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Chapter 1

Summary

1.1 General Objective of WP2.2: Motor Actions

From the proposal : WP2.2 is primarily concerned with how to learn and obtain complex action sequences
and how to organize and structure the acquired data to 1) generate advanced motor behaviours, e.g.
by blending and sequencing of behaviours in the available data sets, and 2) interact with higher-level
cognitive processes that mainly use discrete representations, thus providing the bridge for planning to
access representations at the sensorimotor level and vice versa.

Methods like imitation learning, reinforcement learning and other exploratory approaches, which have
been shown to be successful at the acquisition of motor knowledge, will be considered for implementation.

1.2 Contents of the Deliverable

Transfer report on the implementation of WP2.2
Here we describe how the developed motor learning algorithms were transferred to the main demon-
stration platform of the Xperience project, i. e. the humanoid robot ARMAR-III. This work is based
on the DMP framework [6] with many extensions that were developed in the course of the project
[2, 3, 4, 1].

Scientific contribution
The results and publications generated in WP2.2 in Year 4 of the Xperience project are described.
These works provide more information about the representations and learning techniques that were
developed to drive the Xperience demonstration platforms and include 1. Learning and adaptation
of motor actions, 2. Integration of force-based exploration with coaching, and 3. Hierarchical
segmentation of manipulation action sequences. Earlier work in Xperience in this area includes
the integration of periodic and discrete DMPs [2] (reported in D2.2.1), representations for dual-
arm cooperative DMPs [7, 5, 4] (reported in D4.1.2), and new learning approaches for statistical
generalization [3] (reported in D4.1.1).
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Chapter 2

Transfer to the Demonstration
Scenarios

2.1 Implementation of Dynamic Movement Primitives

Two different computer environments were used for the implementation, namely Modular Controller
Architecture framework (MCA) and ArmarX.

Implementation in Modular Controller Architecture
Transfer of the abilities to adapt dynamic motion primitives (DMPs) based on external feedback, and the
learning of the said feedback to be included in the non-changing environment was implemented on the
ARMAR-III robot. The transfer also included the implementation of the motion primitives themselves,
for both discrete and periodic implementations, combined with the means to autonomously determine
the basic frequency of a periodic input signal, based on a pool of adaptive frequency oscillators or on a
single adaptive frequency oscillator and an adaptive Fourier series.

As Modular Controller Architecture framework (MCA) is an open source modular network transparent
and real-time capable C/C++ framework for controlling robots and other kinds of hardware, all methods
and classes within are implemented by C++ modules with standardized interfaces for easy integration of
software components.

The transfer itself consisted of adapting the source code in the control algorithms, forming a scenario as a
part of the Robot Interface which is built on top of the MCA. Because the implemented transfer consisted
of different, not directly related tasks, there were several scenarios. One comprised the transfer of the
motion from a user to the robot through imitation of the periodic signals. The underlying algorithms
detected the basic frequency and isolated a single period of motion for the representation in DMPs.
Another scenario allowed the adaptation of the DMPs, in this case discrete DMPs, to the measured
external force signal, and learn this signal to be used in subsequent executions in order to achieve the
desired behavior.

It is important to note that by using the scenario abstraction level, the implementation comprises several
tasks and skills in a single, concluded module. The user can thus re-run or adapt the scenario without
explicit knowledge of the underlying programming code and does not even have to be aware in which
way the information is communicated to and from the relevant component of the robot.

The implementation of the underlying code in C++ is in a class, i.e. CInteractiveDMPScenario class,
which runs in a loop in the the background, essentially numerically integrating the differential equations
of the DMPs, combined with the feedback of external signals. The following list includes the implemented
C++ classes and the skills they comprise

• DMPstructure
Implementation of discrete and periodic DMPs, generalization using gaussian Process Regression

• CPeriodicDMP (Periodic DMP scenario)
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Implementation of the periodic DMPs, extraction of the basic frequency of periodic signals, adap-
tation of the motion to achieve desired forces of non-rigid contact with the environment (wiping).

• CInteractiveDMP
Adaptation of DMPs to external force signals, i.e., measured forces, allowing for adaptation to the
environment, other robots and even humans, iterative learning control.

Relation to demonstration Scenarios

Scenario 1 (prepare a salad): The following tasks will apply skills transferred to the ARMAR robot in
the context of Scenario 1:

• Moving of the salad bowl: Interactive DMPs for bimanual tasks

Scenario 2 (rearrange the room and setup the table): The following tasks will apply skills transferred to
the ARMAR robot in the context of Scenario 2:

• Positioning the table in the room by pushing/carrying it, jointly together with a human (or a robot):
Interactive DMPs for bimanual tasks

• Wipe the table: Periodic DMPs and adaptation to external force signals

• Two robots should carry a narrow carpet table runner to put it on the table: Interactive DMPs for
bimanual tasks

For the demonstration of the capabilities of the algorithm we implemented two tasks. In the first we
implemented table wiping on two different robotic platforms as shown in Figure 2.1.

In the second demonstration we executed a bimanual task, where each arm was controlled separately,
without a central controller. The arms synchronized their motions to achieve a common height and
distance from the robot, allowing for the manipulation of a larger object. Figure 2.2 shows the final
positions after separate epochs.

Figure 2.1: Table wiping using the KUKA robotic platform at JSI on the left and using the ARMAR
humanoid robot on the right.

Figure 2.2: Images showing the final position of the box in the bimanual manipulation task with the
ARMAR-III robot. The first image shows the position of the arms after the execution of the original,
uncoupled trajectories. Note that they are at different heights. The following images show the end
positions of the box, held with the arms, after each epoch. The final image shows the position after the
learning. Note that the arms have reached almost the desired, parallel position and therefore the box is
not tilted anymore.
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2.2 Implementation of Chair Pushing

Implementation in ArmarX

The aim of this scenario is to push an office chair with wheels under the table at the specified location,
as shown in Figure 2.3. In this scenario we consider the possibility that the robot can not approach the
chair from the back side, which is the preferable pose for pushing. The chair and the table pose as well as
an eventual obstacle pose were detected using ARMAR foveal vision and therefore expressed relative to
the robot base coordinate system. In order to simplify the visual recognition, we put color markers on the
chair, table and the obstacle. These will be removed later as soon as more advanced visual algorithms
are ready to use. We also assume that the robot possess environment (kitchen) map, relative to the
current robot position. The algorithms for performing chair pushing scenarios are based on methods for
representing of robot actions with DMP-s (see D2.1.1, D2.1.2, D2.1.3, D4.1.1, D4.1.2 and D4.1.3.). All
algorithms were implemented in C++ using the new programming environment ARMAR-X.

The robot development environment ArmarX provides an infrastructure for developing a customized
robot framework that allows to realize distributed robot software components. The framework comprises
distributed communication functionality. Separate distributed components, i.e., customizable building
blocks, can be implemented using either Python, C++, C# or Java (see [10]). By using ArmarX cus-
tomizable building blocks for high level robot control, the backbone of the robots software architecture
was implemented.

We customized several blocks for the chair-pushing task. Each block contains a state of the robot and the
environment and is subject to defined inputs. Inputs and outputs of the states define also their relations.

Separate states, that is the backbone of the robot’s software architecture, are first created and later
connected in Statechart Editor. Statechart Editor automatically creates a template in C++ for the
underlying program code, which describes the behavior of the state and as such also the robot.

Relation to demonstration scenarios

Scenario 2 (rearrange the room and setup the table): The following tasks will apply skills transferred to
the ARMAR robot in the context of Scenario 2:

• Positioning the table in the room by pushing/carrying it, jointly together with a human (or a robot):
ChairPushing Scenario

table 

chair 

ARMAR III 

obstacles 

Figure 2.3: Chair-grasping scenario environment scheme. Red line denotes the collision-free chair pushing
trajectory.

The basic task is subdivided in the following subtask, implemented by the following states in Statechart
Editor:
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• Chair localization (LocalizeChair.* )

• Compute target robot pose (ComputeTargetRobotPose.* )

• Approach the chair (ApproachChair.* )

• Grasp the chair (GraspChair.* )

• Pushing the chair to the final pose (PushChair.* )

After the localisation of the chair, the local map is fitted to the global kitchen map, which enables
to localize static obstacles such as kitchen walls and kitchen appliances. Next, the reachability maps,
discretized representations of the workspace which are enriched by quality information related to reach-
ability, manipulability for different end-effectors [9], are calculated for the desired grasp (see Figure 2.4).
Based on these maps, the optimal target position for grasping is calculated and a DMP based trajectory
is generated. During the chair approach phase, robot arms are kept in the initial position.

Figure 2.4: a) Reachability map for grasping the chair with the right rand. Dark red regions denote
maximal manipulability index and dark blue minimum manipulability index. Optimal position is the
position with maximal manipulability without violating collision constraints, not shown here. b) Blue
square denote chair location, black square obstacle position. White circle shows the robot. Only grasp
with left hand is feasible in this case. c) Only grasp with right hand is feasible. d) The robot can grasp
the chair with both hands.

An instance of chair grasping with visual servoing is show in Figure 2.5.

Before the chair pushing phase, the robot first localizes target position at the table using foveal vision.
At this point, collision free trajectory is generated and encoded as DMPs. During the chair pushing
with single arm, the robot is treated as a kinematically redundant mechanism with 13 DOF composed of
the robot base (3 DOF), robot torso (2 DOF) and the corresponding arm (7 DOF). Weighted damped
pseudo-inverse was used to resolve the redundancy and singularity. The corresponding weighing matrix
was set to [100 ∗ I3, 10 ∗ I2, I7], where In denotes the identity matrix of dimension n × n. Since the one
handed grasp is not firm enough, the actual chair trajectory deviates from the desired one. Therefore, it
needs to be controlled. We implemented control as schematically outlined in Figure 2.2. Results of the
experimental evaluation of the tracking the chair position during the pushing is shown in Figure 2.7.

In the case of grasping the chair with both hands, we need to control only the robot base during the
platform. Due to the limited workspace of both arms, the null space is very close to zero and we can
treat the robot as non-redundant keeping both arms in fixed position.
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Figure 2.5: ARMAR III grasps chair using visual servoing. Yellow spots are markers which are used in
early implementations, but will be removed in a later stage as soon as more advanced visual recognition
and localization approaches are ready for integration in the final demonstration

Kc Kk J* ∫pc⇾p

ARMAR
CHAIR

p⇽Θ

cd
+

--

N ξ

+

Figure 2.6: Block scheme of the chair control and kinematic control of the ARMAR III. Kc and Kk are
the gains of the chair position controller and the kinematic control. J∗ denotes the robot Jacobian, N
denotes mapping to the Jacobian null space, ζ are the null space commanded velocities, set to 0 in all
of our experiments. pc → p denotes kinematic mapping from the chair coordinates to the robot hand
coordinates and p← θ denotes mapping from joint coordinates to the Cartesian coordinates
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Figure 2.7: Results of the chair pushing along the straight line with and without the chair controller
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Chapter 3

Scientific Results

In this section we report on scientific work in Year 4 that supports the activities targeting the final
demonstration of the Xperience project.

3.1 Learning and Adaptation of Motor Actions

In the first years of the project we extended the framework of dynamic movement primitives [6] with
many new features. We continued this work also in the fourth year of the project. In particular, we
studied how to improve the adaptation speed and robustness of iterative learning mechanisms applied
to robots controlled with force feedback [NPUed, GvdKV+14]. The work reported in this section is an
extension of the work on bootstrapping from Semantic Event Chains similarities (

”
wipe“and

”
stir“) to

define the motion pattern for
”
stir“starting from

”
wipe“, which was reported in Deliverable D3.1.2 and

in [12].

In the attached two papers we propose a new learning controller that combines the ideas of standard
iterative learning control (ILC), repetitive control (RC), and on-line coaching [8] to adapt the initially
available motion into a new movement with respect to the constraints of the task. The structure of
the proposed algorithm is closely related to the DMP framework. It is general and can be used with
both types of movements that can be represented by DMPs, i. e. discrete and periodic movements.
The discrete variant is called Recursive Regression Iterative Learning Control (RRILC) and the periodic
variant Recursive Regression Repetitive Control (RRRC).

The performance of the proposed algorithms was evaluated and compared with standard ILC and RC
schemes, both in simulation and with real robots. We performed two experiments, one showing the
performance of the algorithm on a discrete task and the other on a periodic task, respectively.

RRILC and ILC were evaluated on task of force-based surface following (see Fig. 3.1 and 3.2. It was
evident in our experiments that RRILC outmatches the ILC, especially in the first cycle. Since unlike

Figure 3.1: Simulated environment for surface fol-
lowing

Figure 3.2: Real environment for surface following
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Figure 3.3: Experimental setup for stirring in square pot.

ILC, RRILC generates the feed forward compensation signal already in the first cycle, RRILC converged
considerably faster. Similar results were obtained for the periodic task of stirring (see Fig. 3.3). The
RRRC approach established full contact with the pot wall already in the second stirring cycle and
proceeded with almost unchanged response for the following 6 cycles. On the other hand, RC took 6
stirring cycles to establish full contact with the pot wall. In the last cycle, learned compensation terms
were almost identical for both algorithms.

3.2 Integration of Force-Based Exploration with Coaching

In Deliverable D4.1.3 and in reference [8] we describe a new coaching mechanism that allow us to alter
the previously learned motor actions. Here we describe how coaching can be integrated with explorative
learning mechanisms to modify preexisting robot behaviors, such as for example wiping [GPNU14].

We considered the integration of two types of on-line motion adaptation schemes. The first is the adap-
tation of trajectories to the external environment in order to achieve desired forces of contact throughout
the complete trajectory. The second is adapting the trajectories to the interventions of an instructor,
who modifies the trajectories with physical contact or with predefined gestures. Thus, he acts as a
tutor, coaching the robot the desired behavior. The common point of these two approaches, besides
force feedback, is also the use of a uniform trajectory representation, i.e. the dynamic movement prim-
itives (DMPs). The learning properties of DMPs can be exploited to simultaneously realize adaptation
to external forces and response to coaching gestures. The combination creates an intuitive and user-
friendly interface for learning and modifying robotic trajectories with the potential for creating complex
interaction trajectories with a simple user demonstration and a little interactive tutoring.

Our experimental results have shown that the proposed approach is applicable for learning of complete
trajectories through force-based exploration as well as for adapting just parts of trajectories using physical
human-robot interaction and visual pointing gestures for coaching, which are reported in [8]. Thus, the
proposed approach provides a user-friendly and intuitive framework for learning of periodic motions in
contact with the environment, where the user can teach the desired trajectories, alter their parts, and
the robot finds and maintains the desired contact with the surfaces, all in one system. Additional details
of the proposed approach are described in the attached paper [GPNU14].

