
Project Acronym: Xperience
Project Type: IP
Project Title: Robots Bootstrapped through Learning from Experience
Contract Number: 270273
Starting Date: 01-01-2011
Ending Date: 31-12-2015

XXPERIENCEPERIENCE..ORGORG

Deliverable Number: D2.3.2
Deliverable Title: Affordances and Categories (II): Report or scientific publication

on generalization and creation of categories as well as grounding
new categories through learning by imitation

Type (Internal, Restricted, Public): PU
Authors: J. Piater, H. Xiong, A. Ude, D. Kraft, N. Krüger
Contributing Partners: UIBK, JSI, SDU

Contractual Date of Delivery to the EC: 31-01-2014
Actual Date of Delivery to the EC: 08-02-2014

Contents

1 Executive Summary 3

1.1 Role Within the Description of Work . 3

1.2 Links to Other Work Packages . 3

1.3 Outline of Results . 3

2 Description of Results 5

2.1 Bootstrapping Object Categories By Push Affordances . 5

2.2 Formation of Spatial Relation Categories . 5

2.3 3D Object Category Modeling . 7

2

Chapter 1

Executive Summary

1.1 Role Within the Description of Work

This Deliverable is part of Work Package 2.3 Affordances, Object-Action Complexes and Categories.
Quoting from the Description of Work Package 2.3:

Objectives: In Xperience the object affordances need to be rich enough to allow for
sophisticated action sequencing required for the structural bootstrapping in WP3 and WP4.
The central objective of this WP is to address the generation (by learning), understanding
and transfer (to planning) of object affordances. This leads over to the required learning of
higher level entities (action rules) and finally to the learning of objectaction categories.

Within this Work Package, this Deliverable reports in particular on the two tasks that address the learning
of categories:

Task 2.3.3 Exploration based learning of object categories

Task 2.3.4 Grounding new categories through learning by demonstration

1.2 Links to Other Work Packages

WP 2.3 draws together work from WP 2.1 Sensorimotor Experience and WP 2.2 Motor Actions. More-
over, it constitutes a bridge to WP 3.1 Structural Bootstrapping on Sensorimotor Experience, as category
formation is an essential building block of structural bootstrapping.

1.3 Outline of Results

Category formation is a fundamental ingredient of intelligence. Categories – including sensorimotor
contingencies between an actor and objects acted upon (affordances) – provide abstractions essential
for generalization across isolated experiences. Thus, categories are useful to the extent that they have
predictive value for future experiences. Organizing a set of experiences into categories is generally difficult,
as it requires the identification of predictive attribute sets, which is a combinatorial problem. Thus, while
useful categorizations may be difficult to discover by pure exploration, this process can sometimes greatly
benefit from demonstration and instruction.

This report presents recent work within the Xperience project on the acquisition and modeling of cate-
gories. Since all work presented here has already been published, we limit this report to concise overviews
(Chapter 2) referring to the actual content in publications attached to the report.

Section 2.1 addresses the problem of learning shape features indicative of push affordances. The presented
method produces features predictive of the result of various pushing actions (implicitly categorizing them

3

Xperience 270273 PU

into affordance categories), allowing a robot to make predictions of action results on objects it has never
seen before.

Section 2.2 demonstrates how categories of spatial relations between objects can be learned that are
predictive of how one object can be used to get hold of the other. The scenario is taken from a key stage
in child development, where infants learn that they can get hold of an out-of-reach object using rake or
by dragging the support on which that object rests.

In Section2.3 we address the problem of representing shapes within a category. For example, dogs come
in various shapes and sizes, but all have four legs, a head and a tail. A useful category representation
should represent this fact explicitly and represents objects in a way that identifies these common parts.
We present a method that first aligns disparate shapes in a Reproducing Kernel Hilbert Space, and then
identifies common parts using a novel latent-variable model that models spatial aspects using a Markov
Random Field.

4

Chapter 2

Description of Results

2.1 Bootstrapping Object Categories By Push Affordances

Using an experimental platform that gathers 3-D data from the Kinect RGB-D sensor, as well as push
action trajectories demonstrated by a human and acquired by a magnetic tracking system, we address
the issues of learning new object affiordances using an action-grounded 3-D feature descriptor [RU13].
Rather than using pose-invariant visual features, as is often the case with object recognition, we ground
the features of objects with respect to their manipulation, that is, by using shape features that describe
the surface of an object relative to the push contact point and direction. Using this setup, object push
affordance learning trials are performed by a human and both pre-push and post-push object features
are gathered, as well as push action trajectories. A self-supervised multi-view online learning algorithm
is employed to bootstrap both the discovery of affordance classes in the post-push view, as well as a
discriminative model for predicting them in the pre-push view. Experimental results demonstrate the
effectiveness of self-supervised class discovery, class prediction and feature relevance determination on a
collection of unknown objects.

2.2 Formation of Spatial Relation Categories

In this section we describe our work on using visual data, from a simulated environment, to investigate
the learning of spatial relations between objects and the categories found there (e.g., on-top, inside).

In previous work (D3.1.1, [3, 1, 2]) we have introduced a two track model representing infant development
(see [3] and Figure 2.1) and we have explored some of the mechanism present on the behavioural track
to learn means end schemas and to differentiate a generic schema (e.g., pull an object) generating a new
means end schema (e.g., pull objectA to bring objectB, which is placed on top of objectA, into reach)
and to adjust the corresponding pre-conditions [1, 2]. In [2] we also already investigated how to learn
visual stimuli that predict if the differentiated schema is applicable (e.g., pull with object on top can be
used if there is an objectB on top of objectA) or not using a very simple visual representation (using the
objects’ centre of gravity and orientation axis).

The work presented here [FAG+13, FMM+14] focuses on the representational track (see Figure 2.1(top)).
We extended our previous work by (a) using a much more sophisticated visual representation and (b)
by learning spatial relations (e.g., on-top) instead of when the differentiated schemas (e.g., pulling with
object on-top) succeed. The new visual representation used is based on the previously presented multi-
dimensional histograms (see [4] and Figure 2.2 for an example histogram used for spatial relation cate-
gories).

To explore the learning of spatial relation categories (inside, onto, rakeable, almost rakeable, not rakeable)
contrary to our other work mentioned in this section, we used hand labeled data. We therefore placed
objects in various relative positions and decided manually into which category this situation falls. Based
on these situations we were able to generate multi-dimensional histograms that describe the relations
between visual features belonging to the one object and features belonging to the other object (see
Figure 2.2). We applied different histogram types and preprocessing techniques before feeding these

5

Xperience 270273 PU

N
u
m
b
e
r
o
f
b
e
h
a
v
io
u
rs

Age (spanning approx. 2 years)

c
o
n
c
re
te
 t
ra
c
k

(s
e
n
s
o
ri
m
o
to
r
b
e
h
a
v
io
u
r)

a
b
s
tr
a
c
t
tr
a
c
k

(r
e
p
re
s
e
n
ta
ti
o
n
)

sen
sorim

otor
 sch

ema
s de

velo
ping

repr
esen

tatio
ns d

evel
opin

g

representational

redescription

Link 1

Link 2

Sta
ge
1

Stag
e 2

Stag
e 3

Figure 2.1: Conceptual diagram, overviewing infant developments leading to tool use (taken from [3]).

inside	

on	 top	

not	 inside	 	
or	 on	 top	

-‐1m	

-‐1m	

-‐1m	

-‐1m	

-‐1m	

-‐1m	

1m	

1m	

1m	

1m	

1m	

1m	 0	

0	

0	

0	

0	

0	

360	

360	

360	

360	

360	

360	

-‐1m	 1m	 0	 360	

-‐1m	 1m	 0	 360	

-‐1m	 1m	 0	 360	

1m	

-‐1m	
0m	 2m	

1m	

-‐1m	
0m	 2m	

1m	

-‐1m	
0m	 2m	

1m	

-‐1m	
0m	 2m	

1m	

-‐1m	
0m	 2m	

1m	

-‐1m	
0m	 2m	

1m	

-‐1m	
0m	 2m	

1m	

-‐1m	
0m	 2m	

1m	

-‐1m	
0m	 2m	

Figure 2.2: Obtained histograms. On the left side examples of the specific spatial relation categories
(”inside”, ”on top” and ”not inside and not on top”) are shown. The middle shows the histograms
produced by these specific examples while the right shows the histogram generated by all the training
samples belonging to the category. This figure illustrates comparatively how well the different histograms
can discriminate between the various relationships we have experimented with. (Taken from [FMM+14]
where an extended version of this figure can be found.)

histograms and labels to a random forest learning mechanism. For each category we were were able to
achieve a classification rate significantly above 90 % with the right choice of histogram.

In the future we will revisit the learning of visual representations for the success of given schemas (e.g.,
pulling with object on top, lifting with object on top) and then use the models learned for these individual
schemas to come up with a combined visual representation for the underlying category (e.g., on top), see
”representational redescription” in Figure 2.2. These more generic models will then also be used for new
actions and allow a drastically reduced learning time.

6

Xperience 270273 PU

2.3 3D Object Category Modeling

We developed a full learning framework to learn part-based models for different categories of 3D objects.
The training data are labeled mesh or point cloud files, and labels are the identities of categories. At first,
objects belonging to the same category are collected and aligned (using an original method [XSP13b]).
Then unsupervised learning is performed to discover common parts shared by different instances of
the same category, providing a probabilistic structural model for each part. The unsupervised learning
algorithm is inspired by latent Dirichlet allocation (LDA), which is widely used to extract latent topics
from document collections. In our application, we transform the 3D space into discrete grids, where
the aligned point clouds can be considered as documents of 3D words, and parts correspond to topics.
However, different from document topic modeling, spatial and structural coherence has to be taken into
account in our object modeling case. Therefore, we extended LDA with a Markov random field over the
labels of the points, and an extra spatial parameter to enhance the smoothness of discovered parts. We
refer to the extended model as Spatial latent Dirichlet Markov random fields (SLDMRF). The empirical
results [XSP13a] show that SLDMRF can provide much more consistent part segmentation and modeling
(i.e., parts discovered are consistent for all instances) than LDA. The learned category models can also be
further used for various tasks, e.g. new object recognition, segmentation and pose estimation [XSP13a].

7

References

[1] Severin Fichtl, John Alexander, Frank Guerin, Jimmy Alison Jørgensen, Dirk Kraft, and Norbert
Krüger. Rapidly learning preconditions for means-end behavior using active learning. In IEEE
Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pages 1–2, 2012.

[2] Severin Fichtl, John Alexander, Dirk Kraft, Jimmy Alison Jørgensen, Norbert Krüger, and Frank
Guerin. Learning object relationships which determine the outcome of actions. Paladyn, 3(4):188–
199, 2012.

[3] F. Guerin, N. Krüger, and D. Kraft. A survey of the ontogeny of tool use: from sensorimotor
experience to planning. IEEE Transactions on Autonomous Mental Development, 5(1):18–45, 2013.

[4] Wail Mustafa, Nicolas Pugeault, and Norbert Krüger. Multi-view object recognition using view-point
invariant shape relations and appearance information. In IEEE International Conference on Robotics
and Automation (ICRA), 2013.

8

Attached Articles

[FAG+13] Severin Fichtl, John Alexander, Frank Guerin, Wail Mustafa, Dirk Kraft, and Norbert Krüger.
Learning spatial relations between objects from 3D scenes. In 2013 IEEE Third Joint Inter-
national Conference on Development and Learning and Epigenetic Robotics (ICDL), 2013.

[FMM+14] Severin Fichtl, Andrew Mcmanus, Wail Mustafa, Norbert Krüger, and Frank Guerin. Learn-
ing spatial relationships from 3D vision using histograms. In IEEE International Conference
on Robotics and Automation (ICRA), 2014. (accepted).

[RU13] Barry Ridge and Aleš Ude. Action-grounded push affordance bootstrapping of unknown
objects. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 2791–2798, 2013.

[XSP13a] Hanchen Xiong, Sandor Szedmak, and Justus Piater. 3D Object Class Geometry Modeling
with Spatial Latent Dirichlet Markov Random Fields. In 35th German Conference on Pattern
Recognition (former DAGM), volume 8142 of LNCS, pages 51–60. Springer, 9 2013.

[XSP13b] Hanchen Xiong, Sandor Szedmak, and Justus Piater. Efficient, General Point Cloud Reg-
istration With Kernel Feature Maps. In Tenth Conference on Computer and Robot Vision,
pages 83–90, 5 2013.

9

Learning Spatial Relations Between Objects From
3D Scenes

Severin Fichtl, John Alexander, Frank Guerin
Computing Science

University of Aberdeen, Aberdeen AB24 3UE, Scotland
Email: f.guerin@abdn.ac.uk

Wail Mustafa, Dirk Kraft, Norbert Krueger
Maersk Mc-Kinney Moller Institute

Niels Bohrs Allé 1, DK-5230 Odense M, Denmark
Email: norbert@mmmi.sdu.dk

I. INTRODUCTION

Ongoing cognitive development during the first years of
human life may be the result of a set of developmental
mechanisms which are in continuous operation [1]. One such
mechanism identified is the ability of the developing child
to learn effective preconditions for their behaviours. It has
been suggested [2] that through the application of behaviours
involving more than one object, infants begin to learn about
the relations between objects.

We consider a precondition to be a learnt decision rule by
which some features of the environment are used to predict
the successful outcome of a behaviour. This can be used as a
planning operator to allow a robot to sequence learnt actions
to achieve a goal. The limited scope of this definition allows
us to approach the problem computationally. This concept of
a precondition is loosely related to the notion of an affordance
[3] used as a planning operator, which has been well studied
within the field of developmental robotics (see e.g. [4], [5])

Learning a precondition for a motor action from raw sensor
data is challenging as it may take many thousands of examples
to learn an effective rule. For this reason we first perform an
abstraction to convert data into a form which simplifies the
learning procedure.

In this work, we learn a limited number of abstractions
which can then be used to form preconditions for motor
actions. These abstractions take the form of spatial relations
amongst objects. We consider three “classes” of spatial re-
lation: The objects either are separated from, on-top of, or
inside each other. We have tackled this same problem in
previous work [6]. Here we report on recent improved results
using a novel application of histograms to visually recognise
a spatial relation between objects in the environment. Using
this histogram based approach we are able to report a very
high rate of success when the system is asked to recognise a
spatial relation.

II. LEARNING SPATIAL RELATIONS

For learning spatial relations between objects we used data
from a sophisticated 3D vision system inside the physically
realistic simulator RobWorkSim [7]. In our experiments we
use 4 different household objects (see Figure 1a). Using these
objects we are able to design combinations of object pairs
accounting for each of the three classes of spatial relation.

(a) Coffee cup, turtle, tray
and bathtub.

(b) Texlet representation of
a scene.

Fig. 1: Objects in the simulated environment.

To collect samples, we placed pairs of objects in the
simulated environment and used a Kinect-based vision system
to create a representation of the scene and segment the objects.

For the separated class, two objects were placed randomly
in the scene with the distance between the objects always
greater than 0. The objects pairings were: the coffee cup next
to the tray, the turtle next to the tray and the turtle next to the
bathtub. For the on-top class, the tray was placed randomly
in the scene and then either the coffee cup or the turtle was
placed randomly on-top of the tray. The objects parings were:
the coffee cup on-top of the tray and the turtle on-top of the
tray. For the inside class the bathtub was placed randomly
in the scene and the turtle was placed randomly inside the
bathtub. See Figure 2 for an illustrated example of each of the
three classes.

Our system uses Kinect-based vision [8] to extract informa-
tion about objects in the scene. Kinect produces a depth map
which describes the distance from the camera to each point
of the surfaces visible to the camera system. It is important
to note that within our simulator, the Kinect device includes
realistic noise, allowing for more realistic data about the depth
to the objects the scene. Using the picture of the scene and
the depth map, our vision system calculates a 3D point cloud.
Based on this 3D point cloud and the colour information of
the scene, our vision system creates surface patches (called
textlets) as shown in Figure 1b. These texlets describe the
surfaces within the scene with additional information, such as
the position, the orientation and colour of the surface [9].

In the scene, the objects used were each a uniform colour
and the colour of each object was distinct. This allowed for
a system of purely colour based segmentation. Although this
is a simplification it is justified given the scope of this work.
After segmentation, each object is assigned its unique set of
texlets. A texlet representation of a scene with two segmented
objects can be seen in Figure 1b.

Fig. 2: Three texlet representations and the corresponding
histograms.

We create 2D histograms which store relevant information
about the spatial relations between objects. To extract this
information from the sets of texlets, we calculate two distance
measures between all texlets of one object to all texlets of
another object: The absolute distance of a pair of texlets along
the xy plane and the relative distance of the first object’s
texlets to the second object’s on the z-axis, such that if the
first texlet is above the second texlet, the distance is positive,
otherwise negative. Since we always consider pairs of objects,
if the first object has n texlets and the second has m texlets,
this results in a nm vector for each measure considered.
These distances are used to fill the histograms, such that the
the x-axis is the absolute xy distance and the y-axis of the
histogram is the relative distance between textlets along the z-
axis. The histograms have 50 bins per axis, experientially this
value produced the best results. The x-axis runs from 0mm to
2000mm, and the y-axis from ±150mm. Example histograms
are given in Figure 2.

For learning to differentiate the spatial relations between
objects, we used a Random Forest (RF) classifier [10]. The
RF had 100 trees, an overlap of 0.9 and 400 inputs per tree.
For each class we used 5400 samples to build a training set.
The training set contained samples from all configurations of
each class in equal numbers (e.g. from on-top there were 2700
sample from coffee cup and tray and 2700 from the turtle and
tray.) Similarly, in the validation set each class was represented
equally with 1404 samples per class1. After training, the
system classified 99.95% of the 4212 validation samples
correctly. Although our result is not directly comparable, we
achieved a higher success rate than [11] with similar data.

We tested the system on its ability to generalise to novel
objects: We introduced a 6-sided die either next to or on-top
of wedge. The system performed well, classifying 95% of the
samples correctly. Results are shown in Table II

III. DISCUSSION AND RELATED WORK

The most closely related work on learning spatial relations
between objects in a 3D space is [11] who use a support vector
machine based approach. In this approach the support vectors
are picked from for their ability to differentiate the point cloud
into two objects. This has the effect that the subset of points

1For some classes, the object pairings were not equally represented.

