
Project Acronym: Xperience
Project Type: IP
Project Title: Robots Bootstrapped through Learning from Experience
Contract Number: 270273
Starting Date: 01-01-2011
Ending Date: 31-12-2015

XXPERIENCEPERIENCE..ORGORG

Deliverable Number: D3.1.2
Deliverable Title: Structural bootstrapping on sensorimotor experience (II): Re-

port or scientific publication on introspection and predication,
based on internal simulation and accumulated experience, can
be applied for purposes of learning and planning

Type (Internal, Restricted, Public): PU
Authors: Justus Piater, Tamim Asfour, Chritopher Geib, Aleš Ude,

Mirko Wächter, Martin Do, Eren Aksoy, Minija Tamosiunaite,
Rüdiger Dillmann and Florentin Wörgötter

Contributing Partners: ALL

Contractual Date of Delivery to the EC: 31-01-2014
Actual Date of Delivery to the EC: 08-02-2014

Contents

1 Executive Summary 3

2 Structural Bootstrapping over Different Levels 5

2.1 Introduction . 5

2.2 Setup - Overview . 6

2.3 Methods - Short Summary . 8

2.4 Implementing Structural Bootstrapping at different levels 11

2.5 Robotic Implementation . 18

2.6 Benchmark Experiments . 18

2.7 Discussion . 21

2.8 Conclusions . 23

3 Structural Bootstrapping Examples at Different Levels 25

3.1 Semantic Event Chain-based Assimilation and Accommodation of actions 25

3.2 Learning Object-Action Relations . 25

3.2.1 Active Learning with Knowledge Propagation . 25

3.2.2 Bootstrapped Affordance Learning . 26

3.2.3 Learning Object-Action Relations with Homogeneity Analysis 26

3.2.4 Generative learning of correlations between object properties and action parameters 26

3.2.5 Object Categorization with Knowledge Propagation 27

4 Conclusion 28

2

Chapter 1

Executive Summary

This deliverable shows solutions of the consortium for structural bootstrapping of robotic actions. The
contributions reported here focus on two of the five major scientific questions defined by the Xperience
project:

• We address the second major scientific question by implementing an algorithm that allows the agent
to extend its knowledge in a systematic way, and to accelerate learning significantly beyond what
an exploration-based approach can achieve.

• We address the third major scientific question by realizing an active learning procedure on the top
of the data acquisition loop.

The main deliverable material is presented in two chapters. In Chapter 2 we present an aggregated
structural bootstrapping solution extending over all levels of the Xperience system: planning level, mid-
level and sensorimotor level. This is the summary and the extension of the work that had been presented at
the second review meeting’s introductory talk and is now being submitted to IEEE TAMD as shared work
of the consortium [WGT+14]. The bootstrapping approach in the planning and mid-level is similar, as we
rely on sequence-wise similarity of actions at those two levels. When two (planning or mid-level) sequences
are similar enough we say we can bootstrap. At the sensorimotor level we rely on trajectory similarities
as well as object clustering in the object-action parameter space. As the above summarized contribution
extends over the whole Xperience system, the approach is presented in detail in the deliverable.

In Chapter 3 we present a summary of complementary approaches to structural bootstrapping at dif-
ferent levels of the Xperience system, where progress in individual components has exceeded the state
of the art. Full-text of the summarized contributions can be found in the attached papers. Here we
introduce a Piaget-like action assimilation and accommodation framework based on Semantic Event
Chains [ATV+13]. A method for knowledge propagation is introduced for the learning object-action
relations [SP14] where from an initial set tested in a real robot environment consequent cases for testing
can be deduced in an active learning procedure and used for bootstrapped affordance learning [Ugu14].
Homogeneity analysis is introduced as yet another method to learn Object-Action relations [XSP13].
In [DSEA14] an experiential cycle is presented for learning the association between object properties
(softness and height) and action parameters for a wiping task and for building generative models from
sensorimotor experiences.

In Chapter 4 conclusions and future work are described.

3

Xperience 270273 PU

Figure 1.1: Example of structural bootstrapping performed by a human.

Before we start the discussion we would like to show one quite amazing and somewhat entertaining exam-
ple of human structural bootstrapping (Fig. 1.1), which came from a person unrelated to the Xperience
project (a friend of a student). Apparently this person did indeed use this contraption to prepare dough!

4

Chapter 2

Structural Bootstrapping over
Different Levels

2.1 Introduction

In this chapter we present structural bootstrapping solution extending over different levels of the Xpe-
rience system. This had been a core contribution of the Xperience group in the last year and its first
germs had been presented at the second year review. A paper based on the ideas presented here will
be submitted to the IEEE Transactions of Autonomous Mental Development (TAMD). We give the title
page of the paper as an attachment to this deliverable as the complete text is presented next anyhow
[WGT+14].

It has been a puzzling question how small children at the age of three to four are suddenly able to
very quickly acquire the meaning of more and more words in their native language, while at a younger
age language acquisition is much slower. Two interrelated processes are being held responsible for this
speeding-up. The primary process is semantic bootstrapping where the child associates meaning from
observing their world with co-occurring components of sentences. For example, if the word ”fill” is consis-
tently uttered in situations where ”filling” occurs, then the meaning of the word can be probabilistically
guessed from having observed the corresponding action again and again [50, 56]. Once a certain amount
of language has been acquired, a second process – named syntactic bootstrapping – can speed this up even
more and this is achieved by exploiting structural similarity between linguistic elements. This process
can take place entirely within language and happens in a purely symbolic way without influence from
the world. For example, if a child knows the meaning of fill the cup and then hears the sentence fill
the bowl, it can infer that a bowl denotes a thing that can be filled (rather than a word meaning the
same thing as fill) without ever having seen one ([50, 29, 23, 44, 22, 30, 66, 24] see [14] for a comparison
between semantic and syntactic bootstrapping). Thus, the most probable meaning of a new word is being
estimated on the basis of the prior probability established by previously encountered words of the same
semantic and syntactic type in similar syntactic and semantic contexts.

These two generalization mechanisms – semantic and syntactic bootstrapping – are very powerful and
allow young humans to acquire language without explicit instruction. It is arguable that bootstrapping
is what fuels the explosion in language and conceptual development that occurs around the third year of
child development ([66, 65]).

In general ”the trick” seems to be that the child possesses at this age already enough well-ordered
knowledge (grammar, word & world knowledge) which allows him/her to perform guided inference without
too many unknowns. Grammar and word-knowledge are highly structured symbolic representations and
can, thus, provide, a solid scaffold for the bootstrapping of language. Symbolic representations, however,
do not stop short at human language. For robots, planning, planning operators, and planning languages
constitute another (non-human) symbolic domain with which they need to operate. Thus, it seems
relatively straightforward to transfer the idea of semantic and syntactic bootstrapping to the planning
domain for robot actions. The current paper will first address this problem.

The question, however, arises whether related mechanisms might also play a role for the acquisition of

5

Xperience 270273 PU

other, non-linguistic cognitive concepts, for example the properties of objects and tools. Briefly, if you
know how to peel a potato with a knife, would there be a way to infer that a potato peeler can be used
for the same purpose? This example belongs to the second set of problems addressed in this study: How
can a cognitive agent infer role and use of different objects employing the knowledge of previously seen
(and used) objects, how can it infer use patterns (for example movement and force patterns, etc.)?

The goal of the current study is to address one complex scenario all the way from the planning- down
to sub-symbolic sensorimotor levels and implement (different) bootstrapping processes for the fast ac-
quisition of action knowledge. The only requirement for all these different bootstrapping mechanisms is
that there exists a well-structured scaffold as a basis from where on different inference processes can take
place. The different scaffolds, thus, form the structures upon which bootstrapping can be built. Hence,
we call these processes ”structural bootstrapping”.

One can consider structural bootstrapping as a type of semi-supervised probabilistic learning, where
an agent uses an internal model (scaffold) to quickly slot novel information (obtained for example by
observing a human) into appropriate model categories. The advantage of such a bootstrapping process
is that the agent will be able to very quickly perform these associations and grounding needs only to
take place afterwards by experimenting in a guided way with the new piece of knowledge. Evidently,
as this is based on probabilistic guesswork, bootstrapping can also lead to wrong results. Still, if the
scaffold is solid enough all this can be expected to be much faster than the much more unstructured and
slow process of bottom-up exploration learning or than full-fledged learning from demonstration. (For a
comparison to the state of the art see Discussion).

Here we will show that one can implement structural bootstrapping across different levels of our robotics
architecture in the humanoid robot ARMAR-III ([6, 7]) trying to demonstrate that bootstrapping appears
in different guises and will, thus, possibly not be limited to the case studies presented in this paper. As a
major aspect this work is meant to advocate structural bootstrapping as a way forward to a more efficient
extension of robot-knowledge in the future. Early on we emphasize that the complexity of the here-shown
aspects prevents exhaustive (e.g. statistical) analyses. After all we are dealing with very complicated and
possibly human-like cognitive generative (inference) processes for which children and adults need years
of experience to reach their final efficiency.

The paper is structured in the following way. First we provide an overview of system, processes, and
methods; next we show six different types of structural bootstrapping at different levels. This will be
followed by some benchmarks and a discussion section which also includes the state of the art in robot
knowledge acquisition.

2.2 Setup - Overview

In the following we will give a course overview over the structures and processes used for this study. Some
entities will shine up without much explanation but details will follow.

Scenario (task)

ARMAR operates in a kitchen scenario. The task for the robot is to pour two ingredients (e.g. flour
and water) and mix them together to obtain batter. For this the robot has the required knowledge to
do it in one specific way (by using an electric mixer), but will fail whenever it should react flexibly to
a changed situation (e.g. lack of the mixer). The goal of this work is to show that bootstrapping will
quickly provide the required knowledge to successfully react to such a change. This process is based on
observing a human providing an alternative solution (stirring with a spoon) where bootstrapping lead to
the ”understanding” of the meaning of objects and actions involved.

Structures

For our experiments we use the humanoid robot ARMAR-III in conjunction with humans who demon-
strate different aspects of the scenario as required for the bootstrapping processes which we implement.

6

Xperience 270273 PU

We employ in the robot a (rather traditional) 3-layer architecture: Planning level, Mid-level, and senso-
rimotor Level (see e.g. [5]).

As data structure we define the so-called Executable consisting of:

1. planning operators forming a ”plan” together with its

2. mid-level descriptors and

3. all perception and/or control information from the sensorimotor level for executing an action.

Some of these aspects are to some degree embodiment specific (most notably the control information),
some others are not. Note, the structure of an Executable is essentially an extended version of an Object-
Action-Complex (OAC), extended by the planning operator, where OACs had been introduced earlier by
us to capture the relations between actions and objects [69, 39].

Essential to this is work is that we use the concept of bootstrapping now in the same scenario at these
three levels. The syntactic representations used to compute aspects of a given level are level-dependent
where we have the following syntactic representatives:

1. planning operators,

2. syntactic structure of mid-level descriptors, and

3. perceptual (sensor) and control (motor) variables.

Therefore, we employ different (grammatical) scaffolds for the bootstrapping:

1. planning language,

2. semantic event chains (SECs1 [2, 1]), and

3. sensorimotor feature/parameter regularity

from where the bootstrapping commences.

The general process of bootstrapping, however, is at all levels identical: Similarity at the level of the
scaffold is used to infer, which entities can take the role of (can be replaced by) which other entities
at the syntactic level. In this paper we will focus mainly on planning operators, objects, and motion
trajectories as ”entities for replacement”, but we will discuss (see Discussion section) that structural
bootstrapping is not limited to these aspects, but can be extended (for example) also to the bootstrapping
of action-relevant attributes, etc.

Prior knowledge

As bootstrapping relies on existing knowledge we have provided the robot with several (pre-programmed)
Executables and we assume that the robot knows how to:

• pick up an object;

• put down an object;

• pour an ingredient;

• mix with an electric mixer.

In addition, robot has learned earlier to execute one apparently unrelated action, namely:

• wipe a surface with a sponge [DSEA14, 20, 25].

1Semantic Event Chains (SECs) act as a sequencer for actions and encode the sequence of touching and untouching
events that happen until an action concludes. A more detailed description is given in the Methods section below.

7

Xperience 270273 PU

Furthermore the robot has a certain type of object memory where it has stored a set of objects together
with their roles, called the repository of objects&attributes with roles (ROAR). This prior knowledge can
be inserted by hand or by prior experience. It allows objects to be retrieved by their attributes, and
attributes of novel objects to be inferred, based on proximity in a low-dimensional, Euclidean space in
which both, objects and attributes, reside [XSP13].

The following entries exist in the ROAR:

• Sponge, rag, brush = objects-for-wiping with outcome: clean surface

• Mixer tool ends, whisks, sticks = objects for mixing with outcome: batter or dough.

Furthermore we have endowed the machine with a few recognition procedures:

• The robot can generate and analyze the semantic event chain (SEC) structures of observed (and
own) actions by monitoring an action sequence using computer vision. Thus, the machine can
recognize known actions at the SEC level [2, 1].

• The robot can recognize known objects (tools, ingredients, batter) using computer vision [9, 8, 10].

• The robot can explore unknown object haptically [12] and and extract object features such as
deformability and softness [45, 55, DSEA14]

Problem definition

The problem(s) to be solved by structural bootstrapping are defined by several stages as spelt out next:

Normal System Operation: If all required entities are present (mixer, ingredients, containers, etc.) the
robot can make a plan of how to make batter and also execute it.

System Break-Down: Planning and execution will fail as soon as there is no mixer.

Alternative: The robot observes a human making batter by stirring the dough with a spoon.

Goal: The robot should find a way to understand the newly observed action and integrate it into its
knowledge base and finally be able to also execute this.

Problem: The robot has no initial understanding of

• the planning requirements,

• the objects involved, and

• the movement patterns seen

in the newly observed stirring action. For example the robot does not know how to parameterize the
rhythmic trajectory. Also, it does not know what a spoon is. Furthermore, the robot does not have any
planning operator for stirring with a spoon in its plan-library.

Requirement (for the purpose of this study): The process of understanding the new action should hap-
pen without in-depth analysis of new actions constituents (hence without employing exploration based
processes) but instead by using bootstrapping.

2.3 Methods - Short Summary

To not extend this paper unduely, methods are only described to the details necessary to understand the
remainder of this paper. References to specific papers are provided where more details can be found.

8

Xperience 270273 PU

EXECUTABLE

Level Name Methods
1 Planning CCG[58], PKS[48]
2 Mid-Level SEC[1]
3 Sens.Mot.Level ROAR[XSP13], DMP[35, 20, 67]

Table 2.1: Structure of an Executable

Planning Methods

In this project, we are using the so-called Combinatory Categorial Grammars (CCGs) [58] to address
the planning problem. CCGs are in the family of lexicalized grammars. As such they push all domain
specific information into complex categories and have domain independent combinators that allow for
the combination of the categories into larger and larger categories. As we have already alluded to, at
the planning level, structural bootstrapping is a specialized form of learning new syntactic categories for
known actions. A number of different methods have been suggested for this in the language learning
literature [34, 41] for this project however we will be applying a variant of the work by Thomford [63].
However, we note that to do the kind of learning that we will propose it will be critical that the same
syntactic knowledge, which is used by the system to plan for action, is also used to recognize the plans
of other agents when observing their actions. This is not a new idea, however, there are very few AI
planning and plan recognition systems that are able to use the exact same knowledge structures for both
tasks.

Imagine that, as in our example, the high level reasoner knows about a plan to achieve a particular goal.
It knows all of the actions that need to be executed, and for each action has encoded as CCG categories
the knowledge necessary to direct its search for the plan. Further we suppose the same knowledge can be
used to parse streams of observations of actions in order to recognize the plan being executed by others.

Now suppose the agent sees the execution of another plan that achieves the same goal. Let us assume
that this new plan differs from the known plan in exactly one action. That is, all of the actions in the
new plan are exactly the same as the actions in the known plan except for one action. Since the agent
knows that the plan achieved the same goal, and it knows the CCG categories for each action that would
be used to recognize the original plan, it is not unreasonable for the agent to assume that the new action
should be assigned the same CCG category as its opposite action in the known plan.

If this addition is made to the grammar the agent now knows a new plan to achieve the goal and will
immediately know both how to recognize others executing the plan and how to build the new plan for
the goal itself (at the higher “abstract” level). The system will have performed structural bootstrapping
at the planning level.

In this case, the system will have leveraged knowledge about the outcome of the observed plan being
the same as the previously known plan, along with syntactic knowledge about how the previously known
plan was constructed to provide new syntactic knowledge about how to construct and recognize the new
plan.

sensorimotor Methods

Sensory Aspects: Visual scenes are analysed to recognize objects and their attributes, measure movement
trajectories, and record object poses.

Basic object and pose recognition is performed in a straight-forward way using pre-defined classes of the
different objects which occur during the actions of ”stir”, ”wipe”, and ”mix” and in addition adding
some distractor objects (e.g., cups, knifes, etc.). Any suitable method can be used for object detection,
recognition, and pose estimation; such as edge-based, statistical shape representations [9, 8, 10, 62].

Another important aspect is object recognition for the construction of the repository of objects&attributes
with roles (ROAR).

Our primary input for the ROAR consists of a table such as the one shown in Table 2.2.

9

Xperience 270273 PU

Attribute 1 Attribute 2 Attribute 3
Object A V alueA,1 V alueA,2 V alueA,3

Object B V alueB,1 V alueB,2 V alueB,3

Table 2.2: ROAR encoding

Objects and attributes are (discrete) labels; values can be categorical, discrete or continuous. Examples
of objects are ”bowl” or ”knife”; examples of attributes are ”cuts”, ”food”, ”is elongated”, ”gripper
orientation for grasping”, ”fillable”, etc. We then use Homogeneity Analysis to project objects and
(attribute) values into the same, low-dimensional, Euclidean space (the ROAR space) [XSP13]. This
projection is set up such that:

• Objects that exhibit similar attribute Values are located close together,

• Objects that exhibit dissimilar attribute Values are located far apart,

• Objects-as-such are close to their attribute Values.

Euclidean neighborhood relations allow us to make the following general types of inference:

• Attribute value prediction: Say, we have an object of which we know some but not all attribute
Values. We can predict missing attribute Values by projecting the object into the ROAR and
examining nearby attribute Values.

• Object selection: Say, we have a set of required attribute values. We can find suitable objects in
the vicinity of these Values in the ROAR.

Note we cannot generally expect that very complex object/attribute relations will be faithfully rep-
resented in a low-dimensional Euclidean space. While we are currently working on more powerful
representations for such relations, this is a complex research issue [XSP13, 28, 42, 43, 64]. For us the
ROAR is at the moment just a viable way forward, which allows us to demonstrate different aspects of
structural bootstrapping.

Motor Aspects: Trajectory information is encoded by Dynamic Movement Primitives (DMPs), which
were proposed as an efficient way to model goal-directed robot movements [35]. They can be applied
to specify both point-to-point (discrete) and rhythmic (periodic) movements. A DMP consists of two
parts: a linear second order attractor system that ensures convergence to a unique attractor point and
a nonlinear forcing term. The forcing term is normally given as a linear combination of basis functions
that are defined along the phase of the movement. The basis functions are either periodic or nonzero
only on a finite phase interval. The type of basis functions decides whether the DMP defines a discrete
or a periodic movement. DMPs have many favorable properties, e. g. they contain open parameters that
can be used for learning without affecting the overall stability of the system, they can control timing
without requiring an explicit time representation, they are robust against perturbations and they can be
modulated to adapt to external sensory feedback [35, 54].

Methods for the Mid-Level: Semantic Event Chains (SECs)

Semantic Event Chains encode in an abstract way the sequence of events (see below) that occur during
a complex manipulation. They are used for two purposes: (1) Every event provides a specific temporal
anchor point, which can be used to guide and temporally constrain the above described scene and motion
analysis steps. And (2) the SEC-table itself (see Fig. 2.1 b), is used to define the mid-level of an
Executable.

Fig. 2.1 shows the corresponding event chains extracted for a stirring action. SECs basically make use
of image sequences (see Fig. 2.1 a, top) converted into uniquely trackable segments. The SEC framework
first interprets the scene as undirected and unweighted graphs, nodes and edges of which represent image
segments and their spatial touching or not-touching relations, respectively (see Fig. 2.1 a, bottom).
Graphs hence become semantic representation of the relations of the segments (i.e. objects, including

10

Xperience 270273 PU

hand) presented in the scene in the space-time domain. The framework then discretizes the entire graph
sequence by extracting only the main graphs, which are those where a relation has changed (e.g. from
not-touching to touching). Each main graph, thus, represents an essential primitive of the manipulation.
All extracted main graphs form the core skeleton of the SEC which is a sequence table (the SEC-table),
where columns correspond to main graphs and rows to the spatial relations between each object pair in
the scene (see Fig. 2.1 b). SECs consequently extract only the naked spatiotemporal relation-patterns
and their sequentiality, which then provides us with the essence of an action, because SECs are invariant
to the followed trajectory, manipulation speed, or relative object poses.

Columns of a SEC represent transitions between touching relations. Hence, they correspond to decisive
temporal moments of the action and, consequentially, they allow now to specifically pay attention ”at the
right moment when something happens” to additional action relevant information (such as objects, poses,
and trajectories). Fig. 2.1 (c-d)) illustrate syntactic elements of the manipulation. Manipulated objects,
e.g. spoon and liquid, are extracted from the rows of event chains, i.e. from the nodes of the main graphs.
Temporal anchor points provided by SECs can also be used to segment the measured hand-trajectory
into parts for further analysis.

2.4 Implementing Structural Bootstrapping at different levels

Figure 2.2 shows a schematic representation of the bootstrapping processes implemented here. A known
plan A (left) consists of a set of planning operators (black bars) and each has attached to it an Executable
consisting of the planning operator itself, a mid level descriptor and sensorimotor level information. The
plan, being executed, also has a certain ”outcome”, which can be considered as the goal of this action
sequence. An observed plan B (right) of a similar action (with similar goal), will normally consist of
many planning operators which are identical or highly similar to the ones of the known plan and also the
outcome will be similar or same. Still some planning operators may be dissimilar and hence unknown
to the agent (white bars). In the same way, individual newly observed Executables (right) may contain
unknown components (white). The goal of bootstrapping is to fill in all this missing information. To the
end, first (1) the respective entities, Plans (1A) or Executables (1B), will be compared at an ”outer”,
grammatical level to find matching components. This way, in the second step one can try to infer the
respective missing entities, planning operators (2A) or components of the Executables (2B).

Figure 2.1: A real action scenario: “Stirring liquid with a spoon”. (a) Sample original key frames
with respective segments and graphs. (b) Corresponding SEC where each key frame corresponds to
one column. Possible spatial relations are N, T, and A standing for “Not-touching”, “Touching”, and
“Absence”, respectively (A does not happen here.). Shaded box shows a sample relational transition. (c)
Object identities derived from segments (d) Complete trajectory information for the hand. Trajectory
segment for the time-chuck covered by shaded box in (c) is indicated in gray color.

11

Xperience 270273 PU

Plan A Plan B

1) Planning
 Operator

2) Mid-Level
 Descriptor

3) SM-Level
 Information

1) Planning
 Operator

2) Mid-Level
 Descriptor

3) SM-Level
 Information

Known

Known

Observed

Observed

ExecutableExecutable

P
la

n
n
in

g
 O

p
e
ra

to
rs

1) Compare at an „outer“
(grammatical) level

2A) infer
missing
planning
operators

2B) infer missing
executable components

(1A)

(1B)

Outcome Outcome

Figure 2.2: Schematic of structural bootstrapping.

Hence, a central statement is that structural bootstrapping always ”propagates downward”. It
uses type-similarities of entities from one level above to define the missing syntactical elements
of the currently queried (lower) level! Plan similarities are used to infer planning operators,
Executable similarities to infer Executable parameters such as objects, trajectories, forces,
poses, and possibly more.

The main difficulty for implementing structural bootstrapping is to define appropriate scaffolds on which
the bootstrapping can be based where – as described – the goal is to create novel information by generative
processes which compare existing knowledge with newly observed one, without having to perform an in-
depth analysis.

Planning Level

The existing plan of making batter with a mixer is compared to the observed sequence of actions
during making batter with a spoon. Due to the fact that all sub-actions, but one, are identical between
known-action and new-action the agent can infer that the unknown sub- action (stirring with a spoon)
is of the same type as its equivalent known sub-action (mixing with a mixer). Hence the grammatical
comparison of known with unknown action renders a new (syntactic) planning operator entry for the
unknown sub-action. This process is very similar to syntactic bootstrapping as observed in child language
acquisition. A semantic element enters here due to the same outcome of both actions being recognized
as batter. We use CCG as our planning language and we employ the PKS planner [48] for the actual
planning processes of ARMAR-III.

The actual inference process makes use of the similarity of known plan with newly observed plan, where
in our example all but one action are identical.

Figure 2.3 shows the comparison between a known (and executable) plan on the left and an observed
new one (right). Structural (grammatical) one-by-one comparison shows that there is just one unknown
planning operator present. When the plan recognizer is run on the observed plan it would result in the
following explanation of those observations with the highest probability:

[addIngC(left, liquid1, beaker, mixingbowl),

addIngC(left, liquid2, cup, mixingbowl),

12

Xperience 270273 PU

Original Plan Observed Plan

testName: xpermixnew;
ini�alState: [];
observa�ons: [
 pickA(le�, beaker, t),
 pourA(le�, liquid1, beaker, mixingBowl),
 placeA(le�, beaker, t),
 pickA(le�, cup2,t),
 pourA(le�, liquid2, cup2, mixingBowl),
 placeA(le�, cup2, t),
 pickA(right, UNKNOBJ, t),
 UNKNACT(UNKNOBJ, liquid1, liquid2, mixingBowl)
];

testName: xpermix;
ini�alState: [];
observa�ons: [
 pickA(le�, beaker, t),
 pourA(le�, liquid1, beaker, mixingBowl),
 placeA(le�, beaker, t),
 pickA(le�, cup2, t),
 pourA(le�, liquid2, cup2, mixingBowl),
 placeA(le�, cup2, t),
 pickA(right, mixer1, t),
 mixA(mixer1, liquid1, liquid2, mixingBowl)
];

Figure 2.3: Comparing known with observed plan. The arrow indicates where there is a novel, unknown
planning operator found in the new plan. This is also associated with an, as yet, unknown object (the
spoon).

pickC(left, UNKNOBJ, table),

UNKNACT(left, UNKNOBJ, liquid1, liquid2, mixingbowl)]

Note, the category name for the previously unseen action is simply denoted as UNKNACT. This is a
special purpose category used to complete the explanation when we have an action that has never been
seen before.

Now the agent has been told (or can observe) that the observed plan is a plan that achieves makeBatterC
(making batter), and we will assume that all of the actions in the observed plan are relevant to the plan.
The agent’s job is to infer a category to replace UNKNACT that allows the completing of the parse. If
the agent wants to build a category to assign to the unknown action that will result in a complete plan
with the goal of makeBatterC, all it needs to do is walk the explanation from right to left collecting the
categories and adding them to the complex category in order. This will result in the unknown action
being given the following category:

action: UNKNACT(hand, UNKNOBJ, ingredient, ingredient, bowl)

[(((makeBatterC(2, 3, 4))\

{addIngC(0, 2, obj(1), 4)})\

{addIngC(0, 3, obj(2), 4)})\

{pickC(0, 1, table(1)) }];

Note the agent also infers the types and co-reference constraints for the basic categories arguments from
the plan instance. In the above definitions we have denoted those arguments to the basic categories by
numbers indicating when an argument is bound to the same argument as the action. (i.e. All references
to “0” in the category refer to the hand used in the action because it is the zeroeth argument for the
action. Likewise all reference to “4” in the category refer to the bowl argument of the action since it is
the fourth argument.)