Figure 3.4: Sequence of images showing modification of robot motion though force-based exploration and
on-line modification of robotic motion using force feedback while the robot is maintaining the contact
with the table.
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3.3 Hierarchical Segmentation of Manipulation Action Se-
quences

We continued our work on automatic segmentation of manipulation sequences described in D2.2.2 and
reference [11]. We extended our previous approach, which used object relation changes only, to a hierar-
chical segmentation approach of human demonstration, which takes into account object relation changes
and motion characteristics. While the previous approach provided good results for segmentation of a
semantic level, it was not able to segment demonstrations with unobservable effects or changes of motion
characteristics. Therefore, we developed a hierarchical two level approach. On the first level, semantic
segments are extracted based on object relation changes where contact/non-contact information is used
to determine meaningful segments. On the second level, the obtained semantic segments are further
analyzed and subdivided into more granular segments. To this end, we developed a method for assessing
the characteristics of a motion within a semantic segment based on the motion acceleration profile. To
find new segments, the motion is recursively divided by searching iteratively with a sliding window for
the best split. For each position of the sliding window the trajectory left and right of the center of the
window is evaluated. A novel assessment function describes the motion characteristic of the trajectory
segments by incorporating the dynamics of the motion. A good split means that the difference between
the assessment values is high, i.e. the difference in motion dynamics is high. On the next recursion
level, the segments left and right of the found split are analyzed again until a minimum segment length
is reached or the difference between the assessment function values is under a certain threshold. Based
on this sub-segmentation it is possible to find segments that differ in dynamics of the motion and thus
to allow distinguishing different actions, e.g. e.g. shaking a bottle or tossing a bottle, within a semantic
segment.

Converted Demonstration

Human Demonstration

No contact Cup in left hand No contact

Grasp Lift Pour Place Retreat

Hierarchical Segmentation

Figure 3.5: A human demonstration of a complex task (top) is being observed with a marker-based motion
capture system. This marker-trajectories are converted into 6D object pose trajectories (middle), which
serve as input for the proposed segmentation and recognition algorithms. The result of the segmentation
and recognition (bottom) contains segments with distinct object-relations on the first level and sub-
segments with distinct motion characteristics on the second level. The sub-segments in this figure are
labeled manually to illustrate the meaning of the sub-segments.

11



Xperience 270273 PU

-1000

-500

 0

 500

 1000

 1500

 2000

 0  5  10  15  20  25  30  35

D
is

ta
n
ce

 i
n
 m

m
 o

r 
Po

si
ti

o
n
 i
n
 m

m

Time in seconds

Bottle to Table
Bottle to rightHand

X Position
Y Position
Z Position

Figure 3.6: Right: Comparison of manual segmentation (black lines), the proposed approach (blue lines,
PCA (red lines) and Zero-Velocity-Crossing (green lines) of an action sequence shown by the key frames
(vertical lines). The action sequence contains grasping, placing, shaking, tossing, pouring, inspecting and
dripping off a bottle. The vertical lines are only partly drawn for better clarity. Left: Snapshots of the
segmented action sequence for visualization.

In Figure 3.5 the whole process from demonstration to segmentation is depicted. The results of the
approach applied on an action sequence compared with a manual segmentation and other automatic
segmentation algorithms are shown in Fig. 3.6. The results of the novel approach exceed the results
of segmentation methods based on Principal Component Analysis and Zero-Velocity-Crossing as these
detect many false positive and miss more segments than in the case of our approach.

For more details the reader it referred to the attached paper [WDAed].
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[NPUed] B. Nemec, T. Petrič, and A. Ude. Improved iterative adaptation scheme with recursive
estimation of compensation signals. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Hamburg, Germany, 2015 (submitted).
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Learning and Adaptation of Periodic Motion Primitives Based on Force
Feedback and Human Coaching Interaction

Andrej Gams, Tadej Petrič, Bojan Nemec and Aleš Ude

Abstract— Dynamic movement primitives (DMP) allow ef-
ficient learning and control of complex robot behaviors for
both periodic and discrete point-to-point movements either in
joint or Cartesian space. They also allow efficient modulation
by changing of parameters. In this paper we introduce and
evaluate the means of adapting periodic DMP trajectories
with respect to force feedback. We simultaneously consider
two aspects: 1) adaptation of whole trajectories to comply
with the constraints set by the environment; and 2) partially
modifying the trajectories during the execution based on human
intervention to improve the task performance. The latter can
either be force-based, i. e. through physical contact, or through
predefined gestures. By intervening when necessary the human
acts as a tutor, instructing the robot how to modify the
trajectory and bypassing the need to learn new trajectories
by autonomous exploration. We introduce the approach in the
context of wiping a surface, where the robot first has to acquire
and maintain contact, and where later the human tutor modifies
the originally learned trajectory in order to achieve the desired
robot behavior. We present simulation and real world results of
wiping a surface with a Kuka 7 degree-of-freedom LWR robot.

I. INTRODUCTION

In this paper we consider two problems of on-line motion
adaptation. The first is the adaptation of trajectories to the
external environment in order to achieve desired forces of
contact throughout the complete trajectory. The second is
adapting the trajectories to the interventions of an instructor,
who modifies the trajectories with physical contact or with
predefined gestures. Thus, he acts as a tutor, coaching the
robot into desired behavior. The common point of these
two approaches, besides force feedback, is also the use of a
unified trajectory representation, i. e. the dynamic movement
primitives (DMPs). The learning properties of DMPs can be
exploited to realize both adaptation to external forces and
response to coaching gestures. The combination creates an
intuitive and user-friendly interface to learning and modify-
ing robotic trajectories with the potential of creating complex
interaction trajectories with a simple demonstration and a
little tutoring.

Dynamic movement primitives, introduced by Ijspeert et
al. [1], are the means of encoding a trajectory in the form
of a linear second order differential equation with an added
nonlinear forcing term, which changes the simple second
order attractor dynamics to the desired behavior. DMPs
have many favorable properties for encoding of robotic
trajectories, e. g. they contain open parameters that can be

*This work was supported by EU Seventh Framework Programme grant
270273, Xperience

All authors are with Humanoid and Cognitive Robotics Lab, Dept. of
Automatics, Biocybernetics and Robotics, Jožef Stean Institute, Jamova
cesta 39, 1000 Ljubljana, Slovenia. name.surname@ijs.si

used for learning without affecting the overall convergence
of the system. They can easily be temporally modulated
without requiring an explicit time recalculation, which can be
effectively used for synchronization to external signals and
devices [2]. They are robust against perturbations and can
be spatially modulated to adapt to different requirements [3].
Other trajectory representations include splines [4], mixture
models [5] and different dynamical systems, which can also
be adapted based on force feedback [6].

Modulation of DMPs with respect to force feedback has
been studied for both discrete point-to-point movements, as
well as for periodic applications. Discrete trajectories were
adapted to force feedback by Pastor et al. [7], who recorded
the forces during an execution and used these recordings
as the referential signal for a controller, plugged into the
acceleration of the DMP. The accelerations were thus altered
so that the same force behavior was achieved when the
conditions of the task would change. On a very similar
basis Kulvicius et al. [8] modified the accelerations of a
DMP based on virtual forces defined from the proximity to
obstacles. Additionally, the optimal gains of the trajectory
adaptation were learned. On the other hand, Gams et al. [9]
used force feedback at both velocity and acceleration levels
of a DMP to adapt to force feedback. In several discrete
iterations the approach also learned a feed-forward term to
minimize the feedback signal by means of iterative learning
control (ILC). Thus any desired force trajectory (profile) was
made achievable if physically feasible. Using ILC requires
several repetitions of the same task with resetting of the
initial conditions. The latter cannot be achieved in periodic
tasks, where the conditions at the start of the period change
until steady-state behavior has been reached. Consequently
the use of repetitive control (RC) in a feed-forward term was
proposed for periodic movements instead of ILC [10].

Both ILC or RC can learn a coupling term, which is fed
into the DMP at either velocity level or at both velocity and
acceleration levels as a feed-forward component to reduce the
feedback error signals [9], [10]. On the other hand, DMPs
themselves can be modified to cancel out feedback error
signals. This was presented in a wiping task [11], where the
feedback force of contact with the environment was used
to alter the referential (target) trajectory of DMP learning
with a velocity-resolved admittance approach [12]. The wip-
ing motion was expanded to use transient initial motions
in [13] and for structural bootstrapping from sensorimotor
experience [14], but the force adaptation algorithm was
not altered in these works. The force adaptation algorithm
from [11] provides the basis for comparison in this paper.
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We modify the approach by excluding the change of the
reference trajectory itself and by introducing means to online
modify desired trajectories using coaching gestures.

Once learned, a periodic DMP trajectory can be modulated
by changing the frequency, amplitude, and/or center of
oscillation. However, in order to alter just a part of the
trajectory, for example to go more left only at a certain point,
one would have to re-learn the entire trajectory. To modify
only parts of learned trajectories, we propose to again use
the learning of DMPs, by externally changing the error of
learning, similar as proposed in [15]. This way DMPs act
as an efficient coaching system. The novelty in this paper
is twofold: 1) we use physical contact, i. e. force feedback
instead of visual coaching gestures, and 2) it is combined
with learning of complete periodic trajectories for contact
with the environment.

Coaching of robot trajectories has been previously applied
to various tasks in different settings. For example, voice
commands of a human coach were used as a reward function
in the learning algorithm by Gruebler et al. [16]. Verbal
instructions, applicable also for non-experts, were used to
modify movements obtained by human demonstration [17].
Physical contact was also used, for example Lee & Ott [18]
used kinesthetic teaching with iterative updates to modify the
behavior of a humanoid robot.

The paper is organized as follows. In Section II we provide
a recap of dynamic movement primitives and of learning the
forcing term, i. e. the weights of the DMP. In Section III we
then show how the learning of the DMP weights can be used
when the reference is changed. Section IV shows how we
can alter complete trajectories without external algorithms
of changing the reference, also showing results. Section V
expands on this notion by changing only parts of trajectories,
culminating in an efficient force adaptation and coaching
algorithm. A discussion which highlights the benefits and
differences to other approaches concludes the paper.

II. PERIODIC DYNAMIC MOVEMENT PRIMITIVES

We provide a brief recap of the periodic notation of
dynamic movement primitives (DMP), with the formulation
based on [19]. Only the basics are provided as DMPs have
been thoroughly discussed [1]. We also provide the equations
for learning of the DMPs, i. e. the weights of DMPs, as this
is the basis for both force learning and coaching.

The following applies for a single degree of freedom
(DOF), i. e. one of the external task-space coordinates. It is
denoted by y, while z stands for the (scaled) velocity. Note
that DMPs can be applied to joint space coordinates as well.

Periodic DMPs are defined as a nonlinear system of
differential equations

ż = Ω (αz (βz (g − y) − z) + f(φ)) , (1)
ẏ = Ωz. (2)

The nonlinear part of (1), f(φ), is comprised of a linear

combination of radial basis functions Γi(φ), defined by

f(φ) =

∑N
i=1 wiΓi(φ)∑N
i=1 Γi(φ)

r, (3)

Γi(φ) = exp (hi (cos (φ−ci)−1)) . (4)

The variable r is the amplitude control parameter, while hi >
0 are the widths of the kernels and ci equally spaced along
the phase φ from 0 to 2π in N steps. The phase variable
φ bypasses explicit dependency on time and is assumed to
increase with constant rate, where the parameter Ω denotes
the frequency

φ̇ = Ω. (5)

The frequency does not have to remain constant, but the
phase has to be evaluated on-line, for example with adaptive
frequency oscillators, as in [3] and [2].

The parameters αz, βz, > 0 and αz = 4βz make the
system (1) – (2) converge to the oscillations given by f(x)
around the goal g in a critically damped manner. To realize
multiple DOFs we use separate sets of (1) – (2), and a single
canonical system given by (5) to synchronize them through
the common phase.

The linear part of (1) – (2) defines convergence to the goal
g. It is only the weights wi, i = 1, ..., N , where N is the
number of kernel functions, given in the vector w, that define
the actual shape of the encoded periodic trajectory. Only one
period of motion is encoded and it repeats as the phase resets
at 2π. To encode a trajectory as a DMP, we have to learn the
weight vector. The latter is accomplished using incremental
locally weighted regression, where the target data for fitting
is

ftarg =
1

Ω2 ÿref − αz

(
βz (g − yref) −

1

Ω
ẏref

)
, (6)

obtained by matching y from (1) – (2) to yref , z to ẏref/Ω,
and ż to ÿref/Ω. This means that basically we learn the
accelerations needed to force the otherwise critically damped
spring-mass system given by the linear part of (1) – (2) to
follow the desired trajectory.

Given ftarg, wi is updated incrementally for each time-
step j

wi,j+1 = wi,j + ΨiPi,j+1rej (7)

Pi,j+1 =
1

λ

(
Pi,j −

P 2
i,jr

2

λ
Ψi

+ Pi,jr2

)
(8)

ej = ftarg,j − wi,jr (9)

Pi, in general, is the inverse covariance of wi [20]. The
recursion is started with wi = 0 and Pi = 1. r is the
amplitude gain. λ provides the forgetting factor. If λ < 1,
then the incremental regression gives more weight to recent
data, meaning that it tends to forget older ones.
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III. ADAPTATION OF DMPS BY CHANGING THE
REFERENCE

In this section we provide and modify the algorithm
from [11], which serves as comparison for two possibilities
of modifying DMP trajectories using incremental locally
weighted regression, which is at the core of the DMP
learning.

The algorithm in [11] provides the means to adapt to
external contact by adapting the referential trajectory that a
DMP encodes in the weight vector w. The error of learning
ej in (9), updated incrementally in every time step, is calcu-
lated using (6), where the referential trajectory yref (along
with ẏref and ÿref ) in (6) is provided by (13). Omitting
the details given in [11], the algorithm uses a velocity-
resolved approach. For one degree of freedom denoted by
y, it calculates the resolved velocity ẏr with

ẏr = kp(Fy0 − Fy). (10)

Here parameter kp is the force gain, Fy the measured and
Fy0 the desired force in this degree of freedom. The new
referential trajectory yref is integrated using this velocity
and the starting position y0 by

yref = y0 +

∫
ẏrdt. (11)

Instead of a simple proportional law in (10), we can also
use a proportional-derivative law to increase the damping,
resulting in

ẏr = kp(Fy0 − Fy) + kd
d

dt
(Fy0 − Fy). (12)

Given that the measured force signal is very noisy, this might
result in an even noisier resolved velocity. Inserting (12) into
(11) yields

yref = y0 +

∫
kp(Fy0 − Fy)dt+ kd(Fy0 − Fy). (13)
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Fig. 1. The top plot shows real world results of adaptation of motion in
pz direction (downwards). The resulting forces with the referential force
of contact given at 6 N (dashed line) is shown in the bottom plot. As the
robot was performing left-right wiping motion, some oscillations due to the
contact are visible in the force measurement. Fig. 2 left shows the complete
3-D trajectory for this experiment.
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Fig. 2. The complete 3D trajectories for 2 experiments where the adaptation
of the trajectory in pz direction was implemented using the velocity-resolved
approach. We can see in the left plot the adaptation to a flat surface. The
results also depict initial learning of motion. The force results are presented
in Fig. 1. The right plot shows the adaptation to an inclined surface. The
wiping motion was not learned, but re-used from the experiment in the left
plot. The forces, which show a clear hysteresis, are depicted in Fig. 3.