TABLE I: Known objects

True Pos. False Pos. True Neg. False Neg.
Separated 1404 1 2807 0

On-top 1404 0 2808 0
Inside 1403 0 2808 1

TABLE II: Novel objects

True Pos. False Pos. True Neg. False Neg.
Separated 1421 105 1347 31

On-top 1262 30 1422 190
Inside 0 86 2807 0

considered by the classifier are on the edges of the object.
Relations are then learnt based upon the relative positions of
clusters of the support vectors. For any classification based
approach to be successful, it requires that similar relations have
a similar representation; at the level of point clouds/textlets the
representation of a relation can be very different. In the case
of [11], the scene is reduced to clusters with xzy coordinates.
We feel that our histogram based approach allows for a more
generic representation of the scene — we maintain a higher
proportion of the important information about the relations
between objects.

ACKNOWLEDGMENT

This work was supported by the EU Cognitive Systems project XPERIENCE (FP7-
ICT-270273) and Leverhulme Grant F/00 152/AL.

REFERENCES

[1] Frank Guerin, Dirk Kraft, and Norbert Krüger. A survey of the
ontogeny of tool use: from sensorimotor experience to planning. IEEE
Transactions on Autonomous Mental Development, 5(1):18–45, 2013.

[2] J. Piaget. The Construction of Reality in the Child. London: Routledge
& Kegan Paul, 1937. (French version 1937, translation 1955).

[3] James J. Gibson. The Ecological Approach To Visual Perception.
Lawrence Erlbaum Associates, 1986.

[4] E. Ugur, E. Oztop, and E. Sahin. Goal emulation and planning in
perceptual space using learned affordances, 2011.

[5] Lucas Paletta and Gerald Fritz. Reinforcement learning of predictive
features in affordance perception. In Erich Rome, Joachim Hertzberg,
and Georg Dorffner, editors, Towards Affordance-Based Robot Control,
volume 4760 of Lecture Notes in Computer Science, pages 77–90.
Springer Berlin Heidelberg, 2008.

[6] Severin Fichtl, John Alexander, Dirk Kraft, Jimmy Alison Jorgensen,
Norbert Krüger, and Frank Guerin. Learning object relationships which
determine the outcome of actions. Paladyn, (Special Issue on Advances
in Developmental Robotics):1 – 12, 2013.

[7] Jimmy A Joergensen, Lars-Peter Ellekilde, and Henrik G Petersen.
RobWorkSim - an Open Simulator for Sensor based Grasping. Robotics
(ISR), 2010 41st International Symposium on and 2010 6th German
Conference on Robotics (ROBOTIK), pages 1–8, June 2010.

[8] Sø renMaagaard Olesen, Simon Lyder, Dirk Kraft, Norbert Krüger,
and JeppeBarsø e Jessen. Real-time extraction of surface patches with
associated uncertainties by means of Kinect cameras. Journal of Real-
Time Image Processing, pages 1–14, 2012.

[9] N. Pugeault, F. Wörgötter, and N. Krüger. Visual primitives: Local, con-
densed, and semantically rich visual descriptors and their applications
in robotics. International Journal of Humanoid Robotics (Special Issue
on Cognitive Humanoid Vision), 7(3):379–405, 2010.

[10] N Pugeault and R Bowden. Spelling it out: Real-time ASL fingerspelling
recognition. In Computer Vision Workshops (ICCV Workshops), 2011
IEEE International Conference on, pages 1114–1119, 2011.

[11] Benjamin Rosman and Subramanian Ramamoorthy. Learning spatial
relationships between objects. Int. J. Rob. Res., 30(11):1328–1342,
September 2011.

Learning Spatial Relationships From 3D Vision Using Histograms

Severin Fichtl, Andrew McManus, Wail Mustafa, Norbert Krüger and Frank Guerin

Abstract— Effective robot manipulation requires a vision
system which can extract features of the environment which
determine what manipulation actions are possible. There is
existing work in this direction under the broad banner of
recognising “affordances”. We are particularly interested in
possibilities for action afforded by relationships among pairs
of objects. For example if an object is “inside” another or “on
top” of another. For this there is a need for a vision system
which can recognise such relationships in a scene. We use an
approach in which a vision system first segments an image,
and then considers a pair of objects to determine their physical
relationship. The system extracts surface patches for each object
in the segmented image, and then compiles various histograms
from looking at relationships between the surface patches of
one object and those of the other object. From these histograms
a classifier is trained to recognise the relationship between a
pair of objects. Our results identify the most promising ways to
construct histograms in order to permit classification of physical
relationships with high accuracy. This work is important for
manipulator robots who may be presented with novel scenes
and must identify the salient physical relationships in order to
plan manipulation activities.

I. INTRODUCTION AND MOTIVATION

Effective robot manipulation requires a vision system
which can extract features of the environment which deter-
mine what manipulation actions are possible. The precon-
ditions of a robot’s planning operators use these features
of the environment to predict the successful outcome of
manipulation actions. If a robot’s planning operators have
reasonable accuracy then they allow the robot to sequence
learnt actions to achieve a goal. The use of planning pre-
condition here is loosely related to the notion of an affor-
dance [1], which has been well studied within the field of
developmental robotics (see e.g. [2], [3]). We are particularly
interested in possibilities for action afforded by relationships
among pairs of objects. The physical relationship between a
pair of objects is very important for manipulation, because
many relationships determine the outcome of an action. For
example if one object rests “on” another then pulling the
lower one also causes the upper one to move. If one object
is contained “inside” another, then shaking the container will
not make the contained object fall out, whereas if the first
object is merely “on” the second, then it will easily fall off.
We need to be able to recognise these relationships in a
generic way, in scenes with objects we have not been trained
on. Within existing robotics work on affordances most seems
to focus on single objects, although some of this work does
implicitly capture to a relationship, e.g. the effect of pushing
on a spherical object [2] depends on a relationship between
that object and the object it is resting on (sphere on smooth
surface will roll, but not on rough surface). Thus looking at

relationships rather than single objects could lead to a more
generic framework for affordances.

Of course it would be relatively easy for a programmer
to simply code in the required relationship so that a robot
would not have to learn it; however we are motivated by ideas
of developmental robotics (see [4], [5] for background), and
are looking for techniques which would permit a robot to
learn relationships which are salient for its own actions, as
it needs to. For this reason we do not wish to tailor our
system for a predefined set of relationships decided by a
human designer; especially we do not want to hardwire the
system to use a different set of features for each relationship,
where those features are hand designed to be suitable for
that particular relationship. Instead we want make available
one set of features which seem to be useful for multiple
relationships, and then use a classifier to learn particular
relationships with the generic features as input. With generic
features we strengthen the possibility that the system could
then learn relationships which might not have been envisaged
by the human designer (although that is not explored in this
paper). To this end we have looked at a number of ways
of constructing object-relation data from our vision system,
in order to find feature vectors which are good for multiple
relations.

We consider three physical relationships: The objects may
be on-top of, or inside each other, or in a position such
that pulling one will cause it to contact the other and also
bring it closer, as in the use of a rake; we call this rakeable.
In addition we have negative examples of all of these. We
train the system from a large set of scenes of pairs of
objects in randomly generated positions, and then test its
classification accuracy on novel positions and some novel
objects. We have tackled part of this problem in previous
work [4]. Here we report on recent improved results using
a novel application of histograms to visually recognise a
spatial relation between objects in the environment. Using
this histogram based approach we are able to report a very
high rate of success when the system is asked to recognise
a spatial relation.

II. RELATED WORK

Work on learning “affordances” is quite close to ours;
Ugur et al. [2] learns affordance predictors for behaviours by
learning the mapping from the object features to discovered
object effect categories. These predictors can then be used by
an agent to make plans to achieve desired goals. Apart from
the fact that we use pairs of objects rather than single objects,
this work is quite similar to ours in that essentially it boils
down to classification; i.e. once effect categories have been

clustered Ugur et al. use a classifier to learn the mapping
from the initial object features to these effects. They use
SVMs where we use random forests.

In more recent work Ugur et al. [6] use an approach
somewhat close to ours in that they look at parts of objects,
e.g. to recognise a handle. Identifying a part of an object
based on its relationship with the main object is somewhat
akin to considering it as two objects in a relationship. Ugur
et al. [6] also compile histograms from low level visual
features. Our histogram approach is quite different however,
as it is the extension of an idea in a different work; our
work is heavily inspired by the approach of Mustafa et
al. [7]. That work compiles histograms over relationships
between surface patches (distances and angles) in a single
object. These histograms characterise the object, and are
quite robust to variations in viewpoint. Mustafa et al. use
this for object recognition. In our work we borrow the idea
of compiling histograms over relationships among surface
patches; however we look at pairs of objects, and compile
histograms which relate every patch on the first object with
every patch on the second. Our idea is that these histograms
should characterise the relationship between the objects.

We do not feel that our work is particularly close to com-
puter vision work in scene understanding (e.g. [8]) because
those works typically recognise all objects, and then can use
higher level knowledge to assist in understanding. Our work
in contrast is at a lower level, and is more concerned with
the physical relationships among surfaces without regard
for object knowledge. We think of it more like how an
infant might recognise simple physical relationships between
household objects without any idea of what their names are
or what their typical purposes are.

The most closely related work on learning spatial relations
between objects in a 3D space is [9] who use a support vector
machine based approach. In this approach the support vectors
are picked from for their ability to differentiate the point
cloud into two objects. This has the effect that the subset
of points considered by the classifier are on the edges of
the object. Relations are then learnt based upon the relative
positions of clusters of the support vectors.

For any classification based approach to be successful, it
requires that similar relations have a similar representation;
at the level of point clouds/texlets the representation of a
relation can be very different. In the case of [9], the scene
is reduced to clusters with xyz coordinates. We feel that
our histogram based approach allows for a more generic
representation of the scene — we maintain a higher propor-
tion of the important information about the relations between
objects.

We can also relate our work to infant development. In
the period from six months of age through to two years
human infants undergo significant development in their skills
and understanding relating to physical world objects and
their manipulation. Observations of infants show that, at
any particular age, they possess a repertoire of behaviours
or manual skills which they apply to various objects or
surfaces they encounter [10], [11]. Each such behaviour

could be seen as roughly analogous to a planning operators
in Artificial Intelligence, because there are situations which
make them likely to be executed (like the precondition of a
planning operator), and expected effects (postcondition), as
well as some motor control program describing the behaviour
executed. As infants develop they solve the problems of (i)
identifying when a new behaviour should be created, (ii)
learning the new precondition, (iii) postcondition, and (iv)
motor program for the new behaviour. In this paper, we
focus on learning the precondition for a new behaviour. This
is a particularly interesting problem in the case of means-
ends behaviours (i.e. where one action is used in order to
facilitate another [12]), because it is through learning means-
ends behaviours that infants begin to learn about relationships
between objects [13]. The precondition must capture the
relationship between objects which determines where the
behaviour works or does not work. In preconditions the
infant is learning new important abstractions over its sensor
space. This can change how an infant understands a scene
because the infant can begin to see things at a higher level
of abstraction, seeing precisely those relationships which
are important in determining what object manipulations are
possible (by itself or other agents).

III. METHOD

A. Overview

Learning a spatial relationship from raw sensor data is
challenging as it may take many thousands of examples to
train an effective classifier. For this reason we first perform
an abstraction using histograms to convert data into a form
which simplifies the learning procedure.

After suitable abstractions have been found, to learn clas-
sification models for the different Spatial Relations we use
the Random Forest[14] algorithm. Random Forests (RF) are
particularly well suited for our use case, as they inherently
do feature selection and hence identify the relevant features
amongst large amount of the input variables.

B. Data Collection

In this work, for learning spatial relations between objects,
we collected data using a physically realistic simulation envi-
ronment designed for Robot Simulations and a sophisticated
vision system using a simulated Kinect camera (See III-
C). This Simulator, called RobWorkSim[15], is developed
and maintained by the Robotics department of the Maersk
McKinney Moller Institute at the University of Southern
Denmark.

The objects used range from simple to complex household
items and incorporate supporting objects like trays, container
objects like soup bowls and other objects like plastic toys.
Figure 1 depicts the objects used in the experiments.

Using the Simulator, we (randomly) placed pairs of ob-
jects on a surface and labeled their spatial Relation, before
extracting a relational histogram based representation of the
scene using the CoViS vision system (See III-C). Figure 2
illustrates different Spatial Relations we focussed on in this
work.

Fig. 1a. Container Objects

Fig. 1b. Support Objects

Fig. 1c. Other Objects

Fig. 1: Overview of all Objects used in this work

For collecting the data, using the RobWork simulator, we
randomly distributed one object on a workspace using a
normal distribution around the centre of the camera view.
For the second object we followed different strategies. This
was necessary to promote the chance of certain Relations
amongst the objects as with complete uncorrelated random
positioning the likelihood of "Inside" and "On-top" scenarios
occurring by uninformed random placement is too low to
make a reasonable sized training set. In order to promote
“desired” cases to collect the necessary data, placed the
2nd object around the first object with a normal distribution
and a smaller variance. In a few cases we limited the
possible positions of the second object to “Inside” or “On-
top” relations. The orientation of objects in the 3D space was
uniformly distributed over roll, pitch and yaw, with the only
limitation to ensure Support, Container objects stand upright.
The Rakes had a further restriction to be always in the same
orientation perpendicular to the camera, to ensure the 2nd
object is visible to the camera and not obscured by the rake
itself. Other objects had no limitations to their orientations.

C. Vision System

In our work we use a kinect based vision system called
CoViS[16], [17], which is developed at the Cognitive Vision
Lab at the Maersk McKinney Moller Institute at the Univer-
sity of Southern Denmark.

1) Visual Representation: Using the picture of the scene
and the depth map, both provided by the Kinect[18] camera,
our vision system calculates a 3D point cloud as it is common
amongst state of the art vision systems[19].

Fig. 2a. Inside /
not inside Fig. 2b. On top

/ not on top
Fig. 2c. Rakeable /
almost rakeable /
not rakeable

Fig. 2: Overview of the three relationships used in this work.
2a illustrates the "Inside" case with a turtle toy either inside
a box or not, 2b similarly illustrates the "On-top" case and
2c depicts from top to bottom Rake catching a die, Rake
close to catching a die and Rake not near the die.

Fig. 3: Texlet representation of a scene. Note that some
texlets (surface patches) are missing where surfaces appeared
too bright.

Based on this 3D point cloud and the colour information of
the scene, our vision system creates surface patches as shown
in Figure 3. There are different layers of surface patches. We
only use the basic layer with surface patches which we call
texlets. These texlets describe the surface of the scene with
additional information, e.g. not only position in the space,
but also the orientation and colour of the surface [20].

In our simulator, we also simulate the noise of real Kinect
devices. This gives us data about the depth to the objects in
our 3D scene just as we would have obtained from a real
Kinect looking at a real scene with 3D objects. The data
from the simulated vision system is hence more noisy and
less accurate than the perfectly accurate data which could
be provided the simulator. The noise affects the position and
orientation of the texlets. In addition some texlets can be
missing, dependent on the placement of light sources in the
simulator, as happens in a real scene; see Figure 3.

2) Object Segmentation: We acknowledge that highly
sophisticated Object Segmentation algorithms exist and we
assume they could be employed to work in a more complex
environment. In this work, however, we used a trivial method
for Object Segmentation. The method we present here is
based on colour information of the Texlet “Cloud”.

For this simple method to work, it is assumed that the
objects are coloured in one of a known set of colours. This

Fig. 4: Illustration of the Histogram creation process from
texlets to histograms.

is a very strong assumption, but it could be relaxed by
using more sophisticated segmentation methods, which could
take into consideration factors like discontinuities of surface
curvatures and colour differences. We simplified our seg-
mentation problem because in this work we wanted to focus
on finding which type data from the pairs of objects would
be most useful for characterising relationships, without our
results being affected by errors in segmentation. Future work
could look at how the segmentation problem interacts with
the problem of recognising spatial relationships.

We coloured our objects either Red, Blue or Green and
the background was Grey. The Texlets where then grouped
based on their colour or where neglected if they were Grey
(or any colour other than Red, Green or Blue).

After segmentation, each object is assigned its unique
set of texlets. A texlet representation of a scene with two
segmented objects can be seen in Figure 3.

3) Relational-Histogram Creation: Using the segmented
texlet based scene representation, we create Relational His-
tograms to capture the spatial relations between objects.
These Relational Histograms form a relational space into
which the absolute geometric information (3D position and
orientation) of the 3D texlets is transferred. To achieve this
transfer, we define a set of relational features which encode
the spatial relationship structure of the objects in the scene.

More specifically, for each scene we have 2 texlet groups
Π1 and Π2 representing the segmented objects 1 and 2 in
the scene. For each cross object texlet pair of the form Π1

i ⊕
Π2

j we calculate four Euclidean Distances Rd(Π1
i ,Π

2
j) (The

Euclidean Distances along the X, Y and Z axes respectively
and in the XY plane) and three Angle Relations Ra(Π1

i ,Π
2
j)

(The line through the two texlets is projected onto one of the
planes XY, XZ, or YZ, and we look at the angle between
the projected line and the axes X, Z and Z respectively).

The size of these feature vectors, describing the relation
between the two objects in the scene, is variable and deter-

mined by the amount of texlets extracted by the vision sys-
tem. As we want to apply Supervised Learning Algorithms,
we need the input vector to be generic and of fixed length,
for all possible scenarios.

For this, instead of using the data vectors Rd(Π1
i ,Π

2
j) and

Ra(Π1
i ,Π

2
j) directly, we compute 1-, 2- or 3 Dimensional

“Relational” Histograms from the data vectors and use these
as learning data input, similar to Mustafa et al.[7].

4) Histogram Types: In this work we experimented with 4
different kinds of Histograms for learning Spatial Relations.
Two 1D composites of Relational Histograms, one 2D and
one 3D Histogram. The two 1D composites of Histograms
are combinations of 1D Histograms.

• 1D Histograms capture simple relational features be-
tween inter-object texlet pairs. For the first 1D compos-
ite Relational Histogram, we calculate 3 1D histograms
capturing the distances between texlets along each of
the 3 main axes X, Y and Z respectively and put
them together as 1D learning input. For the second 1D
composite Relational Histogram we compute the angle
relations in the 3 planes in the space opened by the
3 main axes (XY, XZ and YZ planes) and calculate
the angles between texlets in these planes as described
above. These angle relations put together alongside the 3
distance histograms, make up the second 1D Relational
Histogram.

• The 2D Histogram used in this work, captures the
absolute distance of inter-object texlet pairs in the XY
plane and puts it into relation with the height difference
of the two texlets (i.e. Z difference). In Figure 4 a plain
2D histogram is illustrated.