This category would represent the most restrictive hypothesis about the plan structure since it will require
both that the actions be executed in the same order (and we know the ingredients can be added to the
plan in either order) and that all of the arguments that co-refer in the example plan must co-refer in
future instances. In this case, it would require that the same hand be used for all of the ingredient adding
and mixing which we know to be overly restrictive.

If we compare the new category to the category for the known mix action (mixA), we can see that the
only differences are exactly in these overly restrictive areas:

13

Xperience 270273 PU

Hand, Beaker 1 1 1 1 1
Beaker, MixBowl 0 1 1 1 0
Beaker, Liquid2 1 1 1 0 0
MixBowl,Liquid2 0 0 1 1 1

Hand, Mixer 0 1 1 1 0
Mixer, Dough 0 0 1 0 0

Hand, Sponge 0 1 1 1 0
Sponge, Surface 0 0 1 0 0

Hand, Object 0 1 1 1 1 0
Object, Dough 0 0 1 0 1 0

Hand, Object x x x x x x
Object, Dough x x x x x x

Hand, Object 0 1 1 1 0
Object, Dough 0 0 1 0 0

Pouring
Mix (with Mixer)

Stir (was UNKNACT) with Object*
Unknown SEC

SEC from one observation SEC from two observations

Wipe (with Sponge)

*Object = “UNKNOBJ“, before object specification
 Object = “spoon“ after object specification

Hand, Beaker 0 1 1
Beaker, Table 1 1 0

Picking up
A)

Hand, Beaker 1 1 0
Beaker,Table 0 1 1

Putting downB)

C)
E)

F)

Stir (was UNKNACT) with Object*G1) Stir (was UNKNACT) with Object*G2)

D)

Figure 2.4: Several important SECs, which occur during the different actions. Headlines (bold lettering,
like ”Picking up”, etc.) denote the type-specifiers of the different SECs. Note, sometimes objects can
change. E.g. ”Beaker” can be replaced by ”Cup2”. A-E) error-free archetypical SECs from known
actions. F) So-far unspecified SEC. G) SECs from the unknown action extracted from observation of the
human performing it. Hence these SECs might contain errors. G1) one observed case, G2) two observed
cases. (In human terms: G1 corresponds to a case where the spoon had intermittently been pulled out
from the dough (grey box), whereas for G2 it always remained inside until the action terminated.)

1. The ordering of the categories for the add ingredient steps. The known category is more general
allowing the ingredients to be added in any order while the new learned category has a required
order.

2. The co-reference constraints are less restrictive in the known category. (Note the numbers indicating,
which hand is to be used in the addIngC, are not the same so the plan would not enforce that the
same hand be used.)

At this point, on the basis of the structural information provided by the parse and the action grammar,
the agent has inferred that ”UNKNACT” is equal to (or at least very similar to) ”mixA” and the
information can be entered directly into the planning grammar of the agent and forms the top-level of
the corresponding new executable. We will, for convenience, from now on name it: ”stir”, hence we set:

UNKNACT:=stir.

While we have now added a new action to the planning grammar, still there is massive information lacking
for designing the complete (new) executable for ”stir”, for example there is as yet no understanding
existing about the UNKNOBJ (the spoon) and nothing is known about several other mid- and low-level
descriptors.

Mid-Level

At the mid-level, we need to define the correct SEC for ”stir”. Figure 2.4 shows SECs for several actions
where (F) represents the so-far unknown SEC for ”stir”. Please, ignore panels (G) for a moment.

14

Xperience 270273 PU

Structural bootstrapping at the mid-level uses as the ”outer”, grammatical scaffold the type-similarity of
the planning operators (here ”stir” and ”mix”) ascertained above. Hence we know that UNKNACT=stir.

Following this conjecture the agent can now with a certain probability assume that so-far unknown SEC
for ”stir” ought to be identical (or very similar) to the known one from ”mix” and use the ”mix”-SEC
to define the mid-level (the SEC) for the Executable of ”stir”. The arrow indicates that the SEC from
panel (E) should just be transferred to fill the unknown SEC in (F) with the same entries.

There is a second line of evidence which supports this. Panels (G1) and (G2) represent the actually
observed SECs of the stirring action here from a total of three observations of a human performing this.
The SEC in panel (G1) had been observed once and the other twice. By comparing these SECs, the
robot can with some certainty infer that the transfer of (E) to (F) was correct, because the more often
observed SEC in (G2) corresponds to it, while the SEC from panel (G1) might be noisy as it is a bit
different. As shown in an earlier study [2, 1], more frequent observations are likely to confirm this even
more, but were not performed with the current setup.

Sensorimotor Level

Bootstrapping at the control level is used by the agent to find out how stirring is actually done (motion
patterns), what the meaning of ”UNKNOBJ” is, and which other objects might have a similar meaning.
Before going into details we can can quickly state that at the sensorimotor level several bootstrapping
processes can be triggered. We note that bootstrapping is a probabilistic process and things can go
wrong, too. One such example is, hence, also included. We find that the following processes are possible:

1. Motion

(a) Bootstrapping from SEC-similarities [”wipe” and ”stir”] to define the motion patterns for
”stir”.

2. Objects

(a) Bootstrapping from SEC-similarities [”wipe” and ”stir”] into the new action. Here arriving at
a false conjecture that ”sponges” could be used for mixing.

(b) Bootstrapping from SEC-similarities [”mix” and ”stir”] from the repository of objects&attributes
with roles (ROAR) into the new action seeking different objects that could potentially be
used for mixing.

(c) Bootstrapping from SEC-similarities [”mix” and ”stir”] from the new action into the ROAR,
entering the ”spoon” into the category of objects for mixing.

To address the sensorimotor level the agent has to bootstrap from the mid-level downwards. It can
do this by comparing the type-similarities of the different SECs. For this essentially one calculates a
sub-string comparison of the rows and columns between one SEC and any other [2, 1]. We obtain that
”stir” and ”mix” as well as ”stir” and ”wipe” are 100% type-similar (compare panels D, E , and G2
in Figure 2.4), whereas ”stir” and ”pour” are only 52% similar, etc. Thus, the agent can infer that
syntactical elements from ”mix” and ”wipe” might be used to define missing entities at the sensorimotor
level of the Executable.

1a) Motion: Bootstrapping from SEC-similarities ”wipe” and ”stir” into the new action for
completing motor information

Here we make use of the fact that the SEC for stir is very similar to the known one from wipe. Figure 2.5
shows the SECs and the different trajectories recorded from human observation for both actions. Note
that for ”wipe” the complete motor encoding is known and provided by the respective DMP parameters.

We have in our data-base the following description for ”wipe”: Since wiping is essentially a rhythmic
movement, we use periodic dynamic movement primitives to specify the required behavior [25]. Periodic
DMPs are defined by the following equation system [35]

ż = Ωαz(βz(g − y) − z) + f(φ), (2.1)

ẏ = Ωz, (2.2)

15

Xperience 270273 PU

a
m

p
lit

u
d

e
a

m
p

lit
u

d
e

time

x

y

z

Wipe

Stir

Hand, Sponge 0 1 1 1 0
Sponge, Surface 0 01 0 0

Hand, Object 0 1 1 1 0

Object, Dough 0 0 1 0 0

A)

B)

Figure 2.5: Bootstrapping motor information. SECs (top) and trajectories (bottom) for x, y, and z
coordinates in task space are shown for (A) wipe and (B) stir.

In the above equations, g is the anchor point of the periodic movement. The nonlinear forcing term f is
defined as

f(φ, r) =

∑N
i=1 wiΨi(φ)∑N
i=1 Ψi(φ)

r, (2.3)

Ψi(φ) = exp (hi cos(φ− ci) − 1) ,

where the phase φ is given by
φ̇ = Ω. (2.4)

Here we assume that a complete parameterization of the DMP for wiping has been learnt from earlier
experiences. Given this the DMP can be easily modulated by changing:

• the anchor point g, which translates the movement,

• the amplitude of oscillation r,

• the frequency of oscillation Ω.

These variables can be used to immediately adapt the movement to sensory feedback.

Bootstrapping progresses by using the concept of temporal anchor points, which are those moments in
time when a touching relation changes (from 0 to 1, or vice versa). These anchor points divide the
trajectories in a natural way (shown by the vertical lines in the figure.)

Bootstrapping now just copies the complete DMP information from ”wipe” to the Executable of ”stir”
between the respective anchor points only leaving the constraint-parameters (e.g. amplitude) open as
those are given by the situation (mainly the size of the bowl wherein to stir). Thus, the agent assumes that
it can use the motor encoding from ”wipe” in an unaltered way to also perform ”stir”. We know from own

16

Xperience 270273 PU

Figure 2.6: Bootstrapping object information. Graphical rendering of the repository of ob-
jects&attributes with Roles (ROAR). Depicted are the metric distances between the different objects
and the attribute values that describe their respective roles. A) The sponge is located far from the
attribute value ”can be used for mixing”. B) Bootstrapping allows inferring that a fork, found close
to the ”mixing” attribute value, could be used also for ”stir”, as ”mix” and ”stir” are at the SEC-level
type-similar. C) Following this SEC-similarity, a novel object (spoon) with unknown ”mixing” attribute
may be hypothesized useful for mixing by the ROAR and also due to other, known attribute values (such
as shape, stiffness, and SEC characteristics of known, observed actions).

experience that this largely holds true. Here we can also clearly see the advantages of bootstrapping: we
do not need any process that extracts and generalizes motor information from the observed example(s) of
”stir” (a process which could be more tediously performed by methods from imitation learning [13, 4, 17].
Instead we just copy! Clearly, the agent - like any young child - will have to ground this by trying out the
stirring action. It will possibly then have to adjust the force profile, which is likely to be much different
for wipe and stir. Still, all this is faster than learning the required motor pattern in any other way. The
benchmark experiments below show this clearly.

2a) Objects: Bootstrapping from SEC-similarities ”wipe” and ”stir” into the new action
for object use

The SEC-similarities between ”wipe” and ”stir” allow the agent to also (wrongly!) infer that the object
for wiping (sponge) should be suitable for stirring, too. Note this may seem unexpected but can happen
during any bootstrapping process due to its probabilistic nature. The use of just one single scaffold
(here the SECs) is not strong enough to allow rigorously excluding such false conjectures. For this the
agent needs to integrate additional information and, due to the fact that there is a repository of known
objects&attributes with roles (ROAR), it can indeed obtain evidence that there has been an error.

The agent knows that ”stir” and ”mix” are at the mid-level (SEC) type-similar action. It finds, however,

17

Xperience 270273 PU

that sponges are clearly outside the cluster of objects for mixing (Figure 2.6 A). This lowers the probability
substantially that sponges should be used for mixing/stirring actions.

Interestingly, children will many times indeed over-generalize and use ”unsuitable” objects for an intended
action [32]. It is unknown how the brain represents this, but – clearly – their representation does
apparently not yet contain the fine grained-ness of an adult representation.

2b) Bootstrapping from SEC-similarities ”mix” and ”stir” from the ROAR to find other
suitable objects

Here the agent falls back (again!) on the similarity of the new SECs of ”stir” with the known one of
”mix”. Due to this similarity, the agent knows that appropriate objects for the novel action might be
found in the cluster of ”objects for mixing” in the repository of objects&attributes with roles. Hence it
can ask the repository for a tool suitable for mixing and maybe locate it somewhere else on the table.
Clearly this process will lead to an action relevant result only in those cases where the agent actually
find such an object within reach. Then it can try to use this object for stirring, too. Again we can draw
similarities to our own behavior. Generally this type of tool-replacement is found for a wide variety of
actions where we ”define” the tool according to its planned use. Our own generalization properties may
here go far beyond what the ROAR offers to our artificial robotic agent, which it evident from situations
where we ”abuse” objects for entirely different purposes.

2c) Bootstrapping from SEC-similarities ”mix” and ”stir” from the new action into the
ROAR to create a new entry

In the last step, the agent can perform one more bootstrapping procedure to augment the repository of
objects&attributes with roles. For this it analyzes the outcomes of the actions realizing that batter is
obtained from ”mixing” and also from the unknown action of ”stirring”.

Thus, the agent can enter the new observed tool (spoon) into the ROAR and can then – by virtue of its
resulting position in the ROAR – infer other, unobserved attribute values (uses), which is a bootstrapping
effect. This way the repository will be extended by a novel entry following a single-shot experience. This
step, however, does require a parametrization of the new object according to the features used for the
ROAR.

2.5 Robotic Implementation

Note, the actual bootstrapping processes happen ”inside the machine” and any demonstration will, thus,
only show that ”the robot can do it now”. Hence, it is far more useful to provide quantitative results on
performance gain by bootstrapping, which will be presented in the next sections, below.

Still, a complete robotic implementation of these processes is currently being performed using the
ARMAR-III robot. For brevity, we will here show one central part of this implementation demon-
strating the required transfer of human action knowledge (Fig. 2.7 A) onto the robot . This is the initial
step needed to set up action knowledge in the machine before any bootstrapping can happen. The robot
acquires here the knowledge to perform mixing with a mixer.

To better be able to extract object relations we have here used the marker-based motion capture system
(VICON)from which we immediately get error-free Semantic Event Chains (Fig. 2.7 B). The complete
action relevant information is extracted at the respective key frames and encoded into the required
Executables (Fig. 2.7 C), which can be used by the robot to reproduce this action (Fig. 2.7 D). The
complete experiment is described in [68].

2.6 Benchmark Experiments

In the following we will show some experiments from our scenario demonstrating the power of structural
bootstrapping for example the speed-up as compared to conventional, exploration based learning methods
but also the accuracy of the object attribution methods used in the bootstrapping process.

18

Xperience 270273 PU

A B C D

Human
Demonstration

Extraction of
Status (SEC)

Transfer to
Robot

Execution

Figure 2.7: Transfer of action knowledge from human to robot. A) Human demonstration, B) SEC
depicted by ways of its key frame graphs, which show which objects touch which other objects (edges)
during human execution. C) Abbreviated Executables D) Robot execution.

19

Xperience 270273 PU

Figure 2.8: Benchmark experiment demonstrating the gain of learning speed when bootstrapping motion
trajectories. A) Experimental setup and B) demonstration of wiping. C) Learning of stirring behavior
without prior knowledge and D) adaptation of wiping to stirring. The desired and actual forces are
shown with red and green vectors.

Bootstrapping Motion - Measuring Learning Speed

Our setup for learning of stirring behavior is shown in Fig. 2.8 A. It is composed of two KUKA LWR
robots, both equipped with Barred hands. The task is to learn how to stir in a metal pad of diameter of
21 cm using wooden spoon. The position, size and shape of the pad are not known in advance. To define
a criterion function for motion learning, we specify the force Fd with which the robot should move along
the edge of the pot.

We considered two cases: 1) learning without any prior knowledge about the stirring trajectory and
2) learning where the adaptation process is initialized with wiping trajectory. The wiping trajectory is
obtained by imitation learning (Fig. 2.8 B). We used periodic DMPs to represent the movement [26] and
apply a Repetitive Control (RC) algorithm [16, 27]. The RC algorithm iteratively adapts the current
estimate of the stirring behavior to achieve the desired outcome as defined by the desired contact force.
Task performance is improved with each repetition and eventually, the required behavior is achieved
regardless of the initial estimate of the stirring trajectory.

Fig. 2.8 C,D show the progress of learning in x-y plane for both cases. The robot learned the policy
in approximately 15 cycles without any prior knowledge about the trajectory and in approximately 7
cycles with prior knowledge taken from wiping motion. This demonstrates in a practical example that
low-level sensorimotor learning can significantly benefit from the initialization provided by the semantic
understanding of the task.

Note that in the specified scenario, the direction of adaptation is provided by the information about
the desired contact force. We can expect that the difference between the two approaches would be even
bigger if model-free methods such as reinforcement learning were used.

20

Xperience 270273 PU

0 10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

6

7

8

9

10

fork spoon

bowl

mug

cleaver

knife

sponge

carrot

tomato

potato

Proportion of missing attributes [%]

R
a
n
k

Suitability for Mixing

Figure 2.9: Estimated suitability of 10 different objects for mixing, ranked by the ROAR. With fully
known attributes, the ROAR consistently considers the spoon, the fork and the carrot as useful mixing
tools, and the sponge, potato and bowl as useless. This consistency degrades gracefully with increasing
percentage of missing attributes. Each column of the graph represents ranks averaged over 100 runs.
Error bars give standard deviations for our two objects of interest (sponge and spoon); those of the other
objects are similar but not shown to reduce clutter.

Bootstrapping Objects - Measuring Success

Trivially immediate object replacement, using the ROAR as suggested for cases 2a, b, and c above, will
always be faster than finding an appropriate object by exploration, but will the ROAR find the correct
object?

We evaluate the capacity of the ROAR to predict the suitability of given objects for mixing, similar to
the scenario above. To this end, we created a database of 10 objects as listed in Fig. 2.9. Each object
is characterized by 10 binary attributes describing its properties (such as shape and stiffness) and usage
categories (such as “container” or “mixing tool”), some of which may be unknown. The ROAR ranks
objects according to their estimated suitability for mixing. Fig. 2.9 shows the suitability of the 10 objects
as a function of the proportion of missing attribute values. Each column of the graph represents results
averaged over 100 runs.

For each run and for each proportion of missing attributes, the designated proportion of object attribute
values is randomly chosen from the complete database; these are set to unknown. On the resulting copy of
the database with missing attribute values, homogeneity analysis is performed (see ”Methods”), producing
a ROAR. Objects are ranked by the ratio of their Euclidean distances to the “mixing tool”=true vs.
“mixing tool”=false attribute values [XSP13].

With fully known attributes, the ROAR consistently ranks the spoon, the fork and the carrot as the most
useful mixing tools, while the sponge, potato and bowl rank last. This consistency degrades gracefully
with increasing percentage of missing attributes.

2.7 Discussion

A central issue for the development of autonomous robots is how to quickly acquire new concepts to
be used for planning and acting, for example learning to stir in a pot, which is a relatively complex

21

Xperience 270273 PU

manipulation sequence. Reinforcement learning or association-based learning methods have been applied
to this and related problems but are usually too slow to achieve this efficiently. Thus, one often combines
them with supervised learning. Here, especially the paradigm of learning from demonstration has often
been successfully employed [53, 13, 47, 19, 15, 17] also because we (humans) are rather good at this. Still
none of these methods is generative in the sense that it would take existing knowledge to generalize it
into novel unexplored domains. At best one finds in-domain generalization, such a generalizing across
different trajectories of the same action-type [67, 46, 38, 37].

This may not make us wonder, though! After all, generative learning is clearly an advanced cognitive trait
and the gap between human performance and the current capabilities of machines is exceedingly wide.
The central problem seems to be that – on the one hand – one has clear evidence that such processes
do indeed happen during human (infant) learning [50, 66, 14, 65, 49], but – on the other hand – no one
knows how; let alone, no one seems to have convincing ideas of how to do this with artificial agents either.

This was also the main challenge which we faced in this study: How can one develop a set of genera-
tive processes that use an ”outer”, grammatical representation to bootstrap missing ”inner”, syntactic
elements, preferably at different levels of a cognitive architecture (planning, mid-level, and sensorimotor
level). Furthermore our goal was to define such processes in a rigorous, algorithmically implementable
way, to actually allow a robot to do this.

Language development did offer us a useful analogon on which we could build in this study. Semantic
and syntactic bootstrapping [50, 56, 29, 23, 44, 22, 30, 66, 24], by which a child infers the meaning of
unknown words using prior knowledge both rely on a general principle which we also used here: Grammar
provides a solid scaffold for the probabilistic reasoning required for such inferences. While this was a
helpful notion, still it remained unclear what the grammatical elements of an action sequence are (see
[33] for a set of articles related to action-verb learning in children).

Bootstrapping at the planning level

Planning languages and planning operators can be rather directly linked to the ”language of action”.
Since the earliest days of AI research on symbolic planning, the ideas of abstraction and hierarchy and
the decomposition of high level plans into lower level plans has been seen as central to efficiently building
plans [61, 52]. Many current researchers view knowledge of such plan hierarchies as “domain specific
control knowledge”, that is knowledge of how to construct plans that is specific to individual domains.
This kind of knowledge has traditionally been encoded in Hierarchical Task Networks (HTNs) [21]. A
formal relationship has been shown between HTNs and other similar plan structures and Context Free
Grammars (CFGs) that are used extensively in natural language processing, formal grammar theory and
theory of computation [21]. Here essentially we were representing our search control knowledge as a
grammar and thereby it becomes quite clear how to extend the idea of syntactic&semantic bootstrapping
to the symbolic planning domain. In this case, our objective was to learn the ”syntactic knowledge” that
encodes how to effectively build a new from an old plan.

Thus, for us it was relatively straight forward to implement structural bootstrapping at the planning
level. The similarities of two plans allows inferring missing planning operator information (Fig. 2.3).
But this addresses only the highest, the symbolic, level of an action sequence. It is for robotics totally
useless to utter commands like ”pour liquid”, without also providing the required, complex sub-symbolic
information of how to actually do this.

The problem of mid-level scaffolds

Hence, more was needed to bridge the gap from symbols all the way down to the control signals of the
robot motors. In some earlier studies we had introduced the Semantic Event Chain (SEC) as a possible
mid-level descriptor for manipulation actions [2, 1, ATV+13]. The SEC framework analyzes the sequence
of changes of the relations between the objects that are being manipulated by a human or a robot.
Consequently, SECs are invariant to the particular objects used, the precise object poses observed, the
actual trajectories followed, or the resulting interaction forces between objects. All these aspects are
allowed to change and still the same SEC is observed which, thus. captures the essence of the action as
demonstrated in several action classification tests performed by us [1, ATV+13].

22

Xperience 270273 PU

It turned out that SECs offer two important aspects which make them good scaffolds for the bootstrapping
of lower-level sensorimotor information.

1. SECs provide temporal anchor points, annotating in an action when ”something decisive” has
happened. This allows the chunking of an action and thereby provides the agent with a means
to perform motor-pattern replacement (here wipe for stir), because ”it knows” when to do the
replacement.

2. Above we stated that SECs are invariant to the particular objects used. This is also essential for
the bootstrapping. Only through this, object replacement is immediately permitted as the scaffold
(the SEC) is not bound to particular objects as long as the chosen-one performs the same role
(performs the same NT, TN transitions).

Ideas to utilize (spatial) relations to approach the semantics of actions first appeared in 1975. Badler [11]
used directed scene graphs where each node identifies one object. Edges represent spatial information
(e.g., LEFT-OF, IN-FRONT-OF, etc.) between the objects. Based on the object’s motion patterns,
events are defined. Taken together this then represents an action. This, approach came to a stand-still,
though because only now powerful enough image processing methods are available to provide the required
information.

Even by now there are still only a few approaches towards semantic action understanding [57, 36, 72],
often based on very complex activity graphs [57]. In [36], segmented hand poses and velocities are used to
classify manipulations based on a histogram representation and using support vector machine classifiers
for categorization of the manipulated objects. Others [72] introduced a visual semantic graph to recognize
the action consequences based on changes in the topological structure of the manipulated objects.

In the context of the current study, potentially all these different approaches could be used as mid-level
scaffolds, because they are based on the fact that the human action space is rather limited [70] and we
are in fact not restricted by the here used SECs.

Bootstrapping low-level information

Any of these mid-level scaffolds could thus be used to guide bootstrapping at the control level, where
we had shown 4 different examples (bootstrapping headlines 1a, 2a-c, see above). Here mainly visual
information is used. This is done by linking shape similarities to action affordances into categories. These
categories create the links in the repository of objects&attributes with roles.

The learning of perception and action categories requires quite some time during human development
because large scale statistics on perceptual data need to be acquired and evaluated to sufficiently ground
the categories. This learning process is working along two tracks. On a behavioral track, a rather small
set of archetypical behaviors (as outlined in [32]) ensures the early association of objects with actions.
The general execution of an action generates the required low-level sensorimotor experience later to be
used for structural bootstrapping and facilitates a model building by creating internal world knowledge.
This – in turn – can be used by older children and adults to perform mental simulations of potential
action contingencies thereby creating the second track.

The fundamental problem of these processes is the dimensionality of the potential sensorimotor contin-
gencies (e.g. think of the visual input space, [31] leading to a level of complexity that generates a very
difficult learning/simulation task. To handle this complexity, an appropriate representation of sensori-
motor information is required. Analysis of the visual representation in the vertebrate brain suggest that
this takes place in form of a deep hierarchy which potentially allows for providing search spaces with
different degree of granularity, different order of feature combinations and different levels of semantic
abstraction [40]. This may lead to the required complexity reduction and could lead to the emergence of
new structures in the internal world model of the agent further speeding up structural bootstrapping.

2.8 Conclusions

The main contribution of this study was to introduce a novel concept for the fast acquisition of actions-
relevant information (by a robot), called Structural Bootstrapping. By ways of one complex, multi-layered

23

Xperience 270273 PU

experiment, we have tried to demonstrate that this concept can be successfully used across all levels of
our cognitive architecture (planning-, mid-, and sensorimotor level). The concept reaches into aspects
of cognitive action understanding and learning by humans and its rigorous application will require more
experiments in the future.

24

Chapter 3

Structural Bootstrapping Examples
at Different Levels

3.1 Semantic Event Chain-based Assimilation and Accommo-
dation of actions

We have introduced a Piaget-like approach including assimilation and accommodation processes [49] for
developing a robot action library. We base the approach on the structure as provided by Semantic Event
Chains (SECs), however for our approach we needed an extension of the SEC approach. As a SEC we
consider a sequence of touching and un-touching events between objects. What we call extended Semantic
Event Chain, is this sequence of the touching and un-touching events with poses, trajectories and forces,
specific to each individual transition, as well as the object names attached to each line in the SEC (i.e.
we talk not about object1 and object2 participating in the relation, but we talk, e.g., about hand and
knife participating in the relation). The ideas of assimilation is as follows: if the SECs of two actions
are similar, we can perform action assimilation, if not accommodation. However, at the assimilation step
we consider extended SEC entities, and we consider which of those entities match and which entities
shall be indicated as different. E.g., for assimilating a chop action into the cut-category, we indicate that
we keep the pose relation between knife and objects to be cut (e.g. vegetables) of the initially known
action cut, but we add a trajectory that is typical for chop into the description. Now we know that we
can divide vegetables in pieces by ”cut-like” actions, where pose of the knife shall be perpendicular to
the vegetable and where trajectories can be of two types: either the cyclic cutting-like trajectory or the
abrupt knife-down chop-like trajectory. For details see [ATV+13].

3.2 Learning Object-Action Relations

In this section we provide examples on bootstrapping processes for learning object-action relations.

3.2.1 Active Learning with Knowledge Propagation

In the previous Deliverable D3.1.1 we introduced our general framework for learning object-action re-
lations via knowledge propagation [60]. Now we present extensions that address the problems arising
from the complexity in the learning interactions, i.e., connections between actions and objects, since
testing great numbers of such interactions on a real robot is generally infeasible. To overcome these
complexity issues, we propose an algebraic, statistical active learning strategy [SP14]. It starts by build-
ing an acceptably small but expressive starting training set covering a specially-constructed subset of
all possible interactions that can be tested in a real robot environment. This set is expressive in that
it allows us to predict the outcome of all untested cases and to provide confidence estimates of the pre-
dictions. These confidence estimates are subsequently used to actively select and incorporate untested
cases into the training set. The new items improve the prediction capabilities by increasing the accuracy

25

Xperience 270273 PU

and extending the coverage of the domain containing the possible interactions. The combination of the
specially-designed initial training set and its extension by active learning provides a feasible, but at the
same time effective, structural bootstrapping framework. We currently employ this learning approach to
create an object-action interaction data base for bootstrapped affordance learning [Ugu14].

3.2.2 Bootstrapped Affordance Learning

One hallmark feature of bootstrapped learning is that learning problems stack in the sense that higher-
level learners use as input attributes/concepts produced by lower-level learners. These higher-level at-
tributes should allow faster learning than if the higher-level concepts had to be learned from the lower-level
attributes alone.