This has the advantage that there is no derivative term and
that the system has an additional proportional term directly
on the force (and not integrated force), which results in faster
responses.

Even with the formulation in (13), the change of the
reference yref is still subject to kp and kd and will always
have some delay. It is still a feedback controller, where an
error has to appear in order to change the reference. Even
though a DMP is incrementally encoding the reference, it
can only exactly encode (without delay) adaptation to a flat
surface, where the output of the integral in (13) provides the
exact reference. The results are shown in Fig. 1 and 2, left.
The robot adapts its height in order to maintain the desired
contact force Fy0 with the surface. All of our experiments
are shown also in the accompanying video.

If the surface is not constant, for example a slope, or even
an arbitrary surface, the DMP will only encode what (13) will
provide, and this always has a slight delay. This is evident in
Fig. 3, where we show the adaptation of a DMP to a sideways
tilted flat surface, performed by a real robot. The bottom plot
shows that a hysteresis of force is present, depending if the
robot is moving up or down the slope. The hysteresis of
learned motion is also seen in Fig. 2, right, where we can
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Fig. 3. The trajectory of motion when adapting to a flat but tilted surface
in the top plot. The resulting forces show a clear hysteresis resulting from
moving up or down the slope in the bottom plot. Fig. 2-right shows the
complete 3-D trajectory arising in this experiment.
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note that the bottom left-right line has a hysteresis, albeit not
a very pronounced one.

IV. DIRECT ADAPTATION OF TRAJECTORIES

To exclude the delay of the algorithm in the previous
section, we exploit the weight-fitting algorithm of the DMP.
Let’s assume a given trajectory encoded as a DMP, where the
weights w encode the trajectory. The trajectory is following
the demonstrated trajectory with the error of learning in (9)
at ej ∼= 0, meaning that w does not change anymore.

By changing (9) into

ej = kl(Fy0 − Fy), (14)

and using it in (7), the fitting, i. e. the incremental locally
weighted regression will update the weights whenever the
error of force in (14) will not be zero. In other words, it will
adapt the trajectory to fulfill the condition of (14), which is
that the actual force of contact Fy is the same as the desired
force Fy0. Parameter kl is a positive constant. Note that the
implementation of adaptation should take care that the values
of the inverse covariance Pi do not decrease to Pi ∼= 0 as
this will stop the adaptation, given that the update of weights
is multiplied by P .

A feedback term can be added to the acceleration level
of the DMP in order to account for noise and non-repeating
disturbances, changing (1) into

ż = Ω (αz (βz (g − y) − z) + f(φ) + d(F )) . (15)

The feedback term can be a simple proportional control law
with gain kfb > 0, for example d(F ) = kfb(Fy0 − Fy).

In this paper we name the trajectory adaptation method
based on (14) the Direct method. In simulation, where we
can model the forces of contact with displacement of the
elastic environment with stiffness kenv, we can rewrite (14)
into F = kenv(y0 − y) = kenvy. Any error of forces at
end-effector will therefore introduce a position difference
klkenv(y0 −y), which will through (7) reflect in f(φ). From
(1) – (2) we can see that through integration of the DMP
differential equations, f(φ) (and consequently y0 − y) is
integrated twice, which results in a slight delay.

From a physical standpoint, the linear part of (1) represents
accelerations of a spring-mass system, while f(φ) provides
the modification for accelerations that force the system to
follow the desired trajectory. In order to exclude the above
mentioned delay from position-difference integration, we
need to change (14) so that it provides proper accelerations.
These cannot be just any accelerations, but accelerations
to drive the given DMP spring-mass system, which are
calculated according to (6). We therefore write

ej =
1

Ω2 k2ÿ − αz

(
βz (g − k2y) − 1

Ω
k2ẏ

)
, (16)

where k2y = kl(kenv(y0 − y)) models the forces. In this
paper we name the trajectory adaptation method based on
error signal (16) the Diff method.

Figure 4 shows simulated results of trajectory adaptation
on a tilted flat surface. We can see in the top plot the location
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Fig. 4. The results of simulated trajectory adaptation using three different
control methods, with a tilted flat surface as a reference. The experiment
started with the robot already in contact with the surface. We can see the
reference (red) and the three resulting trajectories in the top plot. The errors
of adaptation are shown in the bottom plot. See the text for a description
of separate lines.

of the surface (red) and the trajectory of the robot in three
different control settings. The green plot is the result of the
velocity-resolved approach, i. e. (13) provides the referential
trajectory for (9). The delay of adaptation is clearly seen.
The black plot shows the results of using (14), i. e. the Direct
method. The blue plot shows results of using (16), i. e. the
Diff method. The plots show that the Diff plot converges
faster and to a smaller error that the Direct method. The
errors of adaptation are shown in the bottom plot.

Real-world results of adaptation to a sinusoidal reference
force, where we used the Direct method and no feedback
term in (15) are shown in Fig. 5. The experiment required
that the robot, after establishing contact with the table,
presses on it with a changing, sinusoidal force. We can see
from the results that the trajectory was adapted to the desired
shape.
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Fig. 5. The results of adapting the robot trajectory using 14, with a
sinusoidal referential force. The experiment started with the robot already
in contact with the surface. The referential and resulting forces are in the
top plot, while the error signal, which is an input to the weight fitting, is
in the bottom plot.
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V. ADAPTING PARTS OF TRAJECTORIES

During trajectory learning the demonstrator repeats several
periods of motion and the collected data are given as ref-
erence to the incremental locally weighted regression. The
trajectory is learned, but it might not exactly do what the
demonstrator intended, as is often the case when giving
instructions to another person on how to perform something.
When the resulting motion is not satisfactory, the demon-
strator can coach the other person, specifying how to alter
the motion in certain parts, or simply showing the complete
motion again.

In order to avoid re-learning of the complete trajectory, we
can exploit the same mechanism as in Section IV to change
only parts of the trajectory. We again rely on changing (9).
If ej = 0, there is no learning and the robot just repeats the
trajectory it learned during the demonstration. Again, for a
single degree of freedom, we change (9) into

ej = C(input), (17)

making the error a function of the input, where input can
be either the force applied to the robot or the demonstrator’s
pointing gesture, visually illustrating in which direction to
change the trajectory. For the case of force input, (17)
changes into

ej = kFFy, (18)

where parameter kF scales the measured force Fy . The
measured force in this case should be the force exerted by
the human tutor to the robot. If the robot is in contact with
an object, for example when wiping the table, one must
distinguish between the forces that arise from the contact
with the table and as a result of friction, and the forces
applied by the human operator. A simple solution is to
decouple forces by direction and to include sufficient dead
zones.

Fig. 6 shows the robot end-effector trajectory before and
after coaching. The initial robot wiping motion is in green.
The blue line shows the trajectory of the robot during
coaching, i. e. while the human was pushing on it. The
measured forces of contact are shown in Fig. 7. Four clear
peaks of force show where the human pushed on the robot.
The final wiping motion of the robot after coaching is shown
in red. The initial motion was performed using a previously
learned DMP, the one from Fig. 2, left. The robot found and
maintained a contact with a flat surface from the start of the
experiment. Coaching was applied in x direction only.

When using pointing gestures, we can use active motion
capture markers to first demonstrate a motion and later use
the same markers and their relative positions for tutoring.
This was the case in our experiment. We defined the follow-
ing repulsive force field

ej(x) =

 0 p > 0.1
(0.001/p2 − 0.1)/40 p ≤ 0.1, p1z > p2z

(−0.001/p2 − 0.1)/40 otherwise
(19)

where p stands for the distance between the robot and the
closest marker. Index iz is the z axis location of the i-th
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Fig. 6. X − Y plot of the end-effector motion depicts the initial motion
in green, the motion during tutoring in blue and the final trajectory in red.

marker. The given force field has no effect on the robot
if the closest marker is more than 10 cm away, whereas
its effect increases quadratically with proximity, effectively
pushing the robot away if p ≈ 0. The relative location
of the markers also defines if the robot is being pushed
away or pulled towards the tutor. The given force field was
determined empirically. This experiment is only shown in
the accompanying video.

Fig. 8 shows the still images of a person coaching the
motion of a robot through interaction, i. e. by force.

VI. DISCUSSION AND CONCLUSIONS

In this paper we presented an alternative to the velocity-
resolved approach applied to DMPs in [11]. The approach
utilizes iterative locally weighted regression of DMPs to
change the weights of the DMP and therefore the trajectory
of the robot based on external input. This external input is
not the target trajectory, but the output of a control law,
which provides a force reference for the robot. The results
show that the approach reduces the error of achieved forces
for arbitrary surfaces more than what is achievable with the
velocity-resolved approach. The latter is limited with the
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Fig. 7. The top plot depicts the trajectory of motion in x direction of the
end effector of the robot. The external forces applied by the tutor, depicted
in the bottom plot, modified the motion to achieve the intended result.
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Fig. 8. Sequence of images showing on-line coaching of robotic motion using force feedback while the robot is maintaining contact with the table. The
experiment is also presented in the video and its results in Figs. 6 and 7.

bandwidth of the admittance controller, which relies on the
integral part and therefore always introduces a delay.

While we have not discussed rotations, these can be
modified just as the positions, as was described also in [11].
In the case of wiping, one needs to make sure to distinguish
between the forces that arise from the contact, for example
wiping, and the forces and torques that should actually
change the orientation. For example, when wiping a surface,
the friction will produce a force in the opposite direction of
wiping. This force should not change the trajectory of motion
or the orientation.

Another drawback of the velocity-resolved approach is in
the introduction of an external control system, which is out
of scope of the well defined and stable DMP framework.
This complicates the overall system structure and introduces
additional stability criteria, which have to be met.

Our results have shown that the proposed approach is
applicable for learning of complete trajectories as well as for
adapting just parts of trajectories using physical human-robot
interaction and visual pointing gestures for coaching. Thus,
the proposed approach provides a user-friendly and intuitive
framework for learning of periodic motions in contact with
the environment. It is intuitive in the sense that it is first
demonstrated and then altered by pushing on it, the more
it is pushed, the more it is altered. The user can teach the
desired trajectories, alter their parts, and the robot finds and
maintains the desired contact with the surfaces, all in one
system.
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Rich Periodic Motor Skills on Humanoid Robots:
Riding the Pedal Racer

Andrej Gams1,2, Jesse van den Kieboom1, Massimo Vespignani1, Luc Guyot1, Aleš Ude2 and Auke Ijspeert1

Abstract— Just as their discrete counterparts, periodic or
rhythmic dynamic motion primitives allow easily modulated
and robust motion generation, but for periodic tasks. In this
paper we present an approach for modulating periodic dynamic
movement primitives based on force feedback, allowing for
rich motor behavior and skills. We propose and evaluate the
combination of feedback and learned feed-forward terms to
fully adapt the motions of a robot in order to achieve a desired
force interaction with the environment. For the learning we
employ the notion of repetitive control, which can effectively
minimize the error of behavior towards a given reference.
To demonstrate the approach, we show results of simulated
and real world experiments on a compliant humanoid robot
COMAN. We show the initial results of utilizing the approach
to control a pedal-racer, a demanding balance toy best described
as a hybrid between a skateboard and a bicycle.

I. INTRODUCTION

Periodic motions, often termed also as rhythmic motions,
appear in many biological systems and range from manip-
ulatory tasks to locomotion. As they are periodic, specific
control approaches can be applied. The latter is not only
observable in engineering approaches, but also in biological
systems. The term central pattern generator (CPG) describes
neural circuits found in both invertebrate and vertebrate
animals that can produce rhythmic patterns of neural activity
without receiving rhythmic inputs [1]. CPGs represent fun-
damental building blocks for the locomotor neural circuits in
animals.

The difference of controlling periodic or discrete motions
was also investigated in humans. Schaal et. al. [2] compared
fMRI measurements during discrete and rhythmic tasks,
which showed that higher cortical centers are used for
discrete motions and much less for rhythmic tasks, indicating
that rhythmic tasks require separate theoretical treatment.
Computational models for rhythmic and discrete models
motions were also investigated by Ronsse et al. [3] and
Degallier & Ijspeert [4].

Many researchers propose that motor control is based
on the combination of motor primitives, i.e., that complex
movements are generated by combining a finite set of simpler
elementary movements [1], applicable also to locomotion [5].
This notion has been extensively applied to control of robotic
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tasks; notably with dynamic movement primitives (DMPs),
first introduced by Ijspeert et al. [6]. DMPs represent one
of the approaches for encoding and generating trajectories;
other approaches include, for example, Gaussian Mixture
Regression [7] and Mixture Models [8], splines and wavelets
[9], etc.

While DMPs were originally designed for discrete, finite
tasks, they can be effectively applied to periodic tasks [9]–
[12]. Just as their discrete counterparts, they use a set of
differential equations to compactly represent control poli-
cies and at the same time allow adaptation by modifying
only a few parameters [12]. The latter can be exploited in
several ways, for example for temporal modulation, where
the frequency of motion, which determines the behavior
of the whole system, is modulated by a single parameter.
The frequency of motion can either be set in advance, or
can be modified online to autonomously adapt to external,
driven systems, for example by the use of adaptive frequency
oscillators [13]. Gams et al. [9] have shown how periodic
DMPs can be combined with a pool of adaptive oscillators
to facilitate a system with combined frequency and waveform
learning. On the other hand, Petrič et al. [11] have shown
how a single adaptive frequency oscillator and an adaptive
Fourier series can be used in combination with periodic
DMPs for complex synchronization tasks. Periodic DMPs
allow also spatial modulation and generalization from a
library of recorded motions [14].

Any kind of periodic interaction task, even simply main-
taining contact with a (periodically) moving object, for
example the end of a two-person cross-cut saw [15], requires
either extremely precise predefined trajectories, or adaptation
to specific tasks. Similar applies also to rotating bicycle
pedals or periodically applying force on an a surface. If
that task is to be executed in an unstructured environment
of human daily life, predefining the correct trajectories is
practically impossible. Generalization, as one of the possibil-
ities of adapting to the environment, can provide reasonable
solutions [14].