• The 3D Relational Histogram captures distances be-
tween texlets amongst three Dimensions, in a similar
fashion as the 2D Histogram does for two Dimensions.
For the 3D Histogram, however, we used the actual
position differences amongst all three main axes (X,
Y and Z). 3D Histograms have not been graphically
illustrated in this paper mainly because they did not
give particularly good results, so it was less interesting
to inspect them visually.

In Fig. 5 we show examples of all 1D and 2D histograms.
3D histograms have not been illustrated here, but the results
are presented in Sec. IV. Note that the first (leftmost) figure
in each row is all that the camera sees, so that sometimes
some part of an object might be missing if it is very close, or
sometimes objects might be far away. Note also that texlets
also come only from seen parts; this explains why the first 1D
angle histogram shows a peak at both 0 and 360 degrees; it is
because the parts of the pitcher close to the camera dominate
(the vector from object to camera is 0 or 360 degrees; from
the object to the right is 90 degrees, and 180 points to the
back). Thus even though the pitcher totally surrounds the rod,
the system does not see most of the texlets surrounding it.
Note that our system is different to Mustafa et al.[7] in this
respect because they use 3 cameras, surrounding the object.

Fig. 5: This Figure is provided to illustrate comparatively how well 1D and 2D histograms can discriminate between the
various relationships we have experimented with. For each row of this figure, from left to right we have: an illustration of
a scene with a pair of objects, the 1D histograms of that scene, the 2D histograms of that scene, the 1D average histogram
across all training samples, the 2D average histogram across all training samples.

D. Data & Histogram Post Processing
Mustafa et al.[7] have demonstrated the potential of his-

tograms for object recognition. However, we found the lack
of generalisation capabilities of Random Forests to be a
limitation in their applicability when it comes to learning
Spatial Relations, as it is of major importance to be able, to
not only recognise relations between known objects, but also
for never before seen objects. In this we differ from Mustafa
et al. who only want to recognise well known objects. There-
fore in order to not only increase the learning performance,
but especially increase the robustness of recognising spatial
relations among novel objects, we implemented some feature
vector and histogram post processing methods.

The efficiency of these post processing methods on the
spatial recognition rate and robustness was investigated in
prior work [21]. Given the clear improvements shown there,
we use these methods for all learning in this paper.

1) Histogram Normalisation:
Histogram Normalisation proved to vastly increase the ro-
bustness of the recognition rate when it comes to novel object
pairs and their relations [21]. This is not surprising as the
numbers in the un-normalised histograms rely heavily on
the sizes of the objects, and the amount of texlet extracted
for them by the vision system. Hence, two large objects
would generate bigger numbers than two small objects in
the same relation. The according histograms would hence
look very similar but with different scales. Normalising these
histograms removes these scaling effects caused by the sizes
of the objects.

E.g. the two imaginary histograms [1|2|4|1] and [2|4|8|2]
could describe the same relations for objects pairs with
different sized objects. Normalisation would bring both his-
tograms down to [0.25|0.5|1|0.25] and hence remove the
differences caused by the object sizes, allowing them to be
recognised as the same Spatial Relation.

2) Histogram Smoothing:
Histogram Smoothing using normal Gaussian smoothing
considering only direct neighbours (i.e. Window size 3)
was also found to increase performance, but with a smaller
effect on the robustness in case of novel objects [21].
For Smoothing we applied a standard Gaussian Smoothing
algorithm with a variance σ2 = 1 and a window size of
3 bins, i.e. only direct neighbours to values are taken into
account for the smoothing.

Smoothing was found especially useful when used on 2D
and 3D Histograms as these are naturally quite sparse, also
compared to the according 1D histograms. The smoothing
accounts for noise in the histograms caused by kinect camera
and the limits in its resolution.

3) Data Scaling:
We apply Logarithmic Scaling to the feature vectors pre-
ceding the creation of Histograms. This logarithmic scaling
had biggest impact on general classification performance [21]
but was only applied on distance features; the angle relation
features were not scaled as this would not be sensible.

To scale the data, we replaced the original values of the
feature vectors, i.e. distances, with f(x) = ln(x + 1). To

compensate for the fact that the logarithm is not defined for
negative values, we applied the logarithm on the absolute
value and used the negative of the result for originally
negative values. Adding 1 to the each absolute values before
taking the logarithm ensures that the return value is always
positive and the values do not overlap for positive and
negative values. This logarithmic scaling has the effect that in
the histograms created from the scaled feature vectors, for
small distances there is a higher resolution than for larger
distances. This has a positive effect because in the smaller
distances lies the most useful information about Spatial
Relationships. It is evident, that if the distance between inter-
object texlet pairs is large, the two objects are unlikely to be
in a "On-top" or "Inside" relation, but instead are unrelated
distributed in the scene.

The Logarithmic Scaling leads to distortion effects of the
histograms which makes them slightly less intuitive as can
be seen when comparing the 2D histograms of figure 5 with
the 2D histogram at the bottom of figure 4. They show the
same features but the latter 2D histogram is not logarithmic
scaled.

IV. RESULTS

To test the performance of the different Histograms and
the robustness when it comes to Novel objects we use two
different test sets. For every scenario we have a Validation
set. This Validation set contains the same object pairs as
the Training set, but different instances; i.e. of the overall
set of available cases of each object pair setup, some were
put into the training set, some others into the Validation set.
Furthermore, for the “Inside” and “On-top” scenarios, we
also have kept some object pairs out of the Training and
Validation sets, to test the performance on not before seen
object pairs, to verify the robustness of the Histograms when
it comes to novel objects.

For the “Inside” and “On-top” Relations, we considered
“Inside” as a subgroup of “On-top”. Any “Inside” case is
hence also considered to be “On-top” but not necessarily the
other way round.

For the “Inside” Relation we have 9738, 11799 and 5381
instances in the Training, Validation and Novel sets respec-
tively. For the “On-top” Relation we have 11348, 14551 and
5616 instances in the Training, Validation and Novel sets
respectively, on-top of the “Inside” instances. We also have
11008, 12943 and 5621 instances in the respective sets of
the relationship free instances (neither “inside” nor “On-top”
samples).

For the Rake Relation sets, we have 1750 and 4087
samples in the Training and Validation sets respectively for
each of the 3 classes “Rakeable”, “Almost Rakeable” and
“Not Rakeable”.

In the following we call the trained classifiers XYZ for
the classifier based on the 1D Histograms without angle
information. XYZABC identifies the 1D Histogram based
classifier with the angle features. The 2D Histogram based
classifier we call XYabs_Z and the 3D Histogram X_Y_Z.

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

XYZ XYZABC XYabs_Z X_Y_Z

Validation Set

Novel set

Fig. 6: Performance of “Inside” classifier on the Validation
and the Novel test sets.

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

XYZ XYZABC XYabs_Z X_Y_Z

Validation Set

Novel set

Fig. 7: Performance of “On-top” classifier on the Validation
and the Novel test sets.

For each Relationship we trained four individual Binary
classifiers, one per Histogram type. Each Binary Classifier
was trained and tested 10 times on the Validation and Novel
sets where applicable. The results presented here are always
the averages of these 10 runs.

A. Inside and On-top Relations

In Figure 6 we show the performance of the four different
classifiers for the “Inside” case. The Blue bars show the
performance on the Validation set, the red bars show the
performance on the Novel set.

Figure 7 shows the same graph as Figure 6, but for the
“On-top” case.

Figures 8 and 9 directly compare the four classifiers of
“Inside” and “On-top” on the “Validation” and “Novel” test
sets respectively.

B. Rake Relations

Figure 8 compares the classifier performances of the
different Relations and of the different classifiers on each
Relation at the same time.

V. DISCUSSION

Overall the best histograms for classification purposes
seem to be the 1D histograms including angles. Their
advantage is marginal for “inside” or “on top”, but more

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

XYZ XYZABC XYabs_Z X_Y_Z

In

On

Fig. 8: Comparison of the the “Inside” and “On-top” classi-
fiers performance on the Validation set.

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

XYZ XYZABC XYabs_Z X_Y_Z

In

On

Fig. 9: Comparison of the the “Inside” and “On-top” classi-
fiers performance on the Novel set.

pronounced for the rake. The 3D histogram performs worst,
and this is likely due to the sparsity of data in a 3D histogram.

Above we have presented an empirical evaluation of how
well our various histograms can characterise a relationship
between two objects. We can also do a thought-experiment
type of analysis, somewhat akin to a mathematical proof
where we try to construct a counterexample for our clas-
sifiers. E.g. for the relationship “inside” we can contrive
objects which would be misclassified by our classifier. For a
false positive we can think of how to “fool” the 1D histogram
of angles in the XZ plane for example. This histogram has
large values for angles which are at the same Z value as
the contained object, but offset from it in the Y−axis; these
are surface patches of the container bounding the contained
object. There are two weaknesses: (i) the orientation of the
surface patch on the container is not considered - so a sort
of louvered surface full of gaps would be admissible; (ii) the
Y of the surface patch on the container is not considered, so
a large hole at small Y values could be mitigated by surface
patches at larger Y values, leading to a container with a
missing side being a false positive. Similar examples can be
contrived for other histograms. It is harder to contrive a false
negative, meaning that we have a “weak” notion of container,
because it admits a large set of objects, even with gaps.

Clearly we could upgrade the histograms with a histogram
which looks at Y values in conjunction with the XZ angles,

0,74

0,79

0,84

0,89

0,94

0,99

XYZ XYZABC XYabs_Z X_Y_Z

Rakeable

Almost Rakeable

Not Rakeable

Fig. 10: Comparison of the four classifiers on the Rake
relations.

however we are wary of constructing features which are
specifically tailored to the recognition of one particular
relationship (“inside” in this case), because of our desire to
allow the system to have generic features so it could learn
new relationships which the designer might not have foreseen
the need for.

One major weakness of the system is that is makes no
effort to guess at unseen parts of objects. This is probably
why the results for “inside” are worse than “on top” for novel
objects. We suspect that a human recognising relationships
such as the stick in the pitcher at the top of Fig. 5 would
complete absent texlets based on object knowledge and
gestalt principles, and so “see” a rod completely surrounded
by texlets.

VI. FUTURE WORK

In future work we plan to repeat the experiments here with
a set of real objects, and real Kinect cameras. We may also
experiment with objects which are not simply coloured so
that we need to tackle a more realistic segmentation problem.
In addition we plan to test our classifiers on the training set
of objects used by [9], in order to have a direct comparison
which would permit us to consider the relative strengths and
weaknesses of the two approaches.

ACKNOWLEDGMENT

This work was supported by the EU Cognitive Systems project XPERIENCE (FP7-
ICT-270273).

This work was performed using the Maxwell High Performance Computing Cluster
of the University of Aberdeen IT Service (www.abdn.ac.uk/staffnet/research/hpc.php),
provided by Dell Inc. and supported by Alces Software.

We thank Nicolas Pugeault for help with his random forests library.

REFERENCES

[1] James J. Gibson. The Ecological Approach To Visual Perception.
Lawrence Erlbaum Associates, 1986.

[2] E. Ugur, E. Oztop, and E. Sahin. Goal emulation and planning in
perceptual space using learned affordances, 2011.

[3] Lucas Paletta and Gerald Fritz. Reinforcement learning of predictive
features in affordance perception. In Erich Rome, Joachim Hertzberg,
and Georg Dorffner, editors, Towards Affordance-Based Robot Con-
trol, volume 4760 of Lecture Notes in Computer Science, pages 77–90.
Springer Berlin Heidelberg, 2008.

[4] Severin Fichtl, John Alexander, Dirk Kraft, Jimmy Alison Jorgensen,
Norbert Krüger, and Frank Guerin. Learning object relationships
which determine the outcome of actions. Paladyn, (Special Issue on
Advances in Developmental Robotics):1 – 12, 2013.

[5] Frank Guerin, Dirk Kraft, and Norbert Krüger. A survey of the
ontogeny of tool use: from sensorimotor experience to planning. IEEE
Transactions on Autonomous Mental Development, 5(1):18–45, 2013.

[6] E. Ugur, H. Celikkanat, E. Sahin, Y. Nagai, and E. Oztop. Learning
to grasp with parental scaffolding. In IEEE Intl. Conf. on Humanoid
Robotics, Bled, Slovenia, October, pages 480–486, 2011.

[7] Wail Mustafa, Nicolas Pugeault, and N Krüger. Multi-View Object
Recognition using View-Point Invariant Shape Relations and Appear-
ance Information. In ICRA 2013, 2013.

[8] W. Choi, Y.-W. Chao, C. Pantofaru, and S. Savarese. Understanding
indoor scenes using 3d geometric phrases. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2011.

[9] Benjamin Rosman and Subramanian Ramamoorthy. Learning spatial
relationships between objects. The International Journal of Robotics
Research, 30(11):1328–1342, 2011.

[10] J. Piaget. The Origins of Intelligence in Children. London: Routledge
& Kegan Paul, 1936. (French version 1936, translation 1952).

[11] Jeffrey J. Lockman. A perception-action perspective on tool use
development. Child Development, 71(1):137–144, 2000.

[12] P. Willatts. Development of problem-solving strategies in infancy. In
D.F. Bjorklund, editor, Children’s Strategies: Contemporary Views of
Cognitive Development, pages 23–66. Lawrence Erlbaum, 1990.

[13] J. Piaget. The Construction of Reality in the Child. London: Routledge
& Kegan Paul, 1937. (French version 1937, translation 1955).

[14] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.
[15] Jimmy A Joergensen, Lars-Peter Ellekilde, and Henrik G Petersen.

RobWorkSim - an Open Simulator for Sensor based Grasping.
Robotics (ISR), 2010 41st International Symposium on and 2010 6th
German Conference on Robotics (ROBOTIK), pages 1–8, June 2010.

[16] Norbert Krüger, Nicolas Pugeault, and Florentin Wörgötter. Visual
primitives: local, condensed, semantically rich visual descriptors and
their applications in robotics. International Journal of Humanoid
Robotics, 07(03):379–405, 2010.

[17] Sø renMaagaard Olesen, Simon Lyder, Dirk Kraft, Norbert Krüger,
and JeppeBarsø e Jessen. Real-time extraction of surface patches with
associated uncertainties by means of Kinect cameras. Journal of Real-
Time Image Processing, pages 1–14, 2012.

[18] Kourosh Khoshelham and Sander Oude Elberink. Accuracy and
Resolution of Kinect Depth Data for Indoor Mapping Applications.
Sensors, 12(2):1437–1454, 2012.

[19] R B Rusu and S Cousins. 3D is here: Point Cloud Library (PCL). In
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, pages 1–4, May 2011.

[20] N. Pugeault, F. Wörgötter, and N. Krüger. Visual primitives: Local,
condensed, and semantically rich visual descriptors and their applica-
tions in robotics. International Journal of Humanoid Robotics (Special
Issue on Cognitive Humanoid Vision), 7(3):379–405, 2010.

[21] Andrew McManus. Learning Spatial Relationships. Master Thesis,
2013.

Action-Grounded Push Affordance Bootstrapping of Unknown Objects∗

Barry Ridge and Aleš Ude†

Abstract— When it comes to learning how to manipulate
objects from experience with minimal prior knowledge, robots
encounter significant challenges. When the objects are unknown
to the robot, the lack of prior object models demands a robust
feature descriptor such that the robot can reliably compare
objects and the effects of their manipulation. In this paper, using
an experimental platform that gathers 3-D data from the Kinect
RGB-D sensor, as well as push action trajectories from a track-
ing system, we address these issues using an action-grounded
3-D feature descriptor. Rather than using pose-invariant visual
features, as is often the case with object recognition, we ground
the features of objects with respect to their manipulation, that
is, by using shape features that describe the surface of an object
relative to the push contact point and direction. Using this
setup, object push affordance learning trials are performed by
a human and both pre-push and post-push object features are
gathered, as well as push action trajectories. A self-supervised
multi-view online learning algorithm is employed to bootstrap
both the discovery of affordance classes in the post-push view,
as well as a discriminative model for predicting them in the pre-
push view. Experimental results demonstrate the effectiveness
of self-supervised class discovery, class prediction and feature
relevance determination on a collection of unknown objects.

I. INTRODUCTION

Endowing an autonomous robot with both the ability
to learn about object affordances [1] from experience and
the ability to use these learned affordances to make useful
predictions and manipulations in its environment is no easy
task, and simplifying assumptions are often made in order to
make the problem more soluble. For example, in the case of
object push affordance learning [2]–[6], if the desired result
is to learn how the positions and orientations of objects
change when pushed, the learning task can be simplified
by selecting prior object models, using standard computer
vision techniques to localise the object models within a
scene, and inferring data such as end effector contact points
on the objects using the models. However, when fewer
assumptions are made about the shapes of objects or their
affordances, such techniques may not be as feasible, and
while this increases the complexity of the learning problem,
it is an important research approach from a cognitive and
developmental robotics perspective.

In this paper, we explore object push affordance learning
by gathering data from human object push experimental trials
(see Fig. 1). Objects on a table surface were pushed by a hu-
man, whose hand motion trajectories were tracked while 3-D

*This research has been supported by EU FP7 projects Xperience (FP7-
ICT-270273) and IntellAct (FP7-ICT-269959).

†B. Ridge and A. Ude are with the Laboratory of Humanoid
and Cognitive Robotics, Department of Automation, Biocybernetics and
Robotics, Jožef Stefan Institute, Ljubljana, Slovenia. barry.ridge at
ijs.si ales.ude at ijs.si

Fig. 1. Our setup for human object push affordance data gathering.

point clouds of the objects before and after interaction were
recorded. The objects were pushed from various different
positions on their surfaces and from various different direc-
tions exhibiting a number of different affordances such as
forward translations, forward topples, left rotations and right
rotations, depending broadly on the shapes of the objects,
their orientations, and how they were pushed. Our goal was
to extend a type of bootstrap learning whereby significant
clusters are discovered in features extracted from the post-
push point clouds that are used as affordance classes in order
to train an affordance classifier using features extracted from
the pre-push point clouds as input in a developmental multi-
view online learning process. Note that a similar learning
process could be realised on an autonomous robot. We use
the above setup to ease the process of data gathering.

An idea for grounding the affordance learning task in the
pushing actions informed our research. We argue that the
approach of visual object recognition followed by object
manipulation informed by a prior object model (see e.g. [6]).
is, although quite useful when the main focus is accurate
prediction, perhaps less important when the main focus
is learning from experience. Instead, here we favour an
approach where little or no prior information on the structure
of the objects being pushed is assumed. To this end, we
propose a features-based approach where, rather than using
pose-invariant visual features, as is commonly the case with
object recognition, we ground the visual features of objects
with respect to their manipulation, that is, by using shape
features that describe the surface of an object relative to the
push contact point and direction.