We designed and implemented a proof-of-concept system for an affordance-learning task [Ugu14]. At the
first level, the robot learns to predict the effects of certain actions on single objects from a given set based
on category information and shape features. At the second level, the robot learns to predict the effects
of actions on pairs of objects, in two different ways: Without bootstrapping, learning is based on the
same, low-level features as the first-level learning; with bootstrapping, it uses the affordances learned by
the first-level learner as additional features. We show that bootstrapped learning is more effective than
learning without bootstrapping.

3.2.3 Learning Object-Action Relations with Homogeneity Analysis

Our knowledge propagation framework [60] is potentially very powerful due to its exploitation of kernelized
maximum-margin methods, but these very methods can make its properties nonobvious.

We designed a complementary method for learning object-action relations that addresses an overlapping
space of problems. It is based on straightforward Euclidean reasoning, which brings with it the advantage
of providing useful visualizations of the intricate dependency structures our learning problems exhibit,
but which also limits its expressive power and flexibility compared to knowledge propagation.

Our method [XSP13] is based on homogeneity analysis, a tool for categorical multivariate statistical
analysis. In this paper, we show for an example scenario how to learn object-action relations with
homogeneity analysis, and devise methods for reasoning tasks such as predicting the effect of actions on
novel objects, and selecting objects such that a given action has a desired effect.

3.2.4 Generative learning of correlations between object properties and ac-
tion parameters

In [DSEA14], we address the question of generative knowledge construction from sensorimotor experience,
which is acquired by observation and exploration. We show how to build generative models of actions
and their effects on objects, together with perceptual representations of the objects, which then can be
used in internal simulation to predict the outcome of actions. Specifically, we address the the experiential
learning of association between object properties (softness and height) and action parameters for the
wiping task where a generative model is acquired from sensorimotor experience resulting from wiping
experiments. Object and action are linked to the observed effect to generate training data for learning a
nonparametric continuous model using Support Vector Regression. In subsequent iterations, this model
is grounded and used to make predictions on the expected effects for novel objects which can be used to
constrain the parameter exploration. The complete learning cycle and together with the required skills
have been implemented on the humanoid robot ARMAR-IIIb. Experiments with set of wiping objects
differing in softness and height (size) demonstrate efficient learning and adaptation behaviour of the
action of wiping to unknown objects.

The cycle incorporates two learning stages. In the first stage, the learning process is triggered by the
observation of a human wiping action. The captured demonstration is encoded as a periodic Dynamic
Movement Primitive (see [20] and Deliverable 2.2.1) yielding a movement policy which is mainly controlled
by the amplitude and the frequency of the desired movement. Adapted to the scene the encoded action is
executed whereas the observation of its effect provide information based on which the action representation
is grounded and refined. In the second stage, models are generated which encode the relationship between

26

Xperience 270273 PU

object properties, action parameters and effects. For this purpose, the robot explores a given object
haptically in order to determine its properties such as softness and height ([12, 55]). Through execution
of the wiping action with this specific object and observation of the resulting effect, the optimal action
parameter, in our case the amplitude, is specified. Based on this experiential data a Support Vector
Regression is applied to train models which represent the object-action-effect relations. In subsequent
iterations of this cycle, these models are used for the prediction of action parameters and to accelerate
the learning process for novel objects where the robot becomes able to select suitable action parameters
in case of unknown/unexplored objects.

Future work will deal with the question of how to make better predictions by an enriched object repre-
sentation which contains information about the object’s weight and the geometry. Furthermore, we will
extend this work towards more versatile wiping behaviour by considering additional action parameters
such as different hand orientations during wiping and the integration of interaction forces in the learning
cycle. For more details see [DSEA14].

3.2.5 Object Categorization with Knowledge Propagation

In D3.1.1 we reported on an application of our knowledge propagation framework [60] to hierarchical
classification [59], both written up as technical reports. In the meantime we developed this work further
and applied it to classification tasks using highly-competitive 3D features we developed within the EU
FP7 ICT project IntellAct, which is currently under review for a major journal [51].

27

Chapter 4

Conclusion

By the third year of the project the Xperience consortium has started connecting the individual contri-
butions of structural bootstrapping into a unified framework, as presented in Chapter 2. However, fast
progress on the level of individual components of structural bootstrapping is happening in parallel and
this progress was summarized in Chapter 3. In the remaining years of the Xperience project the newly
developed as well as improved components will be integrated into the now started framework. Also more
benchmarking results of how structural bootstrapping allows to make robot action acquisition faster will
be obtained.

28

References

[1] E. E. Aksoy, A. Abramov, J. Dörr, N. KeJun, B. Dellen, and F. Wörgötter. Learning the semantics
of object-action relations by observation. Int. J. Robot. Res., Special Issue on Semantic Perception
for Robots in Indoor Environments, 2011, in press.

[2] E. E. Aksoy, A. Abramov, F. Wörgötter, and B. Dellen. Categorizing object-action relations from
semantic scene graphs. In IEEE International Conference on Robotics and Automation (ICRA),
pages 398–405, may 2010.

[3] E. E. Aksoy, M. Tamosiunaite, R. Vuga, A. Ude, C. Geib, M. Steedman, and F. Wörgötter. Structural
bootstrapping at the sensorimotor level for the fast acquisition of action knowledge for cognitive
robots. In IEEE International Conference on Development and Learning and Epigenetic Robotics
(ICDL), Osaka, Japan, August 2013.

[4] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from demon-
stration. Robotics and Autonomous Systems, 57(5):469–483, 2009.

[5] T. Asfour, P. Azad, N. Vahrenkamp, K. Regenstein, A. Bierbaum, K. Welke, J. Schröder, and
R. Dillmann. Toward Humanoid Manipulation in Human-Centred Environments. Robotics and
Autonomous Systems, 56:54–65, January 2008.

[6] T. Asfour, K. Regenstein, P. Azad, J. Schröder, N. Vahrenkamp, and R. Dillmann. ARMAR-III: An
Integrated Humanoid Platform for Sensory-Motor Control. In Humanoids, pages 169–175, Genova,
Italy, December 2006.

[7] Tamim Asfour, Nikolaus Vahrenkamp, David Schiebener, Martin Do, Markus Przybylski, Kai Welke,
Julian Schill, and Rdiger Dillmann. ARMAR-III: Advances in Humanoid Grasping and Manipula-
tion. Journal of the Robotics Society of Japan, 31(4):341–346, 2013.

[8] P. Azad, T. Asfour, and R. Dillmann. Accurate shape-based 6-dof pose estimation of single-colored
objects. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
2690–2695, 2009.

[9] P. Azad, T. Asfour, and R. Dillmann. Combining harris interest points and the sift descriptor for
fast scale-invariant object recognition. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4275–4280, 2009.

[10] P. Azad, D. Münch, T. Asfour, and R. Dillmann. 6-dof model-based tracking of arbitrarily shaped 3d
objects. In IEEE International Conference on Robotics and Automation (ICRA), pages 0–0, 2011.

[11] N.I. Badler. Temporal Scene Analysis: Conceptual Descriptions of Object Movements. PhD thesis,
University of Toronto, Canada, 1975.

[12] Alexander Bierbaum, Matthias Rambow, Tamim Asfour, and Rüdiger Dillmann. Grasp Affordances
from Multi-Fingered Tactile Exploration using Dynamic Potential Fields. pages 168 – 174, Paris,
France, 2009.

[13] A. Billard, S. Calinon, and F. Guenter. Discriminative and adaptive imitation in uni-manual and
bi-manual tasks. Robot. Auton. Syst., 54:370–384, 2006.

[14] Gennaro Chierchia. Syntactic bootstrapping and the acquisition of noun meanings: the mass-count
issue. In Barbara Lust and John Whitman MArgarita Suner, editors, Heads, Projections and Learn-
ability Volume 1, pages 301–318. Hillsdale, New jersey, 1994.

29

Xperience 270273 PU

[15] R. Cubek and W. Ertel. Learning and Execution of High-Level Concepts with Conceptual Spaces
and PDDL. In 3rd Workshop on Learning and Planning, ICAPS (21st International Conference on
Automated Planning and Scheduling), 2011.

[16] L. Cuiyan, Z. Dongchun, and Z. Xianyi. A survey of repetitive control. In IEEE/RSJ International
Conference on Robots and Systems (IROS), pages 1160–1166, Sendai, Japan, 2004.

[17] Rüdiger Dillmann, Tamim Asfour, Martin Do, Rainer Jäkel, Alexander Kasper, Pedram Azad, Aleš
Ude, Sven R. Schmidt-Rohr, and Martin Lösch. Advances in robot programming by demonstration.
KI - Künstliche Intelligenz, 24(4):295–303, 2010.

[18] M. Do, J. Schill, J. Ernesti, and T. Asfour. Learning how to wipe: A case study of structural
bootstrapping from sensorimotor experience. In IEEE International Conference on Robotics and
Automation (ICRA), accepted, 2014.

[19] Staffan Ekvall and Danica Kragic. Robot learning from demonstration: a task-level planning ap-
proach. International Journal of Advanced Robotic Systems, 5(3):223–234, 2008.

[20] Johannes Ernesti, Ludovic Righetti, Martin Do, Tamim Asfour, and Stefan Schaal. Encoding of
periodic and their transient motions by a single dynamic movement primitive. In IEEE-RAS Inter-
national Conference on Humanoid Robots, pages 57–64, Osaka, Japan, 2012.

[21] Kutluhan Erol, James A. Hendler, and Dana S. Nau. HTN planning: Complexity and expressivity.
In AAAI, pages 1123–1128, 1994.

[22] C. Fisher and L.R. Gleitman. Language acquisition. In Pashler HF and Gallistel CR (eds.), Steven’s
Handbook of Experimental Psychology, Vol 3: Learning and Motivation, pages 445–496. New York:
John Wiley & Sons, 2002.

[23] Cynthia Fisher. Structural limits on verb mapping: the role of analogy in childrens interpretation
of sentences. Cogn Psychol, 31:41–81, 1996.

[24] Cynthia Fisher, Yael Gertner, Rose M. Scott, and Sylvia Yuan. Syntactic bootstrapping. WIREs
Cognitive Science, 1:143–149, 2010.

[25] Andrej Gams, Martin Do, Aleš Ude, Tamim Asfour, and Rüdiger Dillmann. On-line periodic move-
ment and force-profile learning for adaptation to new surfaces. In 2010 10th IEEE-RAS International
Conference on Humanoid Robots (Humanoids), pages 560–565, Nashville, TN, 2010.

[26] Andrej Gams, Auke Ijspeert, Stefan Schaal, and Jadran Lenarčič. On-line learning and modulation
of periodic movements with nonlinear dynamical systems. Autonomous Robots, 27(1):3–23, 2009.

[27] Andrej Gams, Jesse van den Kieboom, Massimo Vespignani, Luc Guyot, Aleš Ude, and Auke Ijspeert.
Rich periodic motor skills on humanoid robots: Riding the pedal racer. In IEEE International
Conference on Robotics and Automation (ICRA), Hong Kong, China, 2014.

[28] Mustansar Ghazanfar, Adam Prügel-Bennett, and Sandor Szedmak. Kernel-Mapping Recommender
System Algorithms. Information Sciences, 208:81–104, 11 2012.

[29] L.R. Gleitman. The structural sources of verb meanings. Language Acquisition, 1:3–55, 1990.

[30] L.R. Gleitman. Hard words. Language Learning and Language Development, 1:23–64, 2005.

[31] G.H. Granlund. The complexity of vision. Signal Processing, 74, 1999.

[32] F. Guerin, N. Krüger, and D. Kraft. A survey of the ontogeny of tool use: from sensorimotor
experience to planning. IEEE TAMD, 5:18 – 45.

[33] Kathy Hirsh-Pasek and Roberta Michnick Golinkoff, editors. Action Meets World: Now Children
Learn Verbs. Oxford University Press, 2006.

[34] Julia Hockenmaier and Mark Steedman. CCGbank: A Corpus of CCG Derivations and Dependency
Structures Extracted from the Penn Treebank. Computational Linguistics, 33(3):355–396, 2007.

[35] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dynami-
cal movement primitives: Learning attractor models for motor behaviors. Neural Computations,
25(2):328–373, 2013.

30

Xperience 270273 PU

[36] Hedvig Kjellström, Javier Romero, and Danica Kragić. Visual object-action recognition: Inferring
object affordances from human demonstration. Comput. Vis. Image Underst., 115(1):81–90, jan
2011.

[37] J. Kober, A. Wilhelm, E. Oztop, and J. Peters. Reinforcement learning to adjust parametrized motor
primitives to new situations. Auton. Robots, 33(4):361–379, 2012.

[38] K. Kronander, M.S.M. Khansari-Zadeh, and A. Billard. Learning to control planar hitting motions
in a minigolf-like task. In Proc. 2011 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pages
710–717, 2011.

[39] Norbert Krüger, Christopher Geib, Justus Piater, Ronald Petrick, Mark Steedman, Florentin
Wörgötter, Aleš Ude, Tamim Asfour, Dirk Kraft, Damir Omrčen, Alejandro Agostini, and Rüdi-
ger Dillmann. Object-action complexes: Grounded abstractions of sensorimotor processes. Robotics
and Autonomous Systems, 59:740–757, 2011.

[40] Norbert Krüger, Peter Janssen, Sinan Kalkan, Markus Lappe, Aleš Leonardis, Justus Piater, An-
tonio J. Rodŕıguez-Sánchez, and Laurenz Wiskott. Deep hierarchies in the primate visual cortex:
What can we learn for computer vision? IEEE PAMI, 35(8):1847–1871, 2013.

[41] Tom Kwiatkowski, Sharon Goldwater, Luke S. Zettlemoyer, and Mark Steedman. A probabilistic
model of syntactic and semantic acquisition from child-directed utterances and their meanings. In
EACL, pages 234–244, 2012.

[42] Luis Montesano, Manuel Lopes, Alexandre Bernardino, and José Santos-Victor. Learning Object
Affordances: From Sensory Motor Maps to Imitation. IEEE Transactions on Robotics, 24(1):15–26,
2 2008.

[43] Wail Mustafa, Nicolas Pugeault, and Norbert Krüger. Multi-view object recognition using view-
point invariant shape relations and appearance information. In IEEE International Conference on
Robotics and Automation (ICRA), 2013.

[44] L.R. Naigles. The use of multiple frames in verb learning via syntactic bootstrapping. Cognition,
58:221–251, 1996.

[45] S. Navarro, N.Gorges, H. Wörn, J. Schill, T. Asfour, and R. Dillmann. Haptic object recognition for
multi-fingered robot hands. In IEEE Haptics Symposium, pages 497–502, 2012.

[46] B. Nemec, R. Vuga, and A. Ude. Exploiting previous experience to constrain robot sensorimotor
learning. In Proc. 11th IEEE-RAS Int. Conf. Humanoid Robots, pages 727–732, 2011.

[47] Michael Pardowitz, Steffen Knoop, Rüdiger Dillmann, and Raoul D. Zöllner. Incremental Learning
of Tasks From User Demonstrations, Past Experiences, and Vocal Comments. IEEE Transactions
on Systems, Man and Cybernetics – Part B: Cybernetics, 37(2):322–332, 2007.

[48] R. Petrick and F. Bacchus. A knowledge-based approach to planning with incomplete information
and sensing. In International Conference on Artificial Intelligence Planning and Scheduling (AIPS),
pages 212–221, 2002.

[49] Jean Piaget. The Origins of Intelligence in the Child. Routledge, London, New York, 1953.

[50] Steven Pinker. Language Learnability and Language Development. Cambridge University Press,
Cambridge, 1984.

[51] Antonio J Rodŕıguez-Sánchez, Sandor Szedmak, and Justus Piater. An object-curvature and
viewpoint-centered 3D descriptor sets new standards in classification tasks. Pattern Analysis and
Machine Intelligence, 2014. Submitted.

[52] Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artif. Intell., 5(2):115–135, 1974.

[53] Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences,
3:233–242, 1999.

[54] Stefan Schaal, Peyman Mohajerian, and Auke Ijspeert. Dynamics systems vs. optimal control – a
unifying view. Progress in Brain Research, 165(6):425–445, 2007.

31

Xperience 270273 PU

[55] J. Schill, J. Laaksonen, M. Przybylski, V. Kyrki, T. Asfour, and R. Dillmann. Learning continuous
grasp stability for a humanoid robot hand based on tactile sensing. In IEEE RAS EMBS International
Conference on Biomedical Robotics and Biomechatronics (BioRob), pages 1901–1906, Rome, Italy,
June 2012.

[56] Jesse Snedeker. Cross-Situational Observation and the Semantic Bootstrapping Hypothesis. In E.
Clark (ed.), Proc. 13th Ann. Child Language Research Forum. Stanford, CA: Center for the Study
of Language and Information, pages 445–496. New York: John Wiley & Sons, 2002.

[57] M. Sridhar, G. A. Cohn, and D. Hogg. Learning functional object-categories from a relational
spatio-temporal representation. In Proc. 18th European Conference on Artificial Intelligence, pages
606–610, 2008.

[58] Mark Steedman. The Syntactic Process. MIT Press, 2000.

[59] Sandor Szedmak. Shape-based object categorization. Technical report, University of Innsbruck,
2013.

[60] Sandor Szedmak and Justus Piater. Learning object-action relations via knowledge propagation.
Technical report, University of Innsbruck, 2012.

[61] Austin Tate. Generating project networks. In IJCAI, pages 888–893, 1977.

[62] Damien Teney and Justus Piater. Continuous Pose Estimation in 2D Images at Instance and Cate-
gory Levels. In Tenth Conference on Computer and Robot Vision, pages 121–127. IEEE, 5 2013.

[63] Emily Thomforde and Mark Steedman. Semi-supervised CCG lexicon extension. In EMNLP, pages
1246–1256, 2011.

[64] M. Thomsen, L. Bodenhagen, and N. Krüger. Statistical identification of composed visual features
indicating high-likelihood of grasp success. In Workshop ’Bootstrapping Structural Knowledge from
Sensory-motor Experience. IEEE International Conference on Robotics and Automation (ICRA),
2013.

[65] F. Tracy. The language of childhood. Am. J. Psychol., 6(1):l07–138, 1893.

[66] J. Trueswell and L. Gleitman. Learning to parse and its implications for language acquisition. In
Oxford Handbook of Psycholinguistics, pages 635–656. Oxford, 2007.

[67] Aleš Ude, Andrej Gams, Tamim Asfour, and Jun Morimoto. Task-specific generalization of discrete
and periodic dynamic movement primitives. IEEE Trans. Robot., 26(5):800–815, 2010.

[68] Mirko Wächter, Sebastian Schulz, Tamim Asfour, Eren Aksoy, Florentin Wörgötter, and Rüdiger
Dillmann. Action sequence reproduction based on automatic segmentation and object-action com-
plexes. In 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages
189–195, Atlanta, Georgia, 2013.

[69] F. Wörgötter, A. Agostini, N. Krüger, N. Shylo, and B. Porr. Cognitive agents – A procedural
perspective relying on predictability of object-action complexes (OACs). Robotics and Autonomous
Systems, 57(4):420–432, 2009.

[70] F. Wörgötter, E. E. Aksoy, N. Krüger, J. Piater, A. Ude, and M. Tamosiunaite. A simple ontology
of manipulations: Towards representations for manipulation actions in robotics. IEEE Transactions
on Autonomous Mental Development (TAMD), 5(2):117–134, 2013.

[71] Hanchen Xiong, Sandor Szedmak, and Justus Piater. Homogeneity Analysis for Object-Action
Relation Reasoning in Kitchen Scenarios. In 2nd Workshop on Machine Learning for Interactive
Systems, pages 37–44. ACM, 8 2013. Workshop at IJCAI.

[72] Yezhou Yang, Cornelia Fermüller, and Yiannis Aloimonos. Detection of manipulation action conse-
quences (mac). In International Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2563–2570, 2013.

32

Attached Articles

[ATV+13] E. E. Aksoy, M. Tamosiunaite, R. Vuga, A. Ude, C. Geib, M. Steedman, and F. Wörgötter.
Structural bootstrapping at the sensorimotor level for the fast acquisition of action knowledge
for cognitive robots. In IEEE International Conference on Development and Learning and
Epigenetic Robotics (ICDL), Osaka, Japan, August 2013.

[DSEA14] M. Do, J. Schill, J. Ernesti, and T. Asfour. Learning how to wipe: A case study of structural
bootstrapping from sensorimotor experience. In IEEE International Conference on Robotics
and Automation (ICRA), accepted, 2014.

[SP14] Sandor Szedmak and Justus Piater. An active learning based sampling design for structural
bootstrapping. Technical report, University of Innsbruck, 2014.

[Ugu14] Emre Ugur. Bootstrapping multi-object affordance learning using learned single-affordance
features. Technical report, University of Innsbruck, 2014.

[WGT+14] Florentin Wörgẗter, Chris Geib, Minija Tamosiunaite, Eren Erdal Aksoy, Justus Piater,
Hanchen Xiong, Ales Ude, Bojan Nemec, Dirk Kraft, Norbert Krüger, Mirko Wächter, and
Tamim Asfour. Structural bootstrapping – a novel concept for the fast acquisition of action-
knowledge. Transaction of Autonomous Mental Development, 2014. Submitted.

[XSP13] Hanchen Xiong, Sandor Szedmak, and Justus Piater. Homogeneity Analysis for Object-
Action Relation Reasoning in Kitchen Scenarios. In 2nd Workshop on Machine Learning for
Interactive Systems, pages 37–44. ACM, 8 2013. Workshop at IJCAI.

33

Structural bootstrapping at the sensorimotor level for the fast
acquisition of action knowledge for cognitive robots

E. E. Aksoy1, M. Tamosiunaite1, R. Vuga2, A. Ude2, C. Geib3, M. Steedman3, and F. Wörgötter1

Abstract—Autonomous robots are faced with the problem of
encoding complex actions (e.g. complete manipulations) in a
generic and generalizable way. Recently we had introduced the
Semantic Event Chains (SECs) as a new representation which
can be directly computed from a stream of 3D images and is
based on changes in the relationships between objects involved
in a manipulation. Here we show that the SEC framework
can be extended (called “extended SEC”) with action-related
information and used to achieve and encode two important
cognitive properties relevant for advanced autonomous robots:
The extended SEC enables us to determine whether an action
representation (1) needs to be newly created and stored in its
entirety in the robot’s memory or (2) whether one of the already
known and memorized action representations just needs to be
refined. In human cognition these two processes (1 and 2) are
known as accommodation and assimilation. Thus, here we show
that the extended SEC representation can be used to realize
these processes originally defined by Piaget for the first time in
a robotic application. This is of fundamental importance for any
cognitive agent as it allows categorizing observed actions in new
versus known ones, storing only the relevant aspects.

I. INTRODUCTION

A central issue for the development of autonomous robots
is how to quickly acquire new concepts for planning and
acting, for example learning a relatively complex manipu-
lation sequence like cutting a cucumber. Association-based
or reinforcement learning methods are usually too slow to
achieve this in an efficient way. They are therefore most often
used in combination with supervised learning methods. Espe-
cially the Learning from Demonstration (LfD) paradigm seems
promising for cognitive learning ([1], [2], [3], [4], [5]) because
we (humans) employ it very successfully. The problem that
remains in all these approaches is how to represent complex
actions or chains of actions in a generic and generalizable
way allowing to infer the “meaning” (semantics) of an action
irrespective of its individual instantiation.

In our earlier studies we introduced the “Semantic Event
Chain” (SEC) as a possible descriptor for manipulation actions
[6], [7], [8]. The SEC framework analyzes the sequence of
changes of the relations between the objects that are being

The research leading to these results has received funding from the
European Communitys Seventh Framework Programme FP7/2007-2013 (Spe-
cific Programme Cooperation, Theme 3, Information and Communication
Technologies) under grant agreement no. 270273, Xperience.

1Inst. Physics-3 & BCCN, University of Göttingen, Friedrich-Hund
Platz 1, D-37077, Germany [eaksoye,minija,worgott] at
physik3.gwdg.de

2Jožef Stefan Institute, Department of Automatics, Biocybernetics and
Robotics, Jamova 39, Ljubljana, Slovenia [rok.vuga,ales.ude]
at ijs.si

3School of Informatics, University of Edinburgh, 10 Crichton Street,
Edinburgh, Scotland [cgeib,steedman] at inf.ed.ac.uk

Fig. 1: Schematic representation of the acquisition of action
information by observation using SECs and Action descriptors
(left) as well as execution (right).

manipulated by a human or a robot. Consequently, SECs are
invariant to the particular objects used, the precise object poses
observed, the actual trajectories followed, or the resulting in-
teraction forces between objects. All these aspects are allowed
to change and still the same SEC is observed and captures
the “essence of the action” as demonstrated in several action
classification tests performed by us [6], [7], [8].

The goal of this paper is to extend the SECs with action
related information (action descriptors) and to use the obtained
structure for the assimilation of novel information into the
existing schemata or for the creation of novel schemata
(accommodation) in a Piagetian sense [9]. The first happens
when an agent finds that a newly observed action is compatible
with an already memorized SEC, but there are some elements
present in the new action which are truly novel. These can
then be stored (assimilated) together with the known ones
into the existing schema. The second happens when the agent
realizes that the new action does not compare to any of its
known schemata and requires a novel schema to be created
(accommodation). This way agent’s cumulative memory of
actions can be developed. The main contribution of this paper
is therefore the enrichment process of event chains to further
use memory in a more efficient way. With respect to our
previous approaches ([6], [7], [8]), enriched SECs also lead
to extraction and comparison of action descriptors such as
trajectory segments, pose, and object information.

The whole process of action representation using SECs and
action descriptors is summarized in Fig. 1. In this paper we
are concerned only with the observation phase (left side). The

Fig. 2: Real action scenarios. (a), (c), (e) Sample original key frames, (b), (d), (f) corresponding segments and graphs for the
following actions: Cutting, Chopping, and Stirring.

execution stage (right side) is described in [10] which shows
the possibility of imitating actions with robots by directly
using the here introduced representations.

The paper is organized as follows. We start with the de-
scription of the extended SEC representation and then provide
an example for assimilation as well as accommodation using
this framework. We call the developed algorithm Structural
Bootstrapping. In the discussion section we embed these
results into the state of the art and provide also a comparison
to child language development, from where the concept of
Bootstrapping originates.

II. DATA AND DATA REPRESENTATIONS

A. Data and Pre-processing

Data structures and algorithms we developed are generic
and do not depend on the actual input data. Nonetheless, it is
best to first describe some example experiments, which should
make it is easier to understand all components of our repre-
sentation. We have investigated three different manipulation
actions: Cutting, Chopping, and Stirring. In the Cutting action,

a hand is cutting a cucumber by moving a knife back and
forth. In the Chopping action, a cleaver follows a straight
trajectory to cut a carrot. The Stirring action represents a
scenario in which a spoon is used to stir milk in a bucket. We
recorded these three manipulation sequences with Microsoft
Kinect. The developed system first pre-processes all movie
frames by a real-time image segmentation procedure ([11],
[12]) to uniquely identify and track objects (including hands)
in the observed actions. Each segmented image is represented
by a graph: nodes represent segment centers and edges indicate
whether two objects touch each other or not (in 3D). Fig. 2 (a-
f) depict sample original images with extracted segments
(regions) and graphs for each scenario.

While recording each action sequence, the trajectories of
the hand and manipulated objects as well as their poses are
measured by the 3D motion capture system Optotrak. Fig. 5
illustrates the measured trajectories for the knife and cleaver as
used in the Cutting and Chopping scenario. These trajectories
were measured by attaching a set of 3 active markers to each
of the objects involved in the action.