The problem we are tackling in this paper is in adapting
such periodic trajectories to achieve desired force behavior
and rich motors skills, i. e., in the sense of adaptability to dif-
ferent conditions. The novelty of the approach is in enabling
online spatial modulation of periodic DMPs by coupling
them to the environment using force feedback. Similarly to
external limit modulation [9], our approach utilizes coupling
at the velocity level of a DMP, but with actual, measured
force instead of a virtual one. In order to achieve desired
interaction with either the environment or another robot we
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combine feedback with a feed-forward term, which we learn
in a few periods of the motion. The learning is based on
repetitive control (RC), which can be used to achieve near
perfect tracking of a given periodic reference [16], [17]. Our
proposed approach allows adaptation of periodic trajectories
to the state of the environment in order to achieve desired
interaction. We apply the approach to the task of operating
the pedal racer, a demanding balance toy best described as a
hybrid between a skateboard and a bicycle, with a humanoid
robot. The robot and the device are presented in Fig. 8. We
test our approach both for operating the device with arms and
for riding it. Riding the pedal racer is very complex from the
balance point of view. We applied a center of mass controller
to maintain the balance and used our proposed approach to
modulate the trajectories of motion.

Force feedback was previously used with periodic DMPs
in a table wiping task, where complete trajectories were
learned using regression techniques [18]. On the other hand,
discrete DMPs were previously modulated based on force
feedback using iterative learning control (ILC) [19]. While
ILC requires initial conditions reset after every repetition, RC
can handle the change in the initial conditions – at the start
of every period. Furthermore, the approach of learning the
correct motion comes more naturally for periodic motions,
where the motion is by itself repeated over periods.

Other DMP coupling approaches used acceleration level
feedback on discrete DMPs in combination with learning
[20], or a feedback controller [21]. A combination of feed-
back and learned feed-forward terms in rhythmic DMPs to
stabilize a two-link robotic arm was presented in [22].

In the rest of this paper we first give a summary on
periodic DMPs and present the modulation approach in
Section II. We argument and present the Repetitive Learning
algorithm applied for the learning in Section III. We evaluate
the approach with both simulations and real world experi-
ments in Section IV. In Section V we show how the approach
can be used for controlling a pedal-racer. Conclusions and a
brief discussion follow in Section VI.

II. MODULATING PERIODIC MOVEMENT
PRIMITIVES

In the following we provide the basic motion representa-
tions and the proposed approach to solving the problem of
adapting periodic motions with force feedback.

A. Periodic Motion Primitives

Periodic DMPs have been studied for various tasks [12].
We provide only the basic information, based on the formu-
lation in [14]. For a single degree of freedom (DOF), in our
case one of the external task-space coordinates and denoted
by y, a periodic DMP is defined by the following system of
nonlinear differential equations

ż = Ω (αz (βz (g − y) − z) + f(φ)) , (1)
ẏ = Ωz. (2)

f(φ) is defined as a linear combination of periodic radial
basis functions Γi(φ)

f(φ) =

∑N
i=1 wiΓi(φ)∑N
i=1 Γi(φ)

r, (3)

Γi(φ) = exp (hi (cos (φ−ci)−1)) , (4)

where r is the amplitude control paramter, hi > 0 are their
widths and ci are equally spaced between 0 and 2π in N
steps. The phase variable φ is introduced to avoid explicit
dependency on time. The phase is assumed to increase with
constant rate

φ̇ = Ω. (5)

The parameter Ω denotes the frequency. If parameters
αz, βz, > 0 and αz = 4βz , the system (1) – (2) converges
in a critically damped manner to the goal g.

The weights wi, i = 1, ..., N and N the number of kernel
functions, given in the vector w, define the shape of the
encoded trajectory. [6] and [14] describe the learning of the
weight vector. Multiple DOFs are realized by maintaining
separate sets of eqs. (1) – (2), while a single canonical system
given by (5) is used to synchronize them by providing a
common phase variable.

B. Coupling of periodic DMPs

An example of coupling to achieve spatial modulation of
DMPs is to include a simple virtual repulsive force to avoid
moving beyond a given limit [9]. In this paper we propose a
similar approach, but by including the real, measured force.
This is implemented by modifying (2) into

ẏ = Ω (z + C) . (6)

Here C represents a coupling term, composed of feedback
(cfb) and feed-forward (cff ) terms

C = cfb + cff . (7)

The feedback term is defined by

cfb = k (Fdes − Fact) , (8)

where k is a positive constant, Fdes is the desired force
trajectory and Fact is the real, measured force. The desired
force can be any force trajectory. For the case of riding the
pedal racer (in simulation) we used a measured force profile
(also obtained in simulation), as the reference.

A virtual force can also be used, defined for example by
a virtual spring between the position of the robot yr1 and an
arbitrary object o

Fact,v = kenv(o− yr1). (9)

with kenv defining the stiffness of the virtual spring. The
position of another robot can be used for an object, coupling
two robots. The virtual force between the positions of two
robots (yr1 and yr2), with d the desired distance is then

Fact,v = kenv(d− (yr1 − yr2)). (10)
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The feedback term acts as a P-controller, with the gain kenv

defining the behavior. If it is high, the robot essentially
bounces of on impact, while a low k results in slow adapta-
tion of the robot trajectory.

Using the feedback coupling term alone resembles the
approach in [21]. It is important to note that we couple the
DMP at the velocity level in (2), and not at the acceleration
level, i. e., not with providing a coupling term to (1) after
f(φ). This has several advantages. First, this makes feedback
modulation highly reactive to the actual force, and low gains
can be used. The most important feature of velocity level
coupling is in producing lower oscillations in the direction of
the force. For details on advantages of velocity-level coupling
and stability of coupled DMPs see [19].

If the conditions of the periodic task do not change during
the execution, the error of using only a feedback term will
not change through the periods of motion, but will continue
to repeat. We propose adding a feed-forward term to cancel
the error (e = Fdes − Fact) of tracking the predefined force
trajectory. The feed-forward term has to adapt to the specific
task by a learning method. We propose using repetitive
control (RC), which can achieve near perfect tracking of a
given reference if the conditions of the task remain relatively
the same [16], [17]. The approach is described in the next
section.

To make cff also a function of the phase, we encode the
feed-forward term in the form of weighted kernel functions
Γi, similar to f(φ) in (4)

cff(φ) =

∑N
i=1 viΓi(φ)∑N
i=1 Γi(φ)

. (11)

The target for fitting is the output of the repetitive control
(see Fig. 1). We use iterative locally weighted regression
(ILWR) with a forgetting factor λ = 0.99 to learn the
weights vi. See [9] for details on ILWR. The encoding
acts as a filter, canceling out some of the noise of the
measurements. Additionally, once we stop learning, the same
phase drives both the DMP and the coupling, allowing for
temporal modulations.

III. REPETITIVE CONTROL

Repetitive control is a control method that uses previous
experience to design a new control signal and is thus
categorized as learning-type control [16]. It is mainly used
in continuous processes for tracking or rejecting periodic
exogenous signals and in most cases, the period of the exoge-
nous signal is known. In this paper we use what is known as a
plug-in type repetitive control, which incorporates both feed-
forward and feedback terms. The structure of such controllers
is presented in the top left part of Fig. 1, denoted by the solid
border. Figure 1 also shows how RC is combined with a
DMP, and how a virtual force can be utilized, shown bottom
right and denoted by the dashed border.

Note that the schematic is written for a discrete-time
system, where z−1 represents a delay of one time sample
and z−T of one period. In this paper we also only tackle
constant frequencies.

k 

DMP 1 R 1 

kenv 

L(z-1) 

RC 

Fd 

p1 

- 

- 
Fact 

y1 

e 

w1, Ω1, g1 

(virtual) 
environment 

z-T 

Q(z-1) 

o 

cfb 

cff 

C 

encode 

Fig. 1. Schematic of the RC in combination with the DMP and the robot
(R1). Contact with the environment provides the force Fact. The force can
be the real, measured force, or a virtual force calculated with (9).

The feed-forward term is composed of two parts, known
as the Q and the L filter, which are defined as [16]

L(z−1) = kRC , (12)
Q(z−1) = ε(α1z + α0 + α1z

−1), (13)
2α1 + α0 = 1. (14)

Here αi > 0, 1 ≥ ε > 0 and kRC > 0. Effectively, the feed-
forward term uses the error signal from the previous period
(see z−T in Fig. 1) and applies it to the control signal. The
values of kRC , just as the value of k in the feedback term,
has to be determined before hand. In our experiments we
determined the values empirically.

The robustness of the system is determined through the
gain of the Q-filter. Stability of RC is a wide and complex
topic. As discussed in a survey by Cuiyan et al. [17], different
types of RC control require different design and synthesis
methods. In general, the selection of control parameters
involves a tradeoff between steady state accuracy, robustness
and transient response of the system [17]. Furthermore, there
is also the phenomenon of apparent convergence, where the
system apparently converges, but after some time diverges
[23]. Multiplying the output of the Q filter with ε < 1 will
increase the robustness of the system, but also the steady-
state error. In our simulated experiments we used ε = 0.95
and in our real-word experiments we used ε = 0.7.

The contribution of this paper is in showing how we
can combine DMPs with their modulation and disturbance
rejection properties, and a learning framework of RC. While
RC alone could be applied to the problems at hand, the
combination with DMPs allows more robust and adaptive
behavior and modifications with a small set of parameters.

IV. EVALUATION

We evaluated the algorithm in both simulation and in
real-world experiments. In the first experiment we simulated
a task where the robot has to maintain contact with a
periodically moving object (under external actuation) while
applying a constant, predefined referential force. The scheme
in Fig. 1 was used for simulated experiments and perfect
tracking of the robot was assumed (R1 = 1, see Fig. 1). We
used (9) to simulate the forces.
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Fig. 2. Simulated results of using the proposed RC learning to reduce the
error of force tracking for the task of maintaining contact with a periodically
moving object. The trajectory of the object (black), the trajectory with
coupling (dashed blue) and the original DMP trajectory (green dashed) in the
top plot. The error of force tracking when using the feedback coupling only
(red dashed) and when using both feedback and feed-forward couplings
(blue). Using both couplings reduces the error about 25 times. The final
second of the plot is zoomed in.

Figure 2 shows the results for the task of maintaining
desired contact with an object performing a simple sinusoidal
trajectory. In the top plot we can see the original, uncoupled
DMP trajectory (green dashed), which starts at a randomly
chosen position close to the goal (g = 0.5) and close to the
trajectory of the periodically moving object (black). Also
shown is the trajectory of the DMP with both feedback and
feed-forward coupling (dashed blue). The initial guess for the
motion (green dashed), which was here predefined, but could
have been acquired autonomously through generalization,
has the correct frequency but too small amplitude. The
bottom plot of Fig. 2 shows the error of the desired force
for two scenarios: using only the feedback coupling C = cfb
(red dotted); and both feedback and feed-forward coupling
C = cfb+cff (blue solid). We can see that the error is reduced
approximately 25 times when also the feed-forward term is
used.

The steady-state error depends on the value of ε in (13).
A higher ε, i. e., ε ≈ 1, reduces the steady state error, but
also reduces the robustness of the system. To demonstrate
the effect of varying ε, Fig. 3 shows the results for the
same experiment of maintaining constant contact with a
periodically moving object, but with a considerably more
complex waveform of object motion. Additionally, the signal
of the position of the robot is noisy, with a maximal noise
amplitude of 1 cm. Such noise is unrealistically high for the
estimation of position through forward kinematics, but could
be present if a vision system is used to estimate the position
of the object. The top plot of Fig. 3 shows the waveform of
the object motion (blue solid), while the bottom plot shows
the effect of ε on steady-state error. Steady-state error is
lowest when there is no noise (black dash-dot) and ε = 1.
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Fig. 3. Simulated results of the effect of ε and noise on using the proposed
RC learning to reduce the error of force tracking for the task of maintaining
contact with a periodically moving object. The trajectory of the object
(black), the trajectory with coupling and ε = 0.9 (dashed red) and the
original DMP trajectory (green dashed) in the top plot. The error of force
tracking with different ε values in the bottom plot. Steady-state error is
lowest when there is no noise and highest ε = 1, shown in black dash-dot
line. The final second of the plot is zoomed in.

The results overlap considerably in the transient part, i. e.,
from the beginning.

Increasing ε decreases the robustness of the learning
algorithm, which might cause it to diverge, even after appar-
ent convergence. This is not uncommon [23] and different
methods of canceling out this phenomena exist; the easiest
in reducing ε, reducing the gain of the L filter, see (13), or
by cutting the learning after some time. The latter involves
some heuristics in determining the time to cut the learning;
observing that the error remains below a threshold for more
than one period can be used as a criterion. Figure 4 shows
the occurrence of apparent convergence, where the system
still diverges after some time.

A. Bimanual Coupling

We tested the approach in a real-world scenario where we
used the arms of a humanoid robot to rotate a pedal racer
fixed to a solid structure by its axes. Real measured force
was used to modulate the trajectories of motion.

We used the 4 DOF arms of the compliant humanoid robot
named COMAN [24]. COMAN approximates the size of a 4
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Fig. 4. The phenomena of apparent convergence appears when ε = 1 was
used, but not for ε = 0.85.
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Fig. 5. Image sequence showing approximately one period of rotating the
vertically mounted pedal racer with the arms of the COMAN robot after the
learning, when the contact with the pedals is constantly kept. The attached
video shows the complete experiment. The tape on the wheels simulates
contact with the ground and keeps them at the same velocity, preventing
the device from locking up, which happens if the front and the back wheels
do not rotate together.
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Fig. 6. Results of modifying the arm trajectories for a cooperative bimanual
task of rotating the pedal racer with arms. The top plot gives the trajectory
of the arm with x denoting the distance from the body to the tip of the arm.
The bottom plot gives the estimate of the measured force (blue), filtered
force (green) and desired force (red dashed).

year old child, having 945mm from the foot to the center of
the neck, and 312mm between the centers of the shoulders. It
weights 31.2kg, out of which the legs and the waist module
weigh 18.5kg. The complete robot has 23 DOF; each leg has
6: 3 at the hip, 1 at the knee and 2 at the ankle. The trunk is
composed of a 3 DOF waist and the body, while each arm
has currently 4 DOF, i.e. 3 in the shoulder and 1 in the elbow.
Passive compliance based on series elastic actuation (SEA)
is added to 14 of the 23 DOF including all flexion/extension
DOF of the legs, the flexion/extension of the shoulders and
elbows and the shoulder abduction/adduction. The robot is
presented in Fig. 8.

The task of the algorithm was to maintain sinusoidal force
trajectories on a vertically fixed pedal racer, as presented in
Fig. 5. The experiment served to show the applicability of
the approach in a real-world cooperative scenario, where the
cooperation was between the two robot arms. It also served
as a preparation for the task of actually operating the pedal
racer by standing on it.