A. Related Work

Past work on object affordance learning with robots has
seen a varied succession of approaches, ranging from learn-
ing affordances for particular objects [2], to supervised dis-
criminative learning of pre-defined affordance classes from
object features [7], to unsupervised discovery and subsequent

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 2791

discriminative learning of affordance classes [5], [8]–[11]
to probabilistic frameworks [3], [6], and others. One of
the earliest works in the literature to deal with affordance
learning in a robot was by Fitzpatrick et al. [2]. The authors
trained a humanoid robot to recognize rolling affordances of
four household objects using a fixed set of actions to poke
the objects in different directions as well as simple visual
descriptors for object recognition.

Paletta et al. [7], [12] developed a mobile robotic platform
equipped with a crane featuring a magnetic end-effector
which was used to pick up metallic objects in its sur-
roundings. Their affordance learning system used decision
trees and reinforcement learning of predictive features (SIFT
descriptors) to distinguish between two affordance classes
of liftable and non-liftable metallic objects. Ugur et al. [11]
worked with a robotic system consisting of a range scanner
and a robotic arm that learned affordances of objects in a
table-top setting using an unsupervised two-step approach
of effect class discovery and discriminative learning for
class prediction. More recently they have applied similar
techniques to a scenario involving self-discovery of motor
primitives and learning grasp affordances [13].

In [3], the authors used a humanoid robot to push objects
on a table and used a Bayesian network to form associations
between actions, objects and effects. In the work of Omrčen
et al. [4], the robot first observes how an object moves when
pushed in a certain direction. The collected data are used as
input to a neural network which learns to predict the motion
of pushed objects. Kopicki et al. [6] used a probabilistic
framework to address prediction of rigid body transforma-
tions in an object pushing scenario both in simulation and
using a real robotic system. Their work was similar to ours
here in that it explicitly addressed the representation of object
parts as well as the combination of knowledge from multiple
models. However, their visual system relied on the use of
prior object models for object localisation, something we
explicitly avoid in this work.

Object shape features have been used in prior work on
push affordance learning [5], [6], [11], [13], but grounding
object shape features relative to pushing actions has not been
studied as extensively. Recent work by Hermans et al. [14]
used shape features encoded in a coordinate frame defined by
object centres and push locations based on 2-D projections
of object point clouds. In this paper, we develop a similar
idea employing full 3-D shape features.

The remainder of the paper is structured as follows. In the
following section, we describe how the action-grounded fea-
tures are derived, including the object segmentation process,
the transformation of both objects and action trajectories
to the action coordinate frame, and the description of the
features themselves. In Section III, we describe our learning
approach. In Section IV we describe our experiments and
results. Finally, in Section V, we conclude.

II. GROUNDING 3-D SHAPE FEATURES IN PUSH
ACTIONS

In our experimental setup for human object push data
gathering, shown in Figure 1, we employed a Microsoft
Kinect

TM
RGB-D sensor for gathering 3-D point cloud data

of scenes and objects, and a Polhemus Patriot
TM

electromag-
netic tracking system for gathering trajectory data of human
hand motions. A wooden table with a wooden frame was
used as the work surface in order to avoid electromagnetic
interference from metallic objects in the environment. A
tracking sensor was placed at the end of the index finger of a
human experimenter, while the tracking source was located
at a corner of the table with the Kinect facing the table
at a 45◦ angle as shown in Figure 1. Objects were placed
at arbitrary locations on the table surface where they were
pushed from various directions and at various contact points
by the experimenter. 3-D point clouds of the scene were
recorded both before and after each push interaction while
hand trajectories were tracked during the interaction. Both
the point clouds and the trajectories were processed offline
where the objects were segmented from the table surface,
object point clouds and push trajectories were transformed
into the push action coordinate frame, and action-grounded
shape features were extracted.

A. Object segmentation

We used tools from the Point Cloud Library (PCL)1 to
perform dominant plane segmentation on scene point clouds
in order to acquire segmented point clouds of the objects
lying on the table surface. This involved using a pass-through
filter to subtract points in the scene cloud outside certain
range limits, using RANSAC [15] to fit a plane model to the
scene cloud, subtracting those scene points that were plane
inliers, and clustering the remaining points to find the objects
using Euclidean clustering [16].

B. Action coordinate frame transformation

We define the action frame to be the coordinate system
with its origin at the contact point on the object, its positive
y-axis pointing in the direction of the pushing motion parallel
to the table surface, its positive z-axis pointing upward from
the table surface, and its positive x-axis pointing perpen-
dicularly to both of them such that a left-handed coordinate
system is formed. In order to transform both the object point
cloud and the push trajectory into the action frame, we per-
form the following procedure. Firstly, we transform the push
trajectory from the Patriot tracker coordinate system to the
Kinect coordinate system by using least-squares adjustment
on a series of control points and calculating a rigid body
transformation of the form x′ = c + Rx, where x′ is the
transformed vector, x is the initial vector, c is the translation
vector, and R is a rotation matrix. The control points are
gathered prior to performing pushing experiments by placing
the tracking sensor at various positions in the workspace,
recording the sensor position, recording the Kinect point

1http://pointclouds.org

2792

cloud of the scene, then locating the sensor in the point cloud.
Since the pushing motions performed in our experiments
always follow an approximately linear trajectory, we proceed
by using orthogonal distance regression via singular value
decomposition to fit a 3-D line to the push trajectory. Finally,
we find the point of intersection between this fitted line and
the pre-push object point cloud, infer this to be the contact
point, and finally transform both the pre-push and post-push
object point clouds as well as the push trajectory to the action
frame as defined by the contact point and the fitted line.

C. Action-grounded shape features

Fig. 2. Partitioning a sample object point cloud into sub-parts. Top row:
original pre-push object point cloud. Middle row: partitioning planes divide
the point cloud evenly in each dimension to create sub-parts. Bottom row:
planes are fitted to each sub-part for feature extraction.

With both pre-push and post-push object point clouds
now grounded in the action coordinate frame, we turn to
generating a feature descriptor that describes the shapes of
the object point clouds with respect to the pushing action and
that is rich enough to capture the resulting affordance effects.
The main idea behind our approach is to divide the object
point clouds into cells of sub-parts and use the properties of
the sub-parts of the point clouds as a basis for the feature
descriptor. More concretely, we divide each object point
cloud evenly with respect to its minimum and maximum
points along each coordinate axis such that there are seven
cells that overlap for redundancy: one for the overall point
cloud, two for the x-axis, two for the y-axis, and two for
the z-axis. We then use two types of feature descriptors in
each cell. To gauge the position of the sub-part in each cell
relative to the action frame, we find the centroid of the points
in the cell, which gives us three features. To gauge the shape
of the sub-part in each cell relative to the action frame, we fit
a planar surface to the points within the cell and the x and y

components of the plane normal as features. We discard the
z component to reduce the feature space dimensionality, the
x and y components being sufficient to quantify the angle of
the plane from the normal. Examples of these features being
extracted from different point clouds are shown in Figure 5.

Using these five types of features, three for relative part
position and two for planar surface fit orientation, we extract
the five features for each part. This results in the following
list of 35 features that are extracted before

{
O1, . . . , O35

}
and after

{
E1, . . . , E35

}
the push interaction:

• global object point cloud features.
• x-axis division, left part features.
• x-axis division, right part features.
• y-axis division, front part features.
• y-axis division, back part features.
• z-axis division, top part features.
• z-axis division, bottom part features.

III. BOOTSTRAPPING OBJECT PUSH
AFFORDANCES

To enable the type of bootstrap learning discussed in
the introduction, we frame our scenario as a multi-view
online learning problem. Multi-view learning [17], as well as
the related fields of cross-modal and multi-modal learning,
[18]–[21], are machine learning areas which are concerned
with the problem of learning from data represented by
multiple distinct feature sets in different data views or
modalities. Given that common theme, the learning objective
may otherwise differ depending on the particular context
[17]. In our scenario, object pre-push shape features xi =
[O1

i , . . . , O
35
i]T define the feature space in one data view,

the input space, whereas object post-push shape features
yi = [E1

i , . . . , E
35
i]T define the feature space in another

view, the output space. Our learning goal is to find significant
clusters amongst the yi feature vectors in the output space,
then use these clusters as classes to train a classifier using
the xi feature vectors in the input space, that is to find a
mapping f : Rn → N from input space feature vectors
to class labels representing affordances grounded in output
space feature clusters. We considered this as a multi-view
learning problem since there is a natural separation between
the two feature spaces under consideration, which model
potential causes and potential effects respectively, and we
wished to use information in the output view (effect) to
influence learning in the input view (cause).

With that in mind, we extended the self-supervised multi-
view online learning algorithm originally proposed in [5].
This algorithm is self-supervised in the sense that the
data distribution in the output space coupled with the co-
occurrence information, is used to form a supervision sig-
nal that directs learning in the input space. The algorithm
achieves something similar to methods for self-discovery and
prediction of affordance classes proposed in other work [13],
but can be trained online and makes use of the class infor-
mation for discriminative learning as it emerges dynamically
during training. In the following, we summarise the relevant
parts of the algorithm. Further detail can be found in [5].

2793

A. Self-supervised Multi-view Online Learning

Assuming there are two datasets of co-occurring data,
X = {xi ∈ Rm | i = 1, . . . , D} in the input space and
Y = {yi ∈ Rn | i = 1, . . . , D} in the output space, where
we work under the assumption that the xi and yi data
vectors are not all available at once and arrive in an online
data stream, we aim to represent each space via vector
quantization [22] using codebooks of prototype vectorsW =
{wi ∈ Rm | i = 1, . . . ,M } for the input space and V =
{vi ∈ Rn | i = 1, . . . , N } for the output space respectively,
approximating the data distributions in each view. We imple-
ment multi-view connectivity between the two codebooks via
a weight matrix which we refer to as co-occurrence mapping,
defined as follows:

H(W,V) =

γ1,1 γ1,2 · · · γ1,N

γ2,1 γ2,2 · · · γ2,N

...
...

. . .
...

γM,1 γM,2 · · · γM,N

 (1)

where the γi j are weights that are used to record the level
of data co-occurrence between nearest-neighbour prototypes
in each of the codebooks and are adjusted by applying
the Hebbian rule to cross-view prototype activations. We
aim to find significant clusters of prototypes in the output
space which we dub class clusters that we treat as classes
to be used for discriminative learning in the input space.
Codebook training within the input space uses two learning
phases. The first phase involves unsupervised clustering of
the prototypes in each data view using the self-organizing
map (SOM) algorithm [22] such that the data distributions
are roughly approximated. The second phase involves self-
supervised discriminative learning using a modified form of
learning vector quantization (LVQ) [5] such that the positions
of the prototypes in the input space are refined for classifi-
cation purposes using cross-view co-occurrence information.
Throughout, the nearest-neighbour rule is employed using a
weighted squared Euclidean distance,

d2(x,w) =

n∑
i=1

λi(xi − wi)
2, (2)

where xi and wi are feature components of x and w
respectively, and the λi are weighting factors for each feature
which facilitate feature relevance determination as described
later in Section III-E.

The co-occurrence mapping can be used to infer the
relationship between the prototypes in the different feature
spaces by projecting the weights for a given prototype in one
space onto the codebook in the other space. Given prototype
wi ∈ W we define

P (vj |wi) =
γi j∑N
j γi j

(3)

which describes the probability of prototype vj ∈ V match-
ing prototype wi ∈ W based on the co-occurrence map-
ping, where γi j is the connection weight from (1) between
prototypes wi and vj . Thus for a given wi ∈ W , making

Fig. 3. Multi-view classifier construction. Left figure: Cross-view co-
occurrence weight projection. The weights of the H(W,V) mapping (red
lines) from a prototype wi in the W input space codebook (lower red
crosses & Voronoi regions) are projected using (3) (upper red shaded
regions) onto the prototypes of the V output space codebook (upper red
crosses & Voronoi regions) Right figure: Class discovery and cross-view
class projection. After both the codebooks and co-occurrence mapping are
trained (cf. Section III-A), the upper codebook prototypes are clustered
to form class labels (upper blue & green regions, cf. Section III-B). An
appropriate class label is then projected onto a prototype wj ∈ W (lower
blue region) using (5) (cf. Section III-C).

such projections for all vi ∈ V forms a spatial probability
distribution over codebook V and is a useful tool that allows
us to measure for measuring how one data view looks from
the perspective of another in terms of past co-occurrences of
data. A visualisation is provided on the left side of Fig. 3.

B. Class Discovery

In order to find class clusters in the output space, we treat
the prototype vectors as data points and employ traditional
unsupervised clustering to cluster the prototypes. Often, the
k-means clustering algorithm is used for such purposes, but
one issue with regular k-means is that k, that being the
number of clusters, must be selected in advance. It is possi-
ble, however, to augment the algorithm such that k may be
estimated automatically. We employ the X-means algorithm
[23] for that purpose here to find both the optimal k∗ number
of clusters for the prototypes in output space codebook V ,
as well as the actual clustering CVk∗ = {V1, . . . , Vk∗}, where
the Vi are subsets of prototypes in V . The Vi clusters that
are discovered in this way are treated as classes grounded in
output space features that can be mapped back onto the input
space layer using Hebbian projection. This class discovery
and projection process is visualised in Fig. 3.

C. Cross-View Class Projection

For cross-view classification, we require a mapping f :
Rm → L(V) that maps input space samples to class
labels, where L() is some labelling function. To realise this
labelling function, the CVk∗ class clusters found in output
space codebook V via class discovery are projected back
to the input space codebook W . By summing the posterior
probabilities P (vj |wi) provided by such a projection, we
can determine the posterior probability of class cluster Vl in
output view codebook V given prototype wi in input space
codebook W as follows

P (Vl|wi) =
∑

vj∈Vl

P (vj |wi)P (wi). (4)

2794

This allows us to assign an output space class cluster label
to each of the prototypes in the input space codebook by
maximizing the category cluster posterior probability for
each of them. Thus, given wi, we define a labelling function

L(wi) = argmax
l=1,...,k∗

P (Vl|wi) (5)

that labels the input space prototypes on that basis.

D. Class Prediction

Given an input space test sample x, its predicted output
space class cluster may finally be determined using the
labelling function from (5), the weighted squared Euclidean
distance function from (2), and the nearest-neighbour rule as
follows:

f(x) = L

(
argmin
wi∈W

d2(x,wi)

)
. (6)

E. Feature Relevance Determination

Some features can prove to be more relevant than others
for class prediction, and determining the extent of their
relevance and exploiting this information can improve classi-
fication accuracy. To this end, we make use of an algorithm
developed in previous work for feature relevance determi-
nation, specifically Algorithm 1 from [24]. It exploits the
positioning of the prototypes in the input feature space to
estimate Fisher criterion scores for the input dimensions,
and subsequently, to estimate the λi weighting factors in (2)
for an adaptive distance function that accounts for feature
relevance with respect to classifier output. Due to the boot-
strapped nature of the learning algorithm described in this
paper, class information may not be fully formed at a given
time step during training. Therefore, to avoid corrupting the
online learning process we do not apply the feature weights
during training, but apply them at classification time instead.
Further details on this method may be found in [24].

IV. EXPERIMENTS

To test our affordance learning system, the experimental
environment was set up as shown in Figure 1. We selected 5
household objects (cf. Fig. 4) for the experiments: 4 flat-
surfaced objects; a book, a marshmallow box, a cookie
packet, and a biscuit box, and 1 curved-surfaced object;
a yoghurt bottle. A dataset was collected as follows. A
number of object push tests were carried out for each of
the 5 objects listed previously and the resulting data was
processed, leaving 134 data samples. Objects were placed
at random start locations within the workspace and within
view of the Kinect sensor, and the human experimenter
would perform straight-line pushes on the objects, attempting
to keep the pushes within reasonable limits of 5 different
categories: pushing through the top, bottom, left, right and
centre of the objects respectively, from the direction of the
field of view of the Kinect. For evaluation the samples were
hand-labelled with four ground truth labels: left rotation,
right rotation, forward translation and forward topple, but this
information was of course not used by our self-supervised

learning algorithm, and was used strictly for evaluation
and for training the supervised classifiers outlined below in
Section IV-A. Sample object interactions are shown in Fig. 5.
The results presented below examine three different aspects
of our learning framework: class discovery, class prediction
and feature relevance determination.

Fig. 4. Test objects used in our experiments.

A. Evaluation Procedure

To test our self-supervised learning paradigm on the
dataset described above, we performed 10-fold cross-
validation, evaluating performance online at regular intervals
over the training period. Our self-supervised learning vector
quantization algorithm (SSLVQ) [5], as well as a variation
employing feature relevance determination at classification
time (SSLVQ (FRC)) [5], [24], were compared alongside the
supervised LVQ algorithms GLVQ [25], GRLVQ [26] and
SRNG [27] in this online evaluation. Two main experiments
were performed, the first one performing 10-fold cross-
validation for 1 epoch over the training data to test short-term
training performance, and the second one performing 10-fold
cross-validation for 10 epochs over the training data over 10
trials to test more long-term training performance. In each
case, codebooks in both the input space and output space
consisted of 64 prototypes arranged in a 8 × 8 hexagonal
lattice with a sheet-shaped topology [5], [22]. The feature
weights of the codebook prototype vectors were randomly
initialized to test the abilities of the algorithms to learn
from scratch. The 10-fold cross-validation was therefore
performed in 10 trials and results were averaged in order to
account for the variation in codebook initialization between
trials. The learning phase was switched from unsupervised
learning to self-supervised learning one tenth of the way
through training. Batch SVM was also performed outside
of the online evaluation for reference. Batch methods, as op-
posed to online methods that are trained sample-by-sample,
have access to the entire training set during training, and
therefore usually provide superior results. SVM parameters
were optimized using cross validation over the training data
prior to training.

Given the self-supervision aspect, the evaluation criteria,
by necessity, differed from the traditional match-counting

2795

Fig. 5. Action-grounded shape feature extraction. Top row: pre-push and post-push 3-D point clouds and action trajectories for the five test objects being
pushed in various different ways. Second & third rows: action-grounded shape feature extraction (cf. Section II-C) for the pre-push and post-push point
clouds, respectively. Plane fits are shown in red for the x-axis divisions of the point clouds, in green for the y-axis divisions, and in blue for the z-axis
divisions. Four different affordances are visible in the columns from left to right: forward translation, forward topple, right rotation, and left rotation.

utilized to evaluate fully-supervised classifiers. Clusters of
prototypes were found in the output space codebook as
described in Section III-B and subsequently matched to
the ground truth classes by first matching all ground truth
labelled training data to nearest-neighbour output space pro-
totypes, then assigning each class cluster the ground truth
label which their respective prototypes matched to most
frequently. Then, given a test sample consisting of an input
space test vector xi and an output space test vector yi, the
input space codebook was tasked with predicting an output
space class cluster Vj for xi using the process described
in Section III-D. The output space test vector yi was then
matched to a class cluster Vk in the output modality via the
nearest-neighbour rule. If the Vj class cluster predicted by
the input codebook matched the Vk cluster and that cluster
also matched the ground truth label for the test sample, this
was deemed to be a correct classification.