1) Semantic Event Chain E: By using an exact graph
matching technique the framework discretizes the entire graph
sequence into decisive main graphs. A new main graph is
identified whenever a new node or edge is formed or an
existing edge or node is deleted. Thus, each main graph
represents a “key frame” in the manipulation sequence. All
extracted main graphs form the core skeleton of the SEC E ,
which is a matrix where rows (index i) are possible pairwise
object relations (e. g. between the hand and knife or the knife
and cucumber) and columns (index j) describe the scene
configuration at time j when a new main graph has occurred.
Fig. 3 (a) indicates the SEC with sample main graphs derived
from the Cutting action shown in Fig. 2 (a).

Let E be a semantic event chain with size n×m. Then it
can be written as:

E =

R(oa1 , ob1)
R(oa2 , ob2)

...
R(oan

, obn)

 =

r1,1 r1,2 · · · r1,m
r2,1 r2,2 · · · r2,m

...
...

. . .
...

rn,1 rn,2 · · · rn,m

 , (1)

where ri,j represents a spatial relation R between an object
pair oai , obi at time j. Thus all pairs of objects need to be
considered once, where rows that do not contain any changes
in object-object relations are deleted. The maximum total
number of rows n is defined as n = λ(λ − 1)/2, where λ
is the total number of segments. However, the total number of
columns m depends on the action and can vary.

Relations are given by:

ri,j ∈ {not touching (N), touching (T), absence (A)}, (2)

where N means that there is no edge between two segments,
i.e. graph nodes corresponding to two spatially separated
objects, T represents objects that touch each other, and absence
of an object yields A.

2) Action Encoder Matrix A: A central advantage of our
framework is that we can extract temporal anchor points from
a SEC. These points tell us when to “pay attention to the
action”, because action-relevant details occur at or near the
transitions between the relations recorded in the SEC. These
transitions are encoded by Ti,j , defined as:

Ti,j =

{
0 if ri,j = ri,j−1, j > 1
[T .{d1, d2, . . . , dk}]i,j else (3)

The variables Ti,j correspond to the respective transition and
its k action descriptors d (described later). One could think of
each T as a derivative-like “change-encoder”, which is non-
zero whenever there is a change in the scene graph (“some-
thing has happened with any of the objects”). For improved
readability transitions are given in plain-text (e.g. NT, AT, AN,
etc.) using the corresponding pairs of relations r from the
event chain to encode this. For example, entries (r4,4, r4,5)
and (r4,7, r4,8) represent transitions from N to T and from
T to N as depicted in shaded boxes in Fig. 3 (a). Hence in
these cases we would write specifically T4,5 = [NT]4,5 and
T4,8 = [TN]4,8. For these (and all others where ri,j 6= ri,j−1)
we have Ti,j 6= 0. Descriptors d need to be computed next.

Note that for the first column (j = 1) there are no transitions
and we write Ti,1 = Xi,∀i, where descriptors di,1 define the
initial state of the corresponding objects before the action
progresses. Fig. 3 (b) depicts the corresponding transitions
derived from the SEC given in Fig. 3 (a). In the following we
will abbreviate T .{d1, d2, . . . , dk} with T .d where possible.

The resulting structure will, thus, be a matrix describing the
action A:

A =

X1 [T .d]1,2 · · · [T .d]1,m
X2 [T .d]2,2 · · · [T .d]2,m
...

...
. . .

...
Xn [T .d]n,2 · · · [T .d]n,m

 . (4)

Each descriptor d contains information about the objects
involved, their relative poses at time j of the event, as well as
their trajectories until time j and the forces involved. In our
implementation the variable k from Eq. (3) is set to 4, but this
can be changed if more action-relevant attributes are needed.
We define the descriptor set as:

• d1i,j = {oai
, obi}i is a set containing two object identifiers

of those objects that are involved in the given event.
Note that by definition of the event chain there are
always exactly two objects for each event. Objects do
not change along the rows of an event chain, thus index
j is irrelevant.

• d2i,j = {p}i,j = {x, y, z, α, β, γ}i,j is a set containing
relative pose information between two object identifiers.
The x, y, z and α, β, γ values hold corresponding
translation and rotation values, respectively.

• d3i,j = {t}i,j = {s,g, τ,w1,...,6}i,j , s, g ∈ R6, is

Fig. 3: The SEC (E) and transition matrix extracted from the
Cutting action given in Fig. 2 (a). (a) SEC with corresponding
sample main graphs and segments. (b) Transition matrix show-
ing the respective relational transitions between object pairs.
First column defines the initial relations. Shaded boxes show
two sample transitions: T4,5 = [NT]4,5 and T4,8 = [TN]4,8.

a set of parameters containing trajectory information
in the Cartesian task space. In this study we use the
modified Dynamic Movement Primitives (DMPs, [13])
to encode movement trajectories because they have faster
convergence at the end points compared to the standard
DMPs and allow smooth joining of movement sequences.
Variables s and g denote start and goal (end) points of the
DMP, respectively, and τ is the time constant modulating
the speed of movement. Vectors wl, l = 1, . . . , 6, hold
the shape parameters of the DMP given as weights for
about 5-20 Gaussian kernels (see [13] for a description
of the DMP parameterization). DMPs offer the advantage
that they are robust to perturbations, can generalize to
different start- and end-points, and also allow online mod-
ification of the movement by ways of sensory coupling
([14], [15], [13], [16]).

• d4i,j = {f}i,j = {fx, fy, fz, τx, τy, τz}i,j is a 6D vector
containing the Cartesian space force and torque informa-
tion. Force information cannot directly be obtained from
human demonstration and but requires own exploration
(similar to the situation for a human child).

Thus, derived from the event chain E and using additional
information encoded with descriptors d, we have now obtained
a new matrix A . The event chain becomes obsolete by this.
Still, it makes sense to keep both, E and A , to make the next
step, the description of the bootstrapping algorithm, easier.

B. Algorithm: Structural Bootstrapping

Sensorimotor structural bootstrapping consists of four main
steps: (1) Initial memory formation, (2) observation, (3) com-
parison, and (4) generalization via Assimilation or Accommo-
dation (Fig. 4). In the very first step, the framework analyzes
and stores an action in the specific format described above.
Let this first observed and stored action be 〈(E ,A)a1〉 where
in the pseudo-code below we denote memory storage by
brackets 〈 〉. In the second step, a new action is observed
(E ,A)a2. In the third step, comparison, we determine whether
both, stored and newly observed, actions are semantically the
same (for example cutting and chopping have the same SEC,
whereas stirring has a different one). Similarity between two
event chains, Ea1 and Ea2 is measured using the definition of
spatiotemporal similarity ζ(Ea1,Ea2) for SECs given in [6].
The last step, generalization, is divided into two aspects. If the
semantic similarity ζ(Ea1,Ea2) is below a certain threshold
τE , actions are not type-similar and we will store the complete
newly observed action as a new schema (Accommodation,
lower path in Fig. 4). Otherwise, i. e. for type-similar actions,
we perform a comparison of the two descriptor sets [T .d]a1i,j
and [T .d]a2i,j . Below we describe how DMP descriptors d3i,j
can be compared. The comparison of other descriptors (object
identity, relative pose information, and torques at the contact
point) can be done using standard metrics.

The acquisition of new action information is completed by
extending the memory either by storing the new action or by
additionally storing those descriptors that are different com-
pared to those already stored in the memory of a known action.

Fig. 4: Schematic representation of the required steps for
Structural bootstrapping. For explanation see text.

In the latter case, individual entries in matrix A turn into tuples
of descriptor sets [T .(da1, da2)]i,j . This whole procedure can
be repeated as soon as more actions are observed. A concise
description of the entire structural bootstrapping framework is
given in Algorithm 1.

Algorithm 1 Sensorimotor Structural Bootstrapping

Store first action in memory 〈· · · 〉.
〈 〉 = 〈 〉+ (E ,A)a1 with Aa1 defined by [T .d]a1i,j
Observe next action.
(E ,A)a2 with Aa2 defined by [T .d]a2i,j
Semantic Comparison.
ζE = ζ(Ea1,Ea2)
if ζE < τE (small similarity!) then

New Action! Create new memory (Accommodate).
〈(E ,A)a1〉 = 〈(E ,A)a1〉+ (E ,A)a2

else
Type-similar Action! Perform syntactic comparison.
for each event Ti,j 6= 0 do

for all descriptors d indexed by l do
ζdl = ζ([T .dl]a1i,j , [T .d

l]a2i,j)
Compare syntactic similarity.
if ζdl < τdl (small similarity!) then

New element! Assimilate into existing memory.
〈(E ,A)a1〉 with [T .dl]a1i,j = [T .(dl,a1, dl,a2)]a1i,j

end if
end for

end for
end if

Algorithm 1 requires that we can compare actions both at
the semantic event chain level [6] and at the action descriptor
level. In the current implementation we use object identities,
relative poses, and trajectories for comparisons at the action
descriptor level. While comparing identities and relative poses
is rather straightforward, the comparison of trajectories is more
difficult and is described in more detail below.

1) Comparison of movements encoded by DMPs: DMPs
provide a temporary and spatially invariant representation of a
movement. Even if the timing τ and the absolute position of
the movement (s and g) in space change, the parameters wl

stay the same. Thus trajectories with similar velocity profiles
will be fitted by similar shape parameters w = [wT

1 , . . . ,w
T
6]

T

[14]. Similarities between two trajectories encoded by DMPs
can be measured by computing the correlation between their
parameter vectors. The correlation is given by the cosine of
the angle between these two vectors:

wT
1 w2

‖w1‖‖w2‖
, (5)

where w1 and w2 are the parameter vectors of two different
movements. Thus, in the training phase we store a set of
prototype movements for each action primitive. Classification
is then performed by comparing the newly observed trajec-
tory extracted from SECs to the available prototypes. More
advanced methods like support vector machines could be used,
but this was not necessary in our experiments.

The proposed classification method can be applied to com-
pare DMPs describing the movements as long as the shape of
underlying motion trajectories does not change with respect
to the current configuration of the task. If this is not the
case, then we can use statistical generalization with respect
to the parameters of the task [17] to generate new movement
prototypes to which the newly observed trajectories can be
compared.

III. RESULTS

We have applied the structural bootstrapping algorithm
described above to the three example actions (Cutting, Chop-
ping, Stirring). The framework first extracts key events and
generates SECs for all action sequences as explained in
section II-A. Then action-encoder matrices (A) are determined.
Fig. 5 shows an incomplete, while graphical, rendering of the
action-encoder matrices for the Cutting and Chopping actions.

We use Cutting as our reference action (Action cut, see
also “In Memory”, Fig. 4) and commit it to memory 〈 〉 =
〈 〉 + (E ,A)cut. Then we define Chopping and Stirring as
action indices chop and stir, respectively.

Structural bootstrapping continues with a semantic com-
parison of the event chains in the spatiotemporal domain.
Fig. 6 (a) illustrates the similarity values for the different
actions. Similarity measures are basically computed by com-
paring rows and columns of two event chains using simple
sub-string search and counting algorithms. Relational changes
are considered while comparing the rows, whereas for the
columns the temporal order counts. We first search for the
correspondences between rows of two event chains since rows
can be shuffled. The searching process compares and counts
equal entries of one row against the other using a standard sub-
string search which does not rely on dimensions and allows
to compare arbitrarily long manipulation actions. We then
examine the order of columns to get the final similarity result.
Details for similarity calculations are given in [6].

If one compares Cutting with itself, similarity is of course
100%, but we also observe high similarity values (88%)
between Cutting and Chopping. On the other hand, the sim-
ilarity between Cutting and Stirring is only (55%). In our
earlier studies we had measured the discriminability of our

Fig. 6: Semantic comparison. (a) Similarity values between
the Cutting, Chopping, and Stirring actions. (b) Segment
categories showing which segments exhibit the same role in
type-similar actions.

Fig. 5: Action-encoder matrices (A) with extracted descriptors for the Cutting and Chopping actions. Movement is described
in table coordinate system, x and y - table plane coordinates (red and green), z - distance from the table (blue); solid lines
stand for the tool demonstrator’s hand holding, dashed lines for the tip of the cucumber.

similarity measure using identical actions performed somewhat
differently in a noisy environment [6]. From these studies
we know that the discriminative threshold is usually about
τE = 65%. When applying this threshold here we find that
Cutting and Chopping are regarded as similar, whereas Cutting
and Stirring are not. First we observe that this matches to
our lay-man’s expectations. In general, we observe that this
type of classification renders human-compatible semantics of
“same/similar” versus “different” actions. [18] provides a huge
confusion matrix showing the semantic similarities between
different actions (e.g. push, hide, uncover, stir, cut, etc.) based
on the manipulation action ontology. This huge confusion
matrix shows the here presented semantic representation can
distinguish actions to initiate the bootstrapping process.

The bootstrapping algorithm then proceeds differently for
different actions. For Stirring we perform Accommodation
and just commit the complete descriptor set to memory, i. e.
〈(E ,A)cut〉 = 〈(E ,A)cut〉+ (E ,A)stir.

For the type-similar actions Cutting and Chopping we
perform a (syntactic) comparison at the level of the individual
descriptors d. First we consider d1, the objects. We find
several objects (see Fig. 6 (b)). Note that noisy segment groups
observed in some action versions are not categorized as objects
since they can all be ignored after applying a SIFT-based
object recognition algorithm [19] in the segment domain.
Also different trajectories are observed. Fig. 5 shows sample
object and trajectory descriptors computed for the Cutting and
Chopping scenarios. For instance, as indicated by the shaded
boxes, in both actions the same relational transitions (i.e.
events) are observed from N to T and from T to N at index
numbers i = 4, j = 5 and i = 4, j = 8. Here we can perform
Assimilation. Specifically [T .d1]cut4,j = {knife, cucumber}
and [T .d1]chop4,j = {cleaver, carrot}. Assimilation renders:
〈(E ,A)cut〉 with [T .d1]cut4,j = [T .(d1,cut, d1,chop)]cut4,j . Here
we note that the “concept of cutting” [T .dcut]cut is extended
by “aspects of chopping” [T .(dcut, dchop)]cut (denoted by the
general versus the specific indices in this notation).

Furthermore, Fig. 7 shows that relative poses of manipulated
objects are rather weak cues to distinguish the cutting and
chopping actions. The main reason is that the pose of a cutting
tool is usually constrained to be perpendicular and in the
middle of the object to be cut. In this sense, no assimilation is
needed for pose. Note that each sample in Fig. 7 is recorded
when the cutting tool starts to touch the object to be cut.
However, the measured trajectory descriptors [T .d3]4,8, as
indicated with blue boxes in Fig. 5, are highly different in
both actions as a consequence of the nature of cutting and
chopping actions. Fig. 8 shows a correlation matrix between
different instances of these two trajectory samples according
to equation (5). On the other hand, descriptors [T .d3]4,5 in
both actions are quite similar since in both versions the hand
is approaching to vegetables in a similar way. Therefore, only
[T .d3]chop4,8 is added to the memory yielding: 〈(E ,A)cut〉 with
[T .d3]cut4,8 = [T .(d3,cut, d3,chop)]cut4,8 .

Fig. 7: Correlation between relative poses of the manipulated
objects in 15 instances of cutting and 20 instances of chopping
actions. Each instance is recorded when the cutting tool starts
to touch the object to be cut. Red corresponds to the maximum
correlation of 1.0 between the sample pair of poses and blue
corresponds to the correlation of 0.0.

Fig. 8: Correlation between 15 instances of cutting and 20
instances of chopping trajectories according to equation (5).
In red and blue are indicated the maximum (1.0) and minimum
(0.0 or below) correlations between two sample trajectories.

IV. DISCUSSION AND CONCLUSION

In this paper we have presented two complementary ap-
proaches. (1) We have extended the Semantic Event Chain
framework by action descriptors and (2) we have used the new
framework to compare actions at different levels of semantic
depth. This allowed us to subsume cutting and chopping into
the same action category (still named “cut”) allowing to share
most of the cutting- and chopping-action description within
the same memory structure. On the other hand we were also

able to realize that cutting and stirring are more fundamentally
different such that for both different memory representations
have to be stored in their entirety. This distinction arises
from a structural comparison either at the level of the SECs
or “inside” the action descriptors d, which is called here
Structural Bootstrapping. So far this study is based on only
three actions. This is due to the fact that all these experiments
take quite long and require storing various action-information
combining different methods. Our current goal was to show
the principles of accommodation and assimilation for which
three actions suffice, but we are currently in the process of
developing a more complete action-library based on the here
presented encoding principles. Next we will now try to embed
our study in the state of the art to show similarities and
differences to other approaches.

A. State of the Art - Action Classification

Learning from Demonstration (LfD) has been successfully
applied both at the control [1], [2] as well as the symbolic
level [3], [4], [5]. Although various types of actions can be
encoded at the control level, i. e. trajectory-level, this is not
general enough to imitate complicated actions under different
circumstances. On the other hand, at the symbolic level
sequences of predefined abstract action units are used to learn
complex actions, but this might lead to problems for execution
as many parameters are left out in the resulting representa-
tion. Although our approach with SECs is a symbolic-level
representation, SECs are enriched with additional decisive
descriptors (e.g. trajectory, pose, etc.) and do not use any
assumption or prior knowledge in the object or action domain.
Ideas to utilize relations to reach semantics of actions can be
found as early as in 1975. For instance, [20] introduced the
first approach about the directed scene graphs in which each
node identifies one object. Edges hold spatial information (e.g.,
LEFT-OF, IN-FRONT-OF, etc.) between objects. Based on
object movement (trajectory) information events are defined to
represent actions. The main drawback of this approach is that
continuous perception of actions is ignored and is substituted
instead by the idealized hand-made image sequences. This,
however, had not been pursued in the field any longer as
only now powerful enough image processing methods became
available.

Thus, still there are only a few approaches attempting to
reach the semantics of manipulation actions in conjunction
with the manipulated objects [21], [22], [23]. The work
presented in [21] represents an entire manipulation sequence
by an activity graph which holds spatiotemporal object in-
teractions. The difficulty is, however, that complex and large
activity graphs need to be decomposed for further processing.
In the work of [22], segmented hand poses and velocities
are used to classify manipulations. A histogram of gradients
approach with a support vector machine classifier is separately
used to categorize manipulated objects. Factorial conditional
random fields is then used to compute the correlation between
objects and manipulations. [23] introduced visual semantic
graph (inspired from our scene graphs) to recognize action

consequences based on changes in the topological structure
of the manipulated object. Although all those works to a
certain extent improve the classification of manipulations
and/or objects, none of them extracts key events of individual
manipulations.

[24] is one of the first approaches in robotics that uses the
configuration transition between objects to generate a high-
level description of an assembly task from observation. Config-
uration transitions occur when a face-contact relation between
manipulated and stationary environmental objects changes. In
our case, each relational transition is considered as a temporal
anchor point, at which additional action descriptors are stored.
All temporal anchor points are then used in the bootstrapping
algorithm. In this sense, to our best knowledge, our work is
the first attempts to evaluate semantics of manipulations in a
Piagetian sense.

B. State of the Art - Link to Child Language Development

Apart from the aspect of action classification, there is
another important link existing of our work to – in this
case – an entirely different field, much unrelated to robotics.
Structural Bootstrapping, as shown here, is strongly influenced
from processes that dominate child language acquisition.

Children acquire the meaning of new words and construc-
tions in their language using two related mechanisms. The
primary process is semantic bootstrapping where the child as-
sociates “meaning-from-the-outside-world” with components
of sentences. For example, if the word open is consistently
uttered in situations where opening occurs (whatever else
is going on), then the meaning of the word can be proba-
bilistically inferred from the conceptual representation of the
observed event ([25]). Once a certain amount of language has
been acquired, a second process of syntactic bootstrapping
can speed up this process by exploiting structural similarity
between linguistic elements. This can take place even entirely
within language (hence in a purely symbolic way without
influence from the world). The most probably meaning of
a new word can be estimated on the basis of the prior
probability established by previously encountered words of
the same semantic and syntactic type in similar syntactic and
semantic contexts. For example, if a child knows the meaning
of “open the box” and then hears the sentence “open the
closet”, it can infer that a “closet” denotes a thing that can
be opened (rather than a word meaning the same thing as
“open”) without ever having seen one ([25], [26] see [27] for
a comparison between semantic and syntactic bootstrapping).
Essentially this amounts to inference of the syntactic and
semantic type of an unknown word from its grammatical role
and the surrounding context of probabilistically known words.
These two generalization mechanisms are very powerful and
allow young humans to acquire language without explicit
instruction. It is arguable that bootstrapping is what fuels the
explosion in language and conceptual development that occurs
around the third year of child development [28], [26].

There is also a link between action and language. [29]
provided a generative grammar describing the structure of

action. This grammar has both computational applicability and
a biological basis.

C. Conclusion

In the current paper we combined computer vision based
action representation and classification with a bootstrapping
process to accelerate (non-linguistic) acquisition of action
knowledge in a robot. As discussed above, structural boot-
strapping performs a comparison of the meaning (semantics)
of actions at the level of SECs and – if required – then in a
second step a comparison of its individual syntactic elements
(descriptors d). This way it becomes for the first time possible
to perform the rather complex aspects of Accommodation and
Assimilation [9] in a formal and algorithmically sound way
with a robot-compatible action encoding. The resulting cate-
gorization allows for a better understanding of the underlying
actions and their cognitive meanings. In [10] we demonstrate
that the here-introduced action representation can be used to
execute the respective action with a robot. Thus, learning the
representation from observation together with robot execution
does - we think - provide a substantial contribution to the field
of cognitive robotics

REFERENCES

[1] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in Cognitive Sciences, vol. 3, pp. 233–242, 1999.

[2] A. Billard, S. Calinon, and F. Guenter, “Discriminative and adaptive
imitation in uni-manual and bi-manual tasks,” Robot. Auton. Syst.,
vol. 54, pp. 370–384, 2006.

[3] M. Pardowitz, S. Knoop, R. Dillmann, and R. D. Zöllner, “Incremental
Learning of Tasks From User Demonstrations, Past Experiences, and
Vocal Comments,” IEEE Transactions on Systems, Man and Cybernetics
– Part B: Cybernetics, vol. 37, no. 2, pp. 322–332, 2007.

[4] S. Ekvall and D. Kragic, “Robot learning from demonstration: a task-
level planning approach,” International Journal of Advanced Robotic
Systems, vol. 5, no. 3, pp. 223–234, 2008.

[5] R. Cubek and W. Ertel, “Learning and Execution of High-Level Con-
cepts with Conceptual Spaces and PDDL,” in 3rd Workshop on Learning
and Planning, ICAPS (21st International Conference on Automated
Planning and Scheduling), 2011.

[6] E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and F. Wörgötter,
“Learning the semantics of object-action relations by observation,” The
International Journal of Robotics Research, vol. 30, no. 10, pp. 1229–
1249, 2011.

[7] E. E. Aksoy, A. Abramov, F. Wörgötter, and B. Dellen, “Categorizing
object-action relations from semantic scene graphs,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), may 2010, pp.
398–405.

[8] E. E. Aksoy, B. Dellen, M. Tamosiunaite, and F. Wörgötter, “Execution
of a dual-object (pushing) action with semantic event chains,” in
Proceedings of 11th IEEE-RAS International Conference on Humanoid
Robots, 2011, pp. 576–583.

[9] J. Piaget, The Origins of Intelligence in the Child. London, New York:
Routledge, 1953.

[10] M. J. Aein, E. E. Aksoy, M. Tamosiunaite, J. Papon, A. Ude, and
F. Wörgötter, “Toward a library of manipulation actions based on
semantic object-action relations,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, (submitted), 2013.

[11] A. Abramov, K. Pauwels, J. Papon, F. Wörgötter, and B. Dellen, “Real-
time segmentation of stereo videos on a portable system with a mobile
GPU,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 22, no. 9, pp. 1292–1305, 2012.

[12] A. Abramov, E. E. Aksoy, J. Dörr, K. Pauwels, F. Wörgötter, and
B. Dellen, “3d semantic representation of actions from efficient stereo-
image-sequence segmentation on GPUs,” in 5th International Sympo-
sium 3D Data Processing, Visualization and Transmission, 2010, pp.
1–8.

[13] T. Kulvicius, K. J. Ning, M. Tamosiunaite, and F. Wörgötter, “Join-
ing movement sequences: Modified dynamic movement primitives for
robotics applications exemplified on handwriting,” IEEE Transactions
on Robotics, vol. 28, no. 1, pp. 145–157, 2011.

[14] J. A. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in Proc. 2002 IEEE
Int. Conf. Robotics and Automation, 2002, pp. 1398–1403.

[15] S. Schaal, P. Mohajerian, and A. Ijspeert, “Dynamics systems vs. optimal
control–a unifying view,” Prog. Brain Res., vol. 165, pp. 425–445, 2007.

[16] H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal, “Biologically-
inspired dynamical systems for movement generation: automatic real-
time goal adaptation and obstacle avoidance,” in Proc. 2009 IEEE Int.
Conf. Robotics and Automation, 2009, pp. 1534–1539.

[17] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific general-
ization of discrete and periodic dynamic movement primitives,” IEEE
Trans. Robot., vol. 26, no. 5, pp. 800–815, 2010.

[18] F. Wörgötter, E. E. Aksoy, N. Krüger, J. Piater, A. Ude, and M. Tamosiu-
naite, “A simple ontology of manipulation actions based on hand-object
relations,” IEEE Transactions on Autonomous Mental Development, (In
press), 2012.

[19] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
nov 2004.

[20] N. Badler, “Temporal scene analysis: Conceptual descriptions of object
movements,” Ph.D. dissertation, University of Toronto, Canada, 1975.

[21] M. Sridhar, G. A. Cohn, and D. Hogg, “Learning functional object-
categories from a relational spatio-temporal representation,” in Proc.
18th European Conference on Artificial Intelligence, 2008, pp. 606–610.

[22] H. Kjellström, J. Romero, and D. Kragić, “Visual object-action recogni-
tion: Inferring object affordances from human demonstration,” Comput.
Vis. Image Underst., vol. 115, no. 1, pp. 81–90, jan 2011.

[23] Y. Yang, C. Fermuller, and Y. Aloimonos, “Detection of manipulation
action consequences (mac),” in International Conference on Computer
Vision and Pattern Recognition (CVPR), (In press), 2013.

[24] K. Ikeuchi and T. Suehiro, “Toward an assembly plan from observation,
part I: Task recognition with polyhedral objects,” IEEE Trans. Robotics
and Automation, vol. 10, no. 3, pp. 368–385, June 1994.

[25] S. Pinker, Language Learnability and Language Development. Cam-
bridge: Cambridge University Press, 1984.

[26] J. Trueswell and L. Gleitman, “Learning to parse and its implications for
language acquisition,” in Oxford Handbook of Psycholinguistics, Oxford,
2007, pp. 635–656.

[27] G. Chierchia, “Syntactic bootstrapping and the acquisition of noun
meanings: the mass-count issue,” in Heads, Projections and Learnability
Volume 1, B. Lust and J. W. MArgarita Suner, Eds. Hillsdale, New
jersey, 1994, pp. 301–318.

[28] F. Tracy, “The language of childhood,” Am. J. Psychol., vol. 6, no. 1,
pp. l07–138, 1893.

[29] K. Pastra and Y. Aloimonos, “The minimalist grammar of action,”
Philosophical Transactions of the Royal Society B, vol. 367, pp. 103–
117, 2012.

Learn to Wipe: A Case Study of Structural Bootstrapping from
Sensorimotor Experience

Martin Do, Julian Schill, Johannes Ernesti, Tamim Asfour

Abstract— In this paper, we address the question of gen-
erative knowledge construction from sensorimotor experience,
which is acquired by exploration. We show how actions and
their effects on objects, together with perceptual representations
of the objects, are used to build generative models which then
can be used in internal simulation to predict the outcome of
actions. Specifically, the paper presents an experiential cycle
for learning association between object properties (softness and
hight) and action parameters for the wiping task and building
generative models from sensorimotor experience resulting from
wiping experiments. Object and action are linked to the
observed effect to generate training data for learning a non-
parametric continuous model using Support Vector Regression.
In subsequent iterations, this model is grounded and used to
make predictions on the expected effects for novel objects
which can be used to constrain the parameter exploration.
The cycle and skills have been implemented on the humanoid
platform ARMAR-IIIb. Experiments with set of wiping objects
differing in softness and height demonstrate efficient learning
and adaptation behaviour of action of wiping.

I. INTRODUCTION

The efficiency with which humans perform manipulation
tasks in unstructured and dynamic environments is unattained
by robotic systems. The key to this remarkable performance
lies in the human cognitive capabilities which enables the
autonomous acquisition of knowledge by processing complex
sensor information and the application of this knowledge
to rapidly explore unknown scenes, objects, and actions.
Intelligent robots must be able to rapidly create new concepts
and react to unanticipated situations in the light of previously
acquired knowledge by making generative use of experience
utilizing predictive processes. This process is largely driven
by internal models based on prior experience (Inside-out).
Such robots must also be able to help and learn from
others by sharing these generative, experience based theo-
ries through teaching and interaction. During development,
stimulus driven outside-in and internally driven inside-out
processes need to interact with each other at the earliest
possible moment to drive the development of cognitive
capabilities. The development of such cognitive capabilities
has to be embedded in a learning process in order to verify,
extend, and revise this knowledge. Hence, in order to make
a crucial step towards more autonomy, robots have to be
equipped with a similar capabilities.

In [1], the concept of Structural Bootstrapping has been
introduced to address how generative mechanisms which

This work was not supported by any organization
M. Do, J. Schill, T. Asfour are with the Faculty

of Informatics, Institute for Anthropomatics, High Per-
formance Humanoid Technologies, Karlsruhe, Germany
{martin.do,julian.schill,asfour}@kit.edu

rely on prior knowledge and sensorimotor experience can
be implemented in robotic systems and employed to speed
up learning. Structural Bootstrapping – an idea taken from
child language acquisition research - is a method which
provides an explanation of how the language acquisition
process in infants is initiated. Hence, in robotic context,
Structural Bootstrapping can be seen as a method of building
generative models, leveraging existing experience to predict
unexplored action effects and to focus the hypothesis space
for learning novel concepts. This developmental approach
enables rapid generalization and acquisition of new knowl-
edge about objects, actions and their effects from little
additional training data. Entities of the world are represented
in form of Object-Action Complexes (OAC) – affordance-
based object-action associations and can be understood as
semantic sensorimotor categories, which are computable
(learnable) and storable in a robot system (see [2]). OACs
are related to state-actions transitions and incorporate object
as well as action affordances. This allows the specification
of actions based object percepts and vice versa enables the
grounding of object representations based on the execution
and observation of the actions and their effects. Based on
the OAC representation, knowledge structures in the form
of internal models are generated and intrinsically grounded.
The benefit of this knowledge acquisition approach becomes
particularly evident on the sensorimotor level where object
and action embedded in a situational context are closely
intertwined. The experience gained by actively exploring and
interacting with the environment, objects and other agents
and by observing the effect of actions is characterized by the
specific embodiment. Therefore, representations and models
emerging from this experience are better adapted to the
robot’s morphology and more suitable to capture the sen-
sorimotor contingencies than those generated by traditional
disembodied methods. The continuous grounding of internal
models and representations through exploration provides a
suitable basis for prediction and simulation.

In this paper, we provide an example for Structural
Bootstrapping and demonstrate the validity of the approach
on the sensorimotor motor level. Embedded in a learning
cycle we show how generative models describing the relation
between object properties and action parameters can be
learned from experience and how the these models can be
used to make predication using internal simulation. More
specifically, we show in the context of table wiping task
how action parameters can be predicted and adapted based
on object’s softness and size.

II. RELATED WORKS

Several approaches in the literature deals with the problem
of exploration-based learning and generative model construc-
tion. In the following we give an overview on approaches
related to the work presented in this paper. In [3], an
affordance learning framework is introduced which models
dependencies between actions and object features in the form
of Bayesian Network. Using a set of manipulation actions
(grasp tap touch) and based on object features effect of the
performed action such as object motion and tactile informa-
tion could be estimated. In [4], a interactive learning scheme
is introduced which allows the identification of object grasp
affordances. Based on a grasp representation in the form of
a dynamic movement primitive learned from human demon-
stration. Point cloud representation of the object in order to
parameterize the grasp primitive. Effect observation if grasp
successful or not. especially field of grasping. In [5], an
approach is presented for the learning object grasp affordance
through exploration. These affordances are represented by
grasp densities which associated with a specific visual object
model. To refine these affordances to an object of interest, an
initial grasp densities is determined based on the visual fea-
tures (3D edges) which characterize the object appearance.
Through exploration by having the robot applying grasps
encoded within the initial densities and observing whether
a grasp was successful, the object grasp affordances are
grounded and grasp densities are refined. In [6], an approach
is introduced which enables a robot to learn a grasping
behaviour in based on initial reflex-like motor primitives.
The execution of these primitives at different speeds and
the observation of the tactile feedback when touching an
object leads to the generation of further behaviour primitives.
To link the resulting behaviour to different intrinsic and
extrinsic object properties, the primitives are executed and
the observed effects are categorized using the SVM. in [7],
a system is described which allows the learning of manipula-
tion strategies without any prior knowledge. Based on a tray-
tilting action, the robot explores the parameter by performing
an experiment which involves the execution of a sequence
of differently parameterized tilting actions and observing the
their effects on an arbitrary object placed on the tray. The
experimental is used to create graph structure consisting
of states and transition which enables the prediction of a
future state based on the perceived object properties and the
intended action. For the scenario of object-pushing, in [8], a
method is proposed which enables a robot to learn goal-
directed push-locations on multiple objects. Based on a
parameterizable pushing action, In order to push an object to
a designated goal location, stable pushing movements which
move the object along a straight line are desired. Using a the
Support Vector Regression method a model is learned from
explorative pushing which allow the prediction of the effect
(a pushing score which indicates the deviation from a straight
line) of certain pushing action considering the current object
shape and pose.

III. THE LEARNING CYCLE

In order to enable a robotic system to learn and refine
sensorimotor knowledge within a developmental process,
a learning cycle has to be formalized which incorporates
perceptual and motor skills. As suggested in [9], the pre-
sented learning cycle consists of four stages (Fig. 1). For
our work, we define initial stage to be the exploration stage.
Given generalized representations of objects and actions, the
robot explores the scene in order to obtain instantiations
of both, object and action. The resulting action and object
representation A0 and P0 form the basis of an experiment
which is conducted in the subsequent stage to create data
from which concrete experience can be generated. The robot
applies the action A0 and observes its effect E0. In the
third stage, based on the data D = (P0,A0,E0) experience
is created by grounding and adapting the representations. In
the modelling stage, knowledge in the form of an internal
model f which links observed effect to the perceived object
and the performed action in the following form:

E0 = f (P0,A0). (1)

is extracted from this experience. To acquire larger data
which provide a more accurate description of the object-
action relationships embedded in the current experimental
context, within a learning iteration the experiment can be
repeated with different parameters. This way the parameter
space can be efficiently explored. In subsequent iterations
i with i > 0 the grounding is transferred to novel perceived
object representation Pi. Using f a prediction of the expected
effect Êi for Pi and an action Ai can be made. This prediction
can be used to constrain and control the exploration of
the action parameter space within the repeated experiment
and, thus, leads to less, however, more relevant additional
training data which has to be considered for the re-grounding
the representations and revision of the internal models.
Hence, this learning cycle allows the continuous acquisition,
validation, and refinement of internal knowledge in long term
association through exploration and predictive reasoning.

In order to enable a robotic system to learn and refine
sensorimotor knowledge within a developmental process, a
learning cycle has to be formalized which incorporates per-
ceptual and motor skills. As suggested in [9], the presented
learning cycle consists of four stages. For our work, we
define the initial stage to be the exploration stage. Given
generalized representations of objects and actions, the robot
explores the scene in order to obtain instantiations of both,
object and action. The resulting action and object represen-
tation A0 and P0 form the basis of an experiment which is
conducted in the subsequent stage to create data from which
concrete experience can be generated. The robot applies the
action A0 and observes its effect E0 on object, environment,
and on the robot itself. In the third stage, based on the
data M = (P0,A0,E0) experience is created by grounding
and adapting the representations. In the modelling stage,
knowledge in the form of an internal model f : (P,A)→ E
which links the observed effect to the perceived object and
the performed action is extracted from this experience.

Fig. 1: Learning Cycles.

In subsequent iterations i with i > 0 the grounding is
transferred to novel perceived object representation Pi. Using
f as a prediction function, the expected effect Êi for Pi and
the parameters for action Ai can be estimated. This prediction
can be used to constrain and control the exploration of the
action parameter space within the repeated experiment and,
thus, leads to less, however, more relevant additional training
data which has to be considered for the re-grounding the
representations and revision of the internal models. Hence,
this learning cycle allows the continuous acquisition, valida-
tion, and refinement of internal knowledge in a long term
association through exploration and predictive reasoning.

A. Instantiation of the Learning Cycle for Wiping

Based on the learning cycle described in III, a behaviour
is implemented which enables a robot to efficiently learn
wiping movements with different objects. Using skills which
have been implemented on our platform, the learning cycle
has been instantiated as depicted in Fig. 1. To accelerate
the learning process, observations of human wiping demon-
strations trigger the bootstrapping process and provide data
based on which a coarse representation of the wiping action
can be inferred. The wiping action is represented in the
generalized form of a periodic Dynamic Movement Primitive
(see Section ??). In the initial iteration, the robot is focused
on the adaptation of this representation to environmental
circumstances, namely the surface to be wiped. This step
corresponds to the grounding of the action representation.

In subsequent iterations, the robot attempts to establish
the link between a object, action, and effect. For the object
perception, a skill (as described in Section IV-B) is applied
which enables the robot to deform an object and based on
the extent of the deformations allows the determination of
the object’s height and softness. To generate different wiping
movements the amplitude parameter of the primitive can be
adapted. To assess the effect of a wiping movement the
robot visually determines the dirt level (see Section ??)
describing the ratio between the amount of remaining dirt
enclosed by an area to be wiped and the entire wiping area
size. Hence, in these iterations, the action parameter space
is explored for the grounded movement primitive in order
to generate a wiping movement adapted to perceived object.

For each stage, a separate experiment is specified. However,
the goal for both experiments remains the same: wipe until
the dirt level does not change. For a dirt levels di,di−1 ∈ R
determined in iteration i and i−1, the goal can be formalized
as follows:

di−di−1 ≤ dε (2)

where dε denote a threshold at which the dirt level change
can be disregarded.

B. Surface Adaptation

The grounding of the wiping DMP corresponds the adap-
tation of the DMP in order to attain goal-directed wiping
movement. In the context of wiping, one prerequisite is
constant contact of the object and the surface to be wiped.
Therefore, wiping movements can only be adequately evalu-
ated and adapted based on the forces exerted on the robot’s
end effector. Based on a wiping primitive which encodes a
periodic movement pattern pw in a (x,y)-plane parallel to
the surface, we wish to adapt the movement to the shape of
the surface. Following the force profile adaptation method
introduced in [10], a force-feedback control mechanism is
implemented which moves the end effector towards the
surface while executing the wiping pattern. In this work,
we restrict ourselves to the wiping of flat surfaces. Hence,
for a periodic wiping trajectory pw(t) = (xw(t),yw(t)) with
Ts < t < Te and Ts,Te denoting the start and end time of a
period, a movement zw(t) with each discrete time step δ t is
determined according to following equation:

żw(t) = k f (fzw(t)− f0)zw(t) = zO + żw(t)δ t. (3)

Here, zO stands for the initial height from which the wiping
movement is initiated, f0 denotes the desired force with
which the robot should press an object towards the surface,
fzw(t) is the measured force on the end-effector, and k f
describes a force gain factor. A further simplification which
allows which allows a safer execution of the experiment is to
replace fzw with fzw =

√
f 2
x + f 2

y + f 2
z , since it forces to robot

to move upwards when the robots collides with anything
from any direction. As a result, the experiment leads to data
triplet center of the wiping area pO = (xO,yO):

(P,A,E) = (pO,(pw,zw),d) (4)

based on which the action representation is grounded and
extended.

C. Action Parameter Exploration

To attain an optimal wiping behaviour with a specific
object, the wiping action has to be parameterized according
the object properties. This can be accomplished by specifying
the amplitude with which the a wiping action is executed. To
find a suitable parameterization, the action parameter space
is explored within the wiping experiment based on the forces
acting on the robot. Starting from an initial estimate a0, the
amplitude is varied according following rules:

a(t) =

b−a(t−1) , fzw(t)− fO > γ , żw < 0
b+a(t−1) , fzw(t)− fO > γ , żw > 0
b+a(t−1) , fzw(t)− fO <−γ , żw < 0
b−a(t−1) , fzw(t)− fO <−γ , żw > 0
a(t−1) else

(5)

where 0 < b− ≤ 1 and b+ = 2−b− denotes a scalar factors
which decreases respectively increase the amplitude accord-
ing the current movement direction and exerted forces. a(t−
1) represents the amplitude estimate made in the previous
time step. For each iteration i, the overall amplitude factor
ai is calculated by ai =

1
TE−TS

∑
TE
t=TS

. The data which results
from the experiment, can be described as follows: for the
current object wiping:

(P,A,E) = ((s,h),a,d). (6)

This data matrix provides the basis for the inference of an
internal model.

D. Learning of Internal Model

To generate an internal model representing the relation-
ships between perception, action, and effect, computational
methods have to be applied which are suitable to identify
structures from non-linear data of arbitrary dimensionality
without any prior knowledge. In this work, the Support Vec-
tor Regression (SVR), a supervised learning technique which
is described in [11], is applied to approximate such a model,
since it allows to capture complex relationships between
the training data points. Furthermore, a sparse model can
be obtained by applying the Support Vector method which
facilitates the processing of large datasets and enhances the
prediction and simulation using the internal model. Based
on our experimental data collection {(Pn,An,En)}i=1,...,N , a
training dataset M with N input/output pairs is formed as
follows::

M = {(xn,yn)}n=1,...,N , xi = (Pi,Ai), yi = (Ei). (7)

The internal model is described by f : x→ y. Finding a non-
linear mapping appropriate function f solves the learning
problem and leads to desired model enabling the mapping
of an arbitrary input pair (P,A) on expected effect E.
Usually, the search for f is performed by determining an
approximation f̂ minimizing the risk functional:

Remp
[

f̂
]

:=
1
N

N

∑
n=1

d(f̂ (xn),yn) (8)

with d(f (x),y) being a distance function to define the
relation between the model’s output f̂ (x) and the correct
output y.

Using the Support Vector method, the non-linear regres-
sion problem incorporated in Eq. 8 is transformed into linear
problem by introducing a non-linear mapping θ : R→ RNh

which projects the original dataset M into a feature space of
higher dimensionality. Hence, the SVR consists of finding a
hyperplane (w,b) which satisfies:

g(x,w) =
Nh

∑
j=1

w jθ j(x)+b. (9)

To determine a linear model which captures most training
samples within an ε-margin, an ε-loss-insensitive functionis
defined as follows:

Lε(g(x,w),y) =
{

0 if |g(x,w)− y| ≤ ε

|g(x,w)− y|− ε else
(10)

is introduced into the risk functional. Hence, the risk func-
tional to be minimized can be written as follows.

R(C) =C
1
N

N

∑
i=1

Lε(g(x,w),y)+
1
2
‖w‖2 (11)

Eq. 11 can be rewritten as following optimization problem
Our goal is to find a function f whose distance to any given
data point does not exceed ε while being as flat as possible.
This optimization problem can be described in Smola kernel
functions suffice for the approximation of the mapping:

minimize τ(w) =
1
2
‖w‖2 +C∑(ζ +ζ

∗) (12)

subject to yi− (k (w,xi)−b)≤ ε (13)
subject to (k (w,xi)+b− yi)≤ ε (14)

where ζ are slack variables which are introduced to the
problem in order to relax the constraints and to add a soft
margin to the hyperplane and thus to tolerate a small error.
Especially, in the case of nonlinear high dimensional data or
data containing noise this.

IV. IMPLEMENTATION

The implementation of the wiping learning behaviour is
based on skills which already exist on the robot which
allow learning and cognition. In the following, the skills and
eventual modifications which have been made in order to
combine them are briefly described.

A. Wiping Skill

To enable a robot to learn and adapt wiping movements,
a skill has been implemented which creates a generalized
action representation of a wiping movement. In this work,
wiping movements are encoded as periodic Dynamic Move-
ment Primitives (DMP) using a slight extension of the DMP
formulation as suggested in [12] which allows the repre-
sentation of a periodic motion as well as its corresponding

discrete transient movement. In general, a DMP consists of
two parts:{

ṡ(t) = Canonical(t,s),
v̇(t) = Transform(t,v)+Perturbation(s).

(15)
(16)

The perturbation term in (16) is adapted to a demonstrated
trajectory whereas the transformation system allows the
generalization of the learned trajectory to new start and
goal conditions. The canonical system defines the state of
the DMP in time and drives the perturbation to control
the transformation system. The encoding of both, periodic
and transient motion, is accomplished by introducing a two-
dimensional canonical system in the DMP formulation: a
dimension r to describe distance from the periodic pattern
and φ denoting the phase of the periodic pattern. This yields
the state of the DMP s(t) := (φ(t),r(t)) as the solution (φ ,r)
of the following ordinary differential equation:

(17)

{
φ̇ = Ω,

ṙ = η(µα − rα)rβ .

(17a)

(17b)

Here, µ > 0 denotes the radius of the limit cycle and
η ,α,β > 0 are constants. The value of Ω > 0 defines the
angular velocity of φ and has to be chosen according to the
period p of the desired trajectory, i.e. Ω = 2π

p . The value of
φ is linearly increasing whereas r converges monotonously
to µ . Thus, by interpreting (φ ,r) as polar coordinates the
solution of (17) converges towards a circle with radius µ

around the origin on the phase plane. The transformation
system is a critically-damped spring system with one global
point attractor given by{

ż = Ω

(
αz
(
βz(g− v)− z

)
+a · f (φ ,r)

)
,

v̇ = Ωz.
(18)

The constants αz,βz > 0 are chosen according the ratio
αz
βz

= 4
1 in order to ensure critical damping. With f ≡ 0

the system state v converges to the anchor point g ∈ R. By
adapting f corresponding to the demonstrated trajectory the
system oscillates around g in a similar manner as featured
the demonstration. Here, f is defined as

f (φ ,r) =
∑

M
j=1 ψ j(φ ,r)w̃ j +∑

N
i=1 ϕi(φ ,r)wi

∑
M
j=1 ψ j(φ ,r)+∑

N
i=1 ϕi(φ ,r)

, (19)

where W := (w1, . . . ,wN , w̃1, . . . , w̃M)T ∈ RN+M contains the
weights which can be adjusted to fit the desired trajectory.
The basis functions ψ j vanish onto the limit cycle of (17)
and hence encode the the transient part of the motion. In
contrast to that, the basis functions ϕi are used to encode the
periodic pattern since they vanish outside the limit cycle of
(17). The special choice of ψ j and ϕi guarantees a smooth
transition from the transient to the periodic pattern, cf. [12].

The factor a > 0 is changed on-line during the repro-
duction of the motion to modulate the amplitude1. For the
learning process the value is a = 1.

1Note that this factor is not part of the original formulation in [12].

−150 0 150 300

250
300
350
400
450
500
550

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0 2 4 6 8 10 12

learned z-Trajectory

Fig. 2: A generated displacement trajectory zw.

Since the transient motion can be learned by the chosen
DMP formulation, no ad-hoc procedure is needed to initialize
the periodic wiping motion. Rather than that, the pattern
can be initiated in a well defined way from different initial
configurations.

The learning of a wiping movement is decoupled in two
phases: the learning of the wiping pattern from human obser-
vation and the adaptation of a wiping movement primitive to
the surface to be wiped. In the first phase, motion data rep-
resenting human wiping demonstrations gets segmented to
identify the transient part and the periodic pattern. Then the
weights in (19) are calculated to make the system reproduce
the demonstration. Since a two dimensional trajectory on the
plane surface to be wiped is learned in Cartesian coordinates,
this has to be done for two dimensions separately. This yields
the system (C,τx,τy), where C is an instance of the canonical
system (17) and τx, τy are instances of the transformation
system (18) each of which encoding one coordinate, i.e xw
or yw, of the wiping trajectory. The transformation systems
τx and τy are synchronized by the common canonical system
C.

In the second phase, the adaptation to the surface is
performed. To achieve that the robot repeats the learned
motion by integrating (C,τx,τy). By executing the trajectory
the robot finds for each point (xw(t),yw(t)) of the periodic
pattern a displacement zw(t) that points into the wiped
surface. This displacement zw(t) is chosen according to
the surface adaptation policy introduced in Sec. III-B. The
trajectory zw = (zw(t))t=Ts,...,Te gets extended by a transient
that encodes a smooth transition from z0 to the determined
displacement trajectory of the periodic part. Then, an addi-
tional transformation system τz is trained with the resulting
trajectory zw. Fig. ?? shows an example of a displacement
trajectory zw generated in this way.

Summarizing, we obtain the system (C,τx,τy,τz) encoding
the wiping pattern and a displacement trajectory to keep the
normal force constant.

B. Softness Skill

To check the deformability and softness of an object the
robot uses his ability to control the grasping force of the
pneumatic actuated hand with a model based force position
control [13]. When the object is in the hand and grasped
between the finger tips with a low grasping force, the
distance between the finger tips of the index finger, middle

Fig. 3: Left: Robot view on the scene. Center: Segmented
view of the scene in the beginning of the wiping execution.
Right: Segmented view on a ”clean” table.

finger and thumb is measured using the joint encoders and
the forward kinematics. Then the grasping force is increased
which results in a deformation of the object. After the fingers
have stopped moving, the distance between the finger tips is
measured again and the difference of the distances is used
as a measure for the softness of the object.

C. Effect Checking Clean Table

As mentioned before, the effect of a wiping action is
described by the dirt level d within area O to be wiped.
For the sake of simplicity, it is assumed that dirt features a
specific color. Therefore, to determine the size and position
of O, using the stereo camera setup the robot explores the
table and performs a color segmentation in order to localize
the largest blob. A bounding box Bi around that blob provides
the image coordinates of O. Transformed into the world
coordinate system, one obtains Bw which provide the global
coordinates of O. In order to determine the current dirt level
at any time t during the execution of the wiping experiment,
Bw is transformed back onto image coordinates Bt

i . Hence,
based on Bt

i d can calculated according following equation:

d =
ymax

∑
i=ymin

xmax

∑
j=xmin

k(i, j)
(xmax− xmin)(ymax− ymin)

. (20)

Since the hand might occlude a considerable area of the
surface, a reliable assessment of the dirt level cannot be
performed at guaranteed at any time during the execution
of a wiping movement. Hence, to control the experiment,
the current dirt level at tc is set to d(tc) := dmax,i which is
defined as follows:

dmax,i = max{di(t)}Tsi<t<tc (21)

with i denoting the index of the current period. The exper-
iment is finished when following conditions are fulfilled as
described by

V. EXPERIMENTS

As depicted in Fig. 4, the implemented learning behaviour
has been evaluated on our humanoid platform ARMAR-
IIIb (see in[]). The learning of the wiping primitive in the
initial iteration is described in. In subsequent iterations, to
facilitate the environmental perception, the color of the dirt
(pink sand) has been specified. Based on this information,
the robot initializes each learning iteration by localizing the
dirty area O. The corresponding bounding box Bi is used to
specify the target configuration of the DMP. In the following

Fig. 4: The humanoid platform ARMAR-IIIb wiping the
table with a sponge.

step, the robot determines the object softness and height by
grasping the the object of interest at the bottom and top
side of the object. The object exploration process is assisted
by human operator since for wiping the object has to be
reoriented in the robot’s hand, so that the object is grasped
from the side enabling the bottom to touch the table. Given
the internal models, predictions are made for the amplitude
and th expected effect. Subsequently, the robot performs a
wiping movement with a and compares the observed effect
with the expected effect. If the observations does not coincide
with the expectation, a parameter exploration procedures as
described in Sec amplitude is initiated in order to create
further data for the grounding of the internal models. For
now, the grounding of an internal model is done by updating
the data set and retraining the entire model. We are aware that
the learning cycle has to incorporate an incremental learning
algorithm in order to be effective for the longer term and
with an increasing amount of data.

Therefore, in this section, results of preliminary experi-
ments are presented showing the effectivity of the experience
learning cycle for the implementation of a cognitive learning
behaviour for robots, in particular, in the context of wiping.
The wiping experiments have been conducted on set of
twelve objects which includes instances designed for wiping
(sponges, towel, toilet paper) and other household items
(box, bottle, ball, can) that are less suitable. We restrict
ourselves on objects whose height and weight are within are
within a predefined range in order to prevent damage to the
robot. Based on experimental data originating from wiping
experiments with this object set, internal models f1(P) = A
and f2(P,A) = E are generated using the support vector
regression method. In this work, we used the libsvm library
introduced in [14] for the training. The relevant parameters
for the training of f1 have be determined to be C = 50 and
gamma = 0.5 whereas f2 has been trained with C = 10 and
gamma = 0.33. The data and predictions of the amplitudes

0

10

20

30

40

50

0 5000 10000 15000 20000 25000 30000

execution phase
adaptation phase

learning phase

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600

Dirt level in learning phase
Dirt level in adaptation phase
Dirt level in execution phase

Fig. 5: Left: Trajectories of forces exerted on the endeffector in various phases of the wiping learning cycle. Right:The dirt
level evolution in various phases of the wiping learning cycle.

and the expected dirt levels are listed in Table I. It is
interesting to see that for soft objects the amplitude could be
reliably re-estimated. The main reason for the variation of the
amplitudes for harder objects lies in the increased sensitivity
towards forces exerted on the object respectively the end-
effector. A slight difference of the object pose in hand can
produce very different results. Regarding the prediction of
the expected dirt level, good estimations could be made for
cubic objects. For spherical and cylindric objects, less useful
predictions have been inferred.

Given a percept of a specific object, the corresponding
amplitude estimate can be used to considerably reduce the
adaptation effort of a wiping movement. The plots depicted
in Fig. 5 indicate that with increasing knowledge leading
to more accurate estimations of the action parameter the
execution of an action converges faster towards the desired
behaviour. With regard to the forces exerted on the end-
effector, a force trajectory is desired which oscillates around
the predefined force threshold of F0 = 25 whereas regarding
the dirt level we wish to minimize the dirt level as fast as
possible. The learning phase denotes the initial phase where
the movement primitive is adapted to the environment. In
the adaptation phase, based on a default value of a = 1 the
amplitude is varied in order to attain the desired effect. In the
execution phase, the task is performed using the estimated
amplitude parameter and without any adaptation.

VI. CONCLUSION

An approach for the implementation of a cognitive learn-
ing behaviour enabling robots to create individual knowledge
structures based on experience gained through physical ex-
ploration, interaction, and observation has been proposed.
The behaviour manifests in the form a learning cycle which
incorporates perceptual and motor skills in order to con-
tinuously acquire data based on which internal models are
generated and grounded. For the scenario of table-wiping, we
have showed that with these internal models further wiping
primitives can be efficiently learned and adapted to different
task and object-specific constraints.