The initial trajectories of motion, encoded by DMPs were
accurate for the up-down (z) direction, because the arms
could not brace against any part of the pedal racer in

the z direction. Therefore only friction could be used to
produce up-down force on the device. The forward-backward
(x) motion was a sinusoidal with an estimated amplitude,
deliberately set not to maintain contact with the device at all
times. The robot was standing straight in front of the pedal
racer with no balance control. Therefore, a person had to
hold the robot (by the neck) so that it produced forces on
the pedal racer and did not tip over when the arms made
contact. Joint-torque sensors were used to estimate the force
on the end effector. Forces were first estimated for pedaling
in the air. These forces were deducted from the estimates
during the experiment to estimate the force of contact. The
measurements were extremely noisy.

Figure 6 shows the results for the left arm of the robot. The
results for the right arm were similar, but in counter-phase.
The experiment is presented also in the attached video. The
learning was started after 20 s. We can see from the top
plot that the arm trajectory changed. In fact, it maintained
constant contact with the pedal racer when the learning was
stopped. On the bottom plot we see that the measured force
curve did change its shape, but not completely to the desired
one. This is a direct consequence of three major reasons.
The first is that the force measurement was only an estimate,
valid for static conditions only. The second is that the robot
was held by a person and therefore the periods were not
completely repeatable. The third is in setting learning for
greater robustness with ε = 0.7 in order to cope with the
first two reasons. The results show that the trajectories were
modified to maintain constant contact with the device and
that while not achieving perfect tracking, a general shape of
the force profile was still observed.

V. PEDAL RACER

We tested the proposed approach on the task of operating a
pedal racer by standing on it. The task is harder than it seems
even for people, and that is also how the device is marketed.
The pedal racer moves forward if the pedals are moved in
a circular fashion. Contact has to be maintained with both
pedals, which imposes kinematical constraints. In one period
of motion, the operator has to twice pass through singular
configurations of the device by applying forces forward-
backward using only friction to brace against the device.
The experimental scenario demanded the robot to optimize
the initial estimated trajectory of motion over several periods
of learning in order to achieve the desired force profile.

We evaluated our approach in simulation using the We-
bots dynamic simulator [25], and we conducted preliminary
experiments on the real robot.

A. Balance Control

In order to have the robot maintain balance, we imple-
mented a hierarchial control structure with several tasks.
We used iterative inverse kinematics algorithms to con-
trol the center-of-mass (COM) of the robot and the posi-
tion/orientation of the two feet. Both were implemented as
primary tasks by stacking the COM Jacobian and the Jaco-
bian of one foot with respect to the other in an augmented
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Fig. 8. In the top row an image sequence of one period of virtual COMAN steady-state pedaling on a virtual pedal racer in Webots dynamic simulator,
after learning. The bottom row shows the real COMAN robot pedaling on the device. Note that the robot was helped to maintain balance at least once per
period.
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Fig. 7. Simulated results of operating the pedal racer with the robot
standing on it. In the top plot the error of the desired force: no coupling
(blue), feedback coupling (red), feedback and feed-forward coupling (green).
We can see that the error of the force is considerably reduced when
both feedback and feed-forward couplings are used. In the bottom plot
the relative distance between the feet: first approximation (blue), feedback
coupling (red), feedback and feed-forward couplings (green). Ideal trajectory
is dashed black.

Jacobian. The control sets the COM to remain in the center
between the feet. For details on the implementation of the
controller refer to [26].

B. Results

We conducted several experiments in simulation. The task
was designed to maintain a desired periodic force profile on
the feet of the robot. Each foot of the robot is equipped with
a 6-DOF force-torque sensor.

In the manner of the approach in [21], we used the
measured forces of a successful execution as the reference,
obtained in simulation by maintaining the balance using a
COM controller and providing the exact kinematical motion
to the feet of the robot, which was perfectly aligned to the
device. Our task was designed to adapt the vertical motion of

the robots feet, starting from a reasonable first approximation
(off by 4 cm). The approximation alone results in the robot
tipping over. The phase relation between the horizontal and
vertical movements was preset.

The plots in Fig. 7 show errors of force tracking for three
scenarios: using no coupling (blue); using only feedback
coupling (red) and; using both feedback and feed-forward
coupling (green). The bottom plot shows the relative po-
sition of the feet for the same three scenarios and in the
same colors. No coupling results in the robot tipping over.
Feedback-only coupling results in higher errors and different
trajectories than both feedback and feed-forward coupling.
The bottom plot shows also the trajectory of referential, i. e.,
predefined pedaling (black-dotted).

Fig. 8 shows in the top row an image sequence of steady-
state simulated pedaling after learning, executed in Webots
dynamic simulator. The bottom plot shows the results on
a real robot. The robot was pedaling on a treadmill; the
frequency of the pedaling was calculated to keep the robot
and the pedal racer in place. Both experiments are presented
also in the accompanying video. Note that the robot had to
be helped to maintain balance at certain times, at least once
per period. The reason is in the discrepancy between the
real robot and the model used to estimate the position of the
center of mass, and in the compliance of the pedal racer,
which would visibly bend under load.

C. Discussion of the results

It is important to note that we designed the task to show the
applicability of the proposed approach for a demanding task.
While we show the potential of the proposed approach, other,
possibly fundamentally different approaches approach might
prove equally effective, perhaps more. The issue at hand is in
the referential forces. Since the task of riding the pedal racer
is demanding – the robot has to be stable, only friction is used
to produce forces forward-backward, singular configurations
have to be overcome when the feet are the most apart
in the up-down direction – we mimicked the approach by
Pastor et al. [21] and used a successful execution to acquire
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the referential force trajectory. A successful execution is
relatively easy to come by in simulation, but achieving the
same on the real robot is complex in maintaining the balance
of the robot. The latter is crucial for force measurements. It
is evident in Fig. 8 that we had to intervene by hand to
maintain balance at certain points of the period of motion.

Since the robot is standing on the pedal racer, any in-
stability or perturbation will directly affect the forces. The
robot boasts SEAs and is therefore slightly wobbly even
when standing on solid ground. Any oscillation of the springs
introduces forces which have an effect on the trajectory
and also learning, adding to the acceleration of the robot,
which results in additional forces, possibly leading to self-
excitement of the trajectories. Some of this is evident also
in Fig. 7.

VI. CONCLUSIONS AND FUTURE WORK

While thus far mostly restricted to the kinematic domain,
coupling the DMPs with force feedback extends their do-
main to include dynamic tasks. The combination of periodic
DMPs, force-feedback and learned feed-forward coupling al-
lows for generation and execution of previously unattainable
motions, resulting in rich and adaptable periodic motor skills
of a robot.

We used repetitive control, which can cope with the
change of initial conditions of the start of a period, making
it suitable for periodic tasks. The plug-in type RC with a
feedback term can also cope with noisy and less-than-perfect
repetitions through periods of motion. In the paper we only
briefly touched the issue of the stability of the algorithm,
relying on empirically set values to achieve and present initial
results. In the future we will derive explicit stability criteria,
just as was derived for discrete tasks in [19].

The complex real-world task of operating the pedal racer
shows the potential of the proposed approach. In our scenario
the trajectory of required motion to pedal on the device
was only estimated and then optimized for the task through
several periods of learning. Even though the final, learned
trajectory resulted in operating the device, showing that a
learning/adaptation approach is needed, it still leaves room
for improvement of robotic pedal-racing in future work.
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Improved Iterative Adaptation Scheme with Recursive Estimation of
Compensation Signals

Bojan Nemec1, Tadej Petrič1, and Aleš Ude1

Abstract— In this paper we address the problem of how to
improve the adaptation speed and the robustness of an Iterative
Learning Controller (ILC) applied to robot control with force
feedback. In contrast to standard ILC, which updates the
feedforward control signal based on results from the previous
cycle, our proposed controller updates the feedforward signal
immediately. This results in significantly faster adaptation
and consequently faster reduction of the tracking error. The
feedforward control signals is encoded as a linear combination
of radial basis functions. The proposed approach was evaluated
in simulation and on a Kuka LightWeight Robot Arm where
the task was to perform force-based surface following with both
discrete and periodic movements.

I. INTRODUCTION

Iterative learning control (ILC) is often used in robotics
due to its simplicity, effectiveness and robustness when
dealing with repetitive operations. In industry as well as in
home environments, there are many tasks that need to be
executed repeatedly. In such cases, humans usually acquire
and perfect the skill over several repetitions of the task.
The same learning principle can also be adopted in machine
motor control theory, where a system follows a similar
trajectory repeatedly and updates necessary parameters in
order to perfect the skill.

One possible method for improving the skill knowledge
is iterative learning control. The general aim of ILC is to
improve the behavior of the control system that operates
repeatedly by iterative refinement of the feedforward com-
pensation signal [1]. The ILC is also closely related to the
Repetitive Control (RC), where the desired task trajectory is
a periodic function of time, and without resetting between
periods [2]. In contrast to the RC framework, the ILC system
is designed to return to the same initial condition before
each new execution of the task. The ILC framework has
been successfully applied to many practical tasks that arise in
manufacturing and robotics [3], [4], humanoid robotics [5],
path tracking [6], medical robotics [7], health care robotics
[8], and visual servoing [9]. Furthermore, the basic ILC
schemes can be extended with methods that enhance their
robustness [10], [11] and the adaptability of the overall
system [12], [13]. The problem of the minimum variance
learning has also been addressed within the ILC framework
[14].

1Humanoid and Cognitive Robotics Lab, Department of Automatics,
Biocybernetics and Robotics, Jožef Stean Institute, Ljubljana, Slovenia,
bojan.nemec@ijs.si, tadej.petric@ijs.si,
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In [15] ILC scheme was applied for motion coordination
of a bimanual robot task using force feedback. In this
case the dynamic motion primitives (DMP) framework was
used for the representation of motion trajectories. The feed-
forward compensation signal was generated by the ILC.
DMPs in conjunction with ILC were applied also in [16] to
improve a force based assembly skill, where phase stopping
algorithm was utilized to enhance the robustness of the
overall framework. By replacing the time dependency in the
ILC with the phase dependency, a standard ILC assumption
of the equal duration of the trials could be removed. Using
this substitution, ILC framework was successfully applied
also for speed optimization of the demonstrated skills [17].

In this paper we propose a new learning controller that
combines the ideas of standard ILC and on-line coaching
[18], resulting in improved adaptation speed, robustness
and ease of implementation. The structure of the proposed
algorithm is closely related to the DMP framework. The
proposed algorithm is general and can be used with both
types of movements that can be represented by DMPs, i. e.
discrete and periodic movements. The performance of the
proposed algorithm was evaluated and compared with ILC
schemes as proposed by our previous research [16], using
both simulation and real robot experiments. Two experiments
were performed, one showing the performance of the algo-
rithm on a discrete task and the other on a periodic task,
respectively.

The paper is organized as follows. In Section II we
briefly outline the dynamic movement primitives for discrete
and periodic tasks. In Section III, the classical ILC control
scheme and how this scheme evolves into the newly pro-
posed algorithm is presented. In Section IV the experimental
results and the effectiveness of the proposed algorithm in
comparison to the more standard ILC approaches is shown.
Two different cases were considered 1) discrete tasks and
2) periodic tasks, both involving force interaction with the
environment.

II. ENCODING TRAJECTORIES WITH DMPS

In this section we give a brief overview of the underlying
representation used in our approach. It is based on parametric
description of trajectories and signals with dynamic move-
ment primitives [19]. Within this framework, trajectories,
given either in joint or in task space, are described as an
output of the second order differential equation modulated
with radial basis functions to get the desired shape. Every



degree of freedom is described by its own dynamic system,
but with a common phase which synchronise them together.

For point-to-point movements (also referred to as discrete
movements) the trajectory for each degree of freedom y is
described by the following system of nonlinear differential
equations

τ ż = αz(βz(g − y)− z) + f(x), (1)
τ ẏ = z, (2)
τ ẋ = −αxx, (3)

where x is the phase variable and z is an auxiliary variable.
αx, αz , βz and τ are defined such that the system converges
to the unique equilibrium point (z, y, x) = (0, g, 0). By
setting αz = 4βz , the linear dynamic system is critically
damped.

The nonlinear term f contains free parameters that are
used to modify the dynamics of the second-order differential
equation system to approximate any smooth point-to-point
trajectory from the initial position y0 to the final configura-
tion denoted as goal g. The nonlinear term f is given by

f(x) =

∑N
i=1 wiΨi(x)∑N
i=1 Ψi(x)

x, (4)

Ψi(x) = exp
(
−hi (x− ci)2

)
, (5)

where the given initial and final velocity are equal to zero.
N radial basis functions with width hi > 0 are equally
distributed along the trajectory where ci are the centers.
Weights wi are estimated with regression in such that the
DMP encodes the desired trajectory.

For the periodic representation of the trajectories, the
nonlinear differential equations take the identical form as for
discrete signals given with (1) and (2), except for the phase,
which is

ẋ = Ω. (6)

Here, Ω = 1/τ denotes the frequency of an periodic signal.
Note that in the case of the periodic representation the phase
x is a monotonically increasing function. Also the non-linear
function f has the same form as for discrete signals, except
that the kernel functions ψj are Gaussian periodic functions
defined as

ψj(x) = exp

(
1

2σ2
j

(cos(x− cj)− 1

)
. (7)

Parameters cj and σj respectively define the center and width
of the j-th periodic basis function, while wi are adjustable
weights used to define the desired shape of the trajectory.

One of the advantages of DMPs is that they can be
modulated both spatially and temporally without changing
the overall shape of motion. Ijspeert et al. [19] introduced a
slow-down feedback, where the robot is automatically halted
on excessive position error. In [16] this principle was used
to slow down the trajectory execution on excessive forces
and toques. Another benefit of the DMPs is the robustness
against the sudden change of the goal variable g. Whenever a

new goal is specified during the DMP evolution, the resulting
trajectory is governed according to the response of the second
order system.

III. RECURSIVE REGRESSION ITERATIVE LEARNING
CONTROLLER (RRILC)

The output y of the DMP enables us to follow the
demonstrated trajectories. In many practical situation, it is
necessary to change the output of the learned DMP to
achieve the desired goal (see Section IV for some practical
examples). In this paper we consider the situation where we
add a control signal u to the output of the DMP y, i. e. the
positional signal for robot control is defined as

y = yDMP + u. (8)

To learn the optimal control signal u, the widely used
iterative learning control approach can be applied [1]

ul+1(k) = Q(ul(k) + el(k + d)), (9)

where l is the learning iteration index, el(k) is the error
signal that describes the difference between the desired and
the actual task execution. See Section IV for some practical
implementations of e. Q and L could be selected as discrete
transfer functions that determine the ILC behaviour and
the overall stability of the learning system. In many cases,
including in our experiments, they are set to constant values.
In the cases when the control system time delay is known in
advance, a transient response of the system can be improved
by setting parameter d to a proper value, otherwise it is often
set to 1.