B. Results: Full Feature Set

1) Class Discovery: An important consideration in eval-
uating whether or not our algorithm is capable of self-
supervised multi-view learning is to examine if it is capable
of successfully finding class clusters in the output space,
without which self-supervised discriminative learning in the
input space would not be possible. Recall that this is achieved
by clustering prototypes in the output space at classification
time using X-means clustering (cf. Section III-B). But how
quickly do the prototypes position themselves such that this
clustering may happen successfully? The leftmost graphs of
Figures 6 and 7 answer this question by showing the rate
at which ground truth labelled output space test samples

fall within output space class clusters with matching ground
truth labels (cf. Section IV-A) over time. As is evident from
the graph for short-term training over 1 epoch, performance
starts to peak around half-way through training and reaches
near-optimal performance by the end, in which case output
view test samples were correctly matched to the four ground-
truth affordance classes over 94% of the time by the end of
training. In the case of long-term training over 10 epochs,
near-optimal performance is achieved early in the training
process and is maintained throughout, meaning that cross-
view prediction should at least have the opportunity to reach
optimal ground truth prediction rates early on.

2) Class Prediction: With regard to class prediction, batch
SVM scores 92% classification accuracy using ground truth
labels, and although the other learners were not expected to
perform at this level given the fact that they were trained on-
line from a random initialization, this serves as a good refer-
ence point. Turning to the middle graphs on class prediction
in Figs. 6 and 7, most of the learners perform poorly in short-
term training, most of them scoring below 50% classification
accuracy, likely due to there being insufficient training time
to tackle the complexity of the problem. The self-supervised
learners, reaching a rate of 42%, out-perform all of the
supervised classifiers apart from GRLVQ, which reaches just
under 50% accuracy. The self-supervised learners capitalise
slightly in this case from the dynamic class labelling process
that occurs when classifying as described in Section III-D,
while the class labels for the prototypes of the supervised
classifiers are randomly distributed, which means that it
takes time for the labelled prototypes to cluster appropriately.
Long-term training sees all of the learners performing better,

2796

0 9 18 27 36 45 54 63 72 81 90 99 108

0

10

20

30

40

50

60

70

80

90

100

Samples

C
la

ss
 C

lu
st

e
r/

G
ro

u
n

d
 T

ru
th

 A
c

c
u

ra
c

y
 %

Self−Supervised Class Discovery

SSLVQ

SSLVQ (FRC)

0 9 18 27 36 45 54 63 72 81 90 99 108

0

10

20

30

40

50

60

70

80

90

100

Samples

C
la

ss
if
ic

a
ti
o

n
 A

c
c

u
ra

c
y
 %

Supervised Vs. Self−Supervised Class Prediction

GLVQ

GRLVQ

SRNG

SSLVQ

SSLVQ (FRC)

GRLVQ SRNG SSLVQ (FRC)

0

0.01

0.02

0.03

0.04

Supervised Vs. Self−Supervised Feature Relevance

Learners

F
e

a
tu

re
 R

e
le

v
a

n
c

e

Fig. 6. Results for 1 epoch of online training over the full feature set. From left to right: class discovery, class prediction and feature relevance results are
shown for 10-fold cross-validation averaged over 10 trials with random prototype initialization (cf. Section IV-A). Bold vertical dashed lines in the class
prediction graphs indicate training phase shifts from unsupervised to self-supervised learning (cf. Section III-A). Comparitive batch SVM class prediction
score: 92%.

0 90 180 270 360 450 540 630 720 810 900 990 1080

0

10

20

30

40

50

60

70

80

90

100

Samples

C
la

ss
 C

lu
st

e
r/

G
ro

u
n

d
 T

ru
th

 A
c

c
u

ra
c

y
 %

Self−Supervised Class Discovery

SSLVQ

SSLVQ (FRC)

0 90 180 270 360 450 540 630 720 810 900 990 1080

0

10

20

30

40

50

60

70

80

90

100

Samples

C
la

ss
if
ic

a
ti
o

n
 A

c
c

u
ra

c
y
 %

Supervised Vs. Self−Supervised Class Prediction

GLVQ

GRLVQ

SRNG

SSLVQ

SSLVQ (FRC)

GRLVQ SRNG SSLVQ (FRC)

0

0.02

0.04

0.06

0.08

0.1

Supervised Vs. Self−Supervised Feature Relevance

Learners

F
e

a
tu

re
 R

e
le

v
a

n
c

e

Fig. 7. Results for 10 epochs of online training over the full feature set. Results are shown for 10-fold cross-validation averaged over 10 trials with
random prototype initialization (cf. Section IV-A). Comparative batch SVM class prediction score: 92%.

with GRLVQ scoring 85%, SRNG scoring 81%, SSLVQ
(FRC) scoring 74% SSLVQ scoring 66%, and GLVQ scoring
42%. by the end of training. In this instance it is possible
to see the benefit of feature relevance determination, with its
addition boosting the performance of self-supervised learning
by 8%. GLVQ is known to suffer issues with poor prototype
initialization, hence its relatively poor performance. SRNG
has a slower update rule than GRLVQ, which likely accounts
for its relatively slow adaptation here.

3) Feature Relevance Determination: The rightmost
graphs of Figures 6 and 7 show average feature relevances
at the end of training as determined by the three learners
GRLVQ, SRNG and SSLVQ (FRC) which have feature
relevance determination capabilities. In the 10-epoch case,
all three of them highlight the following list of features as
being most significant for class prediction:
• Overall point cloud, centroid x-coordinate.
• x-axis, left side part, centroid x-coordinate.
• x-axis, right side part, centroid x-coordinate.
• y-axis, front side part, centroid x-coordinate.
• z-axis, top side part, centroid x-coordinate.

In general, the object part centroid features were determined
to be the most discriminative for affordance class prediction.

C. Results: Reduced Feature Set

Using this knowledge, we performed an additional set
of experiments on a reduced feature set over the same
experimental data, this time using only the centroids of the
sub-parts to form the feature vectors in both the input and
output spaces. The experimental parameters were kept the
same as in Section IV-B and the results for these experiments
are shown in Figures 8 and 9. This refinement of the
feature spaces boosts the predictive performance of SSLVQ

(FRC) up to 87% over 10 epochs of training, a significant
improvement over the full feature set.

V. CONCLUSIONS
In summary, the main contribution of this paper was

the proposal of an action-grounded 3-D visual feature de-
scriptor to be used for bootstrapping object affordances in
autonomous robots when little prior information is available
about the objects. We have demonstrated through exper-
imental results how, when used in combination with a
self-supervised learning algorithm, this feature descriptor is
effective at facilitating both affordance class discovery and
prediction in an online learning setting with a number of
initially unknown objects and object affordances. A feature
relevance determination extension to the self-supervised al-
gorithm was also shown to boost affordance class prediction
results by emphasizing the discriminative contribution of
particular features within the descriptor.

With regard to future work, firstly, we aim to migrate the
affordance learning techniques presented here to a humanoid
robotic system. The design of the shape features could
potentially be improved by matching 2-D invariant image
features to 3-D surface features and thereby directly tracking
object part motion during interaction. Looking towards im-
proving the affordance learning aspects, we aim to implement
regression capabilities that would allow for continuous pre-
diction of object and object part positions. The bootstrapping
of significant affordance classes as presented in this paper
would mitigate this task, constraining the problem by guiding
the development of multiple continuous models.

REFERENCES

[1] J. J. Gibson, The Ecological Approach to Visual Perception. Houghton
Mifflin, 1979.

2797

0 9 18 27 36 45 54 63 72 81 90 99 108

0

10

20

30

40

50

60

70

80

90

100

Samples

C
la

ss
 C

lu
st

e
r/

G
ro

u
n

d
 T

ru
th

 A
c

c
u

ra
c

y
 %

Self−Supervised Class Discovery

SSLVQ

SSLVQ (FRC)

0 9 18 27 36 45 54 63 72 81 90 99 108

0

10

20

30

40

50

60

70

80

90

100

Samples

C
la

ss
if
ic

a
ti
o

n
 A

c
c

u
ra

c
y
 %

Supervised Vs. Self−Supervised Class Prediction

GLVQ

GRLVQ

SRNG

SSLVQ

SSLVQ (FRC)

GRLVQ SRNG SSLVQ (FRC)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Supervised Vs. Self−Supervised Feature Relevance

Learners

F
e

a
tu

re
 R

e
le

v
a

n
c

e

Fig. 8. Results for 1 epoch of training over the reduced feature set. Class discovery, class prediction and feature relevance results are shown for 10-fold
cross-validation averaged over 10 trials with random prototype initialization (cf. Section IV-A). Comparative batch SVM class prediction score: 96%.

0 90 180 270 360 450 540 630 720 810 900 990 1080

0

10

20

30

40

50

60

70

80

90

100

Samples

C
la

ss
 C

lu
st

e
r/

G
ro

u
n

d
 T

ru
th

 A
c

c
u

ra
c

y
 %

Self−Supervised Class Discovery

SSLVQ

SSLVQ (FRC)

0 90 180 270 360 450 540 630 720 810 900 990 1080

0

10

20

30

40

50

60

70

80

90

100

Samples

C
la

ss
if
ic

a
ti
o

n
 A

c
c

u
ra

c
y
 %

Supervised Vs. Self−Supervised Class Prediction

GLVQ

GRLVQ

SRNG

SSLVQ

SSLVQ (FRC)

GRLVQ SRNG SSLVQ (FRC)

0

0.05

0.1

0.15

Supervised Vs. Self−Supervised Feature Relevance

Learners

F
e

a
tu

re
 R

e
le

v
a

n
c

e

Fig. 9. Results for 10 epochs of online training over the restricted feature set using only part centroids. Again, results are shown for 10-fold cross-validation
averaged over 10 trials with random prototype initialization (cf. Section IV-A). Batch SVM class prediction score: 96%.

[2] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini, “Learning
about objects through action-initial steps towards artificial cognition,”
in Proceedings of the 2003 IEEE International Conference on Robotics
and Automation (ICRA), vol. 3, 2003.

[3] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learn-
ing object affordances: From sensory-motor coordination to imitation,”
vol. 24, no. 1, p. 15–26, 2008.

[4] D. Omrčen, C. Boge, T. Asfour, A. Ude, and R. Dillmann, “Au-
tonomous acquisition of pushing actions to support object grasping
with a humanoid robot,” in Proceedings of the 9th IEEE-RAS Inter-
national Conference on Humanoid Robots (Humanoids), Dec. 2009,
pp. 277 –283.

[5] B. Ridge, D. Skočaj, and A. Leonardis, “Self-supervised cross-modal
online learning of basic object affordances for developmental robotic
systems,” in Proceedings of the 2010 IEEE International Conference
on Robotics and Automation (ICRA). Anchorage, USA: IEEE, May
2010, pp. 5047–5054.

[6] M. Kopicki, S. Zurek, R. Stolkin, T. Morwald, and J. Wyatt, “Learning
to predict how rigid objects behave under simple manipulation,” in
Proceedings of the 2011 IEEE International Conference on Robotics
and Automation (ICRA), May 2011, pp. 5722 –5729.

[7] G. Fritz, L. Paletta, M. Kumar, G. Dorffner, R. Breithaupt, and
E. Rome, “Visual learning of affordance based cues,” vol. 9, p. 52–64,
2006.

[8] I. Cos-Aguilera, L. Canamero, and G. Hayes, “Using a SOFM to learn
object affordances,” in Proceedings of the 5th Workshop of Physical
Agents (WAF’04), Girona, Spain, 2004.

[9] J. Sinapov and A. Stoytchev, “Detecting the functional similarities
between tools using a hierarchical representation of outcomes,” in
Proceedings of the 7th IEEE International Conference on Development
and Learning (ICDL), Aug. 2008, pp. 91 –96.

[10] S. Griffith, J. Sinapov, M. Miller, and A. Stoytchev, “Toward in-
teractive learning of object categories by a robot: A case study
with container and non-container objects,” in Proceedings of the 8th
IEEE International Conference on Development and Learning (ICDL).
IEEE, June 2009, pp. 1–6.

[11] E. Ugur, E. Oztop, and E. Sahin, “Goal emulation and planning in
perceptual space using learned affordances,” 2011.

[12] L. Paletta and G. Fritz, “Reinforcement learning of predictive fea-
tures,” in Proceedings of 31st Workshop of the Austrian Association
for Pattern Recognition (AAPR/OAPR), 2007, p. 105–112.

[13] E. Ugur, E. Sahin, and E. Oztop, “Self-discovery of motor primitives
and learning grasp affordances,” in Proceedings of the 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Oct. 2012, pp. 3260 –3267.

[14] T. Hermans, F. Li, J. M. Rehg, and A. F. Bobick, “Learning
stable pushing locations,” in Proceedings of the Third Joint IEEE
International Conference on Development and Learning and on
Epigenetic Robotics (ICDL-EpiRob), Osaka, Japan, Aug. 2013.

[15] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” vol. 24, no. 6, p. 381–395, 1981.

[16] R. B. Rusu, “Semantic 3D object maps for everyday manipulation
in human living environments,” Ph.D. dissertation, Computer Science
department, Technische Universitaet Muenchen, Germany, Oct. 2009.

[17] S. Sun, “A survey of multi-view machine learning,” p. 1–8, 2013.
[18] V. R. de Sa, “Learning classification with unlabeled data,” in Advances

in Neural Information Processing Systems 6. Denver, CO, USA:
Morgan Kaufmann, 1994, pp. 112–119.

[19] A. Blum and T. Mitchell, “Combining labeled and unlabeled data
with co-training,” in Proceedings of the eleventh annual conference
on Computational learning theory, 1998, p. 92–100.

[20] S. Bickel and T. Scheffer, “Multi-view clustering,” in Proceedings
of the IEEE International Conference on Data Mining (ICDM),
Washington D.C., USA, Nov. 2004, pp. 19–26.

[21] V. de Sa, P. Gallagher, J. Lewis, and V. Malave, “Multi-view kernel
construction,” vol. 79, no. 1, pp. 47–71, 2010.

[22] T. Kohonen, Self-organizing maps. Springer, 1997.
[23] D. Pelleg and A. Moore, “X-means: Extending k-means with

efficient estimation of the number of clusters,” in Proceedings of the
Seventeenth International Conference on Machine Learning, vol. 1,
2000, p. 727–734.

[24] B. Ridge, A. Leonardis, and D. Skočaj, “Relevance determination
for learning vector quantization using the fisher criterion score,” in
Proceedings of the Seventeenth Computer Vision Winter Workshop
(CVWW), Mala Nedelja, Slovenia, Feb. 2012.

[25] A. Sato and K. Yamada, “Generalized learning vector quantization,”
in Advances in Neural Information Processing Systems 8. Denver,
CO, USA: MIT Press, 1996, p. 423–429.

[26] B. Hammer and T. Villmann, “Generalized relevance learning vector
quantization,” vol. 15, no. 8-9, pp. 1059–1068, 2002.

[27] B. Hammer, M. Strickert, and T. Villmann, “Supervised neural gas
with general similarity measure,” vol. 21, no. 1, p. 21–44, 2005.

2798

3D Object Class Geometry Modeling with
Spatial Latent Dirichlet Markov Random Fields?

Hanchen Xiong Sandor Szedmak Justus Piater

Institute of Computer Science, University of Innsbruck
{hanchen.xiong, sandor.szedmak, justus.piater}@uibk.ac.at

Abstract. This paper presents a novel part-based geometry model for
3D object classes based on latent Dirichlet allocation (LDA). With all
object instances of the same category aligned to a canonical pose, the
bounding box is discretized to form a 3D space dictionary for LDA.
To enhance the spatial coherence of each part during model learning,
we extend LDA by strategically constructing a Markov random field
(MRF) on the part labels, and adding an extra spatial parameter for each
part. We refer to the improved model as spatial latent Dirichlet Markov
random fields (SLDMRF). The experimental results demonstrate that
SLDMRF exhibits superior semantic interpretation and discriminative
ability in model classification to LDA and other related models.

1 Introduction

During the past decades, computer vision has made remarkable progress in vi-
sual object understanding, e.g. classification, pose estimation and segmentation,
etc. However, most previous study of object modeling is based on 2D images,
in which appearance is the main and only information source for various tasks,
so most attention is focused on increasing the robustness of algorithms to light-
ing changes, intra-class appearance variation and viewpoint variation [4]. Mean-
while, 3D geometry properties of objects have been rarely exploited and used
to increase the expressiveness of object models. Recently, pioneering work [7,13]
has attempted to add 3D geometric information to object models, demonstrat-
ing that the accuracy and robustness of such algorithms can be enhanced with
extra 3D geometry clues. However, there still exists an obvious gap between
2D appearance modeling and 3D geometry modeling with respect to their in-
terpretation and representation abilities, and it has been advocated [7,13] that
robust 3D geometry modeling is highly desirable. Motived by this gap and desire,
this paper puts forward a novel 3D object class geometry model in the light of
state-of-the-art techniques developed in machine learning and computer graph-
ics. Part-based models have displayed merits in 2D appearance modeling [4] for
handling partial occlusion, our 3D geometry model is likewise part-based and
inherits these strengths. The training data of our algorithm are collections of 3D

? The research has received funding from the European Community’s Seventh Frame-
work Programme (FP7) under grant agreement no. 270273, Xperience.

2 Hanchen Xiong Sandor Szedmak Justus Piater

Fig. 1. Different object instances of the same class should share similar 3D structure of
composing parts, although their parts can slightly vary from one instance to another.

models of different instances which belong to the same category (Figure 1). The
basic underlying principle of our modeling is the concept that different object
instances of the same class should share similar 3D structure of composing parts,
although their parts can slightly vary from one instance to another. For example,
all bicycles are composed of a frame and two wheels, and the geometric relation
between these three parts are similar across different instances (Figure 1). In this
paper, 3D objects are represented by point cloud data (PCD), which is a gen-
eral and popular representation of 3D shapes and can easily be converted from
other data formats (e.g. meshes). First, for each class, different PCDs of object
instances are aligned using point cloud registration methods. Secondly, the main
learning step is inspired by latent Dirichlet allocation (LDA) [1] and computer
graphics [5]. LDA is a state-of-the-art machine learning tool for discovering la-
tent topics within document collections. Here we apply LDA by considering each
object point cloud as a document, and each part as a topic. With the bounding
box volume discretized into a 3D grid dictionary, the part can be mined out
as a multinomial distribution over the discrete 3D space, and each object is a
multinomial distribution over parts. However, standard LDA ignores the spa-
tial coherence, which is of great importance in our task but not generally taken
into account in natural language applications. Based on discoveries in computer
graphics [5] and other work on LDA [8,11], we develop a spatial latent Dirich-
let Markov random field (SLDMRF) model with extra undirected links between
topic labels and spatial parameters. The proposed SLDMRF can co-segment all
point clouds simultaneously under a prior of coherence of correspondence, spatial
continuity and spatial smoothness. According to our empirical results (section
3), compared to standard LDA and other related models, SLDMRF can achieve
much more consistent and semantically meaningful segmentations of 3D point
clouds, and the learned class geometry models display better discriminative abil-
ity in classification.

1.1 Related work

The starting point of 3D geometry modeling in visual object understanding is the
difficulty in dealing with appearance variation due to different viewpoints. There
have been several attempts to embed 3D geometric information into object mod-
els [2,3,7,13], and all of them have reported improvement in accuracy and robust-
ness, although different 3D geometry information are exploited and modelled in
their work. In [2] 3D object shapes are probabilistically modelled as continuous

3D Object Class Geometry Modeling with SLDMRFs 3

distributions in R3 with a kernel density estimator (KDE). However, that work
explicitly addresses neither category-level tasks nor semantic segmentation. Ob-
jects are considered as Gausssaian mixtures and expectation-maximization (EM)
is applied to estimate corresponding Gaussian parameters and weights. One ob-
servation of Gaussian-mixture-based segmentation is that discovered parts rarely
display good semantic interpretability since usually the part geometry is too com-
plex to be modelled as a Gaussian (section 3.1). Other work attempts to improve
the expressiveness of object geometry models in different ways. For example, De-
try et al. [3] represent objects as hierarchically-organized spatial distributions of
distinct feature types, but did not seek to produce semantically-meaningful seg-
mentations. Other models [7,13] extract 3D geometry information at the class
level. However, in [7] the segmentation is again based on Gaussian mixtures
and EM, and most [13] do not model object classes in a part-based manner
to avoid segmentation. Meanwhile, another thread of segmentation-based visual
modeling is the application of Latent Dirichlet allocation (LDA) in computer
vision [10,11,8]. LDA was originally developed to discover hidden topics in text
corpora by clustering words into different topics [1]. Standard LDA, however,
ignores spatial coherence, which is problematic in vision applications. Therefore,
spatial LDA (SLDA) [11] and Latent Dirichlet Markov random fields (LDMRF)
[8] were put forward to produce better, spatially-coherent segmentations. In
addition, with higher emphasis of the smoothness of parts and consistent cor-
respondences, 3D segmentation in computer graphics [5] constructs graphs with
neighboring intra-links and correspondence inter-links among objects, and min-
cut is used on graphs for segmentation.

The main contribution of this paper is an extension of LDA for 3D object
class geometry modeling, which we refer to as Spatial Latent Dirichlet Markov
Random Fields(SLDMRF). The proposed model is built with inspiration from
recent advances in different fields [1,11,8,5], and it yields superior interpretability
and representational capability in modeling 3D object class geometry.

2 3D Object Class Geometry Modeling

With the point cloud representations of 3D object shapes, the alignment of
different instances of the same class is achieved with point cloud registration
algorithms. While any suitable registration procedure can be used, we adopted a
novel method [12] since it is very efficient and robust to non-rigid transformation,
which suits the case of intra-category shape variation. An example of aligning
dogs is displayed in Figure 2.

2.1 Latent Dirichlet Allocation

LDA [1] is a generative model that utilizes the information of co-occurring words
to find out hidden topics shared by documents. In LDA, each document is con-
sidered as a finite mixture of topics; each topic is a finite mixture of words. The
graphical model of LDA is shown in Figure 3(a). The generative process of LDA

4 Hanchen Xiong Sandor Szedmak Justus Piater

Fig. 2. Alignment of different dog instances by point cloud registration [12]. Left:
original 3D shapes of different dog instances; middle: point clouds generated from the
shapes on the left; right: three views (top, profile, front) of the point clouds (middle)
after alignment.

 β θk

 k∈[1, K]

 α πm zm
(n)

 wm
(n)

 n∈[1, Nm]
 m∈[1, M]

(a)

 α πm

 z1 z2 zK

 θk

 k∈[1, K]

 β
w

w

w

w
w

w

w

w

….....

w

w

w
w

….....

w

w

(b) (c)

Fig. 3. (a) Graphical model of LDA; (b) Application of LDA to model 3D object cate-
gories; (c) Construction of 3D dictionary by discretizing the 3D space of the bounding
box.

is as follows: (1) for each topic k ∈ [1,K], a multinomial parameter θk over
words is sampled from Dirichlet prior β; (2) for each document m ∈ [1,M],
a multinomial parameter πm over K topics is sampled from Dirichlet prior

α; (3) for each word w
(n)
m , n ∈ [1, Nm] in document m, a topic label z

(n)
m is

first sampled from multinomial distribution z
(n)
m ∼ Multinomial(πm), then the

word w
(n)
m is sampled from the multinomial distribution parametrized with θ

z
(n)
m

,

w
(n)
m ∼ Multinomial(θ

z
(n)
m

). Hyperparameters α and β define the Dirichlet priors

governing the parameters of multinomial distributions. Usually α and β are set
in a symmetric manner and using low values [6]. In [10], LDA is applied on a
collection of images. Each image is considered as a document, objects correspond
to topics, and visual words are generated using vector quantization on extracted
features. In our case, however, LDA is utilized for 3D object class geometry
modeling with objects of the same category as documents, and parts shared by
different instances correspond to topics (Figure 3(b)).

3D Dictionary. In our task, LDA is expected to work effectively under the
assumption that different objects of the same category should share very similar
structure. Therefore, when LDA is applied on each collection of categorical object

3D Object Class Geometry Modeling with SLDMRFs 5

point clouds, the co-occurring patterns are the 3D space occupied by 3D points.
In each collection, all instances can be aligned to a canonical pose, based on which
the 3D space of the bounding box is discretized into a grid, where each block
represents a 3D word. Therefore, when transferring point clouds to corresponding
documents, word wk will replace 3D point xi if xi lies within block wk. In this
way, the discovered part actually is a distribution over 3D space, and a category
is a mixture of these distributions. The concept of dictionary discretization is
illustrated in Figure 3(c).

For label inference and parameters learning in LDA, a collapsed Gibbs sam-
pling [6] can be formulated as

qLDA(z(n)
m = k) ∝

N
(k)

−mn,w
(n)
m

+ β
w

(n)
m∑W

w (N
(k)
−mn,w + βw)

· (N(m)
−mn,k + αk) (1)

where N
(k)
−mn,w is the number of words in the corpus with value w assigned to

topic k excluding the nth word in document m, and N
(m)
−mn,k is the number of

words in document m assigned to topic k excluding the nth word in document
m. From (1), it can be seen that LDA prefers to cluster together those words
that often co-occur in the same document. Therefore, simply applying LDA on
the 3D dictionary, unfortunately, is not expected to work because it misses a lot
of spatial and correspondence information, which is not meaningful in the text
processing case: (1) Spatial coherence is an important issue when LDA is applied
in vision applications [11,8]. For example, in all point clouds of dogs, 3D words
located in the hip and in the head will always co-occur. So by using (1), the hip
and head of dogs can be clustered into a part, which is a spatially (of course also
semantically) unreasonable segmentation. (2) Correspondence coherence is like-
wise important. LDA can find synonyms by finding their co-occurring patterns
in documents. However, the “synonyms” in the 3D dictionary are identified by
spatial correspondence. For example, in Figure 2, the legs of different dogs can
rarely match exactly due to different species or standing poses. However, since
all legs are close and correspond to each other, they should be clustered into the
same part.

2.2 Spatial latent Dirichlet Markov random field

To enhance the spatial coherence, in Spatial LDA (SLDA) [11] 2D images are de-
composed into small overlapping regions, which are used as documents to ensure
that the pixels belonging to one part should be close to each other. Latent Dirich-
let Markov random fields (LDMRF) [8], on the other hand, construct Markov
random fields on the part label variables to enhance the local spatial coherence.
However, both of them ignore the correspondences across the segmentations of
different instances. Inspired by these improved versions of LDA and consistent
co-segmentation in computer graphics [5], we put forward a novel spatial latent
Dirichlet Markov random field (SLDMRF) that inherits virtues from both SLDA
and LDMRF. However, rather than being a simple combination of SLDA and
LDMRF, the proposed SLDMRF goes beyond them in several ways.

6 Hanchen Xiong Sandor Szedmak Justus Piater

(a) Left: for each word (red block),
there are two types of connec-
tions in SLDMRF: neighboring spa-
tial connections (blue blocks) and
correspondence connections (green
block); right: the normal vector of
each word in the document is es-
timated by using the points lying
within the word.

 α π

 k∈[1,K]

 ck z1 z3

 z2

 μ0 V 0

 β θk w3

 w1

 k∈[1, K] w2

….....

(b) Graphical model of SLDMRF: compared
to the standard LDA (Figure 3(a)), there are
extra directed links between topic labels and
spatial Gaussian parameters ck.

Fig. 4. SLDMRF modeling

First, instead of going through all small overlapping sub-volumes as SLDA
does, we explicitly model the positions of all parts by parameters ck such that 3D
words that share the same label k are likely to be close to ck. Second, similarly
to LDMRF, SLDMRF constructs a Markov random field on the neighboring
label variables. However, different from LDMRF, we assign different potential
functions based on the prior that the segmentation boundaries should be located
at the point where abrupt curvature changes take place. The potential function
is defined as

g(zi, zj) = δ(zi, zj) exp(|〈oi, oj〉|) (2)

where δ(zi, zj) equals 1 when zi and zj are neighbors, and 0 otherwise (Fig-
ure 4(a)), and oi, oj are the normal vectors estimated by using the points lying
within word i and j respectively (Figure 4(a)). Last but not least, SLDMRF en-
hance the correspondences of segmentation across different instances. Inspired
by the co-segmentation used in [5], we construct inter-connections between cor-
responding parts across different objects, and correspondences are matched by
finding the nearest neighbors in other objects after alignment. In this way the
segmentation can be more consistent within a category. The potential function

g(z
(i)
m , z

(j)
n) for correspondence connections is set in the same way as spatial con-

nections (2); δ(z
(i)
m , z

(j)
n) is 1 if z

(i)
m and z

(j)
n are nearest neighbours of each other,

and 0 otherwise. Because the part weights are already taken into account by
LDA (parameter π), the labels within the Markov random fields are modeled
as:

p(Z) ∝ exp
(∑

(i,j) g(zi, zj)
)

(3)

The graphical model of SLDMRF is presented in Figure 4(b). Hyperpa-
rameters µ0 and V0 (similar to α, β) specify the Gaussian prior of part po-

3D Object Class Geometry Modeling with SLDMRFs 7

sitions ck ∼ N (·;µ0,V0). Given the part position ck, the label is sampled as
zi ∼ N (ŵi; ck,Λ), where ŵi denotes the 3D coordinates of word wi. Since we do
not expect the label distribution to be truly Gaussian, Λ is set relatively large.

The joint probability of 3D words in SLDMRF p({w(n)
m }M,Nm

m=1,n=1, |α, β) is:

1

Q

M∏
m=1

Nm∏
n=1

(∫
πm

∫
θ
z
(n)
m

∫
c
z
(n)
m

p(πm|α)

K∑
z
(n)
m =1

(
p(z(n)

m |πm)p(w(n)
m |θz

(n)
m

)

N (w(n)
m ; c

z
(n)
m
,Λ)N (c

z
(n)
m

;µ0,V0)
)
×

∏
x,y∈z̃(n)

m

√
exp(g(z

(n)
m , z

(y)
x))

) (4)

where x, y ∈ z̃
(n)
m denotes the set of all word labels (the yth word in the xth

document) connected with z
(n)
m , i.e. δ(z

(n)
m , z

(y)
x) = 1, and Q is the normalization

term induced by Markov random fields.

2.3 Inference and learning

Similar to the inference and learning in LDA, based on (4), we can develop
a collapsed Gibbs sampler by integrating out πm,θz(n)

m
, c

z
(n)
m

in SLMRF. The

sampler can be more easily interpreted as a “combined” sampler by using clues
from LDA, MRF and Guassian mixtures:

q∗(z(n)
m = k) ∝ qLDA(z(n)

m = k) · qM (z(n)
m = k) · qc(z(n)

m = k) (5)

where qLDA(z
(n)
m = k) is the collapsed Gibbs sampler of LDA (1),

qM (z(n)
m = k) ∝

exp
(∑

(zj ,z
(n)
m)

g(zj , z
(n)
m = k)

)
∑

h exp
(∑

(zj ,z
(n)
m)

g(zj , z
(n)
m = h)

) (6)

is the Gibbs sampler based on the Markov random field, and

qc(z
(n)
m = k) ∝

N (ŵ
(n)
m ;µ

(k)
l ,Λ

(k)
l)∑

hN (ŵ
(n)
m ;µ

(h)
l ,Λ

(h)
l)

(7)

is a collapsed Gibbs sampler of Gaussian mixtures, with

Λ
(k)
l

−1
= Λ−1

0 + lΛ−1 µ
(k)
l = Λ

(k)
l

2

(
µ0

Λ2
0

+
lŵ(k)

Λ2

)
(8)

where l is the number of words which are labeled with k, and ŵ(k) is the mean
of 3D coordinates of words which are assigned to part k until the current iter-
ation. Similar to [6], parameters {πm}Mm=1, {θk}Kk=1 can be estimated after the
convergence of Gibbs sampling:

π(k)
m =

N
(m)
k + αk∑K

k=1(N
(m)
k + αk)

θ
(w)
k =

N
(k)
w + βw∑W

w (Nk
w + βw)

(9)

Since hyperparameter α, in our case, is categorical part weight, we estimate it by
simply compute the average of πm: α = 1

M

∑M
m=1 πm. In addition, parameters

{ck}Kk=1 are read out as {µk
l }Kk=1 (8).

8 Hanchen Xiong Sandor Szedmak Justus Piater

3 Experiments

To evaluate the proposed model, 5 object classes (cars, bikes, dogs, motorcycles,
airplanes) from the Princeton shape benchmark (PSB) [9] database are used.
Since 3D shapes in the PSB are represented as triangulated meshes, we convert
them to point clouds by uniformly sampling points within triangles.

3.1 3D Object class geometry modeling

For comparison, LDA [1], LDMRF [8] and Gaussian Mixtures (GM) models are
tested on the same data (aligned point clouds of categorical instances). Since
LDMRF requires manual interference (semi-supervision), to avoid human bias
during comparison, here we construct the same Markov random fields for both
LDMRF and SLDMRF so that LDMRF can also work in an unsupervised man-
ner. All four models are implemented with Gibbs sampling for label inference
and learning. To ensure fairness, the same part number and iteration number
(200) is applied. A test example of motorcycle modeling is presented in Figure
5. LDA does not find consistent and meaningful parts because of the intra-class
variation (each object is labeled as a part since LDA only focuses on co-occurring
patterns). LDMRF, on the other hand, discovers some locally continuous and
consistent segments on different objects. However, the global spatial coherence of
parts is poor; parts are shattered. GM establishes more globally obvious segmen-
tation pattern by finding more consistent and meaningful parts. Nevertheless,
GM ignores local spatial coherence, so parts are not well segmented; they tend
to be of blob shape and to overlap each other. By contrast, SLDMRF produces
best convincing segmentations in terms of consistence, local and global spatial
coherence and semantic meaning. The SLDMRF modeling results of other four
object classes are illustrated in Figure 6.

3.2 Geometry model classification

To illustrate the parts learned by SLDMRF is more accurate, and thus more
discriminative, we conduct quantitative comparisons on classification task. Since
LDA and LDMRF are far from being qualified for practical part-based modeling,
here we are only concerned with the comparison between GM and SLDMRF. 3D
shapes of 5 object classes are divided into training (70%) and test sets (30%).
The model learning is conducted in the same way as in section 3.1. Although
Markov random fields and spatial parameters greatly assists in segmentation
and model learning of SLDMRF, they are not used in the final category mod-
els. A learned bicycle model is shown in Figure 6(e). It can be seen that the
part position information and neighboring correlation are already encoded in
the categorical part parameter θ. Therefore, for the sake of simplicity and com-
putation feasibility, we only use learned LDA as our 3D object category models
for classification. To test an object M∗, it is first aligned to the canonical poses
of different class models. In SLDMRF case, the likelihood that M∗ belongs to a

3D Object Class Geometry Modeling with SLDMRFs 9

Fig. 5. Comparison of segmentation by using LDA, LDMRF, GM and SLDMRF,
SLDMRF qualitatively yields more reasonable segmentations than the others.

(a) (b) (c) (d) (e)

Fig. 6. SLDMRF modeling of dogs (a), cars (b), airplanes (c) and bikes (d); (e): the
learned part parameters θk of bikes.

class x ∈ {cars, bikes, dogs, motorcycles, airplanes} is computed as:

p(M∗|Mx) =

|M∗|∏
i=1

{∑
k

∫
π

p(wi|θk)p(k|π)p(π|α)

}
(10)

where |M∗| is the number of points in object M∗. By contrast, in the GM case:

p(M∗|Mx) =

|M∗|∏
i=1

{∑
k

N (wi;θk)πk

}
(11)

Since no other prior knowledge is given, the classification can be done in a
maximum-likelihood fashion. A global model learned with one single multino-
mial distribution on 3D dictionary is also provided as baseline for comparison.
The classification performances of GM, SLDMRF and global model are evalu-
ated using confusion matrices. The comparison in in Figure 7 demonstrates that
SLDMRF is superior to GM with respect to discriminative ability in classifica-
tion.

10 Hanchen Xiong Sandor Szedmak Justus Piater

(a) (b) (c)

Fig. 7. The classification confusion matrcices of 5 object classes with SLDMRF (a),
GM (b) and global model (c).

