
Project Acronym: Xperience
Project Type: IP
Project Title: Robots Bootstrapped through Learning from Experience
Contract Number: 270273
Starting Date: 01-01-2011
Ending Date: 31-12-2015

XXPERIENCEPERIENCE..ORGORG

Deliverable Number: D3.1.3
Deliverable Title: Transfer of structural bootstrapping on sensorimotor experi-

ence: Report or scientific publication on implementation of
structural bootstrapping on sensorimotor experience within the
architecture and in the final demonstration.

Type (Internal, Restricted, Public): PU
Authors: Sandor Szedmak, Emre Ugur, Hanchen Xiong, Justus Piater,

Tamim Asfour, Norbert Krüger, Aleš Ude, Rok Vuga, and Ale-
jandro Agostini, Florentin Wörgötter

Contributing Partners: ALL

Contractual Date of Delivery to the EC: 31-01-2015
Actual Date of Delivery to the EC: 31-01-2015

Contents

1 Executive Summary 3

2 Transfer report on structural bootstrapping 4

2.1 General description of the ROAR . 4

3 Structural Bootstrapping on sensorimotor experience: scientific contribution in
Year 4 6

3.1 Affordance learning . 6

3.2 Novel Learning for Multi-Label Prediction . 7

3.2.1 Joint SVM . 7

3.2.2 Kernel Generalized Homogeneity Analysis . 8

3.2.3 Conditional Boltzmann Machines . 9

3.3 Structural Bootstrapping for Action Learning . 9

3.4 Action Learning through Directed Exploration . 10

3.5 Integrating Symbolic Planning and ROAR for the Final Demonstration in Scenario 1 . . . 11

4 Conclusion 15

2

Chapter 1

Executive Summary

This deliverable presents the implementation framework and the scientific contributions to realize the
main objectives of Work Package 3.1.

The summary of that objective reads as “The general objective of WP3 is to investigate and implement
structural bootstrapping of semantic sensorimotor categories at the continuous control level as well as at
the planning level. Within WP3 WP3.1 investigates and implements structural bootstrapping of semantic
sensorimotor categories. The goal is to learn cognitive categories faster than with existing methods, as
well as to learn more elaborate cognitive categories than can feasibly be done with existing methods.”

The deliverable consists of two main parts in two chapters.

Transfer report on the implementation of WP3.1 Chapter 2 contains the details of the learning
infrastructure of the structural bootstrapping, the ROAR, which is the central part of the whole
system. The ROAR is designed to behave as a general, intelligent database server which can
work independently from the concrete robot applications. The most important advantage of this
independence is the high flexibility and the easy transferability of the learning module to other areas
of robot experiments and applications. The task of the ROAR is to synthesize a consistent collection
of information out of noisy and inconsistent sources of the sensorimotor data while significantly
reducing the cost of building a reliable knowledge base.

Scientific contribution Chapter 3 comprises the results and publications achieved in Year 4 of the
Xperience project relating to WP3.1. Some of these pieces of work provide background knowledge
to implement different learning modules for the ROAR system; others enhance the usefulness and
the quality of sources inserted into the database.

Additionally the description of a demonstrative application of the ROAR system is included in this
part of the deliverable; see Section 3.5.

3

Chapter 2

Transfer report on structural
bootstrapping

2.1 General description of the ROAR

The infrastructure of learning of object-action relation and the replacement of the objects or actions
with a suitable one is built around the ROAR module. That module behaves as a certain type of object
memory where the set of available or potentially available objects together with the affordances related
attributes are stored. The ROAR stands for repository of objects&attributes with roles. The database of
prior knowledge can be created by hand or by prior experience. It allows objects to be retrieved by their
attributes, and the attributes of novel objects can be inferred. General description of the ROARs main
tasks can be found in Deliverable D3.1.2.

The ROAR module serves as an active database system, which not only stores and returns the data
items, but via machine learning tools it extends the database with predicted elements. In this way it can
provide data not observed earlier by the users connected to the database. This type of active database
might also be called as “Intelligent Relational Database”. The details about the implementation can be
found in the technical report, [SP14], attached to this deliverable.

ROAR can learn from various data sources and can make reasoning in different ways. While ROAR
has the potential of representing any type of relation, the current interface, which is designed based on
the requirements of the demonstration scenario, supports learning from and reasoning on (object, action,
score) tuples. Figure 2.1 shows that how this intelligent database can learn from different data sources and
how the reasoning capability of ROAR can be exploited by different modules. First of all, the relations
represented in ROAR can be automatically bootstrapped by common sense knowledge extracted from
text [2], (action, object, score) tuples in particular as depicted in Module A in the figure. Alternatively,
ROAR can learn object-action relations directly from the domain descriptions used by the planners that
UGOE and KIT/UEDIN realized for the Xperience scenarios. Note that, ROAR not only stores the known
action-object relations, but has the ability to infer the scores of the missing ones. In the current scenarios,
reasoning capability of ROAR is used when the plan execution fails due to missing target objects, and the
plan execution monitoring module searches for alternative objects that can replace the target object. The
learning from domain description and reasoning data-flow in object-replacement scenario are depicted in
Modules B and C in Figure 2.1. Modules A-C shows example scenarios where learning and inference
are based on object and action labels. However ROAR can also represent continuous data, and have
the potential to make inferences based on (for example) features obtained from perception as shown in
Module D. In the current state, prototypes of the connections to Modules A and B have already been
implemented, and connections to other modules, which are also under construction, are targets of the
next year.