Standard ILC assumptions include: 1) Stable system dy-
namics, 2) System returns to the same initial conditions at the
start of each trial, 3) Each trial has the same length. Stability
analysis is usually performed in a lifted time domain system
[1]. Parameters may be tuned also using heuristic approach
[20] where the choice of Q is a tradeoff between the stability
region and steady-state error. Q in the form of low pass filter
rejects disturbances and enhances the robustness [20].

ILC in the form (9) ’waits’ one cycle before it modifies the
control signal. To override this limitation, a feedback control
signal is usually added to the plant resulting in

ul+1(k) = Cel+1(k) +Q(ul(k) + Lel(k + d))

= Cel+1(k) + sl(k). (10)

This scheme is often referred to as ’current iteration’ ILC
[1]. The ILC feedforward signal sl(k) can be computed in
advance after the competition of each learning phase l. Here
we propose to encode the sequence {sl(k)} with radial basis
functions, i.e.

σl(x) =

∑N
i=1 wl,iΨi(x)∑N

i=1 Ψi(x)
, (11)

where Ψ is defined as in (5) in the case of discrete move-
ments and as in (7) in the case of periodic movements. x is
the phase (3) used to drive the DMP. In this case, (10) turns
into

ul+1(k) = Cel+1(k) + σl(x(k)) (12)



where σl(x(k)) ≈ sl(k) provides the phase dependent feed-
forward compensation signal.

The benefits of encoding the feedforward signal using (11)
are:

• Since the reference trajectory yDMP (k) is encoded with
DMPs (1) – (3), the time dependency is removed form
the ILC update and replaced with the phase dependency.
Consequently, each learning trial can have different
duration and assumption 3) changes to: Each trial has
the same length in the phase domain. This enables
us to modulate the execution speed according to the
interaction with the environment, which enhances the
robustness of assembly tasks [16].

• Signal encoded with RBF is close to the original signal
passed through the low pass filter. Therefore, with RBF
encoding of the ILC feedforward compensation signal
we inherit the robustness of the overall system.

Lets rewrite the sl(k) term from the (10) into the form

sl(k) = Qul(k) +QLel(k + d)

= Qsl−1(k) +Q(Cel(k) + Lel(k + d)). (13)

In continuous form (11), this expression becomes

σl(x(k)) = Qσl−1(x(k)) +Q(Cel(k) + Lel(k + d)). (14)

We can calculate the feedforward signal σl(x) recursively
with a recursive least-squares regression. This mitigates the
need for saving discrete samples sl(k) needed to compute
(10). Recursive encoding of σl(x) also means that it can be
used in the current learning cycle, similar to the coaching
proposed in [18]. As σl is now updated at each time sample,
the learning cycle l dependency can be deleted and we just
write σ(x) from now on. Note that at the time sample k,
the feedback signal el(k+d) is not yet available. Therefore,
we can estimate the weights wl(k) = [w1, . . . , wN ]T at l-th
learning iteration step and k-th time sample only with some
delay

wl(k−d) = wl(k−d−1) +
[
Qσ(x(k−d)) +QCel(k−d)+

QLel(k)−al(k−d)Twl(k−d−1)
]
Pl(k−d)al(k−d),

Pl(k−d) =
1

λ

(
Pl(k−d−1) +

Pl(k−d−1)al(k−d)aTl (k−d)Pl(k−d−1)

(λ+ aTl (k−d)Pl(k−d−1)al(k−d))

)
,

al(k−d) =
1∑N

i=1 Ψ(xl(k − d))

 Ψ1(xl(k−d))
...

ΨN (xl(k−d))

 . (15)

Here λ is the forgetting factor and P the covariance matrix,
which is set at the beginning of the recursive estimation to a
diagonal matrix with large values. Initial values of weights
w1(0) are set to 0 at the beginning of learning. The new
control signal u is thus given by (12), where the feedforward
term σ(x) is calculated using (11) and the corresponding
weights w are calculated using (15). As we use recursive
regression, we name this approach Recursive Regression

Iterative Learning Controller (RRILC). For discrete tasks,
the vector al(k) is formed using kernel functions according
to (5). For repetitive tasks, kernel functions in vector a(k)
are chosen according to (7). In the continuation of the paper
we refer to the version of the algorithm with periodic kernels
as Recursive Regression Repetitive Controller (RRRC).

The main difference between the standard ILC and RRILC
is that RRILC calculates the control in the current cycle
with the recursively updated estimator σ, thus exploiting
the updates calculated in the current learning iteration l
immediately.

Since our approach belongs to the class of iterative learn-
ing control methods, we can use the standard lifted system
framework to analyse the stability of the learning system.
The stability analysis can be performed in a standard way
(e.g. by applying a lifted system description) by selecting
appropriate parameters Q and L [1].

IV. SIMULATION AND EXPERIMENTAL EVALUATION

In this section we evaluate the performance of the pro-
posed algorithm and compare it to the standard ILC as
given by Eq. (10). As some features and benefits of the new
algorithm are easier to show in simulation, we evaluate the
methods both in simulation and in real experiments. In real
experiments we applied a KUKA LWR robot equipped with
Barrett hand. The robot was controlled from Matlab/Simulink
environment using Fast Research Interface [21] at 100 Hz.
Both in simulation and in real world experiments we used an
identical setup, where the simulated dynamics of the robot
and the environment were updated at 1 KHz. We selected
low gains in the position controller of the KUKA robot,
which results in compliant behaviour. The arm stiffness was
set to 1000, 1000 and 500 N/m for translational axes and
to 100 Nm/rd for rotational axes, respectively. Such a high
compliance is necessary when a robot is working in a non-
structured environment or cooperating with humans.

A. Force based surface following

In many industrial applications the robot is required to
follow a previously unknown surface. Typical operations
which involve this problem are polishing, grinding, cleaning,
etc. This problem is relevant also for the future generation
of home robots while performing task from everyday life
such as cleaning the table, polishing furniture, etc [22]. Force
control is needed to solve such problems. Clearly, if the
robot is able to move around while precisely maintaining
the contact force, the surface shape can be directly captured
from the robot’s motion. In our experiment, one robot was
holding a paint roller in the hand. The task was to follow
the previously unknown surface at constant speed of 0.15
m/s in X direction while maintaining the constant force of
5 N in Z direction. The shape of the object was a triangle
as illustrated in Fig. 1. The search trajectory was defined as
a straight line in X direction and encoded with DMPs using
(1) and (2). We applied the admittance stiffness force control



Fig. 1. Simulated environment

[23], combined with ILC, in discrete time form,

yc(k) = yDMP (k) +

k∑
j=1

Kfiel+1(k) +

Kfpel+1(k) + sl(k),

e(k) = Fd(k)−RFm(k)), (16)

where yc is the control position feed to the robot controller,
yDMP is the position as returned from the DMPs, R is the
current robot rotation matrix, Fd are the desired forces, Fm

are measured forces in the tool coordinate system and Kfi

and Kfp are the force feedback matrices, respectively. ILC
feed-forward signal sl(k) was calculated as in (13), where
error signal (16) was used for learning. d was set to 3.

In RRILC, we applied the same control law as in (16),
except that time dependent feedforward signal sl(k) was
replaced with the phase dependent RRILC generated signal
σ(x(k)), calculated for each robot coordinate according to
(11) and (12). The corresponding weights w were calculated
using (15) for each Cartesian coordinate, where the error
signal el(k) was the corresponding component of the force
error (16).

Five learning cycles were performed with ILC and RRILC.
The forgetting factor λ was set to 1, i.e., no forgetting was
applied. After each learning cycle, we reset the covariance
matrix to 10I. Parameters Kfi, Kfp, L and Q were set to
0.0001 I, 0.001 I, 0.001 I and 0.99 I, respectively. Fig. 2
shows compensation signals, forces, positions and orienta-
tions of the robot as obtained in simulation. For the sake of
clarity, only the results of the first and the fifth (last) learning
cycle are shown. It is evident that RRILC outmatches the
ILC especially in the first cycle. As it generates the feed
forward compensation signal already in the first cycle, it
converges considerably faster than the standard ILC. Note
that the standard ILC lost the contact with the surface after
4 seconds. It can be easily verified that the controller (16)
is not capable of tracking constant environment slope with
zero force error in the first cycle, as the compensation term
s1(k) is zero. Note also that the gains Kfi and Kfp were
already set to the stability margin of the closed loop system.
We can notice also smoother response of RRILC due to the
smoothing provided by regression.
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Fig. 2. Comparison of simulation results obtained with ILC and RRILC.
Upper graph shows the force tracking in Z direction. Lower graph shows
the learned Z coordinate of the surface

The same task was repeated in real environmen. The only
difference was that the shape of the unknown object was
selected as shown in Fig. 3. The object was made of thin
aluminium plate, one part of the plate was firmly attached
to the bottom, while the other was not. Therefore, during
the surface following the environment stiffness was changing
from very stiff at the beginning to very compliant at the
end. Again, we compared the performance of the ILC and
RRILC algorithm. The results are shown in Fig. 4. Also
in the real experiment we can see that the newly proposed
RRILC results in faster learning. Similar as in the simulated
environment, also here the standard ILC has lost contact with
the surface at the end of the first learning cycle. However,
after five repetitions, the results were virtually identical with
both algorithms, which is the expected behavior.

Fig. 3. Experimental setup

B. Stirring in a pot

One of the most common cooking activities is stirring.
The purpose is to mix liquid ingredients by moving a spoon
(or similar tool) around the pot in a circular motion. In
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Fig. 4. Comparison of the real world experiments performed with ILC and
RRILC. Upper graph shows the force tracking in Z direction. Lower graph
shows the learned Z coordinate of the surface.

many cases it is necessary to apply small forces to the pot
wall while stirring. Here, we consider a scenario, where
the stirring motion was obtained by the demonstration for
another pot with smaller diameter and elliptical shape. The
desired forces were captured from human demonstration. The
center of the pot was displaced in X and Y directions for 2
cm and 3 cm with respect to the center of the demonstrated
motion, respectively. The task of the robot was to adapt to the
new situation as quickly as possible. For this, we applied RC
and RRRC and compared the performance of both algorithm.

The control algorithm in the time discrete form was

yc(k) = yDMP (x(k)) + (Kfel+1(k) + sl(k))r(x(k)),

e(k) = r(x)T(Fd(x(k))−RFm(k)), (17)
r(x) = [cos(x), sin(x), 0]T,

where x denotes the phase angle calculated by (6), yc is
the commanded robot position, yDMP the trained periodic
DMP, R is the current robot rotation matrix, Fd are the
desired forces obtained from user demonstration, Fm are the
measured forces in the robot tool coordinate system, er is
the radial force error, and Kf is the scalar force feedback
gain. Transformation r(x) transforms the phase angle x into
a position on the unit circle at height z = 0.

The RC feedforward signal s(k) corresponds to the radial
displacement. It was estimated according to (13). d was set
to 7. Parameters Kf , L and Q were set to 0.001, 0.0005, and
0.99, respectively. For RRRC, the feed forward compensation
signal s(k) was replaced with the phase dependent RRRC
generated signal σ(x(k)), calculated according to (11) and
(15). The forgetting factor λ was experimentally set to 0.992.
The duration of the stirring cycle was 2 seconds and 8
stirring cycles were preformed. The results are shown in
Fig. 5. It can be seen that the RRRC established full contact
with the pot wall already in the second stirring cycle and
proceeded with almost unchanged response for the following

6 cycles. On the other hand, RC took 6 stirring cycles to
establish full contact with the pot wall. In the last cycle,
learned compensation terms were almost identical for both
algorithms. Fig. 6 shows the comparison of the learned path
for both algorithms, measured at the wrist position. Due to
the compliant orientational axes of the robot, this position
slightly deviates from the end effector (spoon) position.
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Fig. 5. Comparison of the experimental results for pot stirring obtained with
RC and RRRC. Upper graph shows the force tracking in radial direction.
Lower graph shows learned compensation term in radial direction. Dotted
vertical lines denote stirring cycles.
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Fig. 6. Comparison of the learned trajectory for pot stirring obtained with
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Finally, we investigated how the motion can be adapted to
a pot with non-smooth edges, e.g, to a square pot, as shown in
Fig. 7. The reference trajectory and forces were the positions
and forces learned in the last stirring cycle from the previous
example. The stirring trajectory was slowed down by a factor
of 2 by changing the τ variable in DMPs from 2 to 4. Again,
we compared RC and RRRC learning algorithms. Results
are outlined in Fig. 8. In this case, the RRRC learned faster,
but the final learned offsets caused greater deviations from
the desired forces than the RC algorithm. This is even more
evident in Fig. 9, which shows the learned path measured at
the robot wrist. Although the spoon followed the square pot
wall in both cases, the wrist trajectories were substantially
different due to the high compliance of the robot wrist. One
possible reason for this defect might be excessive smoothing
induced by the representation of the feedforward signal with
RBFs.



Fig. 7. Experimental setup for stirring in square pot.

V. CONCLUSIONS

We proposed a new controller based on ILC and RC
paradigms, which applies recursive estimation of the feed-
forward signal for the minimization of the control error. It
enables to compensate pure time delays in the controlled
plant and generates smooth control signals. The proposed
learning controller was verified both in simulation and in
real experiments involving force interaction with the environ-
ment. Simulation and experimental results have shown that
the main benefit of the new controller is the significantly
improved speed of learning. In one experiment out of three
we noticed that the standard RC learned better compensa-
tion signal than RRRC. However, RRRC converged faster,
which opens new possibilities in combining both approaches.
RRRC (or RRILC) could be used at the beginning of
learning. After a few iteration the system could switch to the
standard RC (or ILC) for final refinement of the behavior.
We will investigate this possibility in the future.

In this work our aim was to learn the force-based skills
with highly compliant robot applying low control gains,
which are beneficial for robots working in cooperation with
humans and in unstructured environments. In the future we
will investigate also the behaviour of the proposed algorithm
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Fig. 8. Comparison of the experimental results for stirring in square pot
obtained with RC and RRRC. Upper graph shows the force tracking in
radial direction. Lower graph shows learned compensation term in radial
direction. Dotted vertical lines denote stirring cycles.
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Fig. 9. Comparison of the learned trajectory for stirring in square pot
obtained with RC (left) and RRRC (right). The plotted positions correspond
to the robot wrist positions

in torque-based force control schemes.
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[12] M. Norrlöf, “An adaptive iterative learning control algorithm with
experiments on an industrial robot,” IEEE Transactions on Robotics
and Automation, vol. 18, no. 2, pp. 245–251, Apr 2002.

[13] A. Tayebi, “Adaptive iterative learning control for robot manipulators,”
Automatica, vol. 40, no. 7, pp. 1195–1203, 2004.

[14] R. Tousain, E. van der Meche, and O. Bosgra, “Design strategy for
iterative learning control based on optimal control,” in 40th IEEE
Conference on Decision and Control, Orlando, Florida, 2001, pp.
4463–4468.