4 Conclusion and Discussion

We improved LDA model for geometry modeling with better semantic interpre-
tation and promising discriminative capabilities. Meanwhile, learning and appli-
cation of the model require good initial alignment, which is difficult for noisy
and partial occluded 3D point cloud in practice. So a promising future work is to
cooperate 3D geometry model with 2D image models to describe both structure
and appearance, which thus enhance model’s expressiveness and practical value.

References

1. Blei, D., Ng, A., Jordan, M.: Latent Dirichlet Allocation. Journal of Machine Learn-
ing Research 3, 993–1022 (2003)

2. Detry, R., Piater, J.: Continuous Surface-Point Distributions for 3D Object Pose
Estimation and Recognition. In: ACCV (2010)

3. Detry, R., Pugeault, N., Piater, J.: A Probabilistic Framework for 3D Visual Object
Representation. PAMI 31(10), 1790–1803 (10 2009)

4. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object Detection
with Discriminatively Trained Part-Based Models. PAMI 32(9), 1627–1645 (2010)

5. Golovinskiy, A., Funkhouser, T.A.: Consistent segmentation of 3D models. Com-
puters and Graphics 33, 262–269 (2009)

6. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proceedings of the National
Academy of Sciences 101(Suppl. 1), 5228–5235 (April 2004)

7. Jörg Liebelt and Cordelia Schmid: Multi-View Object Class Detection with a 3D
Geometric Model. In: CVPR (2010)

8. Mackey, L.: Latent Dirichlet Markov Random Fields for Semi-supervised Image
Segmentation and Object Recognition (2007)

9. Shilane, P., Min, P., Kazhdan, M.M., Funkhouser, T.A.: The Princeton Shape
Benchmark. In: SMI. pp. 167–178. IEEE Computer Society (2004)

10. Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering
object categories in image collections. In: ICCV (2005)

11. Wang, X., Grimson, E.: Spatial Latent Dirichlet Allocation. In: NIPS (2007)
12. Xiong, H., Szedmak, S., Piater, J.: Efficient,General Point Cloud Registration with

Kernel Feature Maps. In: Canadian Conf. on Computer and Robot Vision (2013)
13. Yan, P., Khan, S.M., Shah, M.: 3D model based object class detection in an arbi-

trary view. In: ICCV (2007)

Efficient, General Point Cloud Registration With Kernel Feature Maps

Hanchen Xiong, Sandor Szedmak, Justus Piater
Institute of Computer Science, University of Innsbruck

Technikerstr.21a A-6020, Innsbruck, Austria
Email: {hanchen.xiong, sandor.szedmak, justus.piater}@uibk.ac.at

Abstract—This paper proposes a novel and efficient point
cloud registration algorithm based on the kernel-induced
feature map. Point clouds are mapped to a high-dimensional
(Hilbert) feature space, where they are modeled with Gaussian
distributions. A rigid transformation is first computed in
feature space by elegantly computing and aligning a small
number of eigenvectors with kernel PCA (KPCA) and is then
projected back to 3D space by minimizing a consistency error.
SE(3) on-manifold optimization is employed to search for the
optimal rotation and translation. This is very efficient; once the
object-specific eigenvectors have been computed, registration is
performed in linear time. Because of the generality of KPCA
and SE(N) on-manifold method, the proposed algorithm can
be easily extended to registration in any number of dimensions
(although we only focus on 3D case). The experimental results
show that the proposed algorithm is comparably accurate
but much faster than state-of-the-art methods in various
challenging registration tasks.

Keywords-kernel method; point cloud registration; SE(3) on-
manifold optimization

I. INTRODUCTION

This copy is for personal use, the final version will be publisehd in the proceedings of the 2013 Canadian Conference on
Computer and Robot Vision (CRV 2013) c©IEEE 2013

3D free-form shape registration is an important problem
in many fields and has sparked a large volume of related
research literature. During the past two decades, 3D point
clouds have become an increasingly more important and
popular data structure to represent 3D shapes. Especially
in contemporary robotics, 3D point cloud registration is an
essential component of autonomous systems to assist in the
perception of 3D objects and environments.

Until now, most existing 3D point cloud registration
algorithms decompose the registration problem into two
parts, correspondence assignment and alignment, because
they argue that computing either of two steps will facilitate
the other. A popular method is Iterative Closest Point (ICP)
[1], which undoubtedly has been most widely used due to its
simplicity in implementation. First, a pseudo correspondence
is established by finding the nearest neighbor of each point.
Then, the optimal rotation and translation are computed so as
to minimize the average of Euclidean distances between all
pairs of corresponding points. These two steps are iterated
until converge. Obviously, the closest-distance criterion for
correspondence is too weak, and therefore ICP can easily
fail in practice when the displacement between two point
clouds or outlier rate is relatively large. To enhance the

accuracy of the correspondence, many improved versions of
ICP were proposed by incorporating color, normal vectors,
curvature, or strategically ignoring some unlikely corre-
spondences [2]. However, despite various improvements,
the hard assignment strategy employed by ICPs causes
problems that require manual assistance in practical appli-
cations. To overcome this limitation, SoftAssign [3] and
EM-ICP [4] were proposed by establishing one-to-many soft
correspondences. Both methods assume that one point may
correspond to all points in the other cloud with different
likelihoods by constructing a correspondence matrix. To
iteratively update this matrix, deterministic annealing is used
in SoftAssign while an Expectation-Maximization (EM)-
style method is employed in EM-ICP. Meanwhile, recently a
Gaussian-mixture (GM) method [5] was developed to avoid
iteratively computing the correspondences and alignment.
GM probabilistically and globally models 3D point clouds as
Gaussian mixtures in R3, and the optimal alignment between
point clouds is computed by minimizing the discrepancy (L2
distance [5]) between their corresponding distributions.

For the task of aligning 3D point clouds M1 = {x(1)
i }

l1
i=1

with M2 = {x(2)
i }

l2
i=1, all methods described above can be

interpreted as optimizing a common objective function:

{R∗,b∗} = arg min
R,b

l1∑
i=1

l2∑
j=1

(
Rx

(1)
i + b− x

(2)
j

)2
wi,j (1)

where wi,j denotes the correspondence between every pair
of x

(1)
i and x

(2)
j . In ICP wi,j ∈ {0, 1}, and (1) is solved

by iteratively updating wi,j in a winner-take-all manner
under a shortest-distance criterion and solving a least-
squares problem with respect to R and b. In EM-ICP,
wi,j is interpreted as the probability of the correspondence,
so a one-way constraint (wi,j ∈ [0, 1],

∑l2
j wi,j = 1)

is implicitly imposed. In SoftAssign, a stricter two-way
constraint (wi,j ∈ [0, 1],

∑l2
j wi,j = 1,

∑l1
i wi,j = 1) is

introduced to enforce globally consistent point correspon-
dences. Although GM does not model the correspondences
explicitly, they can likewise be understood as an instance
of (1) with Euclidean distance replaced by Mahalanobis
distance, and an uniform prior of wi,j = 1

l1l2
for each pair

of i, j. In conclusion, so far 3D point cloud registration can
be achieved either by explicitly modeling correspondences
and laboriously updating them (EM-ICP and SoftAssign), or

by making some fragile correspondence assumptions to sim-
plify the optimization procedure (ICP and GM). In addition,
all these methods share the same computational complexity
of O(n2) 1, which will be a heavy computational burden
if the number of points n is relatively large. Therefore, a
registration solution that can both express realistic priors
over point correspondence matches and can be computed
in a simpler (possibly non-iterative) and cheaper (possibly
non-quadratic time) way is highly desirable. The method
proposed in this paper fulfills both demands. Instead of
doing point-wise correspondence search and computing in
3D space, our method first maps all points to a higher-
dimensional (reproducing kernel Hilbert) feature space using
kernel methods. The optimal transformation in feature space
is then found by aligning Gaussians that approximate the
two mapped point clouds. To project back to the 3D space,
an objective function is constructed based on the fact that
the transformed mapped points should be consistent with
mapped transformed points. Finally, an SE(3) on-manifold
optimization scheme is exploited to provide an elegant and
efficient gradient-type algorithm for registration.

Compared to previous registration methods, the strength
of our method can be summarized in four points: (1)
Although our algorithm was not developed on the basis of
point correspondences, the form of its objective function
(section III-A) suggests that correspondences are implicitly
derived and to large degree it is consistent with the correct
matches; (2) The experimental results (section IV) show that
our method can work accurately and robustly in various chal-
lenging cases (large motion, outlier points); (3) Our method
is much more efficient than other state-of-the-art methods,
actually the computation complexity is O(n log n); (4) By
using Kernel PCA and SE(3) on-manifold optimization, the
algorithm can be used as general point cloud registration
framework with high flexibility and extensibility to any
dimension.

II. RIGID TRANSFORMATION IN HILBERT SPACE
Intuitively, a straightforward way to align point clouds

without point-wise correspondences is to first probabilisti-
cally fit each point cloud to a single Gaussian distribution in
R3 and then align their means (translation) and covariances
(rotation). However, the modeling ability of one single
Gaussian in 3D space is too limited to capture the 3D
point distribution of real-world objects, i.e. the mean and
covariance in R3 are very sensitive to outliers. Inspired
by kernel methods developed for set-format data [6], a 3D
point clouds can be implicitly mapped to a much higher-
dimensional Hilbert feature space, where a single Gaussian
can fit well (Fig. 1) and hence yields higher tolerance to 3D
disturbance in the original point cloud (e.g. outliers or non-
rigid transformation). In addition, by applying kernel PCA,

1the complexity of ICP is O(n logn) if K-d trees are used for searching
for the nearest neighbour

Figure 1. Mapping point clouds from 3D space to an infinite-dimensional
Hilbert space, where a single Gaussian is sufficient to model distributions
of complex shape.

the eigenvectors of covariances can be efficiently computed
and aligned without explicit computation in feature space.

A. Probabilistic modeling in Hilbert space

Inspired by kernel methods that have been widely used in
machine learning, in order to map all points in a point cloud
M = {xi}li=1 to a higher, possibly infinite-dimensional
feature space, we can define a kernel function on 3D points
K(xi,xj). Then, a feature map can be implicitly induced
by satisfying

K(xi,xj) = 〈φ(xi), φ(xj)〉 (2)

where φ is the corresponding feature map: R3 → H, and
H is referred to as the reproducing Hilbert feature space.
Since the structure of M can be far too complicated in R3,
to ensure that one single Gaussian is capable of modeling
the distribution of {φ(xi)}li=1 in H, in this paper we select
the kernel function as the radial basis function (RBF)

K(xi,xj) = exp
−‖xi − xj‖2

2σ2
(3)

because the induced feature map is a scaled Gaussian
probability density function (PDF),

φ(xi) = f(ξ|xi) = exp
−‖ξ − xi‖2

2σ2
, (4)

i.e., φ(·) corresponds to an infinite-dimensional feature map.
With all points mapped into feature space, a Gaussian

(mean and covariance) in H can be easily fitted by using
maximum likelihood estimation (MLE):

µH =
1

l

l∑
i=1

φ(xi) =
1

l
φ(M)>1l (5)

ΣH =
1

l

l∑
i=1

(φ(xi)− µH) (φ(xi)− µH)
> (6)

where φ(M)> = [φ(x1), φ(x2), · · · , φ(xl)] and 1l is an l-
dimensional vector with all elements equal to 1.

B. Kernel PCA

To achieve the alignment between two covariances, their
eigenvectors should be computed first. However, this com-
putation is non-trivial in feature space. Kernel principal
component analysis (KPCA) [7] is a technique developed

to compute eigenvectors in feature space without explicit
computation in H. Here we briefly review the procedure of
KPCA with its application to 3D point clouds.

Assuming all points are already centered in feature space,
the covariance ΣH of the Gaussian can be estimated as

ΣH =
1

l

l∑
i=1

φ(xi)φ(xi)
> (7)

which is a symmetric bilinear form on H. Analogous to
the symmetric covariance matrices in the finite-dimensional
case, its nonzero eigenvalue λk and corresponding eigenvec-
tor uk should satisfy

λkuk = ΣHuk. (8)

By substituting (7) into (8), we have

uk =
1

λk
ΣHuk =

l∑
i=1

αki φ(xi) (9)

where αki = φ(xi)
>uk

λkl
. Therefore, all eigenvectors uk with

λk 6= 0 must lie in the span of φ(x1), φ(x2), . . . , φ(xl), and
(9) is referred to as the dual form of uk. By left-multiplying∑l
j=1 φ(xj)

> on both sides of equation (8), we have

l∑
j=1

φ(xj)
>λkuk =

l∑
j=1

φ(xj)
>ΣHuk

⇔ λk

l∑
i,j=1

αkiK(xi,xj) =
1

l

l∑
i,j=1

αkiK(xi,xj)
2

⇔ lλkα
k = Kαk

(10)
where K is an l × l kernel matrix with Kij = K(xi, xj),
αk = (αk1 , α

k
2 , . . . , α

k
l)>. It can be seen that {αk, ηk =

lλk} is actually an eigenvalue-eigenvector pair of matrix
K. Therefore, by using dual forms of eigenvectors, the
eigenvector decomposition of ΣH can be transformed to the
decomposition of the finite matrix K. In addition, because
all uk should be unit vectors:

1 = u>k uk = 〈αk,Kαk〉 = ηkαk>αk (11)

the αk should be normalized as:

αk ← αk√
ηk

(12)

However, though the point cloud can be easily centered in
3D space, it does not mean it is also centered in feature
space. By replacing φ(xi) with φ̃(xi) = φ(xi) − µ, the
corresponding kernel matrix K̃ is

K̃ = K− 1

l
EK− 1

l
KE +

1

l2
EKE (13)

where E denotes an l × l matrix with all entries equal
to 1. After similar eigenvector decomposition (10) and

(a) (b) (c) (d)

Figure 2. (a) A point cloud of table tennis racket; (b–d) reconstruction
using the first 1–3 principal components. For each point in the bounding-
box volume, the darkness is proportional to the density of the Gaussian in
the feature space H.

normalization (12) steps, we obtain eigenvectors

ũk =

l∑
i=1

α̃ki (φ(xi)− µ) = φ(M)> (Il −
1

l
E)︸ ︷︷ ︸

IE

α̃k (14)

where Il is an l × l identity matrix and α̃ is the kth
eigenvector of the matrix K̃.

As analyzed in [6], it is misleading and wasteful to use
full covariances, so only a small number of eigenvectors are
sufficient to capture the structural property of the covariance
ΣH. Fig. 2 displays an example of a table tennis racket point
cloud. Its Gaussian distribution in the feature spaceH can be
well reconstructed using only 3 of its principal components
associated with top largest eigenvalues.

C. Alignment of Gaussians

Assume the task is to align a point cloud M1 = {x(1)
i }

l1
i=1

with M2 = {x(2)
j }

l2
j=1, instead of computing the optimal

alignment in 3D space directly, we can alternatively first
align them in feature space, and then project them back
to R3 (section III). With the modeling procedure above
applied on M1 and M2, the alignment of two point clouds in
feature space corresponds to aligning two Gaussians. In this
paper, we assume D eigenvectors are computed for the co-
variance of each point cloud: Ũ1 =

[
ũ1
1, . . . , ũ

k
1 , . . . , ũ

D
1

]
,

Ũ2 =
[
ũ1
2, . . . , ũ

k
2 , . . . , ũ

D
2

]
. Therefore, the rotation in

feature space RH is estimated by simultaneously aligning D
pairs of corresponding eigenvectors: Ũ2 = RHŨ1. Because
different eigenvectors of each point cloud are orthogonal to
each other, based on the computation result in (14), it is easy
to derive:

RH = Ũ2Ũ
>
1

= φ(M2)> IE
2

(
D∑
k=1

α̃k2α̃
k>
1

)
IE
1︸ ︷︷ ︸

Θα

φ(M1) (15)

Since the rotation (15) can be applied only if M1 has already
been centered in feature space, to fully align two Gaussians,
the translation in feature space bH obviously should equal
the mean of the Gaussian that models M2 in feature space:

bH = µ
(2)
H =

1

l2
φ(M2)>1l2 (16)

x
(1)
t

φ //

{R,b}
��

φ(x
(1)
t)

{RH,bH}��

Rx
(1)
t + b

φ
// φ(Rx

(1)
t + b)︸ ︷︷ ︸
Φt

∼ RHφ̃(x
(1)
t) + bH︸ ︷︷ ︸
Ψt

Figure 3. The consistency error is defined as the discrepancy between
φ(Rxt + b) and RHφ̃(xt) + bH.

Now we can align two Gaussians in feature space with
{RH,bH} computed in (15) and (16). However, due to
the infinite-dimensional feature map defined in (4), there
still exist two obstacles to be overcome: First, (15) and (16)
cannot be computed in an analytic form; secondly, there is no
trivial way to map {RH,bH} back to 3D space. Fortunately,
by designing a consistency error (section III-A), these two
issues can surprisingly be solved simultaneously in a very
smooth and elegant manner.

III. CARTESIAN POINT CLOUD ALIGNMENT

In this section we will project the rotation and translation
in the feature space H back to 3D space by minimizing
a specifically-designed consistency error (Fig. 3). It turns
out that the final objective function can be constructed and
solved without explicit computation in feature space. In
addition, further connections with other registration methods
will be exposed by discovering the hidden commonality
among their objective functions. To enhance the generality of
the proposed algorithm, an SE(3) on-manifold optimization
scheme is employed to search for the optimal transformation.

A. Consistency Error

Instead of tediously finding the inverse function φ−1(·)
corresponding to the definition in (4) and applying it to
{RH,bH} to map them back to 3D space {R,b}, here
we define a novel consistency error between φ(Rxt + b)
and RH (φ(xt)− µ1) + bH based on the fact that mapping
after transformation should be consistent with transformation
after mapping (Fig. 3). Therefore, we can find the optimal
rotation and translation in 3D space by minimizing the
average consistency error:

{R∗,b∗} = arg min
R,b

1

l1

l1∑
t=1

‖Ψt −Φt‖2 (17)

Because ‖Φ(x)‖2 is the integration over the square of a
Gaussian, which preserves constant under any translation b
and rotation R, and Ψt is fixed, by substituting (15) and
(16) into (17), we have

{R∗,b∗} = arg max
R,b

1

l1

l1∑
t=1

Ψ>t Φt

= arg max
R,b

1

l1

l1∑
t=1

K(Rx
(1)
t + b,M2)>ρt︸ ︷︷ ︸
O

(18)

(a) (b)

Figure 4. (a) Two identical point clouds with exactly the same point
permutation. (b) Visualization of ρti computed for all pairs of points.