4

Xperience 270273 PU

G
en

er
ic

 S
Q

L
 in

te
rf

ac
e

(U
IB

K
)

R
O

A
R

 S
er

ve
r

(U
IB

K
)

K
no

w
n

ob
je

ct
s

w
ith

un

kn
ow

n
ac

tio
n

s
(U

G
O

E
)

(o
bj

-la
be

l) (z
u

cc
hi

n
i)

(s
au

sa
ge

)
(b

an
a

na
)

(b
lu

e
B

ow
l)

A
d

d
to

 v
oc

ab
ul

ar
y

(b
an

a
na

, c
ut

,
0.

0
4)

(z
uc

ch
in

i,
cu

t,
 0

.1
0)

O
bj

ec
t/

ac
tio

n
pa

irs

in
 d

om
ai

n
(U

G
O

E
)

(o
bj

-l
ab

el
,a

ct
io

n-
la

be
l,s

co
re

)

(c
uc

um
be

r,
pi

ck
pl

ac
e,

 1
)

(t
ab

le
, p

ic
kp

la
ce

F
ro

m
,

1)
(b

an
a

na
, c

ut
,

1)
(k

ni
fe

,
cu

tW
ith

,
1)

L
ea

rn
/u

p
d

a
te

Te
xt

-m
in

ed
 d

at
a

(K
IT

/U
E

D
IN

)
(o

bj
-l

ab
el

,a
ct

io
n-

la
be

l,s
co

re
)

(s
to

ve
,

pu
t,

 0
.3

4)
(s

to
ve

,
se

t,
0

.1
0

)
(m

ilk
, s

tir
,

0.
1

1)
(g

ra
p,

 c
u

t,
0

.1
5

)

L
e

ar
n

/
u

p
d

at
e

R
e

tu
rn

 s
co

re
s:

[li
st

 o
f s

im
ila

rit
ys

co
re

s]
e

g.
 [0

.8
, 0

.1
]

R
e

as
o

n
in

g

P
la

n
ex

ec
ut

io
n

m
on

ito
rin

g
(K

IT
/U

E
D

IN
)

P
la

n
 E

xe
cu

tio
n

 F
ai

le
d

O
bj

ec
t/

ac
tio

n
pa

ir
s

fr
om

M

em
or

yX
 (

K
IT

)
(o

bj
-l

ab
el

,a
ct

io
n-

la
be

l)
(o

bj
ec

t l
is

t)
(O

A
C

S
 li

st
)

L
e

ar
n

/ u
p

d
at

e
R

ea
s

o
n

in
g

O
bj

ec
t p

e
rc

e
pt

s
b

ef
o

re

or
 d

u
ri

n
g

 p
la

n
ex

ec
u

tio
n

fr
om

 U
G

O
E

/K
IT

(o
bj

-p
e

rc
ep

t,a
ct

io
n

-la
be

l,s
co

re
)

(c
u

cu
m

be
r-

pe
rc

e
pt

,
cu

t,
1

)
(b

an
an

a-
pe

rc
e

pt
,

cu
t,

1
)

(k
n

ife
-p

er
ce

p
t,

cu
tW

ith
, 1

)

P
ar

t s
eg

m
en

ta
tio

n
(U

G
O

E
)

C
at

e
go

ry
 la

be
ls

(S
D

U
)

L
ea

rn
/u

p
d

at
e

R
ea

so
n

in
g

F
e

at
u

re
 c

om
pu

ta
tio

n
(A

ll)

P
K

S
 e

xe
cu

tio
n

(U
G

O
E

)
P

la
n

 E
xe

cu
tio

n
 F

ai
le

d

G
et

S
im

ila
ri

ty
S

co
re

s

 (
ob

je
ct

,
ac

tio
n,

 [
lis

t o
f e

xi
st

in
g

 o
b

je
ct

s]
)

e
.g

. (
cu

cu
m

b
er

, c
ut

, [
zu

cc
in

i,
m

ilk
])

(o
bj

ec
t,

ac
tio

n
, s

co
re

)

(o
bj

e
ct

, a
ct

io
n,

 s
co

re
)

(o
bj

ec
t,

ac
tio

n
, s

co
re

)

1
-

G
et

S
im

ila
ri

ty
S

co
re

s
(o

bj
ec

t,
a

ct
io

n
,

 [
lis

t
of

 e
xi

st
in

g
 o

bj
e

ct
s]

)

2
-

R
et

u
rn

 s
co

re
s:

[li
st

 o
f s

im
ila

rit
ys

co
re

s]

A
B C

D

Figure 2.1: How the ROAR as an intelligent database is connected to the potential data sources and
potential clients exploiting the accumulated knowledge about the object-action relations.

5

Chapter 3

Structural Bootstrapping on
sensorimotor experience: scientific
contribution in Year 4

3.1 Affordