, on
unicoloredness, or on a certain shape.

It turned out that our segmentation approach works very
well for all kinds of objects except the very reflective and
the transparent ones. This is due to the fact that they appear
to change their color when moved, and also tend to cause
problems when trying to obtain depth information. All other
objects were segmented successfully by our approach; for
the transparent and reflective ones a special treatment might
be necessary. Although we were able to tune the parameters
of the background subtraction and the matching so that the
segmentation worked for most of them, it does not function
reliably and the chosen parameters depend strongly on the
lighting conditions, thus we do not claim that our approach
can handle this kind of objects.

In contrast, the shape of the examined objects did not seem
to make an observable difference. While distinctive shape
features are necessary for algorithms that match point clouds
solely based on 3D data, the fact that we use color helps
to overcome ambiguities that might arise otherwise. The
combined use of shape and color information usually allows
a good alignment of the object hypothesis with the object
after it has been pushed. An exception here are symmetric
unicolored objects, but in that case it actually does not
matter if the orientation around the axis of symmetry is met
correctly as long as the match is good. The only case in
which problems occurred was when a flat, unicolored object
was placed on a table of the same color.

C. Assessing the Segmentation Quality

We examined the performance of our interactive segmenta-
tion approach by testing it with 30 objects of different shape,
size and visual appearance type (as defined above), which
have been segmented twice each. To measure the quality
of the obtained segmentations, two metrics are determined:
First, the object should be segmented as completely as
possible, i.e. in an optimal case the point cloud forming the
object hypothesis should fully cover the object. The second
metric is the size of the falsely segmented area, i.e. the part
of the scene that is segmented but does not belong to the
object. This happens when the object hypothesis includes
points that belong to the background or other objects.

Figure 6 shows these two values depending on the number
of pushes executed. As can be seen, after the first push
the object is usually not covered completely, but already
to a large part. After two to three pushes, the hypothesis
contains almost the complete object, with the exception of
small patches that newly appeared due to object rotation or
that were discarded from the hypothesis due to a change in
their appearance (e.g. reflections or bad depth estimation).
After four or more pushes, the coverage does not improve
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Fig. 6: The average segmentation quality depending on the
number of pushes that were executed. The red line shows the
segmentation ratio, i.e. the percentage of the object that is
included in the segmentation. The dashed green line depicts
the false positive rate, i.e. the fraction of the segmentation
that does not belong to the actual object.

further, but different parts of the object may become visible,
thus more information can still be gained.

The ratio of falsely segmented image regions compared
to the whole object is always quite small. It seems to grow
a bit from the first to the second push, but not any further
afterwards. Such false positives occur when the shadow cast
by the object leads to neighboring image regions being
considered to have changed, and some of them look alike
before and after the push, which frequently happens on
unicolored table surfaces. In this case, the part of the table
on which the object casts a shadow appears to belong to the
object itself. We are not sure whether there is a theoretically
sound solution for this specific ambiguity; it is probably
necessary to grasp and lift the object to dissolve it.

D. Learning of an Object Descriptor

To demonstrate that the obtained segmentations are suffi-
ciently complete and correct, we use them to train a simple
object recognition system. The available information we can
use are the image region that contains the object hypothesis,
i.e. the segmentation, as well as the 3D and color information
contained in the hypothesis point cloud itself. After each
push, the object hypothesis and thus the segmentation are
different, therefore we could generate several descriptors
for each object from different perspectives. For the sake of
simplicity, we just use the segmentation obtained after the
second push for each object, which usually yields a good
coverage, and generate only one descriptor.

To detect the learned objects in new images, we train a
color histogram based descriptor using the image region that
is occupied by the object hypothesis. The descriptor uses
Receptive Field Cooccurrence Histogram (RFCH) features
[23], [24] which are based on histograms of the colors and
their first and second derivatives in the segmented image
area.

These features allow to find image regions that have the
same color distribution as the learned object. We then try to



TABLE I: Object recognition rates.

similar point
of view

different point
of view

partly
occluded

false positive
rate

98.5 % 70.6 % 67.2 % 3.8 %

match the learned RGBD point cloud in those areas using
Iterative Closest Point (ICP) as in the motion estimation step
of our segmentation approach. The localization is accepted
if the resulting average point distance in Cartesian and color
space is below an equivalent of 1 cm (with the maximal pos-
sible color distance being equivalent to 10 cm in Cartesian
space).

Table I displays the recognition results for our set of
autonomously learned objects. They are placed in potentially
confusing scenes comparable to those shown in figure 5.
When the object is seen from approximately the same point
of view as during learning, the recognition rate is almost
100%. If the object has a significantly different orientation
with relation to the camera, or if it is partly occluded by
other objects, the recognition rate drops to around 70%. This
can be improved by using object descriptors generated from
different views, as we did in [11]. The false positive rate
is about 4%, which is entirely due to two small unicolored
objects in our test set that are sometimes fitted into blobs
of similar color. These solid recognition results demonstrate
the usefulness and quality of the segmentations obtained by
the robot following our approach.

VI. CONCLUSIONS
We have presented a new approach for interactive object

segmentation exploiting the manipulation capabilities of a
humanoid robot. The proposed method enables it to discover
and segment unknown rigid objects in an unknown, complex
scene by pushing them and analyzing the motion of color-
annotated 3D points obtained from the robot’s stereo vision
system. We have demonstrated that the provided segmenta-
tion results are of excellent quality and allow to train a well
performing object recognition system. As already shown in
[14], it is also possible to subsequently grasp the discovered
objects for further examination or manipulation.

In contrast to our previous work in this direction, the
approach proposed here works with almost any kind of rigid
object except those which are transparent, highly reflective or
impossible for the robot to move. We therefore believe that
it is a small but important step for increasing the adaptability
and autonomy of humanoid robots that will frequently have
to deal with new, unknown objects in realistic scenarios.
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Damien.Teney@ulg.ac.be

Justus Piater
University of Innsbruck, Austria

Justus.Piater@uibk.ac.at

Abstract—This paper addresses the problem of full pose esti-
mation of objects in 2D images, using registered 2D examples as
training data. We present a general formulation of the problem,
which departs from traditional approaches by not focusing on one
specific type of image features. The proposed algorithm avoids
relying on specific model-to-scene correspondences, allowing
using similar-looking and generally unmatchable features. We
effectively demonstrate this capability by applying the method
to edge segments. Our algorithm uses successive histogram-
based and probabilistic evaluations, which ultimately recover
a complete description of the probability distribution of the
pose of the object, in the 6 degree-of-freedom 3D pose space,
thereby accounting for the inherent ambiguities in the 2D input
data. Furthermore, we propose, in a rigorous framework, an
efficient procedure for fusing multiple sources of evidence, such
as multiple registered 2D views of the same scene. The proposed
method is evaluated qualitatively and quantitatively on synthetic
and real test images. It shows promising results under challenging
conditions, including occlusions and heavy clutter, while being
capable of handling objects with little texture and detail.

I. INTRODUCTION AND RELATED WORK

Estimating the pose of a known object in a single 2D image
is a fundamental problem in computer vision that has attracted
a lot of attention over the years. The task is closely related
to the problem of object recognition. However, state-of-the-
art object recognition methods usually aims at identifying
object classes, allowing small variability in appearance among
different objects of the same class. We rather focus here
on specific instances of objects, where such small changes
in appearance are actually used as cues for determining the
precise pose (3D position and orientation) of the object in a
new scene.

The pose estimation task has many direct applications,
such as robotic interaction and grasping, augmented reality, or
the visual tracking of objects. Methods have been developed
that make use of a 3D, explicit geometric model of the
object of interest [1], [2], [3]. Those thus require precise
a-priori knowledge of the 3D shape of the object, to be
provided by external methods such as stereo vision or range
sensors. In this paper, we rather present a 2D view-based, or
exemplar-based method, which simply uses 2D views of the
object as training data, in which the object appears in known
poses. Those methods present the advantage of being easily
trainable, directly using 2D visual data. Further motivation
for the exemplar-based approach is brought by the human
visual system, which was shown to exhibit properties of a

(a) (b)

(c) (d)

Fig. 1. Pose estimation in a single image, using 2D training examples; (a) test
image; (b) edge map used as input; (c) sample training views; (d) rendering
of a model of the object in the best pose found by the algorithm, note that
the correct pose is recovered despite heavy clutter and missing observations.

view-based lookup function when recognizing objects, being
robust to changes of about 20◦ around trained viewpoints [4].
Unfortunately, current, state-of-the-art methods following this
approach present serious limitations, often relying on specific
types of images features, or being suited to only particular
types of objects, and are thus able to operate only under
limited ranges of conditions. This led us to the reformulation
of the problem in more general, probabilistic terms, and to the
development of a novel method, that we will introduce after
reviewing related work.

Early work in the field of exemplar-based methods used
the appearance of the object as a whole. These so-called
appearance-based methods [5], [6], [7] generally assumed a
successful prior detection of the object in the test image and
generally offered poor resistance to clutter and occlusions,
or did not handle the full 6 degree-of-freedom pose space
as needed in practical applications. More recent work, by
contrast, focused on the use of individual, precisely located
observations (such as SIFT features [8]) extracted in the 2D
views of the object. These feature-based methods [9], [10]
then rely on establishing matches, using their appearance,
between observations in the test view and in the stored training
examples. The limitations of this approach are obviously those
of the extraction and matching of image features, which
practically works best on texture-rich images, but can perform



poorly on scenes with mostly homogeneous surfaces or little
detail.

The method proposed in this paper bridges a gap between
the two approaches mentioned in the previous paragraph. It
makes use of individual features extracted from the images,
thereby offering the potential robustness of feature-based
methods, e.g. against lighting changes, but does not rely on
the matching of specific observations between the test and
training views. Practically, this allows using similar-looking
types of features. Although the method is generally applicable
to different types of observations, we chose to demonstrate
this key ability through the use of local edge segments. These
correspond to points extracted in the images along the lines
of maximum gradient, and they thus carry little appearance
information individually. The result of our implementation is
a pose estimation method readily trainable with 2D visual data,
intrinsically robust to clutter and occlusions, and able to handle
previously-problematic objects with little texture and detail.

The identification of the object of interest in a new image
ressembles the traditional problem of object recognition and
localization. A number of successful methods have been de-
veloped that specifically make use of edges as image features.
The classical measures of chamfer distance [11] and Hausdorff
distance [12] evaluate the fit of a template over a test image;
their initial formulations were refined in different ways to
provide practical algorithms capable of finding such a template
(a training image of the object of interest) in a cluttered
scene [13], [14]. One key addition proved to be the use of
the orientation of the edges, as we also do in the proposed
method. Other state-of-the-art methods include the work of
Ferrari et al. In [15], they use descriptors of simple edge
groupings to train an SVM classifier, capable of recognizing
object classes, then using a traditionnal sliding window over
the test image. In [16], they focus on the learning of shape
models from unsegmented training views, and then use a soft-
matching procedure of those shapes to recognize objects in
new images. The purpose of those two methods is however
to specifically handle intra-class variations of appearance. The
work presented in this paper differs from the cited methods in
3 important ways: (i) we present a generally-applicable method
not bound to one specific type of image features; it offers the
flexiblity to use additional characteristics (e.g. edge curvature)
or other features (e.g. interest points); (ii) we do not seek to
identify objects or object classes, but rather to determine their
pose, using the small changes of appearance as clues to this
end; (iii) we go beyond a simple localization in the image
(e.g. as 2D bounding box), as we directly consider the full
6-degree-of-freedom pose of the object in the 3D space, of
which we recover a probability distribution, and not a single
maximum.

The method proposed in this paper is based on a probabilis-
tic representation of both the test and the training data. Such a
representation has been used in the slightly different context of
pose estimation using 3D models and observations [17], [3],
and this work can be seen as their extension to the case of 2D
data. In addition to modelling the uncertainty inherent in the

input data, the probabilistic approach leads to the definition of
the pose of the observed object as a probability distribution in
the 3D pose space, of which we want to identify the peaks.
This is justified by the uncertainty in the pose estimation
problem arising from the 3D-to-2D projection ambiguities.
Intuitively, a given 2D view may often be explained by several
3D poses of the object of interest, and we are generally
interested in recovering all these potentially correct results.
Our probabilistic approach, as will be demonstrated, is able
to address this objective. Another contribution of this paper
is the introduction of successive histogram- and probabilistic-
based evaluations that seek to identify all significant modes
in the distribution of interest. The aforementioned references,
which had to deal with less complex distributions, employed
approximations such as Monte Carlo methods [18], which
generally recovered only a unique solution. This would have
been insufficient in the present case, due to the particular
ambiguities mentioned above.

Finally, we propose an efficient method for fusing multiple
sources of evidence in the same probabilistic framework. This
information may be available e.g. through multiple 2D views
of the scene, observed under different viewpoints, but the
same principle can also serve to jointly handle multiple types
of features extracted from a same image. Viksten et al. [10]
proposed another method for combining such multiple sources
of information through a simple clustering step on top of
several instances of existing methods. This however lacks the
genericity offered by the rigorous approach proposed here.
We make full use of the probabilistic nature of the problem,
combining the different sources of information in a Markov
random field, on which inference is performed using non-
parametric belief propagation. The power of the technique is
demonstrated through the use of two 2D views of the same
scene, thereby increasing the accuracy of the pose estimation
process. A comparable approach was used by Toshev et al.
[19] for tracking of the pose of an object over time in a video.
Other methods for handling multiple views with a 2D pose
estimation method have been proposed [1], [20], but with the
underlying process based on feature matching, as opposed to
the more generic approach proposed here.

II. PROBABILISTIC REPRESENTATION
OF POSE AND APPEARANCE

In this section, we introduce a rigorous formulation of the
pose estimation problem, using a probabilistic representation
of the input data. As mentioned above, the proposed method
is not specific to one particular type of image features, but the
general formulation is illustrated with local edge segments.
Those correspond to points extracted from the images along
the lines of maximum gradient (see Section V).

A. Representation of test data

Let us first consider the test data, which consists of a single
2D image, from which we extract features xi. They form the
set of observations O = {xi}Ni=1, where xi ∈ A, the space
on which is defined the appearance of our observations. In the



case of local edge segments, an observation is characterized by
its 2D position in the image, and by its orientation (without
direction, i.e. an element on the semicircle). Therefore, we
have A = R2 × S+

1 . Considering another case where each
observation would be a texture patch extracted around an
interest point, the appearance space A would then encompass
the position of that point, and a description of the texture itself.

As proposed in [3], such a set of observations can be
used to define a continuous probability density ϕ on A.
This distribution is defined in a non-parametric fashion, using
Kernel Density Estimation (KDE), directly using the elements
of O as supporting particles. The probability density function
of ϕ is then given by

ϕ(x) =
1

N

∑
xi∈O

K1(xi, x) , (1)

where x ∈ A, and K1(·, ·) a kernel function on A. This for-
mulation allows modelling the uncertainty that may be present
in the observations, e.g. due to image noise or to other artifacts
occurring during image formation and processing. The kernels
used will depend on the appearance space considered [3]. In
our application, using edge segments, we found that using
kernels allowing only a small deviation on the position and on
the orientation was sufficient, as our edge detection algorithm
could provide results of good accuracy (see Section V). In
practice, the narrow bandwidth of the chosen kernels implies
that sampling from ϕ(x) amounts to selecting random points
xi from O, with only small variations (see Fig. 2b).

B. Representation of training data

The training data is composed of a number of pre-segmented
2D images, in which the object of interest appears in known
poses. Each of those images is processed, in a similar way
as the test image, to extract image features. Each observation
xi is then associated with the pose wi of the image it was
extracted from, thereby forming a set of pose/appearance
pairs T = {(wi, xi)}Mi=1, where xi ∈ A, the appearance
space of our observations, and wi ∈ SE(3), the space of 3D
poses. Similarly to the observations, these points are used to
support a KDE, therefore defining a probability distribution
on the joint pose/appearance space. This distribution, called
ψ, represents the probability of observing an image feature
of a given appearance when the object is in a given pose.
Formally, ψ is defined by its density function

ψ(w, x) =
1

N

∑
(wi,xi)∈T

K2

(
(wi, xi), (w, x)

)
, (2)

where w ∈ SE(3), x ∈ A and K2(·, ·) is a kernel function
on SE(3)×A. The use of kernels on the training data can be
seen here as a smoothing over the available training points,
effectively yielding a continuous distribution and allowing us
to interpolate, to some extent, the value of ψ over regions not
covered by the training data. Practical details on the use of
kernels in SE(3) are discussed e.g. by Detry and Piater [18].

In addition to the training data, a number of possible trans-
formations in the pose/appearance space are usually known.

For example, under orthographic projection1, the camera in-
trinsic parameters dictate how a translation (in pose space)
parallel to the camera image plane relates to a translation
of the observations in the image (in appearance space). In
our case, with edge segments, we chose to hard-code three
such transformations, namely the translation and rotation in
the image plane, and the change of depth along the camera
projection rays which give identical projections on the image
plane. Formally, we represent these transformations via a
single function f , parameterized by a vector of parameters
p ∈ P , such that

f
(
(w, x), p

)
= (w′, x′) (3)

with (w, x) and (w′, x′) being pose/appearance pairs, equiva-
lent through the hard-coded transformations under the parame-
ters p. Those transformations allow us to extend our definition
of ψ to larger regions of the pose/appearance space than with
the training points alone. To that effect, we substitute T ′ for
T in Eq. 2, where

T ′ = T ∪ { (w′, x′) : ∃ (w, x) ∈ T , p ∈ P :

f
(
(w, x), p

)
= (w′, x′) }. (4)

This augmented training set T ′ complements T with all
transformations of its elements that can be obtained using f .
As we will see in Section III however, our implementation
does not require an explicit representation of T ′, and, in
practice, only a small subset of its elements will have to be
identified.

For practical purposes, we remark that the definition of ψ
(Eq. 2) presents the problem of making its value dependent on
the density of training examples in the corresponding region.
For example, including two identical views of the object in
the training data, in the same pose, would simply double
the density of ψ in the corresponding regions, which is not
desirable. This effect is alleviated by using the maximum
value of the neighbouring kernels (see Fig. 2c) instead of
a summation over their values. This leads to the alternative
definition

ψ(w, x) =
1

C
max

(wi,xi)∈T ′
K2

(
(wi, xi), (w, x)

)
, (5)

where C is a normalization constant.

C. Probability distribution of 3D pose

The probabilistic representations of the test and the training
data, given respectively as ϕ and ψ, are now used together to
model the pose of the object in the test image. The pose is
modelled as a random variable W ∈ SE(3), and its distribution
is simply given by

p(w) =

∫
A
ψ(w, x) ϕ(x) dx . (6)

1Our implementation of the method assumes an orthographic or near-
orthographic projection, which in practice is easily satisfied with a camera
of sufficient focal length relative to the scene depth (see Section V).



This expression, in effect, measures the compatibility of a
pose w with the whole distribution of features observed in
the image. Another interpretation is to see it as the cross-
correlation of the distribution ϕ of observations in the test
image with the distribution ψ(w, ·) of training points at a
given pose. Note that this formulation of p(w) is similar
to that proposed in [18], [3] for the use of 3D models and
observations.

III. POSE INFERENCE

This section presents a practical method for solving the pose
estimation problem as formulated in Section II. The method is
based on two key observations, presented below, which allow
an approximate evaluation of p(w).

First, the value of the integral in Eq. 6 can be approximated
using Monte Carlo integration [21], [18]. This method, which
involves a random exploration of the integration domain, gives

p(w) ≈ 1

n

n∑
i

ψ(w, xi) where xi ∼ ϕ(x) . (7)

The evaluation of p(w) (see Fig. 2a–d) thus amounts to
successive evaluations of ψ(w, xi) for different values of xi,
drawn from the distribution of observations in the test image
(ϕ).

Importantly, and this is our second key observation, each
of these evaluations of ψ(w, xi) only requires a small number
of elements of the augmented training set T ′. For a fixed xi,
using the hard-coded transformations (in-plane rotation and
translation), any original training pair (w, x) ∈ T can be
transformed into a pair (w′, xi) ∈ T ′ of appearance xi. Those
pairs will have the strongest influence on the value of ψ(w, xi)
(Eq. 5), and its evaluation can therefore be limited in practice
to the use of those pairs, which formally correspond to the
following subset of T ′:

{ (w′, xi) : ∃ (w, x) ∈ T , p ∈ P :

f
(
(w, x), p

)
= (w′, xi) } ⊂ T ′ (8)

The practical consequence of this property is that an explicit
and complete representation of T ′ is not required, and that
only a fraction of its elements have to be identified.

A. Exhaustive search algorithm

The two properties we just presented make the evaluation
of p(w) possible for any pose w. Various methods can then
in principle be used to identify the main modes of this
distribution, such as a Monte Carlo-type search as proposed in
[18], [3]. However, the purpose of such methods is generally
to identify the global maximum of the density. As argued
above, the particular ambiguities in the 2D input data are likely
to induce a very complex distribution, potentially presenting
multiple weak modes that we wish to identify. We therefore
devised an algorithm to exhaustively explore the relevant parts
of the 3D pose space. This task is particularly challenging
[22] due to the high dimensionality of SE(3). We propose
a two-stage process that first relies on a histogram-based

(a)

b

b

b

x3

x1

x2

(b)

w ∈ SE(3)

ψ(w, x1)

b b b

w

ψ(w, x2)

b b

w

ψ(w, x3)

bb b

(c)

w

p(w)

≈ ∑

i

ψ(w, xi)

w∗1
w∗2

(d)

Fig. 2. Proposed method for pose estimation, using edge segments as image
features. (a) Test image; (b) distribution of edges in test image, denoted ϕ(x)
in the text, and three samples x1−3 (blue oriented points) of that distribution;
(c) distribution (red curve) of poses compatible with each observation xi

(Eq. 5), made up of individual kernels (gray curves) supported by a small
subset of poses w′ ∈ T ′ (Eq. 8, red dots); (d) distribution of poses compatible
with all observations xi (Eq. 7) and local maxima w∗i , as recovered by our
method.

approximation, in order to pre-select regions of interest in
SE(3). This serves to discard those bins of the histogram that
correspond to areas of low density, dramatically reducing the
amount of data used at the second stage. It is then possible
to perform a full-scale kernel-based evaluation of the density
(Eq. 5,7), limited to the pre-selected regions of the pose space.
The algorithm returns a set of poses R where the density
exceeds a certain threshold.

The computational complexity of this algorithm is propor-
tional to the number of training points (M , Section II-B), mul-
tiplied by the number of samples used from the observations
(n, in Eq. 7), itself chosen as a fraction of the total number
of observations (N , Section II-A). Note also that it is not
mandatory to process all possible combinations of observation
samples and training points, but a stochastic approach can
rather make use of the probabilistic representation of the
training data ϕ, and use a limited number of random samples
thereof. This scheme was previously used in the related
problem of 3D models and observations [17], [3].

B. Post processing of pose estimates

As a post-processing step, one may want to identify the
actual peaks of each mode. This could be accomplished
by a traditional gradient-ascent method, such as mean shift
[23]. In our case, this procedure would be costly due to
the complexity of the pose space. Fortunately, in practice,
the proposed algorithm usually returns poses in the close
neighbourhood of the actual peaks. A simple non-maximum
suppression step therefore proves sufficient. In this method,
an element is discarded if it lies in the close neighbourhood
of an element of greater density, the neighbourhood being
defined by a fixed radius in the pose space. This procedure,
efficiently implemented by processing the poses of R in order
of decreasing density, therefore selects the poses that are the
closest to the peaks of the distribution (Fig. 2d).



IV. EXTENSION TO MULTIPLE SOURCES OF EVIDENCE

The method presented above uses a single source of infor-
mation as input data, i.e. a single 2D image, to evaluate the
most probable poses of the object. However, it is sometimes
desirable to use several sources of information to disambiguate
the result, or make it more precise. Such extra information
could be available, e.g. as multiple images of the same scene,
observed under different viewpoints, or as several types of
image features, extracted from one same image. This section
proposes a rigorous method for fusing the results produced
by each different cue, thereby determining globally consistent
poses. The method is presented in the concrete context of
multiple views, but it directly extends to other scenarios, e.g.
with multiple types of image features.

We represent by the random variable W ∈ SE(3) the
pose of the object, and by Xi ∈ A the distribution of
observations in the ith view. The dependency between these
random variables can be represented by a pairwise Markov
random field [24], [17], organized in a tree structure, W being
the root node (see Fig. 3). The compatibility potential functions
parameterizing the relationship between W and a Xi are called
ψi. These are identical to the ψ introduced in Section II,
apart from now taking into account the actual viewpoint of
the corresponding view. Each node Xi is moreover connected
to its corresponding observed variable, Yi , their relationship
being parameterized by ϕi, defined similarly to the ϕ of
Section II. To determine the marginal density of the top node
W , inference on such a graphical model can be performed
using Non-parametric Belief Propagation (NBP), as proposed
in [24]. The application of the NBP algorithm on a model as
simple as that considered here allows many simplifications. In
particular, the distribution of W is simply given by

p(w) =

q∏
i=1

mi(w) , (9)

with a message mi(w), conceptually sent from a node Xi to
the root node W (see Fig. 3), and expressing its belief about
the state of W , being defined as

mi(w) =

∫
A
ψi(w, x)ϕi(x) dx . (10)

Note that this definition of mi(w) is identical to Eq. 6, but
is now indexed on the source of the observations. Practically,
each mi(w) can be independently evaluated, using the method
of Section II-C. This method returns a set of poses in the most
dense regions of SE(3), which can directly be used to represent
the distribution mi(w) in a non-parametric fashion, using
KDE, weighting each of them with its evaluated probability
density. Fusing the results from all sources of evidence, via
Eq. 9, then amounts to computing the product, or intersection,
of all of these non-parametric representations of densities on
SE(3). In practice, the representation of each mi(w) is usually
quite compact, and the evaluation of p(w) for a given w
can thus be performed at a reasonable computational cost.
We therefore identify the maxima of p(w) with a Markov
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Fig. 3. Markov tree representing the integration of multiple source of
evidence, in this case 2 views from which edge segments are extracted. The
messages mi(w) represent the belief about the state of W sent from each
node Xi; they are fused to determine the values of W globally consistent
with the two views.

Chain Monte Carlo (MCMC) type search, using a simple
random walk scheme [18]. This local optimization process is
performed from several different starting points, selected from
the supporting particles of the mi(w). Using this process, the
output of the algorithm is finally the set of poses corresponding
to the local maxima of p(w) as defined by Eq. 9, i.e. the
poses globally the most consistent with all available sources
of evidence.

V. EVALUATION

The evaluation of a pose estimation method is not trivial,
due to the difficulty of obtaining the ground truth 3D poses
themselves, especially in realistic scenes. We considered us-
ing various existing datasets, as reviewed below, but finally
decided to produce new datasets, with synthetic images and
thus known ground truth, which allowed performing a rigorous
quantitative evaluation. Practically, the image features were
extracted using the well-known Canny edge detector, followed
by a smoothing and subsampling step to reduce the noise in the
observations (Fig. 1b). All images used were 640× 480 pixel
grayscale images, and all the parameters of the algorithm were
set to identical values for all the tests (with both synthetic and
real images).

Among candidates public datasets, we considered the ETHZ
Shape dataset [15], which features shape-based object classes
in various cluttered scenes. It is however specifically targeted
at class recognition algorithms, designed to handle variations
in shape, as opposed to our method, which actually uses
those slight changes in appearance as clues for estimating
the 3D pose of the object. The dataset does not include any
suitable training data or any ground truth for 3D pose. The
NORB dataset [25] is made up of images of toy objects in
different poses, and of artificial compositions of such images
proposed as cluttered scenes. In addition to being evaluated
only with class recognition methods (as far as we are aware),
the very-low-resolution images prevent any reliable use of
edge features, as our method requires. The RGB-D dataset
[26] is made up of household objects on a turntable, viewed
at 3 different elevations, thus in a fairly limited range of
poses. We also argue that the basic evaluation methodology
proposed for those sequences, which is basically to use every



other image for training and test alternatively, in the absence
of clutter and object translations, is overly simplistic and of
limited diagnostic value. The capture setup (e.g. constant-
speed turntable) is also acknowledgedly imprecise and ruled
out this dataset as an interesting candidate for a rigorous
evaluation.

A. Quantitative evaluation on synthetic images

The synthetic datasets were produced with manually de-
signed 3D models and rendered with ray tracing software.
The training examples (Fig. 1c) correspond to different views
of the object of interest on a uniform background; the poses
of the object in the training set are chosen uniformly in
the orientation space. The amount of clutter in a test image
is measured as the ratio of the number of observations not
belonging to the object of interest over the total number of
observations in the image. For example, a clutter ratio of 0%
corresponds to absence of clutter, whereas a clutter ratio of
80% means that about 4/5 of the observations are actually
noise. We measure the success rate as the ratio of experiments
that returned a correct pose in the first k results (the algorithm
returns a list of poses sorted by decreasing probability density).
This aspect is important, as the ambiguities the 2D input data
often prevent one from distinguishing between different 3D
poses that have very similar appearances on the image plane.
The threshold for considering a pose as correct was set in
accordance to the typical dimensions of a scene: considering
our objects are of a size of 100–200mm and distant from
the camera of 1000–2000mm, this threshold was set to a
translation error of 20mm parallel to the image plane (XY ),
100mm in depth (Z), and a maximum rotation error of 20◦.
The greater tolerance on the Z translation is justified by the
fact that the use of a single 2D image makes the determination
of depth very difficult. Note however that this error threshold
remains a small fraction of the actual depth of the scenes.
Using these conventions, the success rates of the algorithm for
various conditions are reported in Fig. 5a. Please also note that
relaxing the threshold discussed above does not necessarily
lead to better quantitative results, as we also report, in Fig. 5c,
the mean error of the first correct result returned by each
run of the algorithm. The reported average numbers were
computed over 30 runs of the algorithm for each of the 6
objects considered (Fig. 5b), each scene being generated at
random, with clutter made up of different objects disposed
randomly in the background. The measure of the error in
orientation for the cylindrically symmetric objects (e.g. the
bottle) naturally takes only their relevant degrees of freedom
into account.

Systematic test cases including occlusions are hard to
design, as the amount of occlusion is difficult to quantify:
masking one half or the other of an object can have dramat-
ically different effects due to different levels of detail. We
are however confident in the ability of the system to cope
with significant occlusion, since this is actually simulated by
a common large fraction of missing observations (Fig. 4), due
to background clutter preventing a good extraction of edges.

The algorithm presents very good success rates under com-
mon amounts of clutter (Fig. 5a). This success rate even
remains acceptable as the amount clutter is raised to very
challenging values (Fig. 4). Increasing the number of training
views for each object was not found to have a significant
impact on the success rate, but increased the accuracy of
the results (Fig. 5c). Similarly, the amount of clutter did not
have a significant influence on the precision of the results
(Fig. 5c), but only makes harder the identification of the modes
of the distribution. In general, the erroneous results can be
attributed to two sources (see Fig. 4, last row). First, the edge
segments we restrict ourselves to cannot always be extracted
consistently. For example, in an image of the kettle, if the
edges of the handle are extracted on one of its sides but not on
the other, this side may be “matched” with any of the two sides
of a training view, potentially leading to a large error on the
orientation of the recovered pose – despite both being globally
good matches with the 2D input view. Second, using the 2D
projections of any 3D object introduces inevitable ambiguities.
For example, it may be very difficult to differentiate between
a cylindrical object pointing away and towards the camera
(Fig. 4, bottom left); this effect is particularly true for our
objects consisting of mostly homogeneous surfaces.

We used a similar protocol to evaluate the use of multiple
views of a same scene, as proposed in Section IV. In those
experiments, we used, instead of a single 2D image, 2 images
of the scene from viewpoints spaced by 45◦. Such a wide
baseline is generally too large to be handled by traditional
stereo methods, and thus demonstrates one of the interests of
our approach. The success rate was generally not noticeably
affected by the use of two views over one, but the error was
almost always substantially decreased, as reported in Fig. 5c.
Using a second view helps the algorithm disambiguating
between the different possible orientations of the object, and
also provides much better clues for determining the actual
depth of the scene (Z translation).

B. Real test images

The method was evaluated on real test images. For practical
reasons, we relied here again on computer-generated images
as training data. We used 128 training views of each object,
that were produced as explained above (Fig. 1c), through ray
tracing with manually-designed 3D models. In a realistic appli-
cation, such images are to be acquired, e.g. by a robotic agent
taking pictures of the real object under various viewpoints
[27]. This alternative option was chosen purely for practical
reasons, but added an additional challenge as the models used
for generating the training images inevitably did not match
the real objects perfectly. The test images were taken with a
handheld camera at about 1000–2000mm from the scenes.

We performed many experiments on typical household
scenes with common objects. We purposely chose objects
presenting large homogeneous surfaces with little texture
and details, on which classical feature-based pose estimation
would likely fail. We present, in Fig. 6, typical results of
both successful and failed experiments. As the ground truth



Fig. 4. Sample results of our quantitative evaluation (for each: test image, edge map used as input, rendering of object model in the first pose proposed by
the algorithm); these tests used a single test view, 128 training views per object, and clutter=80%. The last row shows typical incorrect results: although a
close match is found with the given edges, the 3D pose is incorrect.

clut t er = 0.8clut t er = 0.4clut t er = 0.0

1 3 5 7 91 3 5 7 9k= 1 3 5 7 9
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(a) (b)

N. of train. examples 32 128 512 128, stereo obs.
Translation (mm) 44.1 30.5 31.1 14.2
XY only 4.6 3.1 2.1 N/A
Z (depth) only 43.2 30.1 30.9 N/A

Orientation (◦) 11.6 8.3 7.7 8.1
Rank (k) 2.9 1.8 1.3 1.2

(c)

Fig. 5. Quantitative results on synthetic images (see text for details); (a) for each object, success rate of having a correct result among the first k ones (128
training examples), in scenes of no/medium/heavy clutter; (b) test objects used; (c) average error of first correct result.

Fig. 6. Sample results on real images (similar conditions as Fig. 4); for visualization, we render, in yellow, the outline of artificial models set in the first pose
found. The last two images show common failures, typically due to uncertainty in the limited input data used (edges): the mitten identified in background
clutter, and the rim of the plate matched onto its shadow.

(a) (b)

Fig. 7. Recovery of probability distribution of 3D pose; (a) input image; (b) plot of 3D position as a non-parametric description (blue points), and local
maxima (green points). Each occurrence of the object in the image correctly generates one mode in the distribution.



pose is not available, measuring the errors is not possible.
Instead, we visualize the results by rendering, onto the input
images, synthetic models of the objects in the poses found
by the algorithm. One can observe good matches with the
input images, demonstrating the good use made of the 2D
information available. As discussed before, the use of 2D
observations, especially edge segments alone, often makes it
hard to distinguish between different poses that may appear
similar in one image. The first pose returned by the algorithm
may thus correspond to an erroneous result, but the correct
result will often be found in the other poses proposed by
the algorithm (identified with slightly lower probability). The
actual disambiguation is thus to be left to the end application,
which may best make use of this uncertainty in the results.

C. Retrieval of full pose distribution

One key capability that we propose is to recover a distribu-
tion of 3D poses, rather than a single optimum. We illustrate
this in Fig. 7: the pose of a bottle is evaluated in an image
containing several occurrences of the object. The distribution
is recovered in a non-parametric fashion as a collection of
particles, of which we plot the 3D position. One mode is
correctly identified for each occurrence of the object, the main
uncertainty remaining unsurprisingly in the depth dimension,
extending along the camera projection axis.

VI. CONCLUSIONS AND FUTURE WORK

We presented a novel method for exemplar-based pose
estimation in single images. Relying on a general, probabilistic
formulation of the problem, the method avoids establishing
specific correspondences between training and test views, thus
allowing similar-looking types of images features. The pose of
the object is treated as a probability density over the 3D pose
space, from which we identify the different modes, thereby
accounting for the ambiguities of 2D input data. We also
proposed an elegant way of fusing evidence from multiple
sources, such as several views of the same scene, or different
types of image features. A first validation of the overall
approach showed promising results. Further developments will
mainly focus on the use of other types of image features
within this framework, extending its applicability further to
more types of scenes, objects and imaging conditions.
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Abstract—This paper introduces a novel method for feature-
based 3D reconstruction using multiple calibrated 2D views.
We use a probabilistic formulation of the problem in the 3D,
reconstructed space that allows using features that cannot be
matched one-to-one, or which cannot be precisely located, such
as points along edges. The reconstructed scene, modelled as a
probability distribution in the 3D space, is defined as the in-
tersection of all reconstructions compatible with each available
view. We introduce a method based on importance sampling
to retrieve individual samples from that distribution, as well
as an iterative method to identify contiguous regions of high
density. This allows the reconstruction of continuous 3D curves
compatible with all the given input views, without establishing
specific correspondences and without relying on connectivity
in the input images, while accounting for uncertainty in
the input observations, due e.g. to noisy images and poorly
calibrated cameras. The technical formulation is attractive in
its flexibility and genericity. The implemented system, evaluated
on several very different publicly-available datasets, shows
results competitive with existing methods, effectively dealing
with arbitrary numbers of views, wide baselines and imprecise
camera calibrations.
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I. INTRODUCTION AND RELATED WORK

The problem of 3D scene reconstruction using multiple
2D images from different viewpoints is fundamental in
computer vision. The variety of applications, from robotic
interaction to phototourism or reverse engineering, has led to
the development of numerous methods over the years. These
can be broadly classified into two categories: (i) intensity-
based multiview stereo methods, which produce dense sur-
face reconstructions, and (ii) feature-based methods, which
recover sparse 3D models of geometric features. Although
many of these methods have proven successful in select
fields of application, their typical requirements and limita-
tions in operating conditions motivated the development a
novel, feature-based method, particularly suited to the use of
hard-to-match features. This method, which we successfully
applied to the particular problem of 3D curve reconstruction,
will be introduced after reviewing related literature.

Methods of the first category mentioned above typically
aim at producing detailed 3D reconstructions of objects,
enforcing photometric consistency and surface continuity
constraints to recover a dense shape description. However,

those methods can typically only operate in precisely con-
trolled settings, usually only with Lambertian surfaces, and
with large numbers of precisely calibrated cameras. Those
typical requirements for controlled acquisition conditions
often prove impractical for general applications (see [1] for
a review). While dense reconstructions can offer visually
striking results, there are many applications where sparse
reconstructions are sufficient, as argued below.

Methods of the second category aim at reconstructing
sparse 3D models, made up of isolated geometric features,
such as points or edges. Such methods are particularly
interesting as they provide more expressive and efficient
representations than dense surfaces, typically at a fraction
of the computational cost. The classical methods rely on the
detection of interest points in the individual 2D views, and
then use their local appearance (e.g. using SIFT descriptors
[2]) to propose likely matches between observations from
different views. The geometric consistency between pairs
or triples of points can then be enforced using the well-
known epipolar or trifocal constraints [3], effectively leading
to the reconstruction of a 3D point cloud compatible with
the observations. The first limitations of this approach are
obviously those of the extraction and matching of image
features, which works best on texture-rich images, but can
perform poorly on scenes with mostly homogeneous surfaces
or little detail [4]. Moreover, the matching of local appear-
ance descriptors is made harder as the baseline between the
considered viewpoints increases [5], practically limiting this
approach to the consideration of close pairs of views at a
time.

Other methods of the second category make use of image
curves, or edges, extracted in the available 2D views [4], [6]–
[9]. Reconstructions made up of edge segments convey more
geometric information than point clouds [6] and offer greater
invariance to changes in illumination and viewpoint. Edge-
based reconstructions have moreover proved directly useful
for practical applications like pose estimation [10], [11], or
the prediction of grasping points of objects [12]. The clas-
sical approach, described above, of matching observations
between different views (now lines or cuves) is however a
non-trivial problem [6], exacerbated by the variability in the
extraction of said edges from the 2D images. Li et al. [4]



reviewed various schemes, e.g. using extended projective
geometry [13] or differential geometry [4], or restricting
the problem to closed curves [14]. Common drawbacks are
strong requirements for precisely calibrated camera [4], [9],
[13] and limitations to pairs or triples of views at a time
[13]. In [15], Kaess et al.focuses on the subproblem of
fitting parametric curves to contours identified in several
images, using a Monte Carlo-type search as we do. They
do not however consider the reconstruction of entire scenes
with several objects and the inevitable uncertainty in the
input observations. Kahl et al. [7] present an approach that
also avoids establishing correspondences between views, but
delivers results only on simple scenes, reconstructing only
small numbers of short curve fragments. We present results
on arguably more challenging datasets and in much more
varied conditions (see Section IV).

Multiview reconstruction is part of the larger problem of
simultaneous localization and mapping (SLAM). In contrast
to SLAM, this paper assumes calibrated views and does
not make use of core assumptions made by most SLAM
methods, most importantly the abundance of input views
and feature tracking across views. Some SLAM methods
are nevertheless relevant to the current discussion. Klein
et al. [16] use edges as image features and show how
complementary they are to interest points. They focus on the
localization problem, and do not deliver convincing results
for reconstruction of said edges. Civera et al. [17] propose,
as we will do, an alternative probabilistic formulation to
the classical Gaussian measurement uncertainty, but also
focus on localization. [18] goes beyond precisely localiz-
able features by tracking surface patches under photometric
constraints to provide a dense reconstruction, but is based
on frame-to-frame tracking.

The method proposed in this paper aims at reconstructing
a sparse 3D model of geometric features. The key princi-
ple is the definition, using each available 2D view, of a
probability density in the 3D reconstructed space, which is
compatible with the view considered. This distribution thus
encompasses all backprojected 3D features that could have
produced the considered image. Considering all available
views, the intersection, or product, of those distributions is
then proposed as the distribution of 3D features of the re-
constructed scene. We present in Section II an efficient algo-
rithm for obtaining individual samples from that distribution,
effectively yielding a set of 3D features (edge fragments
in our implementation) describing the reconstructed scene.
A second algorithm is proposed that iteratively identifies
contiguous regions of high density in the 3D space, which
links such samples together, forming continuous 3D curves.

The strength of the proposed approach is to handle non-
precisely localizable features, which cannot be matched one-
to-one, or which present uncertainty in some dimension of
the observation (like a point along an edge). The resulting
curve reconstruction method therefore does not rely on
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Figure 1. The proposed method uses the observations of each input view,
Ok , to define probability distributions φk in the 3D, reconstructed space;
the reconstructed model lies at the intersection of those distributions.

connectivity in input images, effectively accounting for the
variability in the extraction of edges from the images.
Other reconstruction methods have been designed to handle
uncertainty in the input data, often by relaxing the matching
and geometry constraints. For example, Fabbri et al. [6]
implemented a two stage process, where an initial robust
reconstruction is used to optimize the calibration of the
cameras, to then obtain a finer reconstruction in the second
stage. That approach, which can be traced back to the
classical RANSAC algorithm, proved robust, but, in addi-
tion to being arguably computationally inefficient, lacks the
genericity and flexibility of the formulation presented below.
Note finally that similar probabilistic models of objects and
image observations have been used in the past [10], [11],
and this work can be seen as their extension to the problem
of 3D reconstruction.

We must finally remark that reconstruction without corre-
spondences is not new. A basic formulation of the prob-
lem was presented in [19]. In [20], Dellaert et al.used
expectation-maximation to recover the structure of a scene,
handling however only precisely localized features, and only
presented results on toy examples under several unrealistic
assumptions. More recently, [21] showed how to recover
the camera transformation between pairs of views using the
radon transform, but without considering the 3D structure
of the scene at all.

II. PROBABILISTIC RECONSTRUCTION FROM 2D VIEWS

We now present the proposed method, first in a general
formulation, then applied to the use of edge segments. Those
features correspond, in the input images, to points extracted
along lines of maximum gradient, and characterized by
their position and orientation on the image plane (see
Section III-A). In the reconstructed model, they correspond
to oriented 3D points, that we typically represent by short,
fixed length, 3D line segments (see Fig. 4b for example);
they can be connected together to form continuous curves
(e.g. 4c).



A. Probability distributions from image observations

The key idea of the method is to define, from each avail-
able 2D view, a probability density over the reconstructed 3D
space, which is compatible with the observations in that view
(1). In other words, it describes the distribution of backpro-
jected 3D features that could have produced the considered
image, given the uncertainty present in that image, and in
the available estimation of the camera parameters. Formally,
each view k ∈ [1, N ] is described by a set of image features,
or observations

Ok = {yi} i ∈ [1,Mk]
, (1)

where yi ∈ R2×A are the image features, characterized by
their position in the image, and some descriptor in an ap-
pearance space A. In the case of edge segments, which have
an orientation but no direction, the appearance descriptor is
an element on the semicircle (i.e. an angle in [0, π[), and
A = S+

1 . Considering instead more classical interest points,
described by their position in the image and their local
appearance, the space A would then contain normalized
texture descriptors. The 3D, reconstructed model, is to be
defined on a corresponding space R3 × A′. With edge
segments, then characterized by a 3D orientation, we have
A′ = S+

2 .
We will now define, for a view k, a probability distri-

bution φk on the reconstructed space, using kernel density
estimation (KDE). Each element yi of the considered view
is associated with an element of the reconstructed 3D space,
y′i ∈ R3×A′. This element can simply be obtained by setting
a normalized value for the extra dimensions; e.g., the depth
and 3D orientation of our edge segments can be fixed to lie
on the image plane in the 3D world (see Fig. 2). This now
allows us, using KDE, to define the distribution φk by its
probability density function

φk(x) =
1

Mk

Mk∑
i=1

Ki(y
′
i, x) , (2)

where Ki are kernel functions on R3 ×A′. Intuitively, one
kernel Ki(y

′
i, x) models the distribution of all reconstructed

features that could have produced the observation yi. The
details, which will depend on the type of features used,
are straightforward in the case of edge segments. Looking
at the position only, it represents a constant probability
density along the backprojected ray (see Fig. 2). Formally,
we measure the distance between a given y′i and x by 3
scalars:

i. d1, the closest distance in position between x and the
line defined by y′i (the backprojected ray),

ii. d2, the depth of x, relative to the camera center,
iii. d3, the difference in orientation between x, and the

plane corresponding to the backprojection of the ori-
entation of y′i.

min depth

max depthy′i

d2 x

d1

Figure 2. Illustration of an observation y′i (an oriented point on the
image plane) and its associated kernel Ki(y

′
i, ·) in the reconstructed, 3D

space, both for the position and the orientation (surfaces of equidensity in
transparent orange). The kernel, evaluated at a point x, uses the distances
d1 and d2, resp. to the axis of the backprojected cone and to the camera
center (see text for details); d3 is not represented.

We then define our kernel function Ki(y
′
i, x) as the product

of 3 independent kernels that make use of those distance
measures: a Gaussian kernel on (d1/d2) (inducing a conical
surface of equidensity for the position, see Fig. 2), a box
kernel on d2, and a von Mises-Fisher kernel on d3 (which is
a Gaussian-like distribution on orientations [22]). Note that
the effect of the box kernel on the depth only corresponds to
fixing a hard threshold on the distance to the reconstruction.
Indeed, the only assumption that can generally be made here
is that a reconstructed point must lie in front of the camera,
and within a realistic depth range.

The geometric meaning of our definition of a kernel is
quite intuitive, and is illustrated in Fig. 2. For example,
the surfaces of equidensity for the position in the 3D space
correspond to truncated cones, extending along the camera’s
projection rays. The selection of the bandwidth of the kernels
is discussed in Section III-B.

The definition of the kernels could be extended to other
types of image features, or to include edge curvature for
example. We propose another minor extension that takes into
account the uncertainty along the orientation of an edge,
thereby “flattening” the cone of Fig. 2. For this purpose,
the distance d1 is separated in 2 components d′1 and d′′1 ,
respectively aligned and orthogonal to the orientation of the
edge; they are then simply evaluated as (d′1/d2) and (d′′1/d2)
in Gaussian kernels of respectively large and small variance,
thus allowing more slack along the orientation of the edge
(see specific results in Section IV-A).

Finally, as a side note, let us remark that defining a prob-
ability distribution over the reconstructed space, as we did,
differs from the classical formulation of the problem, where
the reconstructed model is compared, once reprojected in
the image space, against the 2D input observations. We
will remark that, under certain parameterizations, the two
approaches can be rendered equivalent. Our formulation was
however chosen in this presentation, as it offers a more
intuitive formulation of the sampling-based reconstruction
methods that we will propose below.



B. 3D Reconstruction of individual points

The probability distributions φk we have defined make
each use of one single view. We now combine them to
produce another distribution ψ in the reconstructed space
that is globally consistent with all available views. It is given
by its probability density function

ψ(x) =
1

C

N∏
k=1

(
φk(x) + ε

)
, (3)

where C is a normalization constant, and ε is a fudge
constant, small relative to the scale of φk(x). This definition
practically uses the intersection of the φk, relaxed by the
constant ε. This allows observations that appear in some but
not all input images to produce a nonzero density region in
the reconstructed space. This proves necessary in practice,
to handle e.g. self-occlusions and missing observations.

Equation (3) gives a formal definition of the 3D recon-
struction of the scene. The main goal however is to obtain an
explicit and practical representation of this model. Sampling
directly from ψ is generally not feasible, but we propose
an approximate method based on importance sampling (see
for example [10], [23]). Importance sampling (IS) allows
one to sample a target distribution p(x), assuming one can
evaluate p(x) = p̄(x)/Z up to some normalization constant
Z, by using samples x` from a proposal distribution p′,
ideally similar to p. IS accounts for the difference between
the target and proposal distributions by assigning to each
sample x` a weight given by

w` = p̄(x`) / p′(x`) . (4)

The collection of weighted samples
{

(x`, w`)
}L
`=1

is then,
under mild assumptions, asymptotically consistent with the
target distribution. This procedure is obviously most efficient
as the proposal distribution is close to the target distribution.
In practice, the collection of weighted samples is then
generally resampled, to a smaller set of L′ (< L) unweighted
samples.

The proposal function used here is given by

ψ′(x) =
1

C ′

∑
(k1,k2)
∈ pairs(1,N)

φ′k1(x) φ′k2(x) , (5)

where C ′ is a normalization constant, and pairs(1, N) de-
notes the list of all unique pairs of indices between 1 and
N . Each density function φ′k is a variation of the φk defined
above, in which the kernels used are all box functions.
Intuitively, ψ′ simply corresponds to all the intersections
of pairs of views. Sampling from ψ′(x) is easily done by
choosing two arbitrary views k1 and k2, and triangulating
two random observations y1 and y2 from each, the kernels
of which intersect at least by a small amount (i.e. the 3D
projections of which intersect each other within a small
threshold). The bandwidth of the box kernels of φ′ will

be chosen so that they extend up to a reasonable cutoff
threshold of the exact kernels of φ. This ensures that the
proposal distribution ψ′ will generate samples in all of the
most interesting regions of the target distribution ψ. The
weights assigned to the proposal samples of ψ′ are then
simply computed using (4). They can then be resampled to
obtain a set of non-weighted points.

C. 3D Reconstruction of continuous curves

The method presented above reconstructs individual
points as samples from a probability distribution in the 3D
space. Some interesting parts of the scene may however
correspond to regions of lower density (e.g. due to missing
observations in one or several views), but which can however
still be identified as local maxima. Moreover, in the partic-
ular case of curve reconstruction, one wants to reconstruct
continuous curves, and not individual points. Those two ob-
jectives can be met through the iterative procedure described
below, which uses the individual samples as starting points
for a stochastic exploration of the reconstructed space.

For each reconstructed curve, the procedure starts with a
sample x0 ∈ R3 × S+

2 . It then iterates, searching at each
step for a point xi+1 along a ridge of locally maximum
probability density. Formally, local proposals are generated
from a point x = (p, θ) of position p ∈ R3 and orientation
θ ∈ S+

2 (a unit 3-vector), as a set of L samples:

proposals(x) =
{

( p+ Θκ(θ) ∗ Γ(α,β),Θκ(θ) )j
}
j ∈ [1,L]

,

(6)
where Γ is a gamma distribution that generates the distance
in position to a proposal, and Θ is a Von Mises-Fisher
distribution used to randomize the orientation. This uses the
assumption that the next point of the curve is most likely
in the direction of the current point. The parameters κ, α, β
define how “spread out” the proposals are from an exactly
straight line. The likelihood of each proposal is evaluated
(Eq. 3), and the best one is selected as the new point xi+1

of the curve. The procedure is repeated, unless the likelihood
of all L proposals fall below a threshold, indicating the
probable end of the curve. That threshold is fixed beforehand
as fraction of the mean density of a batch of samples
of the whole scene. The procedure is comparable to the
classical Canny algorithm, which, likewise, follows ridges
of local optima until falling below a predefined threshold.
Note that the use of a purely random walk scheme for
selecting the neighbours in our method — as opposed to
estimating local derivatives of a likelihood function (as could
be done using differential geometry) — is motivated by
the genericity of the procedure, which we plan to apply to
other types of image features as future work. Finally, as the
scene is being reconstructed, we “prune” ψ, removing the
kernels that have significant overlap with the curves already
reconstructed. This helps reconstructing parts of the scene
of low probability density, initially masked out by regions of



higher density, and also avoids reconstructing several times
the same portions of a scene.

III. IMPLEMENTATION

A. Edge detection in input images

The image features we use are oriented 2D points, identi-
fied along the edges in the images. We selected the method
of [24], which is a simple method based on image gradients
that extracts the orientation of the edges significantly better
than the traditional method, which simply uses the direction
orthogonal to the gradient. That method was chosen instead
of more sophisticated ones which take texture or global
segmentation into account, as they can be extremely slow
and are thus not an option for many applications of 3D
reconstruction. This also ensured a fair comparison with
other published methods which used basic gradient-based
edges as well.

B. Choice of parameters of the reconstruction

The kernels associated with the observations are
parametrized by their bandwidth in position and orientation.
This size should reflect the estimated uncertainty in the
input data, and can be set according to a small fraction to
the estimated scale of the scene. Our experiments showed
however that the method was not particularly sensitive to the
choice of those parameters. For example, in the experiments
(with both small and large camera calibration errors) of
Section IV-D, with 640× 480 pixel images, the size of the
kernels was set to allow a corresponding maximum deviation
in the images of about 12 pixels and 20◦.

The parameters used for local proposals (Eq. 6) are also
to be set relatively to the scale of the scene. For example,
the scene of Section IV-D, measuring about 1000 mm in
diameter, used local proposals corresponding to a spacing
of 5 mm and a deviation in orientation of 15◦ on average,
with L = 50.

Finally, the running time of the iterative procedure grows
linearly with the number of reconstructed points. The cost
associated with the reconstruction of a point mostly corre-
sponds to the evaluation of ψ (Equation 3) for the proposals.
One evaluation involves the processing of every kernel of ev-
ery input view, and is thus O(NM̄), where N is the number
of views, and M̄ the average number of observations per
view. We currently use this basic implementation. However,
a cleverer implementation could efficiently preselect the few
kernels likely to be relevant to the evaluation of a given
point, using an ordered data structure. Since the influence
of a kernel in its distribution drops below insignificant values
past some distance, one could, in this way, restrict the
evaluation of the kernels to a small fraction of them.

IV. EXPERIMENTAL RESULTS

The proposed method was evaluated on 4 very different
datasets. It is notoriously hard to produce ground truth

reconstructions for evaluating feature-based methods, due
to the ambiguous selection of the features to reconstruct.
Datasets for benchmarking dense reconstruction methods
have been produced; however, the ground truth model is not
necessarily made public [1], and the selection of actual edges
from continuous surfaces [25] or 2.5D models makes it hard
to design a meaningful quantitative evaluation of a method
like ours. Competing methods for curve reconstruction faced
a similar situation, which explains why no extensive qual-
itative evaluations were published. [6] made an exception,
but they only evalute their ability to match correct curve
fragments between views, using a set of manually labelled
ground truth correspondences — which was unfortunately
not made public.

Practically, our prototype software was implemented in
Matlab. Running times of such an implementation (espe-
cially of an iterative method) have little meaning, as the only
switch to a compiled language offers potentially enormous
room for improvement. Bearing this in mind, we report, as a
base point, that a reconstruction as shown in Fig. 4 or Fig. 6a
currently takes about 2 to 5 minutes on a standard laptop
without multithreading. Most recent competing methods do
not discuss the issue of efficiency; Fabbri et al. [6] report
running times in the order of minutes on scenes like the
dinosaur (see below). Let us note moreover that most parts
of our algorithm are straightforward to parallelize.

A. Synthetic toy example

The lack of datasets with proper ground truth motivated
the use of a synthetic toy example, in order to evaluate and
demonstrate basic properties of the proposed method. The
scene, pictured in Fig. 3a, contains curves of various lengths
and shapes. Their exact 3D shape is used to directly generate
the 2D edge maps used as input to the reconstruction
method. This bypasses the stage of edge extraction from
2D images, focusing this evaluation on the reconstruction
process alone. To simulate realistic conditions and missing
observations, random parts of the curves are masked when
generating those edge maps. The scene itself measures
about 500 mm in diameter; we use 7 views from different
viewpoints around the scene, at a distance of approximately
900 mm.

We compare reconstructions and ground truth using the
accuracy/completeness metrics proposed in [1]. To obtain
accuracy, we measure the Euclidean distance from each
reconstructed point to the closest ground truth curve. The
accuracy is then defined as the distance so that 90% of the
points fall below that threshold. To obtain the completeness,
we consider a number of points sampled uniformly along
the ground truth curves, and count the ratio of them that
have a part of the reconstruction within a reasonable distance
(15◦ in orientation, and 5/8 mm in position for scenes
without/with noise). The exact choice of those thresholds
is not relevant here, since we use them to compare different



methods and not to obtain absolute performance values. We
report accuracy/completeness scores for 4 different recon-
struction methods: (i) a baseline method where we perform
random triangulations (Eq. 5), and keep a fixed number
(1000) of points with a probability density (computed as
in Eq. 3, but without orientation) above a threshold; this
corresponds approximately to the basic approach where one
simply imposes a maximum 2D distance between the re-
projected reconstruction and the input observations; (ii) our
sampling method (Section II-B) used to recover the same
number (1000) of points; (iii) our iterative method for
curve reconstruction (Section II-C); (iv) the same method
accounting for uncertainty specifically along the orientation
of edges (Section II-A).

Each method is run with different lower thresholds on
the probability density of reconstructed points, setting the
tradeoff to be made between accuracy and completeness. We
report results in Fig. 3b, with and without noise on camera
calibrations (in the form of added Gaussian perturbations
of σ = 4 mm on the camera positions). We also plot,
in Fig. 3c, the accuracy and the local probability density
(Eq. 3) of a number of random samples (Eq. 5). This allows
verifying that there is indeed a correlation between the
probability density obtained through our definition, and the
actual correctness of a reconstructed point. Reconstructions
showing good accuracy can however sometimes correspond
to low probability densities, which explains why our sam-
pling method alone cannot recover the entire scenes, as
opposed to the iterative method. Moreover, we also verify
that the correlation between accuracy and probability density
still holds when adding noise (as above) to the camera
calibrations.

B. Dinosaur

The “dinosaur” dataset is standard for the evaluation of
dense reconstruction methods [1]; we use the version made
of 16 views from a circle around the object. We show in
Fig. 4b a reconstruction made of individual points, obtained
using our sampling method. These samples are drawn mostly
in the regions of high probability density of the reconstructed
space, with more samples in the regions the most precisely
defined, e.g. along the crest on the back of the animal (such
sharp edges correspond to well-defined edges in the 2D
images). In Fig. IV-Bc, we show a reconstruction of con-
tinuous curves of the same scene; those curves are correctly
identified along ridges of local maxima of the probability
density function, yielding a high quality reconstruction of
the object. Those results, directly comparable with those
presented in [6], show a clear advantage, particularly in the
level of noise in the reconstruction.

C. High-resolution building

Strecha et al. [25] produced a dataset of high resolution
pictures of buildings for evaluating dense reconstruction

methods. We chose to evaluate our method on one of those
scenes (“Herz-Jesu-P8”) as it represents a very different type
of input data than our other evaluations. The images are of
high resolution, but the nature of the scene (very textured
surfaces and lots of fine details) renders the extraction of
stable edges from the 2D images a difficult problem already.
The reconstructed 3D model (Fig. 5a-b) exhibits missing
parts, which are a direct consequence of this problem (cor-
responding to missing observations in the input data). The 8
viewpoints span only a small arc, roughly in the same plane,
leaving a great deal of uncertainty in the depth dimension,
in particular for the edges parallel to that plane. This can be
observed when viewing the reconstructed model from the
top (Fig. 5b), as some supposedly straight edges meander
in this dimension. The same curves however, when repro-
jected on an input image, always closely match the input
images (Fig. 5c). [25] uses a particular distance measure to
evaluate dense reconstruction methods, requiring non-public
information (calibration uncertainty), which prevented direct
performance comparisons.

D. Office desk

We finally consider an indoor scene, containing typical
household items with little texture (see Fig. 6a), shot from 12
different viewpoints around them. This represents the type of
scenes that motivated our approach, in the context of robotic
applications, where a robot would take the pictures using an
arm-mounted camera. The extrinsic calibration of the camera
would thus be known with a precision corresponding to the
accuracy of the robotic arm. In this evaluation however,
and for purely practical reasons, we used a checkerboard
pattern in the scene with standard calibration software.
We obtained visually excellent reconstructions (Fig. 6). A
challenging part of the scene is the checkerboard, as it
contains many lines close together, in both similar and
different orientations. We then intentionally added noise to
the positions of the 12 cameras, to verify the influence on the
reconstruction (see Fig. 6b-e for details). The highest tested
level of additional noise, drawn from a Gaussian distribution
of σ = 8 mm, introduces corresponding translation errors as
large as 10 pixels on the 640×480 pixel images. Experiments
show that a reconstruction is still possible; some regions of
the reconstructed space now receive a probability density
lower than the allowed threshold, explaining missing parts
in the reconstruction. Those results are representative of the
performance we obtained on many experiments of similar
nature.

V. CONCLUSIONS AND FUTURE WORK

We presented a novel method for feature-based 3D recon-
struction from multiple calibrated views. We introduced a
probabilistic formulation that admits hard-to-match features
particularly suited to edge segments. The reconstructed
scene is modelled as a probability density in the 3D space,
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Figure 4. (a) Example images of the dinosaur dataset; (b) individual reconstructed 3D points obtained through our sampling method; (c) reconstruction
of continuous curves.
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Figure 5. (a) Reconstruction of the building dataset, missing parts are mostly due to missing observations, difficult to extract from the input images; (b)
other view of the reconstruction, showing the imprecisions in depth, as the input viewpoints span only a small arc in front of the building; (c) reconstructed
edges, reprojected on an input image, match however closely.
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Figure 6. Reconstruction of scene with error in camera calibration; one input image (a); 3D reconstructions (rendered from a novel viewpoint) with
original estimated camera calibration (b) and with added perturbation on camera position from Gaussian noise of variance σ (c-e); significant levels of
error still allow reconstruction, at the price of some imprecisions (plate, checker board) and missing edges (book, lower edge of the table).



from which we can draw individual samples. Those are
then used as starting points to reconstruct continuous 3D
curves. The effectiveness of the approach was demonstrated
on existing and new datasets, and showed competitive results
with an existing method, while exhibiting more technical
flexibility and genericity in its formulation. An important
direction for future work is the evaluation of this method on
features other than edges.
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Abstract—We present a general method for tackling the related
problems of pose estimation of known object instances and object
categories. By representing the training images as a probability
distribution over the joint appearance/pose space, the method
is naturally suitable for modeling the appearance of a single
instance of an object, or of diverse instances of the same category.
The training data is weighted and forms a generative model, the
weights being based on the informative power of each image
feature for specific poses. Pose inference is performed through
probabilistic voting in pose space, which is intrinsically robust to
clutter and occlusions, and which we render tractable by treating
separately the least interdependent dimensions. The scalability
of category-level models is ensured during training by clustering
the available image features in the joint appearance/pose space.
Finally, we show how to first efficiently use a category-model,
then possibly recognize a particular trained instance to refine
the pose estimate using the corresponding instance-specific model.
Our implementation uses edge points as image features, and was
tested on several existing datasets. We obtain results on par with
or superior to state-of-the-art methods, on both instance- and
category-level problems, including for generalization to unseen
instances.

I. INTRODUCTION AND RELATED WORK

The problem we focus on is the localization and the estima-
tion of the precise 3D pose of objects in a new scene, given a
single image of that scene, and multiple images of the objects
as training examples. This is a central problem in computer
vision, and there exists a wealth of literature on the topic,
especially when dealing with specific object instances, e.g. a
particular car or a particular coffee mug. The classical methods
rely on the use discriminative image features and descriptors
(such as SIFT or Geometric Blur), matched between the test
view and the training examples. Such features are sometimes
stored together with a rigid explicit 3D model of the object
[1], [2], which brings viewpoint-invariance to the model. Other
techniques have been proposed to encode viewpoint-invariant
models, especially in the context of object recognition, e.g.
by linking the observed features across different viewpoints
[3], [4], [5], or modeling the object as a collection of planar
parts [4]. Those methods however were used mainly with
the goal or localizing and recognizing those objects in the
images, but without recovering their 3D pose explicitly. One
exception is the work of Savarese et al. [4], but the recovered
pose is only a rough identification, such as “frontal view” or
“side view”. This limitation is present in many other methods
[6], [7], [4], [8] which use discretized pose values, treated

as separate classes, with different classifiers tuned to each of
them. There exist however methods, often presented in the
robotics community (with applications such as object grasping
in mind), which can provide accurate pose estimates [9], [10],
but they are mostly limited to specific object instances.

One particular aspect we are interested in is to provide the
capability for pose estimation at the category level. There is an
increased interest for this more challenging task; the goal is for
example to train the system with a set of different mugs, then
to recognize the pose of a new, unseen mug. The categories in
such a scenario are defined implicitly by the training instances
used as examples.

Previous work on object recognition does acknowledge
the close link between handling the variability of object
appearance as a function of pose and due to the diversity
of objects within a category. Gu and Ren [11] showed how
to solve for instance and discrete (coarse) pose recognition
at the same time. Lai et al. [12] did so as well, using a
tree of classifiers tuned for the different tasks. However, they
use presegmented views of the objects, without any clutter
or occlusions, and provide modest results on the accuracy of
the retrieved pose. The methods mentioned in the previous
paragraphs, while modeling the change of appearance due
to different viewpoints, generally cannot directly handle the
variability within categories of objects [3], [5]. One way this
capability has been provided is by encoding — in addition to
a rough 3D model — the possible variations in appearance
[13], [14]; one limitation however is that no shape variability
is possible. Our model, on the contrary, is purely appearance-
based, and naturally accommodates variability in shape as
well as in appearance. The traditional models of rigid ge-
ometrical constraints and highly discriminative features [2]
are not adequate for encoding within-category variations. One
exception to most methods here is again the model of Savarese
et al. [4], which is specifically designed to provide viewpoint-
invariance while handling within-category differences — but
still provides only coarse pose estimates.

Recently, some methods have been introduced that can
handle category variability and perform localization together
with precise pose estimation. Glasner et al. [15] uses structure-
from-motion to reconstruct accurate 3D models from the train-
ing images. They then account for within-category variability
simply by merging multiple exemplars in their non-parametric
model, in a fashion very similar to us. They perform pose infer-
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ence through probabilistic voting in the 6D pose space, again
in a similar way as we do, thereby solving for localization and
viewpoint identification together. However, the reconstruction
of such dense 3D models relies on the initial availability
of a large number of views. By contrast, the appearance-
based model used in this paper can use an arbitrary number
of views and can be incrementally updated as more views
become available. In a very different approach, Torki and
Elgammal [16] learn a regression from local image features
to the pose of the object. They recover a precise pose, but
cannot handle significant clutter or occlusions, and the accurate
pose estimation depends on the (supervised) enforcement of a
one-dimensional manifold constraint (corresponding to the 1D
rotation of the object in the training examples). It is not clear
how that approach would extend to the estimation of the full
3D pose of an object. On the contrary, our method is framed
from the start in the context of the full 3D pose.

Our method can accommodate different types of image
features, but we chose to use very basic points along edges
(combined with their tangent orientation) as opposed to more
elaborate features such as SIFT descriptors. Recognition by
matching such descriptors, while easier with specific instances,
does not easily extend well to object categories. We differ from
most edge-based shape recognition methods (e.g. [17], among
many others) by avoiding intermediate representations such
as contour fragments, and leveraging the simplicity of low-
level features — in our implementation, simple points along
edges. These simple features provide invariance to viewpoint
and to within-category changes of appearance. Using such
non-discriminative features for recognition however raises an
additional challenge, since no matching is possible. This
motivated the use of the framework proposed by Teney and
Piater [18] for pose estimation in 2D images, which does
not rely on correspondences between the test and the training
data. Like [4], this model is generative and does not include
any discriminative aspects, but has however been shown to be
useful for localization and recognition in the presence of heavy
clutter and occlusions [18]. Compared to that work, (1) we use
a more efficient method for pose inference that does not need

to consider the whole 6D pose space at once, (2) we introduce
a weighting scheme of the training features which, as we will
show, enhances significantly the performance of the system,
and (3) we extend the methodology from instance-specific to
category-level models.

The capabilities of the approach proposed in this paper dif-
fer from existing work by (1) handling, within the same frame-
work, instance-specific models and category-specific models
of objects, in the latter case allowing variations in shape
and appearance, (2) performing continuous (precise) 3D pose
estimation using those models, as opposed to viewpoint classi-
fication and coarse pose estimates, and (3) using such models
to solve pose estimation and image localization together, as
opposed to competing methods that do not handle clutter or
occlusions. In addition, we present how to use category- and
instance-level models successively, for optimal accuracy and
efficiency: the category-model is used first to recover an initial
pose estimate, which then allows one to possibly recognize a
particular trained instance, so that the corresponding instance-
specific model can be used to refine the pose estimate. Finally,
in Section IV, the performance of our approach is compared
to the most closely related methods [7], [4], [16]; we obtained
promising results, on par with or superior to published data.

II. POSE ESTIMATION OF SPECIFIC OBJECT INSTANCES

A. Probabilistic representation of input data

The method we use is based on a probabilistic representation
of both the training and the test data. This approach can
be seen as a smoothing over the available data, providing
continuous distributions of features and interpolating, to some
extent, between the available data points (see Fig. 1, left and
middle). Practically, the training examples are a set of K
images of the object to learn, each annotated with the 3D pose
of the object, wk ∈ SE(3) with k = 1, . . . ,K. We extract,
from each training image, features xi, which are edge points
(see Section IV) with their tangent orientation, and which are
thus defined on R2 × S+

1 (accounting for the position in the
image, plus an orientation without direction). In the general
case, we will call this space the appearance space, A. We then



pair all features xi of a view k with the pose wk, so that we
obtain a set of pose/appearance pairs (xi, wk)i. Considering
the whole training set, the pairs from all example images are
concatenated to form our full training set T = {(wi, xi)}Mi=1,
with xi ∈ A, and wi ∈ SE(3).

The elements of our training set are then simply used
to define a continuous probability distribution ψ on the
pose/appearance space, in a non-parametric manner, with
kernel density estimation:

ψ(w, x) =
1

M

∑
(wi,xi)∈T

K1(w,wi)K2(x, xi) , (1)

where w ∈ SE(3) and x ∈ A. The kernel functions K1(·, ·)
and K2(·, ·) handle respectively the pose and the appearance
spaces. Details on suitable kernels can be found, e.g. in [18],
[19]; the first is an isotropic kernel allowing small deviations
in both position and orientation, and the second, similarly,
allows small variations in the location in the image and tangent
orientation of the image feature.

The test data, which is a single 2D image of a new scene,
is handled in a similar fashion as the training data. We extract
the same type of image features, which we store as a set of
observations O = {xi}Ni=1, where xi ∈ A. This set is then
used to define the continuous probability density φ on A:

φ(x) =
1

N

∑
xi∈O

K2(x, xi) . (2)

As noted in [18], the transformations in the pose/appearance
space corresponding to in-plane rotations/translations/scale
changes are known from the camera calibration; those trivial
transformations (e.g. a change in depth corresponds to a
change of scale) are thus hard-coded. This allows us, when
using ψ as a generative model, to extend its definition to parts
of the pose space not explicitly covered by the training data.

B. Pose inference

The pose of the object of interest in the test scene is modeled
as random variable W ∈ SE(3), the distribution of which is
given by the likelihood function

p(w) =

∫
A
ψ(w, x)φ(x) dx , (3)

This expression simply measures the compatibility of the
training data at a pose w, with the distribution of features
observed in the test image. The objective is to identify the
main modes and peaks of the distribution of W , which was
accomplished in [18] by a probabilistic voting scheme on the
6D pose space. This procedure is extremely costly in memory
and processing [15], [18] due to the high dimensionality of the
pose space. We now propose an approximation of that method
that handles different dimensions of the pose space in different
ways. Formally, a pose w ∈ SE(3) can be decomposed as a
concatenation of 3 simpler entities, such that w = w3◦w2◦w1.
The first, w1, corresponds to the “viewpoint”, i.e. which side of
the object is facing the camera; w2 is a combination of an in-
plane rotation and scale change, and w3 corresponds to a pure

Input: training pairs T = {(wi, xi)}i defining ψ
test observations O = {xi}i defining φ

Output: set R of approximations of the pose likelihood function
R =

{(
w∗i , p̂(w∗i)

)}
i

Procedure:
R ← ∅
For each discrete w1 in T (viewpoint)

For each discrete step of w2 (in-plane rotation and scale)
Considering pose w′ = w2 ◦ w1,
find best w3 (image translation) between ψ(w′, x) and φ(x):

Get samples: (wψi , x
ψ
i ) ∼ ψ(w

′, x)

xφj ∼ φ(x)
Each possible pairing (xψi , x

φ
j ) cast a vote in space of w3

of weight wt(wψi , x
ψ
i )

Keep highest density peak in vote space: w3
∗ of vote score s

R ← R ∪ (w∗, s) with w∗ = w3
∗ ◦ w2 ◦ w1

Fig. 2: Pose inference algorithm

translation parallel to the image plane. The main supporting
observation for our proposed method is that a significant peak
in the distribution of W will most likely appear as a peak in
the distribution corresponding to the dimensions of w3 alone.
Indeed, an object of the test scene in any specific pose w will
appear at a precisely defined image location (dimensions of
w3). This leads to the algorithm presented in Fig. 2, which
iterates over discretized values for the dimensions of w1 and
w2, and uses probabilistic voting only on the dimensions of
w3 (the 2D localization in the image). The peaks in those
last two dimensions are thus identified by the algorithm
for discrete viewpoints, scale and in-plane rotation values.
This formulation is reminiscent of the classical Hough voting
scheme used extensively for object localization [20]. The main
advantage over [15], [18] is to avoid considering the entire
pose space at once.

We also propose an additional step for refining the pose
estimate, beyond the precision of the discretized pose values.
As illustrated in Fig. 1 (right), we use the peaks identified by
the algorithm in the pose space, together with their score value,
as approximations of the likelihood function p(w) (Eq. 3) at
some discrete “probing” points. We simplistically assume that
the main modes in the underlying distribution of W must
locally approximate a simple isotropic distribution in the pose
space. We therefore locally fit such a distribution (isotropic
Gaussian and von Mises-Fisher distributions [19]) on the main
peaks of p(w), using non-linear least squares. The mean of the
fitted distribution is then retained as the peak of that particular
mode of the distribution (Fig. 1, right). This provides a much
more accurate estimate of the optimal pose(s) compared to the
above algorithm (as demonstrated in Section IV-A), at a very
small additional computational cost.

C. Weighting of training data

We now present a way of weighting the available training
data. The model we use does not include any discriminative



Fig. 3: Visualization of the weights attributed to each image
feature (edge fragments) on a toy example; darker colors
correspond to heavier weights. The parts looking similar
in different views (e.g. the cylindrical base) receive lower
weights, while the image features that can unambiguously
determine a precise pose (e.g. non-silhouette edges) receive
high weights.

aspects per se, and this weighting proved to significantly en-
hance the overall performance of the method (see Section IV).
Appropriately weighting training data in the context of object
recognition was previously shown to increase performance
e.g. in [21], [22], [23], [24]. The formulation proposed here
is different, suited to our non-discriminative low-level image
features, and does not rely on massive amounts of training
examples. The idea is to weight each image feature, depending
on how informative it actually is for determining a specific
pose. As detailed in the algorithm of Fig. 2, a training feature
(w, x) is allowed to cast a vote of weight wt(w, x), given by

wt(w, x) = 1−
[
1

K

∑
w′:(w′,·)∈T

ψ′(w′, x)
(
1− K′1(w,w

′)
)]

(4)

with ψ′ and K′1 being variants of ψ and K1 with maximum
values of 1. This definition yields numerically-convenient
weights in the range [0, 1].

In Eq. 4, the expression in square brackets measures, for an
image feature x observed in a training pose w, how likely this
feature would be in poses very different than w. The weight is
then defined using the opposite of that value. This effectively
corresponds to the specificity of that feature x for the pose w
(see also Fig. 3).

III. LEARNING OBJECT CATEGORY MODELS

The model and methods presented above naturally extend
to category-level models. In that case, the training images
include different objects, which together implicitly define the
category. This capability of our model is due both to the
fact that we can use very simple, non-discriminative image
features (points along edges), which often generalize well
across different objects of a same category, and by the non-
parametric representation of the training data, which can
naturally handle variability in the training data, in this case
coming from several object instances.

Formally, each object instance ` ∈ [1, L] used for training
produces a training set T`, as defined in Section II-A. A
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Fig. 4: Size of the category-level model of rotating cars built
using different numbers of training instances: without (black)
and with (green) the pruning of features by clustering. The
proposed approach ensures a sublinear growth of the model.

category-level model is then simply created using all features
of all example instances, T =

⋃
` T`.

A. Pruning of training features by clustering

The above formulation uses a linearly growing number
of training points (pose/appearance pairs) as more object
instances are used to learn a given category. This correspond-
ingly increases the computational requirements of using the
model. Fortunately, object instances within a category often
share common appearance traits, and the elements of T can
thus be pruned at a very small cost of the representative
capabilities of the model (as shown in Section IV). Practically,
the elements of T are grouped using a simple agglomerative
clustering scheme on the joint pose/appearance space, and only
the cluster centers are retained. A maximum variance is en-
forced within the clusters, both in pose and appearance, which
determines the amount of discarded training points. Note that
the clustering procedure is most efficiently performed after
normalizing the training examples from different instances for
in-plane translation, rotation and scale, using the hardcoded
transformations mentioned in Section II-A.

B. Recognizing a particular trained instance

The clustering of training features limits the size of a
category model for efficiency. To compensate for lost accuracy,
after identifying an initial pose estimate w∗ with this category
model, one can determine whether the recognized object
corresponds to a specific trained instance. We measure the
score of each trained instance ` at the pose w∗ with

p`(w∗) =

∫
A
ψ`(w∗, x)φ(x) dx , (5)

where ψ` is defined as in Eq. 1, but using only the elements
T` of the instance `. The value is easily approximated [18]
with

p`(w∗) ≈
1

n

n∑
i

ψ`(w, xi) where xi ∼ φ(x) . (6)

If the value of p`(w∗) is significantly higher for a certain `,
the corresponding model of that instance ` (using all training
data available for that instance) is then used to obtain a new,
more accurate pose estimate (Section IV-A).



IV. EXPERIMENTAL EVALUATION

We now evaluate the proposed method under various con-
ditions, using publicly-available datasets. We first analyze
the incremental improvements in performance due to the
individual ideas proposed in this paper. We then compare our
results to existing, competing methods. The image features
used are simple points identified along image edges, extracted
with the classical Canny detector (see the examples in Fig. 3).
Each of those points is characterized by its position in the
image, and by the local orientation (smoothed for stability) of
the edge at that point (an angle in [0, π[). As a ballpark figure
of efficiency, on a standard laptop, our Matlab implementation
of the method takes 20-30 seconds to process an image of the
dataset of Section IV-B.

A. COIL Dataset

We first evaluate our method on the classical COIL dataset
[25]. This dataset has been used in a variety of contexts, but
not in the particular conditions we were interested in. The
purpose of this part of our evaluation is to demonstrate the
merits of the proposed method, by highlighting the incremental
improvements brought by each proposed key point.

We selected a few objects from the original dataset, which
correspond to reasonable categories (rectangular boxes, toy
cars, flat bottles; see Fig. 5). Most other objects of the dataset
were not suitable for estimating their pose (e.g. bell peppers,
cylindrical cans) or could not be grouped into categories (e.g.
duck toy). The dataset contains 72 images of each object
undergoing a full rotation around a single (vertical) axis, with a
fixed elevation. The estimated pose is thus similarly limited to
this degree of freedom. For training, we use 18 images of each
object (thus 20◦ apart), and the others for testing. We report
the error as the median and mean (over all test images) of the
absolute error of the estimated orientation. The rectangular
boxes and the flat bottles present a 180◦ rotational symmetry,
the error is accordingly evaluated on the half-circle.

1) Seen instances: The first series of tests uses 4 instances
of each object (2 for the bottles) for training category models,
and those same objects for testing. The basic method (algo-
rithm of Fig. 2 without weighting the training data) already
provides accurate results (see Fig. 5), with a median error
of 5◦ which is the best achievable for the nearest-neighbour
classification of the algorithm (Fig. 2) iterating on the discrete
viewpoint values of the training data. The mean error decreases
as we use the weights on the training data, as a few ambiguous
test images are now better classified, which indicates the
superior discriminability between different poses when using
those weights. Interestingly, the fitting of a distribution on the
pose space over the discrete approximations of the likelihood
function (Section II-B) reduces the error significantly, as
this allows accuracy beyond the resolution of the nearest-
neighbour classification mentioned above. Finally, we refine
the pose using the procedure proposed in Section III-B: the
pose estimate obtained with the category model is used to
efficiently check the resemblance with a particular trained
instance. If one trained instance receives a significantly higher

Toy cars Boxes Flat bottles

Seen instances
Without weights 5.0 12.1 5.0 13.5 5.0 7.9

With weights on training data 5.0 10.1 5.0 11.6 5.0 8.3

Weights + pruning of train. data 5.0 8.7 5.0 11.0 5.0 6.8

Weights + pruning + fitting of dist. 2.9 7.2 3.4 10.2 5.5 6.1

Refined w/ instance-specific model 2.0 5.8 3.2 9.4 4.2 5.3

Unseen instances
Without weights 10.0 36.8 10.0 14.4 25.0 28.2

With weights on training data 5.0 39.7 10.0 11.0 30.0 31.2

Weights + pruning of train. data 10.0 44.6 10.0 11.8 15.0 25.5

Weights + pruning + fitting of dist. 2.9 41.8 4.3 8.8 16.8 23.6

Fig. 5: Results of category-level pose estimation with objects
from the COIL dataset. Image top row: objects used for
training and as seen test instances; image bottom row: objects
used as unseen test instances. We report median (black) and
mean (gray) error in degrees; large mean error is caused by
(near-)symmetries which often induce errors of 90◦ and 180◦.

likelihood than the others (Eq. 6), its corresponding instance-
specific model is used to perform a (hopefully) more accurate
estimation; this is indeed the case as reported in Fig. 5. This
procedure thus makes use of both the category- and instance-
models for best efficiency without sacrificing accuracy.

2) Unseen instances: The second series of tests uses the
same category models, but with a test set of other, unseen
objects (Fig. 5, second row). The purpose is to verify the
generalization capability of the category models. The results,
as reported in Fig. 5, show accurate pose estimation results
in all of the 3 tested categories, even though the test objects
vary in shape, appearance and proportions from the training
instances. This is made possible by the combination of dif-
ferent appearance traits of different training instances, which
is possible in our non-parametric representation of the model.
The flat bottles however yielded slightly worse results, which
indicate the difficulty of generalizing the appearance of such
objects on the category level. A test view of a novel instance
could equally correspond to a wide bottle seen from its side,
or to a front-facing thin one.

B. Rotating cars

We evaluated our method using the “Multiview car dataset”
used by [7] and [16]. It includes about 2000 images of 20 very
different rotating cars filmed at a motor show. The dataset is
very challenging due to clutter, changing lighting conditions,
high within-class variance in appearance, shape and texture,
and highly symmetric side views, or similar front and rear
views, which are sometimes hard to discriminate even for a
human. The dataset was used in [7] for pose classification in
16 discrete bins, and in [16] for continuous pose estimation.



Number of training examples 15 30 40

Baseline comparison: Torki and Elgammal [16] 5.47 1.93 1.84

Without weights 6.75 3.83 2.94

With proposed weights on training data 6.68 3.81 2.91

Weights + fitting of pose distribution 4.42 1.62 1.49

Fig. 6: Results of pose estimation on a single car; mean error
in degrees.

We first evaluated our method, as in [16], on the first car of
the dataset, using thus an instance-specific model. We select
15, 30 or 40 equally-spaced images of the sequence as training
images, and use all other images (spaced about 3–4◦ apart) for
testing. Using all the key techniques proposed in this paper,
we obtain superior results to [16] (see Fig. 6 for details). We
then performed an evaluation the “10/10 split”, where the first
10 cars of the dataset are used for training, and the other 10 for
testing. We obtain again accurate pose estimation results. As
highlighted in Fig. 8, most estimated poses are very accurate,
while a number have an error of about 180◦. This is caused
by the symmetric aspects of some cars in the side views, as
well as to confusion between front- and rear-facing views.
This explains the seemingly large error reported as the mean
in Fig. 7, even though the median error is clearly better than
the results reported by [16]. In this case, the median as an
evaluation metric better reflects the actual precision of the pose
estimates, focusing on all the “successful” test cases.

We tested again the generalization capabilities of our model.
As proposed in [7], we used the model trained on the cars
at the motor show for testing on the database of Savarese
et al. [4]. The cars appear here in natural environments with
more clutter and in very diverse conditions; nevertheless,
we obtained interesting results, of which we show some
representative examples in Fig. 9. This again demonstrates
the good capability of our system to generalize category-
level models to conditions very different from those trained
for. Note that, unfortunately, no quantitative results for these
particular test conditions (proposed in [7]) — that we could
compare to — were previously reported.

As a side note, let us mention that we tested our method
on this same dataset [4] under the conditions of [8], i.e.
training the model with 5 instances of that dataset. We
obtained performance on pose estimation of the same order
of magnitude as [8], but we missed some information for
an exact quantitative comparison (which instances to use for
training, and whether or not to include pose estimation results
of inaccurate detections). Those experimental conditions were
also evaluating coarse pose classification, whereas we focus
on continuous pose estimation.
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Fig. 8: Histogram showing distribution of error (in degrees)
during experiments on multiple cars and sample test images
that yielded an error of about 180◦, due to ambiguous appear-
ance.

Fig. 9: Detection and pose estimation results on the database
of [4], using the model trained with Fig. 7. Boxes indicate the
localization of the object as identified by our system, and the
roses in the upper-left corners indicate the orientation of the
front of the car as seen from the top (as in [7]). The last column
contains failure cases, often due to the symmetrical appearance
of the cars, or to too much clutter in the background.

V. CONCLUSIONS AND FUTURE WORK

We presented a framework for representing the appearance
of object instances or categories, together with its mechanisms
to perform object localization and pose estimation in 2D
images. The training examples are represented by a probability
distribution, stored in a non-parametric manner, in the joint
pose/appearance space. This approach can naturally represent
a single object, or a whole object category by including
different training exemplars of that category. The localization
and identification of the pose of the object in a new scene
is accomplished via probabilistic voting in the pose space,
intrinsically robust to background clutter and occlusions. The
overall approach was shown to be competitive or outperform
comparable methods. As future work, it will be interesting
to evaluate the method in the context of robotic applications,



Median Mean 90%ile Mean Error<22.5◦ Error<45◦ Used training features
Baseline comparison: Ozuysal et al. [7] – – 46.5 41.7% 71.2%

Baseline comparison: Torki and Elgammal [16] 11.3 19.4 34.0 70.3% 80.7%

Without weights on training data 9.3 33.1 47.4 65.1% 70.0% 100%
With weights and fitting of distribution 5.8 23.7 39.0 78.1% 79.7% 100%
Same + moderate pruning of features 6.1 25.8 41.0 77.0% 78.7% 54%
Same + aggressive pruning of features 9.4 32.4 46.8 67.1% 70.0% 30%

Fig. 7: Results of pose estimation on multiple cars; instances 1–10 used for training (top), 11–20 for testing (bottom). Errors
of 180◦ are common (e.g. on instances 16 and 19) and explain the greater mean but smaller median error compared to [16].

with training sets spanning the whole viewing sphere around
the objects to learn.
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Abstract. We propose a multiview model of appearance of objects that
explicitly represents their variations of appearance with respect to their
3D pose. This results in a probabilistic, generative model capable of pre-
cisely synthesizing novel views of the learned object in arbitrary poses,
not limited to the discrete set of trained viewpoints. We show how to
use this model on the task of localization and full pose estimation in
2D images, which benefits from its particular capabilities in two ways.
First, the generative model is used to improve the precision of the pose
estimate much beyond nearest-neighbour matching with training views.
Second, the pose/appearance relations stored within the model are used
to resolve ambiguous test cases (e.g. an object facing towards/away from
the camera). Here, changes of appearance as a function of incremental
pose changes are detected in the test scene, using a pair or triple of views,
and are then matched with those stored in the model. We demonstrate
the effectiveness of this method on several datasets of very different na-
ture, and show results superior to state-of-the-art methods in terms of
accuracy. The pose estimation of textureless objects in cluttered scenes
also benefits from the proposed contributions.

1 Introduction and related work

We focus on the problem of 3D pose estimation of known objects in 2D im-
ages, using multiple registered images of the objects as training examples. Pose
estimation, which is closely coupled to the related tasks of object recognition
and localization, is a fundamental problem in computer vision and has naturally
received great interest over the years. The main contribution of this paper is to
explicitly include, in an existing multiview model of appearance [14], the possi-
ble changes of appearance undergone by the object as it pose varies between the
trained viewpoints. With the exception of [9], this is, to our knowledge, the only
work to include such information within a model of appearance in the context
of pose estimation. We make use of this additional information in two different
ways to improve the precision and accuracy of pose estimation. In the following
we relate our approach to related work.

Multiview models of appearance. The traditional methods for object
recognition using 2D images alone, known as appearance-based, typically use
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specific models for individual viewpoints, e.g. a model for cars seen from the
front, and another for cars seen from the side. Recent contributions in object
recognition have introduced more and more models of appearance that include
different viewpoint and that are also relevant to pose estimation. Some methods
still treat those different viewpoints somewhat independently [14,18], while oth-
ers try to match and link features across viewpoints [5,10,16]. Savarese et al. [10],
for example, model an object as a collection of planar parts that can appear in
different views. We follow an intermediate approach, by storing independently
the image features that make up the different views, but we also store, along
with every each image feature, how its appearance varies with respect to the
pose of the object. The multiview models mentioned above were mainly used on
the task of localization and recognition, without recovering a 3D pose explicitly,
or only as rough estimate such as “frontal view” or “side view”. We rather focus
on continuous pose estimation, to recover precise 3D position and orientation,
as is needed, e.g. for robotic applications [7,18].

Continuous pose estimation. The classical approach to pose estima-
tion using 2D training examples is to match highly discriminative features be-
tween the test and training views. These matches then vote for the most similar
training example, yielding a nearest-neighbour classification of limited precision.
Some authors have proposed averaging [18] and probabilistic smoothing [14,15]
schemes to increase precision beyond the resolution of the training examples on
the viewing sphere. While these procedures basically perform some averaging be-
tween trained viewpoints, we rather explicitly detect, and include in the model,
the deformations and the transformations of appearance between the discrete
viewpoints seen during training. We then use this information in our generative
model to finely optimize the 3D pose, starting from a rough nearest-neighbour
estimate. Another, radically different approach was proposed by Torki and El-
gammal [17], who learn a regression from local image features to the pose of
the object. This original approach recovers a precise pose, but cannot handle
significant clutter or occlusions, and the accurate pose estimation depends on
the (supervised) enforcement of a one-dimensional manifold constraint (corre-
sponding to the 1D rotation of the object in the training examples). It is not
clear how that approach would extend to the estimation of the full 3D pose of
an object.

New view synthesis. Our approach uses dense optical flow to identify
the deformations between pairs of neighbouring training views. Only those parts
of this dense information are then retained that correspond to the sparse image
features actually stored in the model. This information can then be used in a
generative manner, to synthesize the appearance of the object in a new, unseen
pose, by transforming the image features of nearby trained viewpoints according
to those stored deformations. The problem of new view synthesis has been stud-
ied in the field of computer graphics through the technique of morphing [1,2,11].
Most methods only consider pairs or triples of views, whereas we are interested
in modeling and using transformations over the whole viewing sphere. Morph-
ing algorithms also often rely on established correspondences between specific
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image features of the input views [11], whereas we use dense optical flow to iden-
tify deformations between neighbouring views, before applying them to sparse
features. As an advantage, our approach readily applies to difficult-to-match
features (as opposed to the competing method of Savarese et al. [9]). This prac-
tically allows handling non-textured objects containing little detail. Although
some global consistency in the detected deformations is enforced by optical flow
algorithm, each image feature independently stores its possible deformations.
This does not limit the model to a particular class of overall transformations.
On the contrary, Savarese et al. [9] specifically models affine transformations of
object parts, assuming that large planar parts can be identified (which is not
a universal property of objects). Note also that we use a sparse set of training
views (typically spaced about 20◦ apart on the viewing sphere) and do not re-
quire videos or dense sequences of images to track features between frames, as
opposed to Sun et al. [13]. One may also note a similarity in spirit with the clas-
sical active appearance models used mainly for object tracking; they are however
based on and limited by point-wise matches of specific landmarks.

Active vision. In addition to the generative model we use to refine pose
estimates, we show how to use the deformations stored in the model to resolve
ambiguous test cases (Section 4). In such scenes, the 2D appearance of the ob-
ject can equally correspond to several 3D poses (see Fig. 4 for an example).
We propose to also identify the changes of appearance with respect to the pose
in the test scene. The camera is therefore allowed to move slightly in two or-
thogonal directions on the viewing sphere (around the test scene). The changes
of appearance are detected — as with the training views — and used as ex-
tra dimensions in the descriptor of the image features. The features of the test
scene can then be matched more discriminatively with those of the training data,
and effectively identify the single correct pose unambiguously. This procedure,
which can prove crucial in robotic applications, has been proposed in the field
of active vision [3,12], but not integrated, to our knowledge, in such a straight-
forward manner within a pose estimation method. It resembles the way humans
themselves resolve such perception ambiguities (in addition to stereo vision) by
moving around the scene. Note that a similar effect can be obtained by fusing the
result of independent pose estimations from multiple 2D images [14,18]. Our in-
tegrated procedure is however arguably more efficient, the displacement (change
of camera position) does not need to be precisely know, and can also be very
small (theoretically infinitesimal small, even though image noise and resolution
dictate minimum displacements in practice).

2 Representation of training and test views

2.1 Notations for image features and object poses

The contributions of this paper are integrated with the method proposed in
earlier work [14]. That method performs object recognition and pose estimation
in 2D images, and is applicable to various types of image features. This includes
features that cannot easily be matched between training and test views, such as
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Fig. 1: Left: schematic representation of training data, in the dimensions of pose
and appearance. Image features (blue points) are extracted from training images,
and their possible changes of appearance (red arrows) are identified between
neighbouring views. The appearance of the model at a novel view w (orange) is
generated by adjusting the features of close-by views, according to those stored
deformations. Right: representation of a set of training viewpoints (black dots)
on the viewing sphere. The changes of appearance are detected between pairs of
neighbouring views (red links). The appearance of a novel view (orange dot) is
generated using the closest training viewpoints, four in this case (orange circles).

the edge points we use in our implementation. We will first review the notation
for representing the test and training views, followed by the generative model,
capable of synthesizing novel views.

The test data corresponds to a single 2D image of a scene, from which we
extract image features. In general, an image feature x is defined by its localization
in the image xp, and an optional appearance descriptor xa. Together, they are
defined on the appearance space A. Practically, we use points identified along
edges, combined with the local orientation of the edge (see Fig. 3), so that
A = R2 × S+

1 (the 2D localization plus an orientation without direction). The
image features from the test view form a set of observations O = {xi}i, with
xi ∈ A. The training data correspond to a series of K images of the object of
interest, in different poses wk ∈ SE(3) with k = 1, . . . ,K. Image features are
extracted from each training view k to form a set Tk = {xi}Mk

i=1, with xi ∈ A.

A pose w ∈ SE(3), which defines a 3D location together with a 3D orien-
tation, conveniently decomposes into separate sets of dimensions wv and wt.
We call wv the viewpoint transformations (defining which side of the object
is facing the camera, i.e. an element of S2) and wt the set of in-plane trans-
formations (i.e. translations and rotations parallel to the image plane, and
depth/scale changes). In-plane and viewpoint transformations are considered
separately, since the changes of appearance induced by the former are fixed
by the calibration of the camera. The calibration is assumed to be known,
and those transformations can thus be formally hard-coded in the function
transformInPlanewt(T ) = T ′, which transforms a set of image features T accord-
ing to the in-plane transformations wt. Without loss of generality, the following
discussion will assume that the training views have been normalized for in-plane
transformations, that is, centered and set to a similar scale/rotation1.

1 Formally, Tk ← transformInPlane−wt
k
(Tk) and wt

k ← 0, ∀ k.
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2.2 Generative model of training data

The training data, as presented above, defines the appearance of the object of
interest at a set of discrete trained viewpoints. The goal of our generative model
is to fill in the gaps between those viewpoints. Although it may be possible
to establish explicit correspondences between image features of nearby training
images, this approach may not always be reliable, and it does not generalize to
dense or non-discriminative image features such as our edge points. Therefore, we
choose to identify dense deformations between pairs of adjacent training views,
using an optical flow algorithm. Those deformations will then be combined to
deform the image features of the training images into the novel viewpoint.

More precisely, for an arbitrary viewpoint wv, we identify its closest training
viewpoints nb(wv) = {k : d(wv, wv

k) ≤ t}, where d(·, ·) measures the angular
distance between two viewpoints. The threshold t is chosen similar to the typical
angular distance between neighbouring viewpoints in the training data. We also
identify the set of all neighbouring training viewpoints as NB = {(k, k′) : k′ ∈
nb(wv

k), k 6= k′}. During an off-line training phase, an optical flow algorithm [6]
is applied on all pairs of views (k, k′) ∈ NB. Each pair produces a dense flow map
UVk→k′(x) that corresponds, in our case, to the local deformation (translation in
the image plane) undergone at an image location x when moving from viewpoint
k to k′. Although we compute a dense optical flow, we only need to store the
actual values of the maps UV for the positions of the few image features of each
view. We can now define our generative model T (w), which produces a set of
image features corresponding to the appearance of the object in an arbitrary
pose w. Its definition combines the image features of all nearby training views,
individually translated using the stored deformations, then adjusted for in-plane
transformations. Formally,

T (w) =
⋃

k∈nb(wv)

transformInPlanewt
k→wt

(
deformwv

k→wv(Tk)
)
. (1)

The functions transformInPlane() and deform() adjust a set of image features
respectively for in-plane and out-of-plane transformations. While the definition
of the former is trivial (it just applies the translation, scaling and rotation of
its parameter), the latter is more complex. It uses a linear combination of two
available deformations to translate each image feature. We denote those two
deformations by the indices of the viewpoints that generated them, and call
them (k, k′) and (k, k′′). They are chosen from NB so that the novel viewpoint
can be reached (on the viewing sphere) by a positive linear combination of them.
Consequently, ∃ α, β ∈ R+ : wv = wv

k + α(wv
k′ −wv

k) + β(wv
k′′ −wv

k). Practically,
this means that the viewpoints k, k′ and k′′ cannot be collinear on the viewing
sphere. With training viewpoints spaced on a grid, as in our experiments, we
simply choose k′ and k′′ respectively along the changes in azimuth and elevation.
It is now straightforward to define the deform() function that combines those
two chosen deformations:

deformwv
k→wv(Tk) = {x′i : x′pi = xpi + αUVk→k′(x

p
i ) + βUVk→k′′(x

p
i )

and x′ai = xai , ∀xi ∈ Tk } .
(2)
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3 Refinement of pose with generative model

3.1 Method

The proposed generative model readily integrates with the method proposed in
[15]. That method for pose estimation relies on continuous distributions of image
features in the appearance space to represent the training and test views, using
kernel density estimation. These distributions are simply built using the elements
of O and T (w) as particles, giving respectively φO(x) = 1

|O|
∑

xi∈O K(x, xi) and

φT (w)(x) = 1
|T (w)|

∑
xi∈T (w) K(x, xi) , with K(·, ·) a kernel on A.

We reuse the base method proposed in [15] to obtain initial proposals for the
3D pose of the object in the new scene. That method iterates over the training
viewpoints and some discrete values of scale and in-plane rotation, then uses
a probabilistic voting scheme between matching training and test features to
identify the most probable image location. The peaks with high voting scores
are then retained as initial pose estimates. This method basically corresponds
to a nearest-neighbour identification of the training views in the test scene, and
gives us initial estimates to refine by local optimization.

Using the two distributions of image features presented above, and a cross-
correlation between them as a measure of similarity [14,15], we now have a
likelihood function that can be used to evaluate any arbitrary pose w:

p(w) =

∫
A
φO(x)φT (w)(x) dx , approximated with

p(w) ≈ 1

n

n∑
i

φO(xi) where xi ∼ φT (w) ,

(3)

using Monte Carlo integration, which gives a convenient expression, relatively
inexpensive to evaluate. This function p(w) constitutes the objective function
that we seek to maximize when optimizing a pose estimate. In practice, it is
generally smooth in the neighbourhood of the global optimum, but no assump-
tion can be made about its convexity, and its definition on the 6-dimensional
pose space SE(3) makes the evaluation of its gradient difficult. Fortunately, our
initial pose estimate can be assumed to be a close approximation of the global
optimum. All those conditions motivated the use of a simple hill-climbing al-
gorithm. We iteratively optimize pairs of dimensions at a time, namely the 2
viewpoint angles, the image location, then the scale and in-plane rotation. We
empirically observed that a close approximation of the global optimum can be
reached in this way after only a few iterations (see Fig. 5, bottom right).

3.2 Results

Rotating car. We first evaluate our method on the first sequence of the “ro-
tating car” dataset [8]. It consists of 118 images of a car on a rotating platform,
shot at a motor show. Although it only includes a single degree of freedom (the
rotation around the vertical axis), this dataset is interesting as it was shot in real
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conditions, features a highly textured object of complex structure and allows a
comparison of precision with two state-of-the-art methods. We report in Fig. 2
the precision (error of the estimated rotation angle of the car) of our initial pose
estimate and of the pose estimates optimized using our generative model (Sec-
tion 3.1). We show a clear advantage, with different sizes of training sets (which
contain uniformly spaced images from the sequence).

Number of training views 15 30 40

Baseline comparison 1 [17] 5.47 1.93 1.84
Baseline comparison 2 [15] 4.42 1.62 1.49

Initial estimate (nearest neighbour) 6.79 3.78 3.00
Optimized w/ generative model 1.99 0.92 0.78

p
(w

)

0 360

Fig. 2: Results of pose estimation on the rotating car dataset; mean error in
degrees. Center: for one test image, we verify that our objective function (blue;
evaluated over the whole range of the 1D rotation for demonstration) presents
its global optimum near the ground truth (green line). Also represented: training
poses (black dots) and our optimized result (red dot). Right: samples test images.

3D pose dataset. We now evaluate our method using the “3D pose
dataset” of Viksten et al. [4,19]. It is one of the few public datasets available with
views spanning more than a 1D rotation, and precisely annotated (in this case
with the azimuth/elevation angles of the viewpoint). We use the only object
(Volvo car) that was evaluated individually [4], using the same experimental
conditions. This allows a comparison with a classical method [4], which uses
discriminative image descriptors with a voting and averaging scheme; this con-
stitutes the classical approach for robust 3D pose estimation. The small and large
training sets contain views spaced respectively 20◦ and 10◦ apart (on both az-
imuth and elevation angles), with test views in between. With the larger training
set, we obtain results superior to [4] in terms of accuracy (Fig. 3). The smaller
training set is more challenging for detecting deformations between views, reach-
ing the limits of the optical flow algorithm we use. Our large mean error is caused
by two views that yield wrong initial pose estimates, with a large error of almost
180◦, due to the similar aspect of the front and rear of the car.

Spacing between train. views 20◦ 10◦

Baseline comparison [4] 4.21◦ / 2.66◦ 1.25◦ / 1.06◦

Initial estimate (near. neigh.) 34.44◦ / 10.00◦ 5.14◦ / 5.00◦

5.00◦ / 5.00◦ 1.23◦ / 1.23◦

Optimized w/ gen. model 27.22◦ / 1.78◦ 0.92◦ / 0.88◦

2.00◦ / 2.00◦ 1.00◦ / 1.00◦

Fig. 3: Results on 3D pose dataset; mean (median) error of azimuth/elevation
angles. Clockwise: one test image, its image features, features produced by our
generative model at the optimized pose, and features of closest training view;
the generative model closely approximates the appearance of the unseen view.
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4 Matching pose/appearance relations in ambiguous test
scenes

4.1 Method

We propose to make use of the pose/appearance relations identified and stored
within the model in a second manner, as extra dimensions of the descriptor of
the image features. In this context, the same changes of appearance with respect
to the pose are identified in the test view, using additional images obtained by
moving the camera slightly around the test scene (which effectively changes the
relative pose between the camera and the object of interest). Those additional
images are only used to identify the deformations (as in Section 2.2); only the
features of the original test image are actually used. Each image feature x ∈ A
of both the training set and the test image is then complemented with an extra
information xd, a first-order approximation of the derivative of its position in
the image with respect to the viewpoint, i.e. xd ≈ ∂xp

∂wv (∈ R2 × R2). This
conveniently constitutes a compact representation of the local deformations. In
practice, considering an image feature x of a training view k, we approximate
xd by averaging the deformations identified with the neighbouring views:

xd = averagek′∈nb(k)

(
UVk→k′(x

p)

wv
k′ − wv

k

)
. (4)

Using azimuth and elevation angles to parametrize a viewpoint on the 2-sphere,
this expression gives us two vectors (each ∈ R2), corresponding to the transla-
tion in the image place relative resp. to azimuth and elevation changes of the
viewpoint. These extra feature descriptors are similarly extracted in the test
view. We then use them, both when matching observations between the training
and test views for voting for an initial pose estimate, and when measuring the
similarity between the test view and a generated view (Section 3.1). In both
cases, we set a hard threshold for classifying two features x1 and x2 as similar2:

angle(xd1, x
d
2) < 135◦ or ‖xd1‖ < t′ or ‖xd2‖ < t′ . (5)

The threshold t′ on the magnitude of the deformations discards small and
insignificant deformations, which cannot be identified reliably. The function
angle(·, ·) measures the difference in direction between the two deformations.
The maximum value of 135◦ discards matches of truly opposite directions (as is
the case with the ambiguous situations we are interested in), while still keeping
most (even uncertain) matches (maybe simply due to noise), which is important
in the voting algorithm [15] for the initial pose estimate.

4.2 Results

We finally evaluate the second proposed use of image deformations, for resolv-
ing ambiguous test cases by matching them. No dataset suitable for this very

2 To shorten notations, we express the condition on a single vector, but it must be
verified by both parts of xd.
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p
(w

)

Elevation angle (deg)

−90 0 +90

Without detecting deformations in test scene

Ambiguous matches
with training views

p
(w

)

Elevation angle (deg)

−90 0 +90

Using deformations for matching

Only 1 matching
training view

Fig. 4: Left: ambiguous test scene. The extracted edges correspond equally well to
training images of the bottle facing towards/away from the camera, and our pose
likelihood function p(w) presents two strong peaks (incorrect one in red, ground
truth in green). Right: using a second image taken after moving the camera
slightly to the top, we detect deformations of image features (red arrows), and
match them with the training examples; only the correct peak of p(w) remains.

Objects

No deform. + near. neigh. 55% 80% 68% 69% 51%

6.3◦ 5.0◦ 6.5◦ 5.2◦ 16.7◦

Match. def. + near. neigh. 66% 82% 81% 79% 60%

6.2◦ 16.6◦ 6.2◦ 5.4◦ 17.5◦

Match. def. + gen. model 70% 82% 92% 77% 60%

5.0◦ 14.0◦ 4.6◦ 1.4◦ 14.7◦
V L S V L S

42

56

Fig. 5: Left: results on synthetic scenes without/with matching of deformations;
success rate (localization error < 20px and pose error < 20◦) and mean pose
error of successes. Right: sample test images with localization results as bounding
boxes. Bottom right: typical evolution of our objective function after successive
optimizations for viewpoint, image localization and scale/in-plane rotations.

particular problem is currently available, and we resorted to synthetic images,
featuring simple objects. Although simple in appearance, they actually prove
challenging for pose estimation due to their lack of detail and texture. The test
data is now a “central” 2D image, complemented by 2 additional views obtained
by moving the camera slightly to the right and to the top. This allows recovering
the changes of appearance of the scene with respect to the pose, and matching
them with the training data (Fig. 4). As reported in Fig. 5, this eases the local-
ization and improves the precision of the pose estimation.

5 Conclusions

We integrated, within a multiview model of appearance, the explicit transfor-
mations undergone by the image features between the training viewpoints. The
deformations between example images are detected with dense optical flow and
stored for the discrete image features. First, we used this information in a gen-
erative model, to refine an initial estimate of the 3D pose of the object in a
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new scene. Second, we showed how to match deformations between training and
test data, in order to resolve the pose in ambiguous test images. We clearly
demonstrated the advantage of those contributions on several datasets, and over
existing methods. As future work, it will be interesting to integrate and evaluate
these principles within the context and practical conditions of robotic applica-
tions.
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Vision is a crucial capability for enabling robots to perceive
and interact with their environment, e.g. manipulating or grasp-
ing objects. A current trend is bringing closer the aspects of
interaction and perception, on the one hand by integrating visual
information directly in the control process, and on the other
hand, using interaction itself to help perception, allowing robots
to explore their environment. In the context of manipulation,
physical parts of the robot are then likely to appear in the
observations, and an important capability emerges as the recog-
nition of those parts, in order to separate the observations of the
scene from those of the robot itself. Identifying the robot’s own
body parts in input images has been used before in different
ways, helping obstacle avoidance or control directly (through
visual servoing [1]). However, this is usually performed via
indirect methods, tracking fiducial markers purposely attached
to the robot [2], which imposes undesirable (e.g. visibility)
constraints. Some recent work adresses the pose estimation of a
robot manipulator directly [3], [4], but these methods focus on
tracking the manipulator between consecutive frames, whereas
the initial recognition is considered as the harder part. We
propose a method for markerless, monocular recognition and
pose estimation of an articulated robot arm, dealing with single
images without initialization, allowing its use with unknown
hand-eye calibration, imprecise kinematics or missing position
feedback.

We use an existing appearance-based recognition method [5],
that relies on object edges and contours, allowing the recognition
of objects with few characteristic visual features (i.e. non-
textured). The system is trained separately for each articulated
link of the robot arm, using synthetic images of that link in
known poses. The recognition of those elements proves ex-
tremely challenging, as their appearance may not offer very dis-
tinguishable visual clues, and because of the typical unstructured
environment (background clutter) and possible (self-)occlusions.
The initial recognition produces a set of candidate poses for each
link, which are then combined, enforcing the known kinematic
constraints between the links. These constraints are modeled as
pairwise compatibility functions in a classical Markov random
field, with a node for each link. Inference is carried out with
an algorithm inspired by non-parametric belief propagation. We
efficiently limit the evaluation of densities in the pose space
to the discrete points proposed by the initial recognition step,
thereby ensuring adequate efficiency. The algorithm ultimately
recovers the pose of all the elements (links) of the arm. We
can then classify the image features of the input scene as
belonging to the scene or to the robot manipulator itself, simply
by measuring their similarity with the training templates of the
links in the identified poses. The poses of the links can also
be used to recover the angles at each joint, together with the
cartesian position of each element of the robot relative to the
camera.

The system was implemented and tested with a Kuka
Lightweight Robot arm. We considered the five internal links,
of which four are completely identical in appearance, which
constitutes an additional challenge. The four joints (revolute,
both axial and hinge-like) are specified by the alignment of the
joint axes of the adjacent links. Training images of the two types
of links were generated with CAD software, at viewpoints about
30◦ apart. Although the recognition of individual links cannot
be relied upon for any practical purposes, the pose ultimately
recovered for the whole arm by the proposed algorithm was
correct during most of our tests. The probabilistic inference
can handle missing detections of links to some degree, as can
happen with (self-)occlusions. The classification of the image
features of the test image as robot/non-robot parts, as mentioned
above, proved effective, and superior to using intermediate seg-
mentation masks. Indeed, our procedure can handle occlusions,
for example when the robot is manipulating an object. The
capabilities offered by the whole system should help and make
more robust the subsequent processing of visual data in the
context of joint perception/manipulation scenarios. Future work
will aim at relaxing the assumptions of known link and joint
geometries, e.g. reusing existing work on autonomous learning
of articulated models [6].

(a) (b) (c) (d) (e) (f)

(g) (h) (i)
(a) The Kuka LWR used in our experiments (b) Synthetic training images of
individual links (c, e) Test images and (d, f) rendering of the training templates
as recognized for each link (g-i) After recognition of the robot arm, image
features are classified as “robot” (orange) and “non-robot” (blue).
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Abstract

3D point cloud registration is an essential problem in
3D object and scene understanding. In many realistic cir-
cumstances, however, because of noise during data acqui-
sition and large motion between two point clouds, most
existing approaches can hardly work satisfactorily with-
out good initial alignment or manually marked correspon-
dences. Inspired by the popular kernel methods in ma-
chine learning community, this paper puts forward a gen-
eral point cloud registration framework by constructing ker-
nel functions over 3D point clouds. More specifically, Gaus-
sian mixtures based on the point clouds are established
and probability product kernel functions are exploited for
the registration. To enhance the generality of the frame-
work, SE(3) on-manifold optimization scheme is employed
to compute the optimal motion. Experimental results show
that our registration framework works robustly when many
outliers are presented and motion between point clouds is
relatively large, and compares favorably to related meth-
ods.

This copy is for personal use, the final version will be publisehd in the proceedings of the 2013 International Conference on
3D Vision (3DV 2013) c©IEEE 2013

1. Introduction
The past two decades have witnessed great develop-

ment in 3D point cloud acquisition and usage, as increas-
ingly more state-of-the-art stereo vision reconstruction al-
gorithms were developed and affordable range-finder de-
vices emerged. However, there still exist many obstacles
to full exploitation of 3D point clouds, among which 3D
registration plays a fundamental role. Simply speaking, 3D
point cloud registration is the problem of moving a model
point cloudM to achieve the best possible alignment with a
fixed scene point cloud S by minimizing a certain distance
function between them. Mathematically, the motion P from
M to S is a rigid transformation in R3, which is composed
of a 3D rotation R and a translation t. Given f as a distance
function between two point clouds, the problem can be for-
mulated as {R∗, t∗} = arg minR,t f(M,S; R, t). One

can easily form f as the sum of squared distances between
all corresponding points from two clouds if the correspon-
dence information is provided. Unfortunately, however,
there is no existing method which can find the perfectly ac-
curate correspondence between two point clouds. Iterative
Closest Point (ICP) [1], the most popular method for 3D
registration so far, assumes correspondence based on the
closest distance criterion and then computes the transfor-
mation that best aligns the putative correspondences. Two
steps are implemented alternately and iteratively so that
computing either of them will improve the other.

Different from the iterative method, our algorithm avoids
point-wise correspondence search. Instead, we consider
point clouds in their entirety, and compute them as set-
format data in kernel method. In other words, the distance
function f is formulated at the cloud level. First, continu-
ous parametric probabilistic density functions (PDFs) are
established as the representations of point clouds by ap-
plying kernel density estimation (KDE) with Gaussian ker-
nels. Then, with KDE representations, an expected likeli-
hood kernel function is employed to compute the affinity
between two distributions, which corresponds to the simi-
larity between two point clouds. Finally, the optimal pose is
computed to maximize the kernel function, which is equiv-
alent to minimizing the distance function f between two
point clouds.

The key contributions of our work can be summarized
in two points: First, we express 3D point cloud registration
in a kernel method framework with a special case study on
probability product kernel functions. Although the scope
of study in this paper is limited, it can indicate a new per-
spective of the registration problem with more potential ker-
nel functions explored and studied in the future. Secondly,
we exploit the SE(3) on-manifold optimization scheme to
provide an elegant solution to compute the optimal motion.
Since the generality of kernel method and SE(N) opti-
mization, the resulting registration algorithm can be easily
extended to any dimension cases (although we only concern
3D case here).

1



2. Related Work
Since originally proposed [1], ICP and its variants almost

dominate the research literature of 3D point cloud registra-
tion. As briefly mentioned in section 1, at each iteration
of ICP, corresponding pairs are assumed to be found ac-
cording to the nearest-neighbor criterion, based on which
the optimal motion is subsequently computed. It has been
realized that in practice this naive correspondence-search-
assumption can fail if the motion between two point clouds
is large or there exists a large amount of noise. Thus, many
improvements to ICP methods were proposed. All ICP vari-
ants can be explained as iterative cycles of six steps [20]:
(1) Select subsets of two points clouds: in most cases, all
points are used. However, a subset can be randomly sam-
pled to reduce the computational burden if the number of
points is too large. (2) Match corresponding pairs: this
is a key step which has drawn much attention to achieve
improvement. The original version [1] matches pairs by
closest distance. Many other studies tried to improve the
correspondence accuracy by making use of more informa-
tion such as normal vectors [7], curvature [23], and color
[12]. Even some more sophisticated persistent point feature
descriptors [21] were developed to find the exact matches.
(3) Weight the corresponding pairs: Weighting alleviates
the influence of poor correspondence matching. To each
pair should be assigned a weight proportional to the likeli-
hood of the correspondence, which can be computed as the
compatibility of normals or colors [8]. (4) Reject pairs: To
some degree, rejection is equivalent to weighting by only
assigning binary weights w = {0, 1}, so normal orienta-
tion and color compatibility can be computed in the same
way; then a threshold is set to decide which pairs can be ac-
cepted. Some other geometric properties such as inter-point
distance consistency and collinearity consistency [15] can
be also used to filter out weak corresponding pairs. Other
methods reject pairs in which two points do not bi-uniquely
correspond to each other [24], or use weaker notions of con-
sistency such as ε-reciprocal correspondence [17]. (5) Com-
pute an error metric: The error metric is usually designed as
the sum of squared distances between corresponding points.
To enhance the robustness to outliers of correspondences
obtained from previous steps, Trimmed ICP was developed
[4] by using trimmed squares, which is only composed of
square distances with relatively small values. (6) Minimize
the error metric: This is an optimization step with respect to
3D rotation and translation. Usually unit quaternion and the
dual number quaternion methods [25] is used to compute ro-
tation. Although there have been various improvements to
ICP, its applicability is still limited to the scenario in which
two point clouds can be fairly closely aligned in advance,
and noise is low. Therefore, when used in practical appli-
cations, some manual assistance is usually required, which
makes ICP methods barely suitable within fully automatic

systems.
Besides the progress of ICP methods, some other novel

approaches have been proposed from different perspec-
tives. A notable contribution is spectral correspondence [3],
where graphs are constructed based on point clouds, and the
structural properties are extracted with spectral graph theory
to find matching point patterns. Another influential work is
SoftAssign [9], which establishes one-to-many correspon-
dences with different weights, and the registration is solved
as a joint optimization over the transformation and corre-
spondence matrix.

Prior to our work, a related algorithm was proposed by
Jian et al. in [11]. In Jian’s method, each point cloud is sim-
ilarly modelled globally and probabilistically with Gaussian
mixtures, and the optimal motion is computed to minimize
the L2 distance between corresponding Gaussian mixtures.
However, we go beyond their work in several ways: first,
instead of computing L2 distance between two fitted dis-
tributions, we consider the registration problem in a more
general kernel-based framework, which results in more flex-
ibility and extensibility. Secondly, in contrast to the identi-
cal and spherical covariance, we use more elaborately es-
timated bandwidths in KDE with Gaussian kernels to cap-
ture more local structural information of point clouds. Fi-
nally, instead of using unit quaternions, we exploit SE(3)
on-manifold optimization to achieve optimal motion esti-
mation, which yields a rather general registration algorithm.

3. Kernel Methods for Point Clouds

Kernel methods have achieved remarkable success in
many machine learning applications by enabling various
linear models to exploit nonlinear data patterns, such as
SVM and kernel PCA [22]. The kernel function is orig-
inally designed as a trick to efficiently compute the inner
product (similarity) between the images of two data in a
mapped (higher dimension) Hilbert feature space:

K(x, z) = 〈Φ(x),Φ(z)〉 (1)

where x, z ∈ χ and Φ(·) is mapping function from χ to
the feature space. A strength of the kernel method is that
with properly designed kernel functions it can work with
very general types of data, including strings, trees or graphs
[22], without explicit feature maps. As a matter of fact, any
symmetric similarity measurement between two data sets
of certain types can be a kernel function as long as it satis-
fies positive semi-definiteness, and data types are implicitly
embedded into an induced feature space. In this paper, we
are focusing on point clouds, on which kernel methods can
work in the exact same way to compute the similarity by
mapping them into a Hilbert feature space.



3.1. Kernel methods for unordered sets of data

Point clouds can be treated as unordered sets of vectors,
on which different kernel functions have been already de-
veloped and studied [14, 16]. The basic methodology is to
consider all elements in a set as i.i.d. samples from an un-
derlying probability distribution, and thus the distance be-
tween two sets can be computed as the discrepancy between
two corresponding distributions. One can model two sets
probabilistically by fitting them to two distributions whose
PDFs are of a certain parametric form, and then instead
of developing new kernel functions on point clouds, exist-
ing kernel functions on probabilities can be directly used.
Kondor and Jebara developed a Bhattacharyya kernel based
on the Bhattacharyya affinity used in the statistics literature
[14]:

KBha(p, q) =

∫ √
p(x)

√
q(x) dx (2)

where p and q are two distributions. In [16], an expected
likelihood kernel, which behaves as computing the expecta-
tion of either distribution under the other, is applied as

Kexp(p, q) =

∫
p(x)q(x) dx (3)

Both the Bhattacharya kernel and the expected likelihood
kernel are two special cases of probability product kernels
[10] K(p, q) =

∫
p(x)ρq(x)ρ dx with ρ = 0.5 and ρ = 1.

Assuming point clouds M and S are fitted to two distri-
butions φ and ψ respectively, the kernel function on point
clouds can be defined as

K(M,S) =

∫
φ(x)ρψ(x)ρ dx, (4)

and the induced Hilbert feature space corresponds to the fit-
ted distribution (infinite-dimensional feature space) when
ρ = 1, and to the square root of the distribution when
ρ = 0.5.

3.2. Probabilistic modeling of point clouds

In order to apply(4), one has to model point clouds in
a probabilistic form. Because (4) can be efficiently com-
puted without explicit integration if the PDFs of the two
distributions are in the exponential family, the Gaussian
mixture model is usually used [14, 16]. In this paper, to
simplify selecting the number of components, KDE (Ker-
nel Density Estimation) with Gaussian kernel is applied to
construct a Gaussian mixture with Gaussians constructed
on all points. This approach has been followed in other suc-
cessful work [5, 6, 11] to establish a probabilistic form of
point clouds. However, one weakness of KDE in this other
work is that only identical and isotropic covariance is used
to construct corresponding Gaussian kernels, which limits
the representational power to exploit geometric details of

Figure 1. The covariance of the kernel associated with each point is
locally determined from its neighbourhood and thus well captures
local structure.

the point clouds. Therefore, in our algorithm, in order to
capture the local structural information as much as possi-
ble, a full covariance is estimated with the neighboring re-
gion of each point (Figure 1). Given a model point cloud
M = {λ(i)

M ∈ R3}mi=1, a Gaussian kernel can be estab-
lished with its mean equal to the 3D position of each point
and covariance estimated with the surroundings of the point.
Thus the KDE representation of the model point cloud can
be written as

φ(x) =
1

mM

mM∑
i=1

NR3

(
x;λ

(i)
M,Σ

(i)
M

)
(5)

where N
(
x;λ

(i)
M,Σ

(i)
M

)
denotes the normal distribution

with mean λ(i)
M and covariance Σ

(i)
M, and mM is the size

of model point cloud. Similarly, the KDE representation
of the scene point cloud S can be constructed by the same
procedure.

3.3. A kernel function on two point clouds

To put all pieces together, a kernel function on point
clouds can be formulated by substituting (5) into (4). For
the sake of clarity in describing the framework, here we
only study the case of expected likelihood kernel function
(ρ = 1) although other kernel functions can be analogously
derived and explored. Thus (4) can be rewritten as:

K(M,S) =
1

mM

1

mS

mM∑
i=1

mS∑
j=1

GMiSj (6)

GMiSj =
∫
NR3(x;λ

(i)
M,Σ

(i)
M)NR3(x;λ

(j)
S ,Σ

(j)
S ) dx

= 1
(2π)3/2|Σ∗|1/2 exp

{
− 1

2λ
∗′Σ∗−1λ∗

}
(7)

where | · | denotes the determinant, and λ∗ = λ
(i)
M−λ

(j)
S and

Σ∗ = Σ
(i)
M + Σ

(j)
S according to Gaussian identities [19].



Figure 2. The SO(3) manifold and its optimization scheme: (1)
start from a rotation matrix R0; (2) use equation (10) as the local
parametrization of the manifold at point R0, and compute the gra-
dient g with respect to w; (3) compute the best move in so(3) by
mapping J(w); (4) map back to SO(3): R0 ← exp(J(w))R0;
(5) repeat step (2)(3)(4) until convergence

4. Optimal Motion Estimation

A motion P can be mathematically represented as a rigid
transformation (the combination of a rotation R and a trans-
lation t) in R3, which corresponds to an element of the Lie
group SE(3) (Special Euclidean group). Similar to [11],
gradient type method is used in this paper to iteratively ad-
just rotation and translation parameters. Due to the orthog-
onality constraint of rotation matrices, unit quaternions are
used as the representations of 3D rotations in [11]. How-
ever, the applicability of unit quaternions is rather limited
because they can only be used in 3D cases. In our algo-
rithm, instead, Lie group SO(3) and its associated Lie alge-
bra so(3) is exploited to provide a novel solution of optimal
rotation estimation. One of the virtue of SO(3) represen-
tation of rotation is that it can be easily extended to any
n-dimension case by analogously using SO(n). SE(3) on-
manifold optimization can be straightforwardly achieved by
combining 3D translation and SO(3) rotation. The study of
SE(3) on-manifold optimization in this paper is very brief,
and of course cannot cover the whole field but only the nec-
essary scope used in this paper. Readers can refer to [2] for
more details on SE(3) and related optimization.

4.1. SO(3) and associated Lie algebra

A rotation matrix R within P is an element of Lie group
SO(3) = {R ∈ R3×3 : RTR = I, |R| = 1}, which is
referred to as Special Orthogonal group because of its or-
thogonal characteristic. It has been always an obstacle in
rotation-related optimization problems due to the orthog-
onality constraint. However, recent studies of SO(3) in
computer vision and related literature [2][18] reveal that the

SO(3) on-manifold optimization can be used to find ap-
propriate rotation matrices efficiently and elegantly without
worrying about the orthogonality constraint. At first, since
SO(3) is a Lie group, it should fulfill the associated condi-
tions (and SE(3) as well) [2], and one of them is closure:
∀R1,R2 ∈ SO(3),R1R2 ∈ SO(3). Secondly, SO(3) is
a smooth manifold embedded in R3, which is a topological
space wherein all elements are rotation matrices (Figure 2).
For each point Ri on the SO(3) manifold, there exists a tan-
gent space, and fortunately, the tangent space of SO(3) hap-
pens to be its associated Lie algebra so(3). In other words,
∀Ri ∈ SO(3),∃Λi ∈ so(3). Intuitively, the tangent space
of the SO(3) manifold can be understood as a vector space
of the derivative of the manifold at point Ri (Figure 2). The
mathematical connection between so(3) and SO(3) is:

so(3)→ SO(3) : R = exp(Λ), Λ ∈ so(3),R ∈ SO(3)
(8)

Lie algebra so(3) is the collection of anti-symmetric matri-
ces, which can be mapped from R3 with a skew operator
J(·) defined as:

w =

 w1

w2

w3

→ J(w) =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 (9)

Thus, any point that lies within the infinitesimally small
vicinity of a certain point R0 on the SO(3) manifold can
be represented as:

R(w) = exp(J(w))R0 (10)

which provides a mapping from vectors in R3 to a local
neighboring region of R0 on the SO(3) manifold, and in
which the exponential term can be computed using Ro-
drigues formula:

exp(J(w)) = I+J(w)
sin(‖ w ‖)
‖ w ‖

+J(w)2 1− cos(‖ w ‖)
‖ w ‖2

(11)
Finally, in unconstrained optimization problems, gradi-

ent type method is popularly used by iteratively updating
the solution. Thanks to the local parametrization of SO(3)
in (10), we can transform the update of SO(3) to the one
with respect to R3 without worrying about the orthogonality
constraint. Meanwhile, different from usual cases, instead
of computing incremental updates within the same space,
in the SO(3) manifold optimization, after every update of
w, it needs to be projected back to SO(3). Then, the gra-
dient is computed within the local parametrization of the
corresponding neighboring region. The on-manifold opti-
mization scheme of SO(3) is demonstrated in Figure 2.

4.2. SE(3) on-manifold optimization

Since the translation corresponds to vectors in R3, with
the map from R3 to SO(3) in (10), we can straightforwardly



establish a map Ω from R6 to SE(3) manifold as:

Ω : [w,v]′ → {exp(J(w)R0), t0 + v}
s.t. w,v, t0 ∈ R3,R0 ∈ SO(3)

(12)

Based on the kernel method constructed in section 3, each
3D point cloud is represented by KDE, which is a distri-
bution in the form of Gaussian mixtures. Thus the rotation
and translation on point clouds correspond to rotating and
shifting distributions. On one hand, both rotation and trans-
lation can affect means of Gaussians; on the other hand,
since the covariance is invariant to translation, only rotation
will be taken into account. With SVD decomposition of the
covariance matrix, we have Σ = USU ′, where S is a diag-
onal matrix with eigenvalues as diagonal entries, and U is a
matrix composed of eigenvectors, so the rotation will only
change the orientation of eigenvectors but preserve the mag-
nitude of their corresponding eigenvalues. Thus the KDE of
the model point cloud after the Euclidean transformations P
is:

φ(x) = P ? φ(x)

= 1
mM

∑mM
i=1 N (x; Pλ

(i)
M, (RU)S (RU)

′
)

= 1
mM

∑mM
i=1 N (x; Rλ

(i)
M + t,RΣ

(i)
MR′)

(13)
Here we abuse notation λ

(i)
M and Pλ

(i)
M for both original

and homogeneous coordinates because there is no ambigu-
ity. By substituting (13) into (5)(6), the objective function
is the kernel function betweenM transformed with {R, t}
and S:

K(MR,t,S) = Kexp

(
φ(x), ψ(x)

)
= 1

mM
1
mS

∑mM
i=1

∑mS
j=1 GMi

R,tSj

(14)

GMi
R,tSj =

1

(2π)3/2|Gij |1/2
exp

(
−1

2
∆ij
′Gij

−1∆ij

)
(15)

where ∆ij = λ
(j)
S −Rλ

(i)
M−t and Gij = RΣ

(i)
MR′+Σ

(j)
S .

Then the optimal motion can be estimated by maximizing
the kernel function (14):

{R∗, t∗} = arg max
R,t

K(MR,t,S)︸ ︷︷ ︸
O

(16)

By substituting (12) into (16), the objective function O is
dependent only on w and v. The gradient can be computed
as (check supplementary material for detailed derivation):

∂O

∂v
=

1

mMmS

mM,mS∑
i=1,j=1

GMi
R,tSj∆′ijG

−1
ij (17)

∂O
∂w

=
∑mM,mS

i=1,j=1

{(
1
2
(∆′ijG

−1
ij )⊗ (∆′ijG

−1
ij )− vec(G−1

ij )′
)

· ∂Gij

∂w
−∆′ijJ(Rnλ

(i)
m )
}
GMi

R,t
Sj

(18)

Where vec(·) operator vectorizes a matrix by stacking its
columns, and ∂Gij

∂w is:

∂Gij

∂w
= (I9 + T3,3)(RΣ

(i)
MΣ′ ⊗ I3)

∂J(w)

∂w
(19)

where In is a n × n identity matrix, T3,3 is a permutation
matrix which satisfies T3,3vec(A) = vec(A′) for any 3×
3 matrix, ∂J(w)

∂w can be easily computed according to the
definition (9).

5. Experiments
With the Jacobian vector {∇w,∇v} computed in

(17)(18), a gradient descent method for point cloud regis-
tration can be summarized as Algorithm 1.

Algorithm 1 3D Point Clouds Registration

Input: two 3D point clouds: M = {λ(i)
M}

mM
i=1 and S =

{λ(j)
S }

mS
j=1;

Output: the optimal motion estimation {R∗, t∗}
1: compute the covariance on each point based on its

neighborhood;
2: start from initial rotation R0 and translation t0

3: while 1 do
4: compute the gradient {∇w,∇v}with current Rn and

tn according to (17)(18);
5: if both∇w and∇v are small enough then
6: return Rn and tn;
7: end if
8: map the update of w back to SO(3): Rn+1 ←

exp(J(∇w))Rn;
9: direct update translation: tn+1 ← tn +∇v;

10: set n← n+ 1
11: end while

5.1. Qualitative Experiments

At first, we test our algorithm qualitatively on KIT 3D
database[13]. Since each 3D object model in the database is
in triangulated mesh format, we generate the corresponding
point cloud by first sampling a triangle with the probabil-
ity proportional to its area and then uniformly sampling a
point within the selected triangle. For each point cloud (red
points in Figure 3), a random motion is generated and ap-
plied on it. In addition, either random outliers are added or
random part of object are removed to generate a synthetic
target point cloud (blue points in Figure 3). Some test re-
sults of our registration algorithm is displayed in Figure 3.
We can see that the proposed algorithm can work qualita-
tively well in many challenging cases (registration results in
green frames). However, the algorithm will also fail when
the rotation angle is bigger than 90◦ or due to the overlarge



Figure 3. A sample set of qualitative test of the proposed algorithm on KIT database.

amount of outliers or missing points (registration results in
magenta frames). The instability of the performance stems
from the fact that the algorithm is likely to stuck into local
optimum.

5.2. Quantitative Experiments

To obtain a more precise evaluation of the proposed al-
gorithm, we conduct several quantitative experiments with
different motion scales, outliers and missing portions for
test. In addition, we also implement and run ICP and Jian’s
method [11] for comparison. To ensure the fairness of the
comparison, the same SE(3) optimization strategy and stop
criterion are used for their corresponding objective func-
tions. KIT database is used as well here for quantitative
evaluation and the point clouds are generated in the same
way as section 5.1.

First, we test the robustness of three algorithms on differ-
ent scales of motions. In this experiment, for motion scale i,
the rotation angles of yaw, pitch and roll are i×[20◦, 4◦, 4◦],
and translations are i× [Sx, Sy, Sz], where [Sx, Sy, Sz] are
standard deviations of point clouds in three axes. Differ-
ent motions are applied on the point cloud of each object
(points cloud is sampled with size 1000) to generate a tar-

get point cloud to align with. Since we know the corre-
spondence between the original and target point clouds, the
error for each registration is computed as the average dis-
tance between every pair of corresponding points in two
point clouds. The test result on the database is plotted in
Figure 4(a). We can see that ICP method is very sensitive
to the initial motion. Actually average error of ICP method
is monotonic increasing with respect to motion scale. Jian’s
method and our method work in almost the same pattern.
Both method work rather accurately when the motion scale
i ≤ 4 (rotation angle is smaller than 90◦). However, both
methods will fall into the local minimum (reflectional sym-
metry pose) when the motion scale increase ever since.

Secondly, we test the robustness of three algorithms by
adding different portion (the percentage of point cloud size)
of outliers. Outliers are generated by randomly sampling
within the space around objects. For portion i, the number
of added outliers is i × 10% of the point-cloud size. The
generated outliers are concatenated into the original point
clouds, so the correspondence ground-truth is still available
and the registration error is computed in the same way as
in the motion experiment. To avoid the effect of large mo-
tion, a relatively small motion (motion scale i = 1) is ap-



(a) (b) (c)

Figure 4. Performance comparison of three registration methods on the KIT database with different motion scales, portion of outliers and
portion of missing part respectively.

plied on point clouds. The test result is plotted in Figure
4(b), from which we can see that ICP method is very fragile
when the outliers are present even the amount is small. By
contrast, since structure of point clouds are globally mod-
elled in Jian’s method and our method, they are much more
robust to the presence of outliers. In addition, due to the
local estimated covariance in our method, it can outperform
Jian’s method for all portion i.

Finally, part missing is an usual case because of occlu-
sion. Here we also compare the performance of three al-
gorithms on different portion of missing part. A missing
part is selected by first randomly picking a point and then
removing all points which lie within the neighbourhood of
certain range. For portion i, the number of eliminated out-
liers is i× 6% of the point-cloud size. Since the seed point
is randomly selected, the correspondence ground truth will
not be available between the original point cloud and target
partial point cloud. To measure the registration accuracy,
the full target point cloud is preserved before a random part
is removed, and the registration error is computed as the dis-
tance between full original point cloud and full target point
cloud. Similarly, a relatively small motion (motion scale
i = 1) is applied on point clouds to avoid the effect of large
motion. The test result is displayed in Figure 4(c). It can be
seen that the performance of ICP method is most stable in
missing cases. As for Jian’s method and our method, unfor-
tunately, the global structure will be greatly changed when a
random part is removed, neither of their performance is ac-
ceptable although our method is better than Jian’s method
by making use of local structure information embedded in
the local estimated covariance. However, it should be re-
minded that ICP method can outperform two others in miss-
ing cases only under the condition that the initial motion is
small.

CONCLUSION
We present a full study on how probability product ker-

nel function can be used for 3D point cloud registration. A

general registration framework is developed by incorporat-
ing SE(N) on manifold optimization strategy. According
to empirical test, the proposed registration algorithm is ac-
curate and robust in many challenging cases. However, even
with the help of local estimated covariance, the performance
of our algorithm is still unacceptable when certain part of
point cloud is missing, which points to the future direction
of our research.
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