Object h s â a d̂ d
sponge (s) 79 0.0343 1.0 1.0 0.162 0.117
sponge (m) 91 0.0384 0.957 0.948 0.129 0.132
sponge (l) 102 0.0358 1.13 1.139 0.139 0.09
styrofoam cube (s) 87 0.00474 0.701 0.696 0.270 0.258
styrofoam cube (l) 91 0.00774 1.0 1.0 0.13 0.177
rolled towel 89 0.0213 1.215 1.057 0.229 0.142
styrofoam ball 100 0.00639 1.497 1.496 0.384 0.422
cardboard box 91 0.0171 1.072 1.072 0.240 0.178
plastic bottle 87 0.0263 1.453 1.453 0.310 0.568
metal can 86 0.00843 1.04 1.366 0.352 0.529
toilet paper 101 0.0232 0.887 0.887 0.162 0.128
foam 91 0.041 0.999 1.0 0.13 0.177

TABLE I: Object properties and the corresponding action and effect parameter. h
denotes the object height in mm and s the softness of an object. â and a represent the
estimated and the actual amplitude of an adapted wiping movement. d̂ and d stand for
the expected and actual dirt level which indicates the effect of wiping.

However, we have also experienced cases in which the
estimation of action parameters and the prediction of the
expected effect failed. This is mainly due to the simple object
representation which merely relies on the object softness and
height. As indicated in our results, for deformable objects,
these features might suffice in order to determine the affor-
dance in the context of wiping. To be able to determine the
affordances for a variety of objects further object properties
have to be considered such as the geometry, weight, and
surface character. Therefore, in the future we will focus on
the integration of an enriched object representation which
allows the estimation of further action parameters such as dif-
ferent hand orientations or wiping patterns. Furthermore, we
will conduct extensive experiments with numerous objects
with the goal of enabling a robot to extend the knowledge
structures.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
under grant agreement no. 270273 (Xperience).

REFERENCES

[1] “Xperience Project,” Website, available online at http://www.
xperience.org.

[2] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter,
A. Ude, T. Asfour, D. Kraft, D. Omrčen, A. Agostini, and R. Dillmann,
“Object-action complexes: Grounded abstractions of sensorimotor
processes,” Robotics and Autonomous Systems, vol. 59, pp. 740–757,
2011.

[3] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learn-
ing object affordances: From sensory motor coordination to imitation,”
Transactions on Robotics, vol. 24, no. 1, pp. 15–26, February 2007.

[4] O. Kroemer, E. Ugur, E. Oztop, and J. Peters, “A kernel-based ap-
proach to direct action perception,” in IEEE International Conference
on Robotics and Automation (ICRA), St. Paul, USA, May 2012, pp.
2605–2610.

[5] R. Detry, D. Kraft, O. Kroemer, L. Bodenhagen, J. Peters, N. Krüger,
and J. Piater, “Affordance prediction via learned object attributes,”
Journal of Behavioral Robotics, vol. 2, no. 1, pp. 1–17, March 2011.

[6] E. Ugur, E. Sahin, and E. Oztop, “Self-discovery of motor primitives
and learning grasp affordances,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), Vilamoura, Portugal,
October 2012, pp. 3260–3267.

[7] A. D. Christiansen, M. T. Mason, and T. M. Mitchell, “Learning
Reliable Manipulation Strategies without Initial Physical Models,”
Robotics and Autonomous Systems, vol. 8, no. 1–2, pp. 7–18, Novem-
ber 1991.

[8] T. Hermans, F. Li, J. M. Rehg, and A. Bobick, “Learning stable push-
ing locations,” in IEEE International Conference on Developmental
Learning and Epigenetic Robotics (ICDL-EPIROB), Osaka, Japan,
August 2013.

[9] D. Kolb, Experiential learning: experience as the source of learning
and development. Englewood Cliffs, NJ: Prentice Hall, 1984.

[10] A. Gams, M. Do, A. Ude, T. Asfour, and R. Dillmann, “On-Line
Periodic Movement and Force-Profile Learning for Adaptation to
New Surfaces,” in IEEE/RAS International Conference on Humanoid
Robots (Humanoids), Nashville, USA, December 2010.

[11] A. Smola, “Support Vector Regression,” International Journal of
Robotics Research, vol. 30, pp. 1229–1249, September 2011.

[12] J. Ernesti, L. Righetti, M. Do, T. Asfour, and S. Schaal, “Encoding
of periodic and their transient motions by a single dynamic move-
ment primitive,” in IEEE/RAS International Conference on Humanoid
Robots (Humanoids), Osaka, Japan, December 2012, pp. 57–64.

[13] A. Bierbaum, J. Schill, T. Asfour, and R. Dillmann, “Force Position
Control for a Pneumatic Anthropomorphic Hand,” in IEEE/RAS Inter-
national Conference on Humanoid Robots (Humanoids), Paris, France,
2009.

[14] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011, software available at http://www.csie.
ntu.edu.tw/∼cjlin/libsvm.

An active learning based sampling design for

structural bootstrapping

Sandor Szedmak
IIS, University of Innsbruck
sandor.szedmak@uibk.ac.at

Justus Piater
IIS, University of Innsbruck
justus.piater@uibk.ac.at

January 15, 2014

Abstract

Collecting a sufficiently representative sample for robot learning in
a complex environment is a hard and open problem. Since gathering
proper, reliable data about objects, effects of an action, or action series
is very expensive, therefore that kind of data collection needs to be re-
duced to the minimum, but in the same time the collected data should
be representative to guarantee the adequate decisions. In this paper
that challenging problem is addressed via an active learning based sam-
pling design. First an initial training set is built up on the available
knowledge given by the geometry of the domain. Then via predicting
the unknown cases by the maximum margin based multi-valued re-
gression learning(MMMVR) framework the corresponding confidence
measure is used to select the most informative cases to extend iter-
atively the initial training set. At the end the effectiveness of the
proposed learning framework is demonstrated by comparing it to a
random and to a fully informed, expert advice based, theoretically
optimal approaches.

1 Introduction

One of the most challenging task in statistics and in machine learning is to
collect a sufficiently representative sample of several variables with strong
interdependence. This problem is even more exposed in those cases where a
measurement providing a sample item has high cost, for example gathering
information on affordances realized in a real robot environment. It is not
only expensive but could be very time consuming as well.

1

To illuminate the real extent of the problem we provide a seemingly sim-
ple example. Let us assume that we are given a set of objects, {o1, . . . , onO}, nO =
100 a collection of tools, utensils, foods of a kitchen, different type of spoons,
bowls, pans, vegetables etc. We are going to test the potential interactions
between these objects, e.g. cut a carrot with a knife, by trying a set of
different actions, {a1, . . . , anA}, nA = 10, e.g. cutting, rolling, pushing.

Suppose that the robot has prior knowledge on the shapes of the ob-
jects, i.e. it can recognized them, but their functions are unknown, i.e. the
knife is a proper tool to cut. Therefore we might need to check all possible
interactions between all pairs of the objects and actions. This can lead to
100000 experiments not assuming any repetition. To carry out that series of
experiments is obviously infeasible on a real robot. One might try to apply
any robot simulator to reduce that huge number, but a faithful realistic sim-
ulation of the potential physical interactions between those objects requires
sophisticated modules, e.g. modeling the solidness of an object, which could
be as expensive and time consuming as the real robot experiments.

We can approach the interaction learning problem from a different point
of view by exploiting the results of those experiments which we executed
earlier. If a knife was suitable to cut an object it might cut other objects as
well. First we give a rather informal description of the task we need to solve
and in the sequel we move towards a formal approach. The inputs of the
experiments can be given by a tuple (action = ai, tool = tj , target object =
ok). There exists a function F expressing the result of the experiment. For
the sake of simplicity F is chosen as a partially defined Boolean valued
function saying the action ai by applying the tool tj on ok was successful,
True, or not, False, and if the outcome of the experiment is unknown
then F gives ?. If ai = ”cut”, tj = ”knife” and ok = ”carrot” and the
experiment was successful then we might claim that on the set of tuples
(ai = ”cut”, tj = ”knife”, ok = ?), where ? could be any available object,
the outcome function F might yield the True value with sufficiently high
probability.

To describe the connection between the known experiment (ai = ”cut”, tj =
”knife”, ok = ”carrot”) and an unknown one, (ai = ”cut”, tj = ”knife”, ok =
?), a multi-layered graph G can be defined. Let all possible tuples form the
set of vertexes V. The edges of G are sorted into three layers (L1,L2,L3)
corresponding to the elements of the tuples, namely the first layer is built on
the first elements, actions, and the other layers are similarly created. In one
layer two tuples is connected if the corresponding element of both tuples are
the same. Furthermore to each vertex the outcome function F assigns the
values True, False, ?. Now the outcome of an unknown experiment given
by a tuple might be predicted by those tuples which are connected to that
and their outcome are exactly known, namely equal to True or False.

This layered graph structure can motivate a sampling strategy which
could be much less expensive than checking all possible tuples in a real robot

2

environment. The strategy can be summarized in the following points:

• Choose those experiments, tuples, from which all other missing ones
can be reached via the corresponding edges.

• If there is no prior knowledge on interactions then the variance of the
prediction can be reduced if the known sample items are chosen as
uniformly as possible, i.e. the sample distribution should follow the
maximum entropy principle. See below the block sampling strategy of
combinatorial design theory.

2 Sampling model

First we formalize the case where trying all tuples on the robot is possible,
which also means all tuples could be predicted.

2.1 The complete model

We are given three sets of entities, namely actions A, tools T and target
objects O. All these entities are represented by labels uniquely identifying
them, thus the sets contain those labels. The set of tools and target objects
might overlap each other, even they might coincide.

To describe an experiment carried out in a real robot environment a set
of tuples of all possible combination is used, formally that set is defined
by E = {(a, t, o)}, a ∈ A, t ∈ T , o ∈ O. Suppose that there is a function
F defined on E which can provide the outcome of an experiment given by
a tuple of E . This function might yield logical values {True, False} or
a real number of [0, 1] qualifying the outcome of the experiment, e.g. the
probability of success. In describing the sampling strategy we use the logical
output as the values of F . The value of this function on one e ∈ E is given
us if the corresponding experiment has been realized. In this sense we can
talk about known or unknown values of F . It is needed to emphasize that
the function F is well defined, but only our knowledge is valid only on the
realized experiments.

Our task can be the selection of a subset S, a sample, of E for which the
values of F are known and we would like to predict the values of F on the
complement E \ S of S. We might call S as training and E \ S as test. To
solve this task we are going to find a function F̂ : E → {False, True}, an
estimation of F . The estimation error, the risk, can be defined by

R̂ =
∑

e∈E \S

(F (e) 6= F̂ (e)). (1)

The objective is to minimize this error. To reduce the cost of finding of
training is another part of the objective, namely we need a training set, S,

3

which is as small as possible. To achieve a satisfactory trade off between the
prediction error and the training cost the following symbolic objective can
be defined

min

∑
e∈E \S(F (e) 6= F̂ (e))

card(E \ S)
+ C

card(S)

card(E)
,

with respect to S, F̂ ,
(2)

where C is the trade off constant balancing the influence of the terms on the
value of the objective. The second term can be interpreted as regularization.
The keyword card denotes the cardinality of the sets. The purpose of the
scaling factors in the denominators are to reduce the effect caused of the
different cardinalities. Here we focus on the second term, the selection of
the set S. The function F̂ is looked for by the learning method described
in the Appendix of [11], and earlier versions of the method for a special
application is detailed in [5] and [4].

To find a sufficiently small training set we can exploit the structure of
E . The method proposed here arises from the sampling theories provided
in Algebraic Statistics, see for example in these books Lectures on Alge-
braic Statistics ([8]) and Algebraic Statistics for Computational Biology([9]).
Within the broad range of Algebraic Statistics the theory of combinatorial
design should be mentioned, see in Handbook of Combinatorial Designs ([6]).
Beside the theoretical foundation of these kind of sampling approaches, so-
phisticated software implementation is available for example in the freely
downloadable open-source collection of mathematical programs of the Sage
Mathematics, [3], in the sub-packages of Combinatorics, Designs and Inci-
dence Structures, see details on www.designtheory.org. The use of algebra
based methods have recently arise in those areas of machine learning and
statistics where the strong interdependence can not be ignored, for example
in deep learning and in other areas, see for example in [13].

The basic idea is to equip the space E with a certain finite geometry
structure G. In this geometry we can define a neighborhood and connections
to a given e ∈ E . If this neighborhood contains some elements of the training
set S then those elements can provide the knowledge to predict the value of
F at e ∈ E .

Example 1. Let e = (cut, knife, carrot). Assume that this experiment has
not been realized yet, but the experiments relating to e = (cut, knife, cucumber),
e = (cut, cleaver, carrot) and e = (chop, knife, carrot) have. The overlaps be-
tween the tuples can glue together the items to allow the available knowledge
to transfer to the case whose outcome is unknown.

We can define the following elements of the finite geometry, G:

Point: The point of this geometry is given by the elements, the tuples
(a, t, o), of E .

4

Line: The lines going through of a point e = (ai, tj , ok) are given by these
three sets

`e=(ai,tj ,ok) =

{(ai, tj , o)} o ∈ O,
{(ai, t, ok)} t ∈ T ,
{(a, tj , ok)} a ∈ A.

(3)

Plane: The planes going through of a point e = (ai, tj , ok) are given by
these three sets

πe=(ai,tj ,ok) =

{(ai, t, o)} t ∈ T , o ∈ O,
{(a, tj , o)} a ∈ A, o ∈ O,
{(a, t, ok)} a ∈ A, t ∈ T .

(4)

We say a line(plane) is common for two points if both points contained
by that line(plane).

We can see these statements are valid in the geometry G:

• To any two distinct points of G there is at most one line containing
them.

• Any two distinct lines meet(intersect) each other at most one point.
If the intersection is empty then we say the lines are parallel.

• Any three distinct points are contained at most one plane.

• Any two distinct planes meet(intersect) each other at most one line.
If the intersection is empty then we say the planes are parallel.

• Any three distinct planes meet(intersect) each other at most one point.

Note that we do not need to define any order on the sets of action,
tools and target object since any permutation of the labels of those entities
preserves the structure of the geometry described above.

Now we can define how the cardinality of the training set S can be
minimized while the predictive capability can be preserved. Here we mention
two basic cases:

Strong connection: Find S such that for every ẽ ∈ E \ S all the lines
going through on ẽ contain at least one element of the training set S.

Weak connection: Find S such that for every ẽ ∈ E \ S all the planes
going through on ẽ contain at least one element of the training set S.

In the strong case a predictable element ẽ share two components with the
training items lying on the common lines, in the weak case only one com-
ponent is common with ẽ. Obviously we can create a mixed model falling
between the weak and the strong model which contains lines and planes as
well.

5

To estimate the cardinality of S let us assume that

card(A) = card(T) = card(O) = n. (5)

The lines going through one point consist of 3n−3 other points, and the
planes going through one point consist of 3n2−3n other points. Therefore if
we would like to cover all test items then we have a lower bound n3/(3n−3) ∼
n2/3 on the cardinality of S in the strong connection case, and similarly we
have n3/(3n2 − 3n2) ∼ n/3 in the weak case. These bounds are relatively
weak since here we assumed no overlaps between the covering lines and
planes.

If all tuples are given then the exact minimum can be computed, but
the real case can fall significantly away from that. An approximation of a
possible real cases is outlined in the next subsection.

2.2 Incomplete model

Combining arbitrary actions, tools and target objects into triplets can pro-
vide cases which might dangerous, or the outcome of the corresponding
experiment turns to be useless, for example cutting a bottle, a glass by a
knife should not be tried at all. It means, in advance the possible experi-
ments have to be qualified with respect to their feasibility. Therefore only
a subset D of E can be the target of the learning procedure. Unfortunately
the distribution of D can be entirely unknown, the elements of that subset
can spread either uniformly or by following a very complex pattern.

To cover the incomplete case we can apply an approximation of the
set covering or vertex covering problems of combinatorial optimization, see
descriptions, details in [1] or [10]. since the set, and similarly vertex, covering
problems are NP-hard, an approximation schema has to be applied. These
kind of approximations are generally fast, but suboptimal.

A simple greedy algorithm can be implemented by considering the cover
realized by those sets which are union of the three lines going through of a
element of D. In the vertex cover framework we need additional structure to
define a graph where all elements of D give the vertexes and there is an edge
between to vertexes if the corresponding tuples can be connected by a line
or a plane in the geometry defined on E . Obviously these two approaches
fundamentally yield the same model.

We have as many covering sets as many points, a one-to-one correspon-
dence between points and sets. Let the set belonging to d ∈ D be denoted
by v(d). The greedy algorithm to derive a set covering can be given as

Step 0 S = D, C = ∅.

Step 1 Choose that set v(d) which covers the largest number of elements
of S,

6

Step 2 S = S \ v, C = C ∪ {d}.

Step 3 Repeat from Step 1 until S = ∅!

[1] contains detailed analysis of this algorithm. We can consider weighted
covering problems making differences between the vertexes, for example by
the confidence of the prediction - see below. In the weighted case the algo-
rithm proposed by Bar-Yehuda and Evan can be a good candidate, see in
[1] as well.

3 Coverage of object interaction table required by
the MMMVR

In the maximum margin based multi-valued regression(MMMVR), - pre-
sented in appendix of [11], and earlier versions for a special application in
[5] and [4], - requires kernelization of the incomplete sparse tables. The
next question arises: what kind of level of sparseness can be allowed to pro-
vide a sufficiently good prediction. To answer this question we present the
following approach.

Let us fix an action, then we have a table whose row labels are the tools
and the column labels are the target objects. This table is only given par-
tially, since the vast majority of the elements are missing, unknown. Since
we are going to apply a kernel learning method on this table, where the inner
products are computed between two rows(tow columns) we need to guar-
antee that the rows(columns) containing elements in the same position, in
the same columns(rows), otherwise the inner product can not be computed.
To be more concrete, assume that the known interaction between tools and
target object are given by a confidence value, a real number expressing the
success of the fixed action. The model can then be formulated as in the
following way. The items of the matrix corresponding the table is given by
M = T ×O, the known items are given by D ⊆ T ×O. In what follows we
assume linear kernel function between the rows, tools, hence an element of
the kernel matrix Kij connecting row i and j has the value

Kij =
∑

(ik)∈D,(jk)∈D

MikMjk, (6)

since it can be computed only on those pairs which are known. However if
D is a very sparse subset of T × O then only the diagonal elements of the
kernel matrix can be computed and no interactions are captured.

we assume a probabilistic model of data acquisition to estimate the min-
imum number of known object pairs needed in the training set to derive a
nontrivial kernel matrix . The non-triviality of the kernel matrix means in

7

this context that the corresponding kernel matrix is not diagonal and con-
tains sufficiently amount of off-diagonal elements capturing the interaction
between rows describing the items.

For sake of simplicity assume that the number of tools and target ob-
jects are the same and equal to n. Furthermore each elements of the matrix
M is known with probability p, and this probability is given uniformly and
independently to each element. Then two rows can contain known elements
in the same fix position with probability p2 which is a consequence of the
independence of the elements. Based on our assumption the number of
elements occurring in the same column in two rows follows binomial distri-
bution with parameters p2, and n. Therefore we have at least one known
elements appearing in the same columns with probability

q = 1− (1− p2)n, (7)

since the binomial distribution might yield 0 common elements with proba-
bility (1− p2)n. Suppose that if there are at least one common elements of
two rows then the inner product is not zero. Now if we expect k non-zero
elements in a row of the kernel matrix, (and by the symmetry of the kernel
matrix in the corresponding column), then the value of q can be estimated
by assuming that the expected number of the non-zero elements is equal to
k, and it is also equal to qn. It is true because each element of the kernel
matrix can be non-zero with probability q, and in the row of kernel matrix
we have n inner products. Therefore we have

k = nq = n
(
1− (1− p2)n

)
⇒ p =

(
1−

(
1− k

n

) 1
n

)0.5 (8)

Based on probability p we can estimate the number of known pairs as
function of expected non-zero elements, k, in a row of the kernel matrix.
The relationship between p and k is displayed in Figure 1 assuming that the
fixed table size is equal to 100. In the next Figure 2 p is shown up again
the changing table size in case of different expected non-zero kernel matrix
items, k in any row.

Figure 1 shows that the minimum number of training items could be
equal to ∼ 142 when the entire table contains 10000 = 1002 elements, thus
a significantly small training set can be used to drive the learning method.

4 Active learning

Based on the previous sections we can build a general learning strategy
which requires a significantly small training set to start the accumulation of
the information about the interaction of actions and objects. After starting
on the initial training set we need to choose how to acquire the next items,

8

Figure 1: The probability of a pair of tool and target object, vertical axes,
needs to be known to achieve the a certain number of non-zero elements of
the kernel matrix in one row(column) of the kernel matrix, horizontal axes,
assuming that the table size is equal to 100

Figure 2: The probability of a pair of tool and target object, vertical axes,
needs to be known to achieve the a certain number k of non-zero elements
of the kernel matrix in one row(column) of the kernel matrix as function of
changing the table size displayed in the horizontal axes.

9

to select the most promising experiment defined on the untried tuples. Here
three alternatives are presented.

Random: The tuples are randomly chosen out of the pool of untested cases.
It can serve as base line to compare methods which exploits the knowl-
edge collected in the earlier phases of the learning.

Expert advice: Assume that there is an expert, supervisor, who can evalu-
ate the prediction on the untested items, and provides the worst cases,
the predictions which was made by high confidence but they were in-
correct. It provides the best, but otherwise a very expensive strategy,
Any feasible strategy needs to lie between the random and the expert
advice based strategies. A very detailed description and analysis of
those kind of learning approaches which are built on expert advice
can be found in [2].

Selection by confidence The prediction is provided on the untried ele-
ments, and those items are selected where the confidence of the out-
come is the lowest. This strategy is a feasible one and its implemen-
tation can have affordable low cost even in very large data sets.

Here we assume that the learner can provide a confidence measure to
each prediction, a real number chosen out of the interval [0, 1], where 0
shows the lowest and 1 the highest confidence.

To demonstrate the performance of these methods we use the data set
described in [14]. The learning approach follows that which is described in
the appendix of [11]. All these methods are implemented by splitting the
data set into two parts, a preselected training set and the remaining part is
used as pool to pick up the new items to incorporate them into the training.
The preselected training is chosen by set covering to minimize its size to the
minimum by following the methods described in Sections 2 and 3

Figure 4 shows the evaluation of the accuracy
Since we applied our method on a finite pool of the possible tuples there-

fore picking up the unknown worse case elements from the test set, that set
contains less and less hardly predictable elements where with high confi-
dence the prediction result can be improved. This is what we can observe
especially in case of the expert advice based learning, where at a certain
point the test consists only of “good” remaining points. The finite pool
setting can be achieved by deciding in advance on the set of possible sample
items we are going to test and predict. This is a generally applied strat-
egy in medical statistic where the statistical design theory is applied, see
for example in [6]. One can illuminate this situation in an application of
the Support Vector Machine(SVM). If we systematically select the support
vectors and errors to incorporate them in the training set then remaining
items can be found mostly above the hyperplanes provided by the SVM,
hence they are well predictable points.

10

5 Future work

The learning approach presented in this paper will be applied on the affor-
dance data base containing action-object interactions collected in real robot
environment, see details in [12]. This data base is being created and will
contains object features, Kinect, 2D images and videos of the scene as well,
thus the high level features of the interactions and the corresponding sen-
sorimotor data can be combined. Another data base where the method will
be applied is the Berkeley 3-D Object Dataset, [7], where the table is con-
structed on the pairs of functional description of the objects and features
extracted from their 2D images and the corresponding Kinect depth images
taken of the same point of view.

Acknowledgement 2. The research leading to these results has received
fund- ing from the European Communitys Seventh Framework Programme
FP7/2007-2013 (Specific Programme Coopera- tion, Theme 3, Information
and Communication Technolo- gies) under grant agreement no. 270273,
Xperience.

References

[1] Korte Bernhard and Vygen Jens. Combinatorial Optimization, Theory
and Algorithms. Springer-Verlag, Berlin, 2000.

11

[2] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning and Games. Cam-
bridge University Press, 2006.

[3] W. Stein et al. Sage Mathematics Software, Versions: 4.7.1 and 5.3.
The Sage Development Team, 2010-12. http://www.sagemath.org.

[4] M.A. Ghazanfar, A. Prugel-Bennett, and S. Szedmak. Kernel mapping
recommender system algorithms. Information Sciences, 2012. accepted.

[5] M.A. Ghazanfar, S. Szedmak, and A. Prugel-Bennett. Incremental ker-
nel mapping algorithms for scalable recommender systems. In IEEE
International Conference on Tools with Artificial Intelligence (ICTAI),
Special Session on Recommender Systems in e-Commerce (RSEC).
2011.

[6] Colbourn C. J. and Dinitz J. H. Handbook of Combinatorial Designs.
Boca Raton, Chapman & Hall, CRC, 2nd edition.

[7] Allison Janoch, Sergey Karayev, Yangqing Jia, Jonathan T. Barron,
Mario Fritz, Kate Saenko, and Trevor Darrell. A category-level 3-d
object dataset: Putting the kinect to work. In ICCV Workshop on
Consumer Depth Cameras for Computer Vision.

[8] Seth Sullivant Mathias Drton, Bernd Sturmfels. Lectures on Algebraic
Statistics, volume Oberwolfach Seminars, Vol 40. Birkhauser, 2009.

[9] L. Pachter and B. Sturmfels. Algebraic Statistics for Computational
Biology. Cambridge University Press, 2005.

[10] A. Schrijver. Combinatorial optimization, polyhedra and efficiency.
Springer, Algorithms and Combinatorics, 24, 2003.

[11] Sandor Szedmak. Learning object-action relations via knowledge prop-
agation. Technical report, University of Innsbruck, 2012. Technical
report.

[12] Emre Ugor. Bootstrapping multi-object affordance learning using
learned single-affordance features. Technical report, University of Inns-
bruck, 2014.

[13] Sumio Watanabe. Algebraic Geometry and Statistical Learning Theory.
Cambridge University Press, 2009.

[14] Hanchen Xiong, Sandor Szedmak, and Justus Piater. Homogeneity
analysis for object-action relation reasoning in kitchen scenarios. In 2nd
Workshop on Machine Learning for Interactive Systems, (Workshop at
IJCAI), page 3744. 2013.

12

Bootstrapping multi-object affordance learning using learned

single-affordance features

Emre Ugur, Sandor Szedmak, and Justus Piater

Intelligent and Interactive Systems, Institute of Computer Science,

University of Innsbruck

Abstract— The aim of this paper is to propose a learning
framework where a developmental robotic system benefits
from structural bootstrapping where structural similarities
are learned and encoded within affordance relations. In this
context, we show that how complex affordance learning can
be bootstrapped through using pre-learned basic-affordances
encoded as additional features. In the first stage, the robot
learns affordances in the form of developing classifiers that
predict effect categories given object features for different dis-
crete actions applicable to single objects. These predictions are
added to robot’s feature set as higher-level affordance features.
In the second stage, the robot learns more complex multi-
object affordances using object and affordance features. We first
applied our idea in an artificial interaction database which in-
clude discrete actions, several manually coded object categories,
and actions effects. Finally, we validated our bootstrapping
approach in a real robot with poke and stack actions. We
showed that complex affordance learning significantly speeds up
with predictors that are bootstrapped with affordancefeatures
compared to predictors that use low-level features such as shape
descriptors.

I. INTRODUCTION

Even in the newborn infant, a basic neuro-muscular in-

frastructure for simple manipulative ‘move hand’ action with

reach and grasp components, is present [1]. Within several

months, the infant transforms his/her initial seemingly uncon-

trolled ‘move hand’ action into a set of action primitives such

as grasping, hitting and dropping for single objects[2]. From

that age, their sensorimotor skills develop to enable them

to achieve progressively more complex tasks. For example

human infants start inserting rods into circular holes in a

box or stack up blocks into towers of two blocks from

13 months[3]. While in 13 months, the infants can insert

circular rodes into circular holes in a plate, by 18 months they

can perceive the correspondance between different shaped

blocks and they start inserting different shaped blocks into

corresponding holes [4]. Studies with infant chimphanzees

also revealed that there is a dramatic increase in explation

of object-object combinations at around 1.5 years of age

while such combinatory actions were at a very low frequency

before that period for several months [5]. Such development

patterns suggest non-gradual development changes in human

infants as well [6]. This data suggests that the infants

first develop basic skills (such as fine grasping and object

rotation) that are precursors of combinatory manipulation

actions. They also probably use the learned action grounded

object properties in further development of complex action

affordances.

Language-learning children of age 3-4 years old are

observed to acquire the meaning of words very quickly

compared to younger ones. Semantic and synactic bootstrap-

ping processes are assumed to play a significant role in

this learning where children use co-occurring components

of the sentences and syntactic/structural similarity between

linguistic components in order to speed up learning new

words and concepts [7]. Although there has been no reported

experiments related to bootstrapping in other domains, it is

plausible to assume that such structural relationships and

similarities play a significant role in speeding up infant’s

sensorimotor learning and generalization.

The aim of this paper is to propose a basic learning

framework where a developmental robotic system benefits

from structural bootstrapping where structural similarities are

learned and encoded within affordance relations. In detail,

our robot learns the affordances of single objects and uses

these affordances as additional features in the next stages of

development where multi-object affordances are discovered.

The use of learned structural similarities in the form of

affordances are expected to bootstrap the learning in the next

stages.

Our approach can be explained by the following intuitive

example: Let us assume that the robot learned rollability

affordances of the objects in the first stage and can predict

the rollability based on object shape properties. In the next

stage of learning multi-object affordances such as stackabil-

ity, with only two sample interactions where balls tumble

over and boxes piled up, the learning system can directly

find a correspondence between stackability and rollability.

Then, given cylindrical objects, the robot can make better

predictions for stackability depending on the roll orientation

(and affordance) of the cylinders.

In the context of robot affordance learning research, multi-

object affordance learning has not been studied extensively

with exceptions of [8] where ‘tools objects’ are interacting

with other objects, and [9] where two-object relational inter-

action models were directly learned. However none of these

studies attempted to bootstrap their multi-object affordance

learning system with previously obtained skills.

Fig. 1. Learning and prediction of action effects using basic-features are shown with solid lines. The learned affordance-features, i.e. predicted effects,
can be further used as input to classifiers which predict multi-object action effects, i.e. in learning multi-object affordances.

II. METHOD

Learning of affordances corresponds to learning the rela-

tions between objects, actions and effects [10], [11]. In this

study, affordances are acquired through learning to predict

what type of effects, i.e. discrete effect categories, can be

generated given discrete robot actions and continuous object

properties. To achieve this, we simply train a classifier for

each action, which takes object features as input and predicts

the effect category.

Here, we distinguish two different sets of object features.

The first set includes hand-coded basic general-purpose

features, computed mostly from visual perception with no

explicit link to robot’s actions. These may include standard

features used in literature related to size, shape and part

properties of the objects. The second set of features are

acquired through interaction and corresponds to the higher-

level learned ones that are computed from basic features.

They encode the dynamics between robot actions and object

response (effect). The first set of features is called basic-

features whereas the second that is learned through interac-

tion is called affordance-features as it includes the relations

between objects, actions and effects.

The straightforward approach to learn effect prediction is

to find a function that takes basic-features and actions as

input:

fbasic(action, basic-features) → effect

whereas we propose to speed up learning of complex effect

prediction using affordance-features that are computed using

the learned basic effect prediction:

fcomplex(action, basic-features, fbasic()) → effect

which in a flat form corresponds to:

fcomplex(action, basic-features, affordance-features)

→ effect

Our approach is summarized in Fig. 1. The features

shown with blue and red solid lines correspond to basic-

features and action predictions based on these features give

rise to affordance-features. The dashed lines correspond to

affordance-features, that are learned in previous stages. The

learning and prediction of complex affordances benefit from

previously learned affordance features as shown in ‘Predict

effect of action k’ predictor. No that action k is considered to

be a complex action as two objects are involved in execution.

Our approach that is summarized in Fig. 1 is limiting in

several aspects. The most severe limitation is on the uni-

directional structure of the prediction and learning. However,

this learning architecture can still be improved significantly.

In its current version, affordance features are univariate

values that correspond to the effect predicted to be generated

by the discrete action. This can be replaced with a structural

model that summarizes the predicted effect distribution given

basic object features for an action with continuous parame-

ters. For example, continuous grasp densities [12] can be

learned and used as affordance-features to learn complex

actions that involve multiple objects.

Complex affordance learning can be realized in different

ways. In this paper, the action possibilities that are provided

by two (or more) objects are considered to be complex.

For instance, the effects created by a stack action (where

the object is grasped and released over another one) is

determined by the properties of both objects. We will use

affordance-features (such as rollability, pushability, etc) and

basic-features to learn and predict stackability affordances,

and show that this learning significantly speeds up with

predictors that are bootstrapped with affordance-features.

III. BOOTSTRAPPING IN SIMULATION

In this section, we report our bootstrapping results

obtained from an artificial database of objects and in-

teractions. For this purpose, we compared basic-features

and affordance-features based affordance classifiers that

are trained to predict effect of stack action. We showed

that learning benefits from bootstrapping through use of

affordance-features.

A. Artificial affordance experiment database

We used an artificial object set with cylinders, boxes,

spheres and triangular prisms in different orientations and

with/without holes. When poked from different directions,

different effects can be generated with these objects. For

example, when poked from side, lying cylinders will roll

away, boxes will be pushed, objects with holes in poke

direction will not be affected as finger would go through

the hole without any interaction, and tall objects will topple

down. The set of manually encoded actions and their effects

are as follows:

• Actions: {side-poke, top-poke, front-poke, stack}
• Poke-effects: {pushed, rolled, toppled, resisted, noth-

ing}
• Stack-effects: {piled-up, inserted-in, covered, tumbled-

over}

The effect of stacking objects on top of each other depends

on their relative size. For example, while ‘inserted-in’ effect

is generated when a small box is stacked on a hollow

cylinder, ‘piled-up’ effect is observed when the box is larger

than the opening on top of the cylinder. Based on these

assumptions, we created a hypothetical set of rules that return

the effect based on object categories and their relative sizes.

Fig. 2 gives these rules where stack, inside, outside and fail

correspond to piled-up, inserted-in, covered and tumbled-

over. d, w, and h correspond to dimensions in different axes;

depth, width and height, respectively.

B. Basic and affordance features

The classifier trained with basic-features uses the follow-

ing features for training (and prediction later):

TSbasic = {(shapeo1 , shapeo2 , dimo1 , dimo2)}

where shape feature includes high-level curvature informa-

tion and direction of the hole if it exists; and dim encodes

the object size in different axes. The classifier trained with

affordance-features uses the following features:

TSaff = {(εo1s-poke, ε
o1

f-poke, ε
o1

t-poke, ε
o2

s-poke, ε
o2

f-poke, ε
o2

t-poke,

dimo1 , dimo2)}

where εo refers to the effects of the corresponding poke

action on the object o. Although εo is manually coded for

each object category, we assume that it can be computed

from shape features and this computation was learned in

previous stages of development.

C. Bootstrapping Results

The performances of the classifiers trained with basic-

features and affordance-features are provided in Fig. 3.

We evaluated the classifiers by systematically changing the

number of categories used in training set. For each number

of categories, we trained 10 classifiers by selecting 5 objects

of random size from each training category. To test these

classifiers, we created test sets with random sized object from

the remanining categories. Each bar corresponds to mean

performance of these 10 classifiers. As shown, the prediction

performance of both basic-features and affordance-features

based classifiers improve by including more categories into

the training set. We also included the performance of a

category based predictor (which takes category index as

input) to show the baseline. Because the categories used in

training set are never included into test set, category-based

predictors do fail independent of the training set size.

These results show that because affordance-features in-

clude properties related to object dynamics (pushability,

rollability etc), classifiers that use these features have better

performance especially for small training sets. With the

increasing training set size, the effect of using high-level

features is reduced as the system can find the invariance

related to stackability affordance with large dataset. Finding

this invariance with small datasets is easier with affordance-

features as they already include some structural properties of

the agent-object-environment interactions.

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

P
re

d
ic

ti
o

n
 p

e
rf

o
rm

a
n

c
e

 w
it
h

 c
ro

s
s
−

v
a

lid
a

ti
o

n

Number of categories used in training

Category based prediction

Shape features based prediction

Affordance features based prediction

Fig. 3. The effect prediction performance of stack action obtained in
artificial interaction database. The training of classifiers are done with the
indicated number of categories with either shape features or affordance
features. As shown, use of affordance features enable bootstrapping of the
learning system.

IV. BOOTSTRAPPING IN REAL WORLD

A. Robot system

The robot system employs a 7 DOF Kuka Light Weight

Robot (LWR) arm, which is placed on a vertical bar similar

to human arm in Fig. 4. A 7 DOF 3 fingered Schunk

gripper is mounted on the arm to enable manipulation. For

Fig. 2. The set of rules that are used to create the artificial interaction database for stack action. One of the object at the top row is assumed to be
dropped on one of the objects in the first column. The effect is determined based on the object categories and the relative sizes of the objects. d, h and
w refers to depth, height and width of the objects.

environment perception, Kinect sensor placed over the torso

is used. The objects shown in Fig. 4 are used in learning

single-object affordances as well as pairwise-affordances.

Fig. 4. The experiment setup. Kuka LWR robot arm and Schunk gripper are
used for manipulation and Kinect is used to extract object features including
object’s position. The environment includes one and two objects during
single-object and multi-object affordance learning experiments, respectively.

1) Object features: The robot’s workspace consists of sev-

eral objects and a table where the region of interest is defined

as the volume over the table. The objects are segmented

based on depth information. In these experiments an object

is represented by a feature vector composed of only shape

related features which are encoded as the distribution of local

surface normal vectors from object surface1. Specifically

histograms of normal vectors along each axis, 18 bins each,

are computed to form 3× 18 = 54 sized feature vector.

2) Robot Actions: The robot is equipped with a number

of manually coded actions that enable single and multi object

manipulation. The robot can ‘poke’ a single object from its

side, front and top with s-poke, f-poke, and t-poke actions,

respectively. It can also stack one object on the other using

stack behavior, where it grasps the first object, move it on

top of the other one and release it. The object position in

world coordinate (shown in Fig. 4) is computed using the

depth image of Kinect sensor. An inverse kinematic solver

[13] is used to compute the joint angles for initial and final

points defined in Cartesian space, and Reflexxes library [14]

is utilized to generate smooth trajectories to achieve point-

to-point movement. The action execution is as follows:

• Regarding to poke actions, the robot gripper is placed

on one side of the object with 5cm distance with an

appropriate orientation. Two of the fingers are flexed to

enable only the third finger to physically interact with

1Point Cloud Library normal estimation software is used to compute
normal vectors.

the object (similar to index finger poking in humans).

Next, the robot hand moves in the corresponding direc-

tion for 10cm towards the object and it is retracted after

the poking completed.

• Regarding to stack action, one object is grasped from

above first by placing the gripper in a vertical orien-

tation 10cm over of the object, then moving the wide-

open gripper towards the object and finally enclosing it.

Next, the gripper that carries the grasped object is repo-

sitioned over the second object in a vertical orientation

again, and the object in the gripper is released over the

first one by extending all the fingers.

3) Effect Categories: As mentioned before, we limit af-

fordance learning to predicting discrete effect categories in

this study. As the robot learns prediction from experience, the

robot should have the ability to perceive the discrete effect

categories in the end of each interaction. These categories

can be detected using unsupervised clustering methods that

divide continuous effect feature space as in our previous

work [15]. For simplicity in the current implementation,

the effect categories are predefined for each action, and

directly provided by the experimenter who observes robot’s

interactions, i.e. the effects generated by robot’s actions.

Depending on the object(s) and executed action, different

effects can be generated:

• When poke action is executed, the object might be

pushed, toppled over or rolled away depending on the

shape. There might be no effect in object state or robot’s

sensors if the robot finger goes through the hole in the

object without actually touching it. Finally, for t-poke

action, the object might create resistance and obstruct

gripper’s movement that can be detected using the force

sensor.

• When stack action is executed, the objects can be piled

up on top of each other if the object below provides a

proper support (for example if it has a flat top surface).

Depending on the existence of concave surfaces and

holes, the released object might be inserted in or hide

(by encapsulating) the object below. The released object

may also tumble over due to the lack of stable support.

Note that we assume that the first object is always

graspable and we focus on the relational effects.

Based on the above possibilities that we observed empir-

ically, the sets of effect categories (E) are as follows for

different actions:

Epoke-* = {pushed, rolled, toppled, resisted, no-change}

Estack = {piled, inserted-in, covered, tumbled-over}

B. Experiment Results

1) Learning single-object affordances: The robot exe-

cuted its poke action on the objects (Fig. 4) placed in

different orientations, and it collected 24 interaction in-

stances for each poke action. The object shape features

along with generated effect categories are stored for learning

affordances. Support Vector Machine classifiers are used

to learn the mapping between object features and effect

categories. Here we do not provide an analysis of single-

object affordance learning performance as we studied it in

detail before [15]. Instead, we show that with the current set

of features, the robot can learn and generalize affordances

for poke actions. For this purpose, we divide the interaction

set into training and test sets with the deliberate purpose

of distributing objects with same affordances into different

sets. The training objects with their orientations are shown

in Fig. 5 and the predictions of the classifiers trained with

these objects are given in Fig. 6. As shown, the robot was

able to detect the affordances of the object (in terms of effect

prediction) correctly, except a small number of cases shown

with stars (∗). Note that none of the test objects were included

in the training set with the tested orientations.

The trained three classifiers (for s-poke, t-poke, and f-poke)

are transferred to the next stage and their predictions are used

as high-level features to learn complex affordances.

Fig. 5. The robot learned single-object affordances with the training set
given above.

2) Learning pairwise affordances: In this section, the

robot learns the multi-object affordances by exploring the

two-object environments with its stack action. This learning

is again achieved by training an SVM classifier that predicts

the effect of the action given object features. Here we

compare the prediction performance of the classifiers that

are trained either with basic-features or affordance-features.

Regarding to basic-features, normal vector histograms are

used as we did in learning single-affordances in the previous

subsection. Regarding to affordance-features, the list of ef-

fect predictions (provided by the classifiers transferred from

the previous stage) for the poke actions are used.

affordance-features = (εos-poke, ε
o

f-poke, ε
o

t-poke)

where

εo*poke = classifier*poke(shape
o)

The robot executed stack action with 18 pairs of random

objects. A number of snapshots taken during these inter-

actions are given in Fig. 7, where all the possible effects

Fig. 6. Robot’s basic-affordance prediction on objects which are not
included in the training set with the same orientations. Prediction fails in
the examples with star (*), which are difficult cases to predict.

were observed with different object pairs. In each interaction,

basic-features and affordance-features of both objects are

computed and stored along with the observed effect category.

The classifier trained with basic-features uses the follow-

ing features for training (and prediction later):

TSbasic = {(shapeo1 , shapeo2)}

and the classifier trained with affordance-features uses the

following features:

TSaff = {(εo1s-poke, ε
o1

f-poke, ε
o1

t-poke, ε
o2

s-poke, ε
o2

f-poke, ε
o2

t-poke)}

where {} corresponds to the set operator so |TS| is the size

of training set.

We evaluated the performance of these classifiers by

systematically changing the size of the training set. For each

training set size, we trained 10 classifiers using randomly

selected samples. We tested each classifier using the remain-

ing sample interactions. Fig. 8 gives these cross-validation

results. When large training sets are used, both basic-features

and affordance-features based classifiers have similar predic-

tion performances. However, with small number of training

samples, the affordance-features based classifiers have better

performance.

The initial high performance of affordance-features based

classifiers demonstrates the advantage of using bootstrapping

in learning affordances.

V. FUTURE WORK

In this study, we showed that learned basic affordances can

be used as additional features in order to bootstrap the next

stage of affordance learning. This bootstrapping enabled the

robot to speed up its learning particularly with small training

data. While this work serves as one of the proof-of-concept

Fig. 7. Sample interactions observed during stack action execution on
different object pairs.

application of the structural bootstrapping idea [16], we need

to adapt advanced representations and learning methods that

can truly exhibit the real potential of this idea.

Particularly, knowledge propagation framework of [17]

suits well to learning affordance relations in our developmen-

tal scenario. This learning framework can deal with sparse,

incomplete and complex relations where affordance predic-

tions can be propagated through exploiting the similarities

among object properties, action parameters and generated

effects. The high complexity of affordance representation can

be addressed through use of Maximum Margin Multi Valued

Regression which is a large scale approach to complex

problems of several layers. With increased variety and size of

object database and addition of other parametric combinatory

actions, we expect to achieve complex systems which truly

uses ‘structural’ bootstrapping in its lifelong learning and

development.

ACKNOWLEDGEMENTS

This research was supported by European Community’s

Seventh Framework Programme FP7/2007-2013 (Specific

Programme Cooperation, Theme 3, Information and Com-

munication Technologies) under grant agreement no. 270273,

Xperience.

REFERENCES

[1] B. Vollmer and H. Forssberg, “Development of grasping and object
manipulation,” in Sensorimotor Control of Grasping: Physiology and

Pathophysiology. Cambridge University Press, 2009.

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

Number of training samples

P
re

d
ic

ti
o

n
 p

e
rf

o
rm

a
n

c
e

 w
it
h

 c
ro

s
s
−

v
a

lid
a

ti
o

n

Shape features based prediction

Affordance based prediction

Fig. 8. The effect prediction performance of stack action that involves
two objects. The training of classifiers are done with the indicated number
of samples (interactions) with either shape features or affordance features.
As shown, use of affordance features enable bootstrapping of the learning
system. Note that affordances features are computed from shape features
with classifiers trained before.

[2] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui,
Y. Yoshikawa, M. Ogino, and C. Yoshida, “Cognitive developmental
robotics: a survey,” IEEE Tran. Auton. Mental Dev., vol. 1-1, 2009.

[3] H. Takeshita, “Development of combinatory manipulation in chim-
panzee infants (pan troglodytes),” Animal Cognition, vol. 4, pp. 335–
345, 2001.

[4] M. Ikuzawa, Development diagnostic tests for children, 2000.

[5] M. Hayashi and T. Matsuzawa, “Cognitive development in object
manipulation by infant chimpanzees,” Animal Cognition, vol. 6, pp.
225–233, 2003.

[6] W. King and B. Seegmiller, “Performance of 14- to 22-month old
black, firstborn male infants on two tests of congnitive development,”
Developmental Psychology, vol. 8, pp. 317–326, 1973.

[7] L. Gleitman, “The structural sources of verb meanings,” Language

acquisition, vol. 1, pp. 3–55.

[8] J. Sinapov and A. Stoytchev, “Detecting the functional similarities
between tools using a hierarchical representation of outcomes,” in
Proceedings of the 7th IEEE International Conference on Development

and Learning. IEEE, Aug. 2008, pp. 91–96.

[9] P. Moreno, M. van Otterlo, J. Santos-Victor, and L. De Raedt,
“Learning relational affordance models for robots in multi-object
manipulation tasks,” in Prof. of IEEE Int. Conf. on Robotics and

Automation (ICRA), 2012, pp. 4373–4378.

[10] E. Şahin, M. Çakmak, M. R. Doğar, E. Uğur, and G. Üçoluk, “To
afford or not to afford: A new formalization of affordances towards
affordance-based robot control,” Adaptive Behavior, 2007, (in press).

[11] N. Kruger, J. Piater, F. Worgotter, C. Geib, R. Petrick, M. Steedman,
A. Ude, T. Asfour, D. Kraft, D. Omrcen, B. Hommel, A. Agostino,
D. Kragic, J. Eklundh, V. Kruger, and R. Dillmann, “Object-
action complexes: Grounded abstractions of sensorimotor processes,”
Robotics and Autonomous Systems, vol. 59, pp. 740–757, 2011.

[12] R. Detry, E. Başeski, M. Popović, Y. Touati, N. Krüger, O. Kroemer,
J. Peters, and J. Piater, “Learning continuous grasp affordances by sen-
sorimotor exploration,” in From Motor Learning to Interaction Learn-

ing in Robots, ser. Studies in Computational Intelligence. Springer
Berlin / Heidelberg, 2010, vol. 264, pp. 451–465.

[13] B. Moore and E. Oztop, “Redundancy parametrization for flexible
motion control,” in ASME IDETC, 2010.

[14] T. Kroger, “Opening the door to new sensor-based robot applications –
the reflexxes motion libraries,” in Proc. of IEEE Int. Conf. on Robotics

and Automation (ICRA), 2011, pp. 1–4.

[15] E. Ugur, E. Oztop, and E. Sahin, “Goal emulation and planning in
perceptual space using learned affordances,” Robotics and Autonomous

Systems, vol. 59, no. 7–8, pp. 580–595, 2011.

[16] F. Worgotter, C. Geibb, M. Tamosiunaite, E. E. Aksoy, T. Asfour, J. Pi-

ater, A. Ude, N. Kuger, and M. Steedman, “Structural bootstrapping
– a novel concept for the fast acquisition of action-knowledge,” 2014,
in preparation.

[17] S. Szedmak and J. Piater, “An active learning based sampling design
for structural bootstrapping,” University of Innsbruck, Tech. Rep.,
2014.

Structural bootstrapping - a novel concept for the fast

acquisition of action-knowledge

Florentin Wörgöttera,i, Chris Geibb,c,i, Minija Tamosiunaitea,d,i, Eren Erdal
Aksoya, Justus Piatere, Hanchen Xionge, Ales Udef, Bojan Nemecf, Dirk

Kraftg, Norbert Krügerg, Mirko Wächterh, Tamim Asfourh

aGeorg-August-Universität Göttingen, Bernstein Center for Computational
Neuroscience, Department for Computational Neuroscience, III Physikalisches Institut -

Biophysik, Göttingen, Germany
bSchool of Informatics, Edinburgh, United Kingdom

cCollege of Computing and Informatics, Drexel University, Philadelphia, USA
dDepartment of Informatics, Vytautas Magnus University, Kaunas, Lithuania
eInstitute of Computer Science, University of Innsbruck, Innsbruck, Austria

fHumanoid and Cognitive Robotics Lab, Dept. of Automatics, Biocybernetics, and
Robotics, Jožef Stefan Institute, Ljubljana, Slovenia

gCognitive and Applied Robotics Group, University of Southern Denmark, Odense,
Denmark

hInstitute for Anthropomatics and Robotics, Karlsruhe Institute of Technology,
Karlsruhe, Germany

iThese authors have contributed equally to this work.

Abstract

Soon after birth children begin to use their first knowledge bits to quickly
assimilate novelty in a generative way getting more and more efficient at this
with age. New information is bootstrapped by prior experience that allows
the child to perform guided guesses about novel observations. Different from
this, up to now learning complex tasks by a robot remains a tedious and time-
consuming undertaking. Even for the simplest actions, many components
(e.g. planning sequences, object knowledge, motor control information, etc.)
need to be captured, processed, and stored. Furthermore, all this information
needs to be processed in a way that allows the agent to perform the same
action also in different situations. Thus, efficient, human-like generative
knowledge acquisition has not yet been achieved for artificial agents. The goal
of the current study is to devise for the first time a general framework for such
a generative process across the different complexity levels that exist for action
knowledge acquisition. To this end, we introduce the concept of structural

Preprint submitted to IEEE Trans. Auton. Develop. February 9, 2014

Worgott
Text Box
This is the title page and the abstract of a recent IEEE TAMD submission. The full version of this is identical to Chapter 2 of this Deliverable.

bootstrapping – borrowed and modified from child language acquisition –
to define a probabilistic process that uses existing knowledge together with
new observations to supplement our robot’s data-base by missing planning,
object, as well as action information. In a kitchen scenario, we use the
example of making batter by pouring and mixing two components and show
that the agent can acquire new knowledge about planning operators, objects
as well as required motor pattern for stirring by structural bootstrapping.
Some benchmarks are shown, too, that demonstrate the substantial speeding-
up of the learning.

Keywords: Generative Model, Knowledge Acquisition, Fast Learning

2

Homogeneity Analysis for Object-Action Relation
Reasoning in Kitchen Scenarios ∗

Hanchen Xiong Sandor Szedmak Justus Piater
Institute of Computer Science, University of Innsbruck

Technikerstr.21a A-6020, Innsbruck, Austria
{hanchen.xiong,sandor.szedmak,justus.piater}@uibk.ac.at

ABSTRACT
Modeling and learning object-action relations has been an
active topic of robotic study since it can enable an agent
to discover manipulation knowledge from empirical data,
based on which, for instance, the effects of different actions
on an unseen object can be inferred in a data-driven way.
This paper introduces a novel object-action relational model,
in which objects are represented in a multi-layer, action-
oriented space, and actions are represented in an object-
oriented space. Model learning is based on homogeneity
analysis, with extra dependency learning and decomposi-
tion of unique object scores into different action layers. The
model is evaluated on a dataset of objects and actions in a
kitchen scenario, and the experimental results illustrate that
the proposed model yields semantically reasonable interpre-
tation of object-action relations. The learned object-action
relation model is also tested in various practical tasks (e.g.
action effect prediction, object selection), and it displays
high accuracy and robustness to noise and missing data.

1. INTRODUCTION

This copy is for personal use, the final version will be publisehd in the 2nd Workshop on Machine Learning for Interactive
Systems by ACM International Conference Proceedings Series

Manipulations of objects are core and indispensable func-
tions in robotic systems to fulfill various practical tasks.
However, because of the diversity of real-world objects in
shape, material and other properties, manipulation design
at the instance level is very effort-consuming and thus pro-
hibitive. Learning principles or correlation patterns of dif-
ferent actions based on trial experiences is an appealing di-
rection of robotics research. In other words, an agent can
acquire knowledge of object-action relations in a data-driven
manner by making use of a limited number of experiments.

∗The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme FP7/2007-2013 (Specific Programme Coopera-
tion, Theme 3, Information and Communication Technolo-
gies) under grant agreement no. 270273, Xperience.

Figure 1: A sample set of kitchen objects

In addition, the study of object-action relations has also at-
tracted attention within the cognition and psychology com-
munities [5, 10], since it is expected to be related to how
human beings accumulate knowledge by physically interact-
ing with different objects. Humans begin to interact with
their environment in their infancy, and in many interactions,
two elements are involved: objects and actions. Actions
are executed on objects with the humans’ motor capabili-
ties, and the effects of these actions are observed with their
perception abilities. Based on such repeated interactions,
human beings can quickly acquire object-action knowledge,
and easily fulfill different actions on various objects by trans-
ferring such knowledge to novel objects. Although the exact
mechanism of how the human brain organizes and learns
object-action relations is still unknown, it has been pointed
out that computational modeling of object-action relations
can be a plausible perspective for the study of both robotics
and human cognition.

Nevertheless, modeling and learning object-action relations
has been a difficult task. The difficulties mainly stem from
two sources. First, the structure of descriptions of both ob-
jects and actions can be very complex. The descriptions are
derived from several sources, and the corresponding feature
spaces are high-dimensional (i.e., objects and actions are
characterized by large numbers of parameters). The second
difficulty is due to the small number of experiments which
can confirm the effects of different actions on objects. Even
worse, in some cases, the experiments might provide con-
tradicting outcomes. In consequence, the empirical data are
rather sparse and noisy.

In this paper we put forward a novel model of object-action
relations, in which objects are represented in a multi-layer
action-oriented space, and actions are represented in an object-
oriented space. The object-action relations are encoded in

these two spaces, on which various reasoning tasks can be
performed. The training data for the model are constructed
from two sources, objects and the collection of effects (pos-
itive and negative) of different actions executed on objects.
Two pieces of information are summarized in a structure
called object-action profiles. Objects are represented by
categorical indicators of basic properties and binary labels
of various low- and high-level geometric features. Actions
are represented by binary labels of object-dependent effects.
The model is learned with homogeneity analysis. The strength
of homogeneity analysis is that it can map multi-variate
categorical/binary data to a homogeneous Euclidean space.
Via these projections, objects and actions can be effectively
represented with object scores and category quantifications.
Basically, the object scores are computed as the average of
quantifications of categories which they belong to, and cat-
egory quantifications are computed as the geometric cen-
troid of objects they belong to. These two projections are
iteratively updated until convergence. Based on homogene-
ity analysis, action-category quantifications are represented
in an object-oriented manner. The resulting object scores,
however, do not fit our modeling scenario. The object scores
are computed by treating all variables of object-action pro-
files equivalently, and therefore the scores are unique for all
actions. By contrast, our model is designed to represent ob-
jects differently with respect to different actions. Therefore,
we provide dedicated means to determine the dependencies
between category quantifications of object and action vari-
ables, and decompose the object scores/representations into
different action layers.

We present our model and associated learning/reasoning
procedures in the context of object-action relations within
a kitchen scenario (Figure 1). A database of typical kitchen
objects and actions is constructed as well to evaluate our
model. The experimental results demonstrate that the model
yields semantically good interpretation of object-action rela-
tions by displaying reasonable dependencies and correlations
between object and actions variables. In addition, the ex-
periment with sparseness and noise added into training data
highlights the robustness of our model to noisy and missing
data.

1.1 Related Work
For object manipulation knowledge modelling, the concept
of affordance [5] has been widely used [9, 8, 10, 3, 4] to link
objects and actions in terms of object-action-effect triples.
An affordance defines how an object “affords” a manipula-
tion by an agent based on its motor abilities, and how this
manipulability can be perceived by the agent [5]. For in-
stance, the grasping affordance of a stone is much higher for
a human being than a dog since human hands have better
motor control of fingers than dogs’ paws. More concretely,
object affordances represent how can an agent interact with
real-world environment by encoding the relations among ac-
tions, objects and effects. Although there have been numer-
ous studies on how affordances can be modelled such that
they can be effectively learned and utilized to assist practi-
cal robotic manipulation, the object/action affordance prob-
lem, at its base, is about how an agent can understand ob-
jects based on interactions with them by using its motor and
perceptual capabilities. However, most previous studies are
limited to one isolated object affordance (e.g. grasping). In

some cases, multiple objects are involved and interact with
each other within one manipulation. For example, a sin-
gle action such as cutting involves two objects, the cutting
tool (e.g. knives) and the object being cut (e.g. an apple).
In [7], the affordance definition was extended to object re-
lations. However, since only geometric relation (distance,
angle of orientations) between multiple objects are used in
[7], it still cannot model concepts such as cutting affordances
for objects. Our work, by contrast, seeks to model general
object-action relations. Our relational model connects ob-
jects and all possible actions that can be performed on them.

Our model is mainly inspired by [3], of which the basic as-
sumption is that objects that share similar parts (e.g. rim,
handles) should also hold similar grasping affordances. We
extend [3] in two ways: first, we consider general object-
action relations instead of only grasping affordances; second,
the dependency of actions on different parts can be learned,
in which way, for different actions, different co-occurring
parts among objects will be considered for their action-effect
reasoning.

Other related work involves modeling of sensorimotor coor-
dination [9], where a Bayesian network is employed to model
multiple affordances associated with objects based on visual
properties (e.g. color, size, concavity) and basic motor ac-
tions (grasping, touching, tapping). The dependences be-
tween actions, perception and effects are encoded in the di-
rected edges within the Bayesian network. One shortcoming
of this model is the dependency learning (i.e. the Bayesian
network structure). Since in a Bayesian framework it is im-
practical to estimate the likelihoods of all possible depen-
dency structures, Markov chain Monte Carlo (MCMC) sam-
pling was used to approximate them. However, one practical
problem with MCMC is that it can be quite inefficient (usu-
ally multiple chains are necessary); secondly, the approxi-
mation can be misleading when the training data is small
in size, noisy and incomplete. By contrast, the dependency
learning of our model is based on the category quantifica-
tions from homogeneity analysis, which is robust to noisy
and missing data.

2. MODELING
In this section, two basic elements are explained for object-
action relation modeling. First, we introduce a new data
structure constructed from empirical object and action data
(section 2.1). Secondly, section 2.2 presents an overview of
the model structure (Figure 3), in which objects are repre-
sented in a multi-layered action-oriented space, and actions
are likewise represented in an object-oriented space.

2.1 Data Structure
Since our objective is to learn the relations between ob-
jects and actions, the training data is constructed from two
sources. One is the object dataset, in which basic properties
(e.g. size, functionality, material) are labelled, and various
low- and high-level geometric properties can be extracted
by visual perception. The other source is the action dataset
that collects the effect of different actions applied on ob-
jects. In our study, the information from these two sources
is merged into object-action profiles. Figure 2(a) presents
two examples of object-action profiles. In the upper part,
object shape is displayed. Some basic properties are labelled

Low-Level Geometry Information:
3D features: e.g. edges, curvatures
2D features: e.g. contours, sketches

Functionality:
Container

Material:
Ceramic

High-Level Geometry Information:
3D part: e.g. rim +
 handle -

Action Log:
Grasp by closing fingers +
Roll +
Cut -
Chop +
Grasp by expanding fingers +

Low-Level Geometry Information:
3D features: e.g. edges, curvatures
2D features: e.g. contours, sketches

Functionality:
Food

Material:
Plant

High-Level Geometry Information:
3D part: e.g. rim -
 handle -

Action Log:
Grasp by closing fingers +
Roll +
Cut +
Chop +
Grasp by expanding fingers -

Size:
Bigger
than gripper
range -

Size:
Smaller
than gripper
range +

(a)

O Mesh <Gripper L_Geo H_Geo Func Mate Action log

3D 2D rim handle Grasp_C Roll Cut Chop Grasp_E

1 file1 1 1 -1 1 1 1 -1 * 1 -1

2 file2 -1 -1 * 2 2 -1 * 1 1 *

3 file3 -1 1 1 2 5 * 1 * 1 1

4 file4 1 1 1 5 3 1 1 -1 * 1

5 file5 1 -1 -1 1 4 * 1 1 -1

6 file6 -1 1 1 4 6 1 -1 * -1 1

Functionality Container Food Cooker Cutting tool Eating tool

1 2 3 4 5

Material Plastic Glass Ceramic Plant Animal Metal

1 2 3 4 5 6

(b)

Figure 2: (a) Two examples of object-action profiles. (b) Collection of object-action profiles, * denoting
missing data. Incompleteness (or sparseness) will always be a problem in training data.

and geometric features are extracted. Because we are only
concerned with the kitchen scenario, functionalities are lim-
ited to {container, food, cooker, cutting tool, eating tool},
and materials are limited to {plastic, glass, wood, plant, an-
imal, metal}. For size, a binary indicator is used to check if
it is smaller than the gripper’s maximum range. In addition,
low-level and high-level geometric features of objects can be
detected or labelled (although we currently only use high-
level geometric features such as rim, handle1, because they
are more informative of our actions than low-level features).
In the lower part, the resulting effects of different actions
on the object are recorded with binary values (+1 means
successful and –1 otherwise). We consider some more-or-
less common kitchen actions {grasping by closing fingers,
rolling, cutting, grasping by expanding fingers, chopping}.
It is worth noting that the strategies of feature labelling
and action selection used in this paper are just one among
many ways of describing the proposed model (section 2.2)
and learning/reasoning procedure (section 3); they can be
replaced by equivalent or more elaborate mechanisms. It
should also be noted that in practice a very limited num-
ber of action experiments or simulations can be conducted
on only a few objects, so incompleteness (or sparseness) of
experimental data is a fact we have to deal with (Figure
2(b)).

2.2 Model Structure
In this paper, the object-action relations are modeled as
shown in Figure 3. Actions and objects are represented in
different spaces, that is, action space and object space re-
spectively. The object space is composed of different layers
that correspond to different actions. In each layer of the
object space, the objects are linked pairwise (Figure 3), and
the connection between a pair of objects is weighted propor-
tionally to their similarity with respect to the corresponding

1Such labels can be obtained by straightforward shape anal-
ysis systems.

action. The similarities between objects can be measured
based on co-occurring properties or geometric features that
can influence the outcome of the action. For instance, if ob-
ject A (mug) and B (goblet) are both containers (therefore
exhibit hollow structure), their similarities will be high in
the “Grasp by expanding fingers” layer. However, their sim-
ilarity would be low in the “roll” layer since A has a handle
but B does not, and having a handle or not is a decisive
factor for rolling.

In action space there is only one layer. Different actions are
connected with each other, likewise with the connections
weighted proportionally to their similarities. The similar-
ities between actions can be interpreted as the similarities
between their corresponding layers in object space.

3. MODEL LEARNING AND REASONING
With training data organized in the form of Figure 2(b),
we straightforwardly apply homogeneity analysis [2, 6] to
project all columns of Figure 2(b) to category quantifications
and rows to object scores (section 3.1). However, the object
scores computed by homogeneity analysis are the same for
all actions, which does not fit our multi-layer object space
(section 2.2). The underlying principle of our multi-layer ob-
ject representations is that the dependencies between every
action and object properties and geometric features are dif-
ferent; therefore, objects should be represented differently
with respect to different actions. Meanwhile, the depen-
dency and correlation relations between different basic prop-
erties, geometric features and actions are usually compli-
cated. Two examples of such dependencies can be seen in
Figure 4. It can be easily imagined that if a container is
smaller than the gripper range in size, then it probably can
be graspable by expanding fingers, so there should be depen-
dencies on “Container” and “<Gripper” for action “Grasp by
expanding fingers”(Figure 4(a)). At the same time, contain-
ers smaller than the gripper are often made of ceramic or

Grasp by
closing
fingers

Roll

Cut

Grasp by
expanding

 fingers

Chop

Action Space

Object Space

Object Space

Object Space

Object Space

Object Space

Figure 3: Object-action relational model. The ob-
ject space is composed of action-specific layers, in
which objects are interconnected (solid lines denote
strong and dashed lines weak connections). There
is only one layer in action space, and actions are
connected in a similar way.

glass (e.g. bowls, mug, wineglass) in contrast to larger ob-
jects (e.g. plastic buckets or metal trash cans), so “Grasp by
expanding fingers” might also be correlated with “Ceramic”
and “Glass” (dashed lines). Similarly, usually an object is
graspable if it is smaller than the gripper size or if it has a
handle or rim, so it is reasonable to add dependencies be-
tween them (Figure 4(b)). Food items and plants are usually
smaller than the gripper in a kitchen scenario, and they are
unlikely to have handles. So extra dependencies on “Food”
and “Plant” may be added as well. Instead of tediously rea-
soning about the dependencies for all actions, in section 3.2
a dependency checking mechanism is provided to remove
unlikely or weak dependencies. The computed dependencies
are also utilized to remap objects to different action layers
with dependency weights.

3.1 Initial Learning with Homogeneity Anal-
ysis

Homogeneity analysis [2, 6] is a popular statistical tool for
categorical multivariate analysis. Here we briefly review the
procedure of homogeneity analysis with its application to
object-action profile data. There are M object-action pro-
files in the dataset, each profile represented by a J-dimensional
vector Oi = [v1, v2, . . . , vJ]> (i = 1, . . . ,M), with each vari-
able vj denoting an attribute in the profile. Variable vj
takes on nj categorical values (e.g., the action effect has bi-
nary values ±1). By gathering the values of vj over all M
profiles in an M ×nj binary indicator matrix Gj , the whole
set of indicator matrices can be gathered in a block matrix:

G = [G1|G2| · · · |GJ] (1)

The key feature of homogeneity analysis is that it simul-
taneously produces two projections to the same Euclidean
space Rp, one from J-dimensional profiles Oi, the other from
the M -dimensional categorical attribute indicator vectors

Grasp by
expanding

fingers

Size<
gripper
range

Ceramic

Container

Glass

(a)

Rim

Grasp by
closing
fingers

Handle

Size<
gripper
range

Food

Plant

(b)

Figure 4: Two examples of dependencies between
actions and objects’ basic properties and geometry
features: (a) grasp by expanding fingers; (b) grasp
by closing fingers.

(columns of G). These projections are referred to as object
score and category quantification, respectively [2, 6]. Sup-
pose the collection of object scores is represented by anM×p
matrix X, and category quantifications for variable vj are
represented by a nj × p matrix Yj . Then, the cost function
of a projection can be formulated as:

f(X,Y1, · · · , YJ) =
1

J

J∑
j=1

tr(X −GjYj)>(X −GjYj) (2)

As emphasized above, in realistic cases the training dataset
is usually sparse and incomplete, i.e., values of some vj are
missing. So for each Gj , we construct an M ×M diagonal
matrix Sj with diagonal values equal the sum of the rows of
Gj , i.e., Sj(i, i) = 0 if the vj value of Oi is missing. Then
the corresponding cost function is

f(X,Y1, · · · , YJ) =
1

J

J∑
j=1

tr(X−GjYj)>Sj(X−GjYj) (3)

Usually two extra constraints are added to avoid trivial so-
lution (X = 0, Yj = 0):

1

M
1>M×1S∗X = 0 (4)

1

M
X>S∗X = I (5)

Here, S∗ =
∑J
j=1 Sj . The first constraint (4) essentially nor-

malizes the projected object scores to be centered around the
origin. The second restriction (5) standardizes all p dimen-
sions of object score by rescaling the square length of each

dimension to M . In addition, another effect of (5) is that
the p columns of X are imposed to be orthogonal to each
other.

To minimize the cost function (3) under these constraints (4,
5), usually the alternating least squares (ALS) algorithm [2,
6] is used. The basic idea of ALS is to iteratively optimize
with respect to X or to [Y1, · · · , YM] with the other held

fixed. Assuming X(0) is provided arbitrarily at iteration
t = 0, each iteration of ALS can be summarized as:

1. update Yj :

Y
(t)
j = (G>j SjGj)

−1G>j X
(t); (6)

2. update X:

X(t+1) = S−1
∗

J∑
j=1

GjY
t
j ; (7)

3. normalize X:

X(t+1) = Gram-Schmidt(X(t+1)). (8)

It can be seen (6) that category quantification of Yj is com-
puted as the centroid of the object scores that belong to it.
Step 2 (7) updates object scores X by taking the average of
the quantifications of the categories it belongs to. In step 3
(8) a Gram-Schmidt procedure is used to find the normal-
ized and orthogonal basis of updated object scores from the
previous step.

3.2 Dependency Learning
According to the description in the previous section, the
objects and action effects can be projected into two spaces
(object scores X and category quantifications Yj of action
variables vj) by applying homogeneity analysis on the set of
object-action profiles. Although this observation is close to
how we model object-action relations (section 2.2), there still
exist some obstacles that prevent us from directly putting
them to practical use. First, by using homogeneity anal-
ysis, basic properties, geometric features and action effects
are simultaneously projected to their corresponding category
quantifications without modelling their interrelations explic-
itly. As we illustrated in Figure 4, the dependency between
them is an important factor in our object-action relational
model, so we must disentangle how each action depends on
different basic properties and geometric features. Secondly,
in our model the objects are represented at different lay-
ers corresponding to different actions, while the representa-
tions of objects with homogeneity analysis are unique object
scores. Hence, it is also required to strategically decompose
the object scores into different action layers.

To resolve these two problems, some extra steps can be de-
veloped to exploit more information from the object scores
and category quantifications. First, the J variables [v1, v2, . . . , vJ]
of each object Oi are divided into two groups, the object
(variable) group Vo which covers basic properties and ge-
ometry features, and the action (variable) group Va which
contains action effects on the object Oi. We initially as-
sume that each variable in action group vaβ ∈ Va depends

on all variables of the object group Vo. Then, for variable
vaβ , we find its corresponding positive and negative category
quantifications Y aβ,+ and Y aβ,−, and compute the distances
between them and all categories’ quantifications in the ob-
ject group as

d(Y aβ,+/−, Y
o
ω,k) = ||Y aβ,+/− − Y oω,k||2 (9)

where Y ok,w denotes the k-th category quantification of vari-
able voω in the object group. We compute the maximum
ratio between them as

λβω,k = max

{
d(Y aβ,+, Y

o
ω,k)

d(Y aβ,−, Y
o
ω,k)

,
d(Y aβ,−, Y

o
ω,k)

d(Y aβ,+, Y
o
ω,k)

}
(10)

and eliminate the dependencies between action variable vaβ
and category quantifications in V0 if

λβω,k∑
ω,k λ

β
ω,k

< σ (11)

where σ ∈ [0, 1] is a predefined threshold. The elimination
criterion (11) is defined based on the concept that the ob-
ject variables on which the action variable depends should
have good discriminative abilities between its positive and
negative categories.

Once the dependencies have been found, the second problem
can be solved as well. Instead of computing object scores as
the average of the all quantifications of the categories they
belong to (7), the representations of objects in each action
layer β are computed as the weighted average of quantifica-
tions of the (positive and negative) action categories and the
category quantifications in Vo which the action is dependent
on:

Xβ = Ŝ−1
∗,ω,k

∑
ω,k∈dependent(β)

πω,kĜω,kŶω,k (12)

where the Ŷω,k are the category quantifications (out of nω)

of variable voω on which action variable vaβ depends. Ĝw,k,

Ŝ∗ are the corresponding indicator matrix and diagonal ma-
trix. πω,k denotes the normalized dependency weights which

reflect how β depends on quantifications in Ŷω,k:

πω,k =
λβω,k∑

ω,k∈dependent(β) λ
β
ω,k

(13)

Correspondingly, the centroid of object representations which
belongs to positive and negative category in β action layer
is:

β+/−
c = (G>β,+/−Sβ,+/−Gβ,+/−)−1G>β,+/−Xβ (14)

where Gβ,+/− is the positive/negative-category column in
Gβ and Sβ,E is corresponding diagonal counting matrix.

The dependencies between action variables can be also sim-
ilarly learned to find the correlation or anti-correlation be-
tween object effects. Since our model is dedicated to re-
lations between objects and actions, action-action relations
will be exploited in our future work.

3.3 Reasoning
Given the object-action relational model learned with the
procedure above, typical reasoning tasks are presented in

input output applications

object & action effect effect outcome prediction
action & effect object object selection
object & effect action action planing/recognition

Table 1: Typical applications of the object-action
relation model.

Figure 5: Robot hand used for action labelling

Table 1. First, we discuss effect (E) prediction given object
(O) and action (β). Assume O is an unseen object. Its rep-
resentation in action layer β can be computed (12), and then
the binary effect classification can be easily done by major-
ity voting of the k-nearest neighbouring objects of training
set (or using any other suitable classifier).

Second, the model can perform object (O) selection out
of a set of candidates C based on action (β) and effect
(E ∈ [−1, 1]). Given the desired category E of action β,

first object representations in candidate set X
(O∈C)
β can be

computed (12). Then the ratio of the distance between each

X
(O)
β and βEc to the distance between X

(O)
β and β−Ec (14)

can be computed:

φO =
d(X

(O)
β , βEc)

d(X
(O)
β , β−Ec)

(15)

The optimal object O† is the one with smallest φO. Al-
ternatively, with the ratios of all objects in C computed,
the object retrieval result can be ranked by their ratios in
increasing order.

Finally, action selection or planning is also useful to find
an optimal action among many that share similar seman-
tic effects based on certain criteria. For example, both
cutting and chopping are actions that break objects into
smaller parts. However, they are executed with different
tools (cleavers for chopping and knives for cutting) and with
different strength. So if the task is to break an object O into
parts with minimum strength from the higher-level planner,
then one may want to perform a chopping action only if
necessary. To this end, we compute the representation of
O in cutting and chopping layers respectively and predict
their corresponding effects, based on which the most energy-
saving action will be selected.

4. EXPERIMENTS
4.1 Synthetic Database and Model Learning
To evaluate the proposed object-action relational model and
learning method, we constructed a synthetic dataset of object-
action profiles. We collected 140 kitchen objects (Figure 1)

from the web [1] and annotated them as shown in Figure 2.
The labeling and actions are set in the same way as described
in section 2.1. Basic properties and high-level geometry fea-
tures2 of objects were labelled by a student volunteer. The
effects of different actions applied on objects are labeled as
well based on common sense3. The robot gripper is pre-
sented to the labeller (Figure 5) for the consideration of
different actions.

First, the model is learned with full and noisy-free data. By
applying homogeneity analysis as described in section 3.1,
we obtain 3-dimensional category quantifications of 10 vari-
ables in object-action profiles (Figure 6). With extra max-
imum ratio computation (10) (Figure 7), the dependency
between each action and objects’ basic properties and ge-
ometric features are discovered (Table 2). Table 2 shows
that “grasp by expanding fingers” and “grasp by closing fin-
gers”exactly match our previous dependency analysis in Fig-
ure 4, i.e. the proposed model yields semantically reasonable
object-action relations.

4.2 Reasoning Tasks
To quantitatively evaluate the proposed model, the follow-
ing experiments test the model on two reasoning tasks, effect
prediction and object selection4. In both experiments, the
140 object-action profiles are randomly divided into train-
ing set (100) and test set (40). In addition, as we already
pointed out, in practice the empirical object-action data can
be noisy and incomplete because of inaccuracy of perception
systems and lack of real (or simulated) experiments. There-
fore, to test the robustness of the model to noise and missing
data, 10% noise are added and 20% entries are removed from
the 100 training instances. The noise is generated by shift-
ing the labels of variables with probability 0.1, and entries
in Figure 2 are removed with probability 0.2.

Effect Prediction
According to the reasoning procedure described in section
3.3, 40 test objects are first projected to different represen-
tations at different action layers. Then the final effects of
actions are decided by using a simple k-nearest-neighbour
(KNN) classifier with the 100 representations of training
objects. We use k = 10 for both full-data and missing-
and-noisy-data conditions. We ran 50 trials in which differ-
ent size-100 training (both full and missing-and-noisy) and
size-40 test data sets are randomly generated. The average
precision of correct effect classification of five actions are
presented in Figure 8(a), from which it can be seen that the
prediction results with both full training data and missing-
and-noisy data are rather accurate, with the former slightly
outperforming the latter (as is to be expected).

Object Selection
The object selection experiment is set up to test how ac-
curate an object can be “recommended” to meet the effect
of an action. The reasoning is based on the procedure in

2We did not use low-level geometric features in our experi-
ments.
3In future work, we plan to use simulated and ultimately
physical robotic action.
4Since action selection applications usually require higher-
level planners to handle constraints, robustness criteria etc.,
we did not consider them in our pilot experiments.

Figure 6: Category quantifications of variables in object-action profiles (best viewed in color).

(a) (b) (c) (d) (e)

Figure 7: Check the dependency of five actions ((a) grasp by closing fingers (b) roll (c) cut (d) chop (e)
grasp by expanding fingers) on category quantifications of object variables (from left to right bars denotes
the maximum ratios (10) of <gripper-, <gripper+, rim-,rim+, handle-, handle+, container, food, cooker,
cutting tool, eating tool, plastic, glass, ceramic, plant, animal, metal).

Va Depended category quantification of variable in Vo

graspC <gripper-, <gripper+, handle-, rim-, rim+,function=food, material=plant
roll <gripper-, handle-, handle+, function=cooker,function=cutting tool, function=eating tool, material=metal
cut function=food, material=plant
chop function=cutting tool, function=eating tool, material=metal
graspE function=container, material=glass, material=ceramic

Table 2: Dependency of five actions on category quantifications of object variables after elimination (11).

section 3.3, and the recommendation is ranked based on ra-
tios (15). Similarly to the effect-prediction experiment, 50
trials with different training and test data are run, and the
average results of 5 actions (positive and negative) are pre-
sented in Figure 8(b)-8(f) with precision-recall curves. It
can be seen that except for the poor results on grasping by

closing fingers, object retrieval of all other actions and ef-
fects are acceptable. The reason for poor performance in
the negative case of grasping by closing fingers, according
to our preliminary analysis, is that there are are too few in-
stances of graspC− in the training data; most objects in the
kitchen are graspable. The results with missing-and-noisy

(a) (b) (c)

(d) (e) (f)

Figure 8: (a) The average precision of correct effect prediction of five actions; (b)-(f) the precision-recall
curves of average object selection results in all positive and negative of five actions.

training data are slightly inferior to those with full training
data. Two obvious performance gaps appear in the nega-
tive case of chopping, and in the positive case of grasping by
expanding fingers. In conclusion, both effect prediction and
object selection experiments quantitatively demonstrate the
promising capabilities of our object-action relational model
by displaying its high accuracies and robustness to noisy and
incomplete data.

5. CONCLUSION
We presented a novel computational model of object-action
relations. Actions are represented in terms of their effects
on objects, and objects are represented as well in an action-
oriented manner. The model can be effectively learned with
homogeneity analysis and extra discovery of dependencies
between action and object variables. One strength of the
proposed model is that it does not require complex, highly-
combinatorial descriptions of objects and actions. The ob-
ject representations with respect to different actions are com-
puted with only a small number of the most decisive object
variables. Actions are presented by their positive and neg-
ative action-effect category quantifications. Another merit
of the model, according to experimental results, is that it is
robust to noisy and missing data, which is an unavoidable
problem in practice.

6. REFERENCES
[1] www-roc.inria.fr/gamma/download/.

[2] J. de Leeuw and P. Mair. Homogeneity Analysis in R:
The Package homals. . Technical report, Department
of Statistics, UCLA, 2007.

[3] R. Detry, C. H. Ek, M. Madry, J. Piater, and
D. Kragić. Generalizing Grasps Across Partly Similar
Objects. In International Conference on Robotics and
Automation, pages 3791–3797. IEEE, 2012.

[4] R. Detry, D. Kraft, O. Kroemer, L. Bodenhagen,
J. Peters, N. Krüger, and J. Piater. Learning Grasp
Affordance Densities. Paladyn Journal of Behavioral
Robotics, 2(1):1–17, 2011.

[5] J. J. Gibson. The Ecological Approach to Visual
Perception. Houghton Mifflin, 1979.

[6] G. Michailidis and J. de Leeuw. The Gifi System of
Descriptive Multivariate Analysis. Statistical Science,
13:307–336, 1998.

[7] B. Moldovan, P. Moreno, M. van Otterlo,
J. Santos-Victor, and L. De Raedt. Learning relational
affordance models for robots in multi-object
manipulation tasks. In IEEE International Conference
on Robotics and Automation, ICRA 2012,, pages 4373
–4378, May 2012.

[8] L. Montesano and M. Lopes. Learning grasping
affordances from local visual descriptors. In IEEE
8TH International Conference on Development and
Learning, China, 2009.

[9] L. Montesano, M. Lopes, A. Bernardino, and
J. Santos-Victor. Learning object affordances: From
sensory–motor coordination to imitation. IEEE
Transactions on Robotics, 24(1):15–26, Feb 2008.

[10] E. Oztop, N. Bradley, and M. Arbib. Infant grasp
learning: a computational model. Experimental Brain
Research, 158(4):480–503, 2004.

	Executive Summary
	Structural Bootstrapping over Different Levels
	Introduction
	Setup - Overview
	Methods - Short Summary
	Implementing Structural Bootstrapping at different levels
	Robotic Implementation
	Benchmark Experiments
	Discussion
	Conclusions

	Structural Bootstrapping Examples at Different Levels
	Semantic Event Chain-based Assimilation and Accommodation of actions
	Learning Object-Action Relations
	Active Learning with Knowledge Propagation
	Bootstrapped Affordance Learning
	Learning Object-Action Relations with Homogeneity Analysis
	Generative learning of correlations between object properties and action parameters
	Object Categorization with Knowledge Propagation

	Conclusion
	xperience_szedmak_active_bootstrap.pdf
	Introduction
	Sampling model
	The complete model
	Incomplete model

	Coverage of object interaction table required by the MMMVR
	Active learning
	Future work