[15] A. Gams, B. Nemec, A. Ijspeert, and A. Ude, “Coupling movement
primitives: Interaction with the environment and bimanual tasks,”
IEEE Transactions on Robotics, vol. 30, no. 4, pp. 816–830, 2014.

[16] B. Nemec, F. J. Abu-Dakka, B. Ridge, J. A. Jorgensen, T. R.
Savarimuthu, J. Jouffroy, H. G. Petersen, N. Krüger, and A. Ude,
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Hierarchical Segmentation of Manipulation Actions based on Object
Relations and Motion Characteristics

Mirko Wächter, Martin Do, Tamim Asfour1

Abstract— Understanding human actions is a indispensable
capability of humanoid robots which have to acquire task
knowledge from human observation and adapt this knowledge
to new situations to be able to act and interact in the real world
in a 24/7 manner.
To understand actions, we need to segment the human demon-
stration into meaningful actions while taking into account
preconditions and effects of actions. In this paper, we present
an approach for the observation of a human in motion as
well as the objects and the environment he/she is interacting
with during the demonstration. Human and object motions
are captured using a marker-based tracking system, where
markers are attached to the human body and objects of interest.
Together with 3D object mesh models, a 6D object pose is
obtained leading to an accurate representation of the scene
and the changes in the world during the demonstration.

We propose a hierarchical segmentation approach which not
only considers the human motion but also the relevant objects.
Therefore, the proposed method segments on a semantic level
as well as on a trajectory level. The segmentation results
provide the necessary granularity of actions, which allows the
association of observed and previously learnt segments as well
as the sequencing of these segments to complex actions.

I. INTRODUCTION

Many research efforts in humanoid robotics have been
dedicated to the development of sophisticated systems that
can mimic the functionalities of a human. To tap this huge
potential, humanoid robots are to be endowed with cognitive
abilities for the acquisition of novel motor knowledge and
the adaptation of this knowledge to unseen situations in
order to account for dynamic changes. An intuitive way
to approach this challenge is to acquire motor knowledge
through the observation of humans and to transfer this
knowledge to robots. In this context, an emerging paradigm
is programming by demonstration, which in recent years
progressed to the more biological-oriented term of imitation
learning. A central concept which provides the basis for
numerous imitation learning approaches has been the concept
of the motion primitives. Motor primitives are units which
incorporate a control policy for the execution of simple,
basic motion patterns. Commonly, it is assumed that these
motor primitives form the human motion repertoire from
which complex movements are generated, adapting and
sequencing these primitives in a task-dependent way. To
provide data from which a robot can learn these motion

*The research leading to these results has received funding from the
European Union Seventh Framework Programme under grant agreement
No 270273 (Xperience).

1Mirko Waechter, Martin Do and Tamim Asfour is with Institute for
Anthropomatics and Robotics, Karlsruhe Institute of Technology, Germany
{waechter,do,asfour}@kit.edu

Converted Demonstration

Human Demonstration

No contact Cup in left hand No contact

Grasp Lift Pour Place Retreat

Hierarchical Segmentation

Fig. 1. A human demonstration of a complex task (top) is being recorded
with a marker-based motion capture system. This marker-trajectories are
converted into 6D object pose trajectories (middle), which serve as input
for the proposed segmentation algorithms. The result of the segmentation
(bottom) contains segments with distinct object-relations on the top-level
and sub-segments with distinct motion characteristics on the bottom-level.
The subsegments in this figure are labeled manually to illustrate the meaning
of the subsegments.

primitives, methodologies have to be implemented to allow
the automatic segmentation of continuous human motion
data.

Therefore, a segmentation procedure which provides a
sequence of reliable segmentation points based on which
a movement can be divided in meaningful parts is crucial
for the further processing of human observations. The found
segmentation points should denote changes in the scene
which are caused by the enclosed manipulation actions.
However, such points are difficult to extract from mere
human motion data. Therefore, we consider in this work also
motion data from the manipulated objects. In addition, we
also wish to determine smaller segments denoting known as
well as unknown motormotion primitives depending on the
elements the manipulation action is composed of.

To implement a segmentation method which satisfies the
demands mentioned above and serves as an automatic tool to
enrich a motion library with semantic information and more
granular motion elements, in this work, a hierarchical ap-
proach is presented. On the higher level a semantic segmen-
tation is performed based on the contact relations between the
human end-effectors and the scene and between objects in the
scene. To enable the capturing of these relations, a method
has been developed which allows the robust and accurate
acquisition of action data. On the lower level, the semantic



segments are further studied in order to identify motion
primitives. The proposed segmentation approach constitutes
a crucial component in a motion learning framework.
The paper is organized as follows: Section II provides a brief
overview of works related to this approach. In Section III, the
acquisition of human motion data featuring demonstrations
of complex manipulation tasks is described. In Section IV,
the proposed action segmentation method procedure is intro-
duced. As an application for the segmentation a recognition
method of the found segments is described in Section V.
The proposed approach is evaluated in Section VI. The
work is summarized and notes on future works are given
in Section VII.

II. RELATED WORK

In order to be able to understand and analyse complex
human motor behaviors, demonstrations of these behaviors
have to be decomposed into meaningful segments which
denote manipulation actions as well as the corresponding
action primitives. For this purpose, in the field of robotics,
a large number of different approaches have been proposed
mainly in the context of imitation learning. In general, seg-
mentation algorithms can be categorized in unsupervised and
supervised methods. Unsupervised methods do not require
any prior knowledge of the actions which are featured in the
behavior to be segmented, and, thus, a temporal segmentation
of continuous human movements can be performed in an
online manner. According to this methodology, in [1], an
approach has been introduced based on the joint velocities.
Segments are enclosed between points where the mean
squared velocity falls below a predefined threshold. In [2],
this method has been extended in a way that this critical
threshold is determined based on the scaling of the current
mean squared velocity. In addition, tactile feedback has been
incorporated in order to detect changes in the contact rela-
tions between human and environment while the human is in
motion. In [3], a method based on zero velocity crossings is
proposed. Using this method, segments are denoted by points
where in a sufficient number of joints the movement direction
is changing. A probabilistic approach has been proposed by
[4] using Principal Component Analysis in order to identify
segments represented in a low-dimensional space. The re-
construction error for newly observed movements indicates
whether the observation belongs to a current segment or
denotes the beginning of a novel one.
In contrast to unsupervised approaches, the segmentation
with supervised methods is based on previously known seg-
ments mostly represented in a generalized form. Regarding
the learning of human actions, a common strategy is to
use the same representation for the learning as well as seg-
mentation and recognition of actions and motor primitives.
In [5] and [6], segments are identified and represented as
states of an Hidden Markov Model (HMM). In [5], the
segmentation points are derived by optimizing the cost path
using a modified Viterbi algorithm. To gradually verify and to
refine the segmentation, prior knowledge is introduced in the
form of HMMs representing known segmented movements

Fig. 2. Left: Image of a real object with attached reflective markers. Right:
A visualization of the corresponding 3D mesh model with attached virtual
markers(blue/green spheres).

which are grouped by applying a clustering procedure.
An alternative approach using dynamical systems is proposed
in [7]. Linear time invariant dynamical systems are designed
and trained to represent specific drawing primitives. For
novel observations, parameters for these systems are esti-
mated. Based on the parametric error and the corresponding
approximation error segments are identified. In [8], latent
force models are used in order to segment human move-
ments. Multiple dynamical systems are used to encode the
relations between a latent force space and the joint move-
ments. Smooth trajectories in the latent force space indicate
possible segments. However, the segmentation result strongly
depends on the dimensionality of the force space. A further
approach which uses the Dynamic Movement Primitives
(DMP) for segmentation and recognition of basic movements
is introduced in [9]. Based on a library of previously trained
DMPs representing various basic actions, the observation of
an action is encoded as a novel DMP. If this DMP matches
an element in the library a segment is found. Otherwise, the
novel DMP is used to update the library.
Compared to unsupervised methods, supervised approaches
yield more accurate results for movements which are already
known to the system. To ensure the robustness of these
approaches the prior knowledge should consider segments
which can be sufficiently discriminated, and, thus, found
segments incorporate a certain complexity. Therefore, un-
supervised methods are better suited for a fine-granular
decomposition of a manipulation action in motion primitives,
especially if the primitives are new to the system. How-
ever, finding the segmentation parameters such as thresholds
which yield an optimal result are difficult to determine.

III. ACTION DATA ACQUISITION

In this section, we will address how action data can
be captured in a reliable way. In order to capture human
demonstrations of a complex task which involves a variety of
different manipulation actions with a high accuracy and at a
high resolution, we employed a marker-based motion capture
system [10]. The demonstrations involve not only a human,
but also objects, which the human manipulates. To be able
to capture both, markers have been attached to the human
subject as well as to object of interests located in the current
scene (see Fig. 2). For simplicity reasons, only the hands of
the human are considered during the capturing process and
are treated as rigid bodies similar to the objects. On each
object and hand at least three markers are attached, although



more markers increase the robustness in case of occlusions.
We will explain later in this section why three markers are
needed. All markers are labeled and grouped according to the
object they belong. The capture result data format contains
Cartesian space trajectories of all markers. In our previous
work [11], we used only the grouped marker trajectories for
the segmentation. However, the arrangement of the markers
do not sufficiently describe the shape of the object, and,
thus, the pose of the object can not be inferred based on
the mere marker positions. To deal with these shortcomings,
we convert the trajectories from a marker representation to a
6D pose representation for each object. The first component
of the representation are 3D mesh models. Thus, we create
3D mesh models of each object with a 3D object scanner [12]
or a common 3D modeling tool and place virtual markers on
the model (see Fig. 2). With this object representation it is
possible to calculate the 6D object pose from three or more
marker positions. We solve this point set registration problem
with an approach from Besl [13]. In Fig. 3 the mapping of
observed and virtual markers is visualized.
At least three markers per object are necessary since fewer
markers lead to an ambiguous solution. In case of two
markers, the object pose could be anything around the axis
between the two markers. In case of one marker, the object
could be rotated arbitrary around that one marker. To retrieve
the 6D pose trajectory for an object, the transformation is
calculated for each frame and applied to the base pose of
the object, which is usually the identity. This conversion is
done for all captured objects, which leads to an accurate
representation of the scene during the demonstration. In Fig.
4 two moments of a captured demonstration are shown with
the 3D mesh models and their 6D pose. In our applications,
we use trajectories with at least three markers for each object
in any frame.

IV. HIERARCHICAL ACTION SEGMENTATION

For the hierarchical segmentation of captured action data,
first, by means of 3D models, the captured 6D trajectories of
the objects and the end-effectors are captured based on object
contact relations. Subsequently each segment is processed
further by applying a segmentation approach based on

Fig. 3. Mapping of observed markers (blue spheres) attached to the cup
to virtual markers on the model. Both, observed and virtual markers, are
aligned (green/blue spheres in red circle). The visualization of the cup’s 3D
mesh shows the 6D pose of the perceived object.

motion characteristics in order to identify the sequence of
motion primitives.

A. Semantic Segmentation based on Object Contact Rela-
tions

Based on the 6D pose trajectories of each object the
demonstration is segmented. The segmentation grounds on
the spatial relations between the objects. A similar approach
was proposed by Aksoy et al. [14], [15], which uses RGB
stereo camera images as input and is model-free, but does not
provide 6D trajectories of any of the components. They es-
timate contacts between objects by recognizing overlapping
color blobs. In our previous approach [11], we utilize marker
distances only for contact detection. As mentioned in Section
III, the shape and the pose of the object are not sufficiently
represented by the markers alone. A segmentation based on
the distances between the objects requires the use of high
distance thresholds to detect contact points that are far from
the markers. This reduces the robustness of such a method
since objects in the demonstrations need to have a relatively
large minimum distance between each other.

The introduction of a 3D mesh model as object repre-
sentation instead of markers allows the use of sophisticated
mesh-based collision detection algorithms [16] to accurately
calculate the distance between objects and to detect contacts
between them.
The demonstration is segmented by detecting key frames and
similar to the approach presented in [17]. Key frames appear
on relation changes of objects. We use only the relation
contact(A,B) (contact between object A and B) since other
relations like on or in ground on this relation and are not
relevant for our segmentation method. For future extension
towards planning the incorporation of further relations might
be useful. The relation contact(A,B) relies on the closest
distance between any part of two objects. For every frame
of the demonstration the relations between all objects are
calculated and key frames stored whenever the relation
between two object changes its status. contact(A,B) returns
true if the distance falls below a predefined threshold. To deal
with noise on the distance measure, the threshold is increased
when a contact has been detected in the last frame.
This results in a sequence of key frames. Additionally, the
world state is stored with every key frame. A world state is
the set of all relations between all objects. It describes the
current status of the scene and can be used for association
with known actions (as in [11]).
As stated before, every relation change leads to a key frame.
But not all actions correspond to only one relation change.
For example, the pouring action contains two relation
changes (if the liquid can be tracked):

contact(L,C) → !contact(L,C)
∧ !contact(L,B) ∧ contact(L,B)

, where L stands for liquid, C for cup and B for bowl.
Hence, key frames need to be merged into groups of key
frames that belong semantically together. For most actions,
these key frames appear within of a small delay between
each other, e.g. dropping an object onto another. A simple



way to cope with this, is using the temporal displacement of
two key frames to merge them.
State changes are always instantaneous, although e.g. pour-
ing might seem to take time. However, the change of the
contact relation does not take time. If the pouring would
take noticably long, it would result in two key frames: At
the first key frame the liquid get in contact with the target
container and on the second the liquid loses contact with the
source container.

B. Segmentation based on Motion Characteristic

Up to this point, we segmented the human demonstrations
in semantic segments, that have observable changes in the
world state. Though, some actions have unobservable effects,
even for a human. For example, the effect of shaking two
transparent liquids in a bottle cannot be observed visually. In
the case of observation with technical means the amount of
unobservable effects is considerably higher with current state
of the art methods. The previously described method can only
detects moments when two objects make contact with each
other. Thus, the aforementioned effect and therefore the state
change cannot be detected. Therefore, we extend the segmen-
tation from the previous section with a subsegmentation that
extracts segments based on the trajectory shape. The goal
of the subsegmentation is to split up the semantic segments
into subsegments that contain motions with different motion
characteristics and therefore potentially represents a different
motion primitive. Hence, to capture the characteristic of a
motion our approach uses as a basis the dynamics of the
motion, i.e. the acceleration values of the trajectory.

There are two fundamentally different ways to segment
motion data. One is to find key frames, that meet a specific
criteria, and the other one is to search for meaningful seg-
ments. Our approach lies in between. The approach searches
for key frames that maximizes the difference of the trajectory
around it. It does not fit to the pure key frame search since
the key frame itself is unimportant. However, it does not fit
to the segment search either because it does not consider
the complete segments. In short, our approach segments the
trajectory in most distinctive parts.
To find the key frames, the trajectory is analyzed recursively.
On every recursion level, the given trajectory segment is

Fig. 4. Simulation of the observed demonstration while mixing with a
whisk (left) and pouring from a cup (right).