ρt = Θα

(
K(x

(1)
t ,M1)− 1

l1
K11l1

)
+

1

l2
1l2 (19)

where K(Rx
(1)
t + b,M2) is an l2-dimensional vec-

tor with K(Rx
(1)
t + b,M2)i = K(Rx

(1)
t + b,x

(2)
i),

and K(x
(1)
t ,M1) is an l1- dimensional vector with

K(x
(1)
t ,M1)j = K(x

(1)
t ,x

(1)
j). It can be seen that by

employing the kernel trick (2), we can elegantly avoid
computation in the feature space H in both (18) and (19).

B. Relation to Other Approaches
As analyzed in section I, most existing registration meth-

ods can be unified to a general objective function (1) with
different correspondence assumptions or iterative update
strategies. The objective function (18) can be easily extended
as follows:

{R∗,b∗} = arg min
R,b

l1∑
t=1

l2∑
i=1

−K(Rx
(1)
t + b,x

(2)
i)ρt,i (20)

By considering −K(·, ·) as an exponential distance and
replacing ρt,i with wt,i, it turns out that surprisingly our
method (20) is also a special case of (1), although we
arrive there from a completely different starting point. This
suggests that ρt,i somehow implicitly encodes the corre-
spondence likelihood between x

(1)
t and x

(2)
i as well. To

verify this argument experimentally, in Fig 4(a) there are
two identical point clouds with exactly the same point
permutation. We compute ρti for all pairs of points in Fig
4(b). It can be seen that Fig 4(b) shows a very evident
diagonal pattern with uniformly distributed noise, which is
the reflection of our prior knowledge. However, different
from most of other approaches, we do not model wt,i
explicitly or update them iteratively. Instead, ρt,i is derived
from eigenvector alignment in feature space and only need
to be computed once.

There is another way our method is related to Gaussian
mixtures. By relaxing the non-negative coefficient constraint
in the definition of Gaussian mixtures, each eigenvector
in (14) can be considered as a pseudo Gaussian mixture
with φ(·) defined as in (4). In this way, instead of aligning
two Gaussian mixtures in 3D space, what our method is
actually doing is to simultaneously align D pairs of Gaussian

Figure 5. The SE(3) manifold and its optimization scheme: (1) start from
a rotation matrix P0; (2) use equation (26) as the local parametrization of
the manifold at point P0, and compute the gradient with respect to {w,v};
(3) compute the best move in se(3) by mapping the update of {w,v}; (4)
map back to SE(3): P1 ← exp(Λ)P0; (5) repeat step (2)(3)(4) until
convergence

mixtures in feature space, and then implicitly maps back to
original 3D space.

C. SE(3) on-manifold optimization

When solving the optimization problem (18), the orthog-
onality constraint of the rotation matrix R must be taken
into account: R>R = I. This constraint is a common
obstacle in various rotation-related optimization problems,
which drove many researchers to alternatives such as unit
quaternions [5] or dual quaternion number [8]. However,
although all these methods can work satisfactorily for 3D
rotation, they are difficult to be extend to higher dimensions.
Although we only focus 3D point cloud registration here,
to make our algorithm more general, here we employ an
SE(3) on-manifold optimization scheme [9], which can
be easily adapted to rotation matrices in any dimension.
Another virtue of SE(3) on-manifold optimization is that
combined with gradient computing, an elegant optimizer
can be developed based on its associated Lie algebra to
circumvent the orthogonality constraint.

Each rotation and translation in 3D space {R,b} can be
jointly treated as a Euclidean transformation P in R3 by
using homogeneous coordinates. From now on, x is used to
denote homogeneous coordinate, and x for the original one:

x> = [x>, 1] (21)

and correspondingly,

P =

[
R b

01×3 1

]
(22)

One specific P is actually an element of Lie group SE(3)
(Special Euclidean Group), which is a smooth manifold
embedded in R3. Intuitively, the SE(3) manifold can be
considered as a topological space wherein all points are 4×4
Euclidean transformation matrices, and at each point, there

exists a tangent space Λ, which happens to be its associated
Lie algebra se(3) . The mathematical connection between
SE(3) and se(3) is

se(3)→ SE(3) : P = exp(Λ) (23)

where exp(·) denotes the exponential map. The tangent
space se(3) can be considered as a linearization of the SE(3)
manifold within the infinitesimally small vicinity of certain
point P0, so inversely, the exponential map works as a ‘de-
linearization’. All concepts described above are illustrated
in Fig. 5. The Lie algebra se(3) is a collection of matrices
of the form

Λ =

[
J(w) v
01×3 0

]
(24)

where J(w) is an skew-symmetric matrix, which can be
constructed from a 3D vector w with a skew operator J(·):

w =

 w1

w2

w3

→ J(w) =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 (25)

and v is an usual 3D vector. Therefore, Therefore, when
exp(Λ)→ I3 (e.g. computing gradient), we can establish a
straightforward map from R6 to the local neighboring region
of P0 on manifold as

P = exp

([
J(w) v
01×3 0

])
·P0 (26)

Last but not least, combination with a gradient-type
method yields an final optimization procedure for SE(3)
parameters. By using (26), we can see that when computing
the gradient with respect to w and v, the orthogonality
constraint will be avoided, and therefore, the constrained op-
timization problem in SE(3) (18) is naturally and smoothly
transformed to a much simpler, unconstrained problem in
R6. Meanwhile, different from conventional gradient meth-
ods, instead of computing gradient and updating within the
same space, in SE(3) on-manifold optimization, after every
update of {w,v}, it need to be mapped back to SE(3),
and subsequently the gradient is computed with the local
parametrization of the corresponding neighboring region.
The whole procedure of SE(3) on-manifold optimization
scheme is illustrated in Fig. 5.

D. Reduction of Computational Complexity
If we reexamine the objective function O (18), an inter-

esting property can be leveraged to significantly reduce the
computation complexity:
〈Φt,Ψt〉

= φ(Px
(1)
t)

>
(

D∑
k=1

ũ
k
2 ũ

k>
1

(
φ(x

(1)
t)− µ1

)
+ µ2

)

=

D∑
k=1

〈ũk
2 , φ(Px

(1)
t)〉〈ũk

1 , φ(x
(1)
t)− µ1〉+ 〈µ2, φ(Px

(1)
t)〉

=

D∑
k=1

〈ũk
2 , φ(Px

(1)
t)〉〈ũk

2 ,RHφ(x
(1)
t)− µ1〉+ 〈µ2, φ(Px

(1)
t)〉

(27)

where we can see that φ(Px
(1)
t) and RHφ(x

(1)
t)− µ1 are

projected onto D eigenvectors
{
ũk2

}D

k=1
respectively, and

an additional projection of φ(Px
(1)
t) onto µ2. Therefore,

the computation of the objective function is actually done

in a space spanned by D eigenvectors
{
ũk2

}D

k=1
and one

µ2, which is a subspace of H. We denote this subspace by
S. The feature map of each point φ(xi) can be projected
onto S in the following way:

S (φ(xi)) =

D+1∑
k

βi,krk (28)

where rk are referred to as D + 1 reference vectors in S,
and βi,k are the corresponding coefficients used to express
S (φ(xi)). In other words, in S, only D+1 reference vectors,
of which D should be linearly independent, can represent
any S(φ(xi)). Therefore, to ensure that Φt and Ψt are
consistent with each other for all points x

(1)
t in M1, we

only need to align D + 1 predefined reference vectors. In
practice, we can randomly select D + 1 S(φ(xi)) because
they are very likely to be linear independent in S. Thus, the
objective function can be simplified to

{R∗,b∗} = arg max
R,b

1

D + 1

D+1∑
t=1

K(Rx
(1)
St

+ b,M2)>ρt (29)

where S denotes the randomly selected subset of M1. To
practically apply SE(3) on-manifold optimization on the
objective function O (29), we compute the derivatives of
(29) w.r.t. w and v as follows:

dO

d [w>,v>]>
=

1

D + 1

D+1∑
t=1

(
dO

dPx
(1)
St

dPx
(1)
St

d [w>,v>]>

)
(30)

where

dO

dPx
(1)
t

=

l2∑
j=1

ρSt,jK
(
Px

(1)
St
,x

(2)
j

) 1

σ2

(
x
(2)
j −Px

(1)
St

)>
(31)

∂Px
(1)
St

∂w
=
∂ exp(Λ)P0x

(1)
St

∂w
=
[
J(P0x

(1)
St

),03×1

]>
(32)

∂Px
(1)
St

∂v
=
∂ exp(Λ)P0x

(1)
t

∂v
= [I3,03×1]> (33)

IV. EXPERIMENTS

A. Implementation details

Since the computed eigenvectors (14) are of no direction,
there could be 2D possible alignments for D eigenvectors
in feature space. Fortunately, according to experiment, we
found that D = 3 is actually enough to make sufficiently
good alignment. Therefore, one has to compute all 8 pos-
sible alignments in feature space and project them back to
R3, then the final optimal one is picked by checking the
accumulated distances between every pair of corresponding
points in two clouds, and we use shortest distance as the
correspondence here. An outline of the proposed algorithm

is given in Algorithm 1. In practice, to speed up the
convergence of the algorithm, some sophisticated stepsize
tricks can also be added. In addition, we also find that in
Algorithm 1 computing eigenvectors (line 2) is the most
time-consuming part, so in our implementation, fast-PCA
[10] is employed to accelerate the computation.

Algorithm 1 3D Point Cloud Registration

Input: M1 = {x(1)
i }

l1
i=1 and M2 = {x(2)

j }
l2
j=1, x ∈ R3

Output: the optimal motion estimation P∗ which can
align M1 with M2

1: construct two matrices K̃1 and K̃2 (13)
2: compute eigenvalue-eigenvector pairs for K̃1 and K̃2:
{αm,k, ηm,k} m = 1, 2

3: normalize eigenvectors (12)
4: select D = 3 eigenvectors with largest eigenvalues for

both M1 and M2

5: randomly select a subset of N ≥ D + 1 size from M1

6: set initial P0 randomly
7: compute Θα (15) with the subset
8: while 1 do
9: compute the gradient ∇w and ∇w with current Pn

(30–33)
10: if both ∇w and ∇v are small enough then
11: return Pn

12: end if
13: map the update of w and v back to SE(3) (26)
14: set n← n+ 1
15: end while
16: repeat line 7–15 2D times with different sign com-

binations of eigenvectors, and select the final optimal
P∗ which yields the minimal accumulated distances
between every pair of closest points in PnM1 and M2

B. Qualitative Evaluation

For the sake of visualization, we first test our algorithm
on some toy point clouds to see how it work qualitatively.
In Figure 6, some test examples on handwritten letters
are displayed. It can be seen that in rather challenging
circumstances, i.e. (1) the motion between two point clouds
is arbitrarily large (Figure 6(a)), (2) a large portion of
outliers are added (Figure 6(b)), (3) nonrigid transformation
is applied (Figure 6(c)), the proposed algorithm can still
discover roughly correct corresponding points 2 between two
point clouds (green lines in Figure 6) and make qualitatively
acceptable alignment.

C. Quantitative Evaluation

To obtain a more precise and convincing evaluation of
the the proposed algorithm, KIT database [11] is used for

2the correspondence for point x(1)
t is determined by finding the index

j∗ = arg maxj∈[1,l2] ρtj

(a) (b) (c)

Figure 6. Test of the proposed algorithm in typical challenging circumstances for registration: (a) large motion; (b) outliers; (c) nonrigid transformation

Figure 7. Some test results on KIT 3D object database

more intensive test (some test results can be seen in Figure
7). In addition, for quantitative comparison, ICP method,
Gausssian Mixture(GM) and SoftAssign 3 are implemented
as well. To ensure fairness, the same SE(3) on-manifold
optimization strategy is employed for their corresponding
objective functions. Since the objects in KIT database is in
triangulated mesh format, point clouds are generated by first
sampling a triangle with the probability proportional to its
area and then uniformly sampling a point from the selected
triangle.

First, we test the robustness of four algorithms on different
scales of motions. In our experiment, for motion scale i, the
rotation angles of yaw, pitch and roll are i × [30◦, 5◦, 5◦] ,
and translations are i× [Sx, Sy, Sz], where [Sx, Sy, Sz] are
standard deviations of point clouds in three axes. Different
motions are applied to the point cloud of each object (points
cloud is sampled with size 1000) to generate a target point
cloud to align with. Since we know the correspondence
between the original and target point clouds, the error
for each registration is computed as the average distance
between every pair of corresponding points in two point

3the comparison in [12] has reported that SoftAssign and EM-ICP
perform similarly, so we are not going to include EM-ICP in our experiment

(a) (b)

Figure 8. Test of four registration algorithm on (a) different scales of
motions; (b) different portion of outliers added.

clouds. The test result is plotted in Figure 8(a). We can
see that four algorithms can work similarly well for small
motions (scale i = 1). However, as i increases, the accuracy
of ICP, GM and SoftAssign decrease, although GM and
SoftAssign are much more robust than ICP for intermediate
motions (scale i = [2, 3]). Our method, by contrast, performs
consistently well for all scales of motions. A test example
is displayed in Figure 9(a), from which we can see that the
instability of ICP, GM and SoftAssign stems from the fact
that they are likely to to stuck into local optimum when the
motion is large (although the local optimum can be avoided
by setting up many intial poses, it would take more time to
guarantee that the global optimum is found).

Secondly, we test the robustness of four algorithms by
adding different portion (the percentage of point cloud size)
of outliers which are randomly sampled within the space
around objects. The generated outliers are concatenated into
the original point clouds, so the correspondence is still
available and the registration error is computed in the same
way as in the motion experiment. To avoid the effect of
large motion, a relatively small motion (motion scale i = 1)
is applied to all point clouds. The test result is plotted in
Figure 8(b). We can see that SoftAssign is most stable for
the case in which outliers are presented, GM and our method
are slightly worse, and ICP is very sensitive to outlier even
when the portion is small. A test example is displayed in
Figure 9(b), from which we can see that except ICP, the
result of other three algorithms are acceptable.

Last but never least, efficiency is a significant strength
of our method, which enables it can be used for real

(a) (b)

Figure 9. Comparison of four registration algorithms: (a) motion scale i = 5; (b) outlier portion= 0.8.

100 200 500 1000 2000
Our method 1.172 1.489 2.162 5.126 21.165

ICP [1] 0.012 0.023 0.051 0.154 0.469
GaussianMixtures [5] 1.859 3.998 15.245 43.570 172.4

SoftAssign [3] 2.059 4.801 83.925 592.1 3812

Table I
AVERAGE EXECUTION TIME (SECONDS)

time applications. As we can see in Algorithm 1, after
computing eigenvectors for kernel matrices, the complexity
of computing optimal motion is linear to the size of points
n. Since the complexity of fast PCA is O(n log n) [10],
the overall complexity of Algorithm 1 is O(n log n). To
compare the efficiency, all four algorithms are implemented
in Matlab and run on the same hardware platform (usual i7
intel core laptop). Point clouds of all objects are generated
with 5 different sizes (100, 200, 500, 1000, 2000), on which
four algorithms are tested respectively. For each point cloud,
a randomly generated motion is applied and random portion
of outliers are added (to get an approximate average). Note
that in this experiment we are only concerned about the
running time, so the algorithms will stop when they converge
even if the registration is bad. The average execution time
(in seconds) of four algorithms on five set of point clouds
are presented in Table I. We can see that the complexity of
our algorithm is the same as ICP O(n log n), and it is much
faster than SoftAssign and Gausssian Mixtures(GM) with
complexity O(n2) (however, SoftAssign is usually more
expensive than GM because it needs to iteratively update
correspondence matrix).

CONCLUSION

We introduced a novel point cloud registration algorithm
based on kernel-induced feature maps, kernel PCA and
SE(3) on-manifold optimization. The framework is theoret-
ically elegant, and exhibits robustness and accuracy in fairly
challenging circumstances. It is quite general and flexible
to be extended to different dimensions and intra-category
instances alignment . Remarkably, it outperforms most other
methods in terms of efficiency.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Communitys Seventh Framework Pro-

gramme FP7/2007-2013 (Specific Programme Cooperation,
Theme 3, Information and Communication Technologies)
under grant agreement no. 270273, Xperience.

REFERENCES

[1] P. J. Besl and H. D. Mckay, “A Method for Registration of
3-D Shapes,” PAMI, vol. 14, no. 2, pp. 239–256, 1992.

[2] S. Rusinkiewicz and M. Levoy, “Efficient Variants of the ICP
Algorithm,” in 3DIM, 2001, pp. 145–152.

[3] S. Gold, A. Rangarajan, C. Lu, and E. Mjolsness, “New
Algorithms for 2D and 3D Point Matching: Pose Estimation
and Correspondence,” Pattern Recognition, vol. 31, pp. 957–
964, 1997.

[4] S. Granger and X. Pennec, “Multi-scale EM-ICP: A Fast
and Robust Approach for Surface Registration,” in European
Conference on Computer Vision (ECCV 2002), volume 2353
of LNCS. Springer, 2002, pp. 418–432.

[5] B. Jian and B. C. Vemuri, “Robust Point Set Registration
Using Gaussian Mixture Models,” PAMI, vol. 33, no. 8, pp.
1633–1645, 2011.

[6] R. Kondor and T. Jebara, “A Kernel between Sets of Vectors,”
in ICML, 2003.

[7] B. Schölkopf, A. Smola, E. Smola, and K.-R. Müller, “Non-
linear component analysis as a kernel eigenvalue problem,”
Neural Computation, vol. 10, pp. 1299–1319, 1998.

[8] Z. Zhang, “Iterative point matching for registration of free-
form curves and surfaces,” International Journal of Computer
Vision, vol. 13, no. 2, pp. 119–152, 1994.

[9] C. J. Taylor and D. J. Kriegman, “Minimization on the Lie
Group SO(3) and Related Manifolds,” Yale University, Tech.
Rep., 1994.

[10] A. Sharma and K. K. Paliwal, “Fast Principal Component
Analysis using Fixed-point Algorithm,” Pattern Recognition
Letters, vol. 28, no. 10, pp. 1151–1155, 2007.

[11] A. Kasper, Z. Xue, and R. Dillmann, “The KIT object models
database: An object model database for object recognition,
localization and manipulation in service robotics,” The Inter-
national Journal of Robotics Research, May 2012.

[12] Y. Liu, “Automatic Registration of Overlapping 3D Point
Clouds using Closest Points,” Image and Vision Computing,
vol. 24, no. 7, pp. 762–781, 2006.

	Executive Summary
	Role Within the Description of Work
	Links to Other Work Packages
	Outline of Results

	Description of Results
	Bootstrapping Object Categories By Push Affordances
	Formation of Spatial Relation Categories
	3D Object Category Modeling