Fig. 5. All stages of the action sequence demonstration capture processing:
(left) The human demonstrator with attached markers on the objects;
(middle) marker group representation; (right) 3D mesh models with applied
6D object pose.

searched sequentially with a predefined step size for the
key frame, that divides the trajectory best. Subsequently,
the segments left and right of this key frame candidate are
analyzed again in the same manner until the segment size
falls below a threshold or no sufficiently good split has been
found. This is also described in Algo. 1. The quality of a
frame as a key frame is determined as follows:

dd,tc(t) =
(
f̈d(t)− ¯̈

fd,tc)2 − (f̈d(t+ 1)− ¯̈
fd,tc

)2
(1)
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where d is the dimension of the trajectory, sl,d(tc) is the
score left of the key frame candidate, tc is the timestamp
of the key frame candidate, w is the window size left and
right of the key frame candidate, that is analyzed, Ûl and
Ûr is the peak-to-peak amplitude left respectively right of
the key frame candidate and f̈d(t) is the second derivation
of the perturbation term in dimension d at timestamp t. (2)
calculates the score of the segment left of the key frame by
calculating basically the length of the function. To produce
a different value for high perturbation accelerations than for
low values, the perturbation acceleration is squared. To nor-
malize the values, the mean ¯̈

ftc of the perturbation function
around the key frame candidate is subtracted. Further, the
difference is weighted with the Gaussian function

gtc(t) =
1

w
2

√
2π
e

−(t−tc)
2

2w
2

2 (4)

centered at the key frame candidate. Subsequently, the sum
is normalized with the sum of all weights. To also consider
the amplitude of the perturbation acceleration, the score
is multiplied with the squared relation of the peak-to-peak



distances left and right of the key frame candidates.
The score sd of a key frame candidate is then:

sd =

{
sl,d/sr,d sl,d > sr,d
sr,d/sl,d sl,d ≤ sr,d

. (5)

Until now the scores for each dimension are normalized to
their amplitudes. But the amplitudes of one dimension can
be small compared to another dimension. To the end that
motions in a dimensions with overall low amplitudes are not
as important as another dimension with high amplitudes, the
scores for each dimensions are aligned with the maximal
peak-to-peak distance Ûd of all dimensions:

ŝd = sd · 3

√√√√ Ûd

max
d

Ûd

(6)

The best ŝd of all frames is selected as a key frame, if the
value does not violate a quality-threshold λ or a minimum
segment size smin to avoid oversegmentation.

Algorithm 1 Motion Characteristic Segmentation Algorithm
function FINDKEYFRAMES(kf,tl,tr,smin)

for tc := tl + smin to tr − smin ; tc += 0.01 do
for d := 0 to dimensions do

sn ← CALCSCORE(tc, d)
if sbest < sn then

sbest ← sn
tbest ← tc

end if
end for

end for
if sbest > λ then

kf.INSERT(tbest,sbest)
FINDKEYFRAMES(kf,tl,tbest,smin)
FINDKEYFRAMES(kf,tbest,tr,smin)

end if
end function

V. RECOGNITION

In order to facilitate future segmentation tasks and to
enrich novel motion segments with additional information,
feature vectors which represent the motion segments are
extracted, labeled, and stored. Based on a collection of these
feature vectors, a novel motion segment can be recognized. In
the context of imitation learning, we are not only interested
in labeling a new observation. To allow the replacement of
motor knowledge and the transfer of task-relevant informa-
tion between actions, we are rather interested in identifying
alternative actions representations which match the observa-
tion. For this purpose, a lower-dimensional feature vector
φm is proposed which provides a generalized representa-
tion of a motion segment m. To describe m invariant of
the position and the direction of the movement, we only
consider the acceleration profile v̇m of the motion segment.
v̇m is normalized by dividing by the total duration Tm of
m. Furthermore, for a robust comparison between different

motion segments describing the same primitive action, we
have to diminish the influence of possible offsets and outliers
within the motion on the recognition result. For this purpose,
φm ∈ R3×K is represented in the form of a sequence of
K principal components which approximate the normalized
acceleration profile. Thus, to obtain φm, we sequentially
apply a PCA algorithm. According to this methodology,
a projection matrix P is computed for series of frames
Vk = {v̇m(ts), . . . , v̇m(ts + Tm)}. For a subsequent frame
v̇m(ts + Tm + 1), the reconstruction error ek is evaluated
which is calculated as follows:

ek =
1

Tm

ts+TM+1∑
t=ts

‖v̇m(t)− (P v̇m(t)PT )‖. (7)

If ek < em where em is a predefined error threshold, v̇m(ts+
Tm+1) is added to Vk. In the case of ek ≥ em, v̇m(ts+Tm+
1) denotes the first frame of new series Vk+1 and the first
principal component which corresponds to the first column of
P is added to φm. To compare two motion segments m1 and
m2 represented as φm1 ∈ R3×K1 and φm2 ∈ R3×K2 where
K1 < K2, we determine a score sm which is calculated
using the dot product between the principal components in
φm1

and φm2
. Thus, sm can be be computed as follows:

sm =
1

K1

K1∑
i=1

sm(i) (8)

sm(i) = argmax
n∈Ii,j∈Ii∩IK2

1

j − n
(φm1

(i) · φm2
(j)) (9)

where IK2
= {1, . . . ,K2} and Ii is a set which con-

tains all the indices of principal components in φ2 which
have been found to be similar to one of the element in
{φm1

(1), . . . ,φm1
(i − 1)}. Besides the similarity of the

principal components, the score sm also considers the order
of the principal components which form the subsequence in
φm2 and presumably corresponds to φm2 .

VI. EXPERIMENTS

In this section, the experimental setup for data acquisition
is described and the results of conversion of marker positions
into 6D object poses is discussed, the segmentation based on
object contact relations, the subsegmentation based on shape
characteristics, and the recognition of segments with other
labeled segments.

A. Experimental Setup

The marked-based motion capture system consists of 10
cameras for the observation of the scene, in which all objects
are rigid common household objects that had at least three
markers in an asymmetric arrangement attached to them.
Regarding the human agent, only markers at the hand were
considered where the hands were treated as rigid bodies as
well. The motion capture system contains a marker relation
models of all objects allowing the automatic labeling of the
markers (see Fig. 5, middle). For every object, a 3D mesh
model was either created with a 3D scanner or by hand and
extended with virtual marker positions (see Fig. 2).



Fig. 6. Segmentation based on object contact relations: When two objects
get in contact with each other (contact in this case is approximated as
distance < 5mm) or lose contact, a new key frame is inserted with
the current world state attached to it. The dotted vertical lines depict the
detected segments. Only distances between objects that get in contact during
the complete demonstration are shown.

B. Experiments

To test our approach we recorded different scenarios
of action sequences: preparing batter, wiping a table and
shaking and pouring a bottle’s content into a bowl.

Preparing batter contains two cups, which are grasped and
its content poured into a bowl and then placed again on the
table. Afterwards the liquids are mixed with a whisk, which
also has to be grasped and placed on the table. This scenario
was chosen because it contains several objects and typical
actions for a household robot. In Fig. 6 the semantic segmen-
tation of one trial of this scenario is depicted. The distances
between objects that do not matter for this segmentation task
are omitted in this diagram for better clarity of the figure.
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Fig. 7. Subsegmentation of one semantic segment (sponge touches hand
and table) into different subsegments, i.e. different wiping styles. The z-
dimension is omitted in the figure. The dotted vertical lines depict the
segmentation points. Whenever the wiping styles changes, a key frame was
inserted.
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Fig. 8. Bottom: Comparison of manual segmentation (black lines), PCA
(red lines), Zero-Velocity-Crossing (green lines) and the proposed approach
(blue lines) of an action sequence shown by the key frames (vertical lines).
The action sequence contains grasping, placing, shaking, tossing, pouring,
inspecting and dripping off of a bottle. Top: Snapshots of the action sequence
for visualization. The vertical lines are only partly drawn for better clarity.

Whenever the left or right hand grasps an object or puts down
an object a new key frame is inserted. In the table wiping
scenario the human demonstrator grasps a sponge from a
table and wipes this table with several different wiping styles
like intensive wiping of a spot or wiping of a big area with
circles. The results of the motion characteristic segmentation
are demonstrated in Fig. 7.
In the third scenario, a bottle is being grasped, tossed,
inspected, shaken, poured and dripped off. In Fig. 8 the
results of the hierarchical segmentation for this scenario in
comparison with manual segmentation, Principal Compo-
nent Analysis (PCA) and Zero-Velocity-Crossings (ZVC) are
shown. The two types of input values are both depicted in
the figure. The distance between objects serves as input for
the semantic segmentation and the position values are the
input for the other methods. The blue vertical lines contain
key frames from both levels of the hierarchical segmentation.
It can be seen that the proposed algorithm provides signifi-
cantly better values than the other two approaches. Further,
most of the key frames of our approach are close to the
manual extracted key frames.
The difficulties in these scenarios lie in the unobservable
effects of some of the actions, e.g. pouring and mixing since
the liquids are not tracked. Therefore, the actions cannot be
detected with the semantic segmentation based on object-



relation changes and a detection on motion characteristic
level is required.

C. Evaluation and Discussion

1) Data acquisition: Evaluating the precision of the ob-
ject tracking is difficult since there is no ground truth
data. However, in general, the algorithm will produce exact
solutions if all input data is not contaminated with noise or
error. The precision depends on the following components:

• Positional precision of the markers. With the used
capture system, the deviation lies around one millimeter
if there is no missperception.

• The position of the virtual markers. This is in practice
the part for introducing an error, since the marker are
placed by hand on the object in a 3D modeling tool.

• The 3D model of the object. Errors in the modeling of
the object affect the contact detection of the objects.

• Markers on non-rigid bodies like hands do not have
constant relative positions to the other markers on the
object if the object is transformed and therefore impede
the calculation of the 6D pose. The marker registration
algorithm tries to minimize the error if there are more
than three markers. However, an error will persist. In
our application, we treat the hands as rigid bodies for
simplicity as the error is small enough to deal with.

2) Semantic segmentation: Compared to our previous
work [11], the segmentation results showed great improve-
ments. The segmentation in the previous approach has been
done solely on marker positions, which did not represent
the object shape sufficiently and therefore contact detection
was not reliable. A high threshold was needed for an
approximated contact detection, which easily lead to false-
positives. This deficiency has been alleviated by incorporat-
ing the region around every key frame. With the new model-
based approach this is not needed anymore and the contact
detection threshold can be chosen as 1/15 of the old threshold
(150 mm to 10 mm).
In general, the new segmentation relies strongly on the
precision of the 6D trajectory and the model associated with
it. An inaccurate model can lead to false or missed contact
detection and therefore to false segmentations. The precision
is from our experience sufficient to detect all contacts and
segment the trajectory into their semantic parts.
In Fig. 6, the result of an action sequence segmentation is de-
picted. An action sequence of pouring with two different cups
and a subsequent mixing action was performed and captured.
The contact between the objects can be extracted from the
distance-curve and, thus, the key frames are inserted. For the
sake of clarity, several distance curves between the objects
have been omitted. In certain cases, a lost contact does not
mean that a new actions starts. For example, during the
wiping action, the sponge occasionally loses contact with the
table. Based on the assumption that actions have minimum
duration (we set 500 ms as a threshold), this situation is
avoided to a certain degree by merging key frames that follow
closely after another.

3) Subsegmentation based on Motion Characteristic:
The subsegmentation tackles the problem of unobservable
effects of actions. Additionally, different styles of a periodic
action can be detected (e.g. wiping in lines or intensive
wiping on one spot). In Fig. 7, a segmented action of
wiping is shown, which is then subsegmented in different
wiping styles. Each time the wiping pattern changes, a
new key frame is inserted. In Fig. 8, the further inspection
and segmentation of a semantic segment which supposedly
represents a pouring action indicate these segments comprise
more actions without observable effects, and, thus, can be
further divided into subsegments. In our experiments, all
segments have been detected, though a smooth transition
between two actions can be problematic and no key frame
might be found.

4) Recognition: As depicted in Fig. 9, the proposed
feature representation from Section V has been applied to
compare various segments which have been found in com-
plex wiping and shaking/pouring tasks. As depicted in Fig. 9,
the left figure shows that the proposed method is sufficiently
discriminative. It can be observed that a higher similarity
has been determined for motion segments which feature
the same action. An interesting outcome of the proposed
method is that motion segments representing periodic and
discrete actions such as a specific wiping motion and the
approach/retreat movement can be clearly distinguished. The
same applies for the center figure where motion segments of
two different wiping demonstrations have been compared to
each other. By comparing the wiping demonstration to the
shaking/pouring demonstration, except for Tossing-Retreat
movements, almost no correspondences have been found.
However, the trajectory-shape of the motion pairs are similar
and the found correspondences suggest that information
encoded within the Tossing movement can potentially be
used to enrich a motion segments which represents a Retreat
action.

VII. CONCLUSION

In this work, a hierarchical segmentation approach has
been presented which allows the reliable determination of
semantic key points in continuous human movements. These
points denote clear transitions between different manipula-
tion actions where the human changes the scene. To detect
these changes, a robust method has been implemented which
enables the robust and accurate pose estimation of objects
and the human hands, which lead to the detection of contact
relations between these entities based on mere marker-
based motion capture data. Some effects of actions are not
observable by technical means and are therefore missed by
the semantic segmentation. To this end, we proposed a new
method for subsegmenting the semantic segments based on
motion characteristics, which is a completely different metric
and therefore supplements the semantic segmentation well.
As an application the segmentation is used together with a
new feature matrix for motion description to recognize the
parts of an action sequence. In our evaluation, we showed



Fig. 9. Left: Comparison of a segmented observation of a wiping demonstration with itself. A black square indicates a perfect similarity where a white
square denotes that the compared segments do not match. Center: Comparison of segmented observations of two different wiping demonstrations. Right:
Comparison of segmented observations of a wiping and shaking/pouring demonstration.

that the proposed approach allows the identification of mean-
ingful segments in unknown complex human demonstrations
without over-segmentation nor the negligence of important
key points. Due to the hierarchical approach, the found
segmentation points are enriched with additional information
which can be useful for the organization, the sequencing, and
the reproduction of learned actions and motion primitives.
Based on the feature matrix, in future works, we wish to iden-
tify similar motor primitives in order to allow the enrichment
of unknown primitives with object and action affordances
and semantic information, and, thus, to enhance the robotic
learning of actions from human observation. Furthermore,
we are interested in how primitives can be replaced in order
to accomplish the same task. This knowledge might enable
a planner to find new plans for a future task.
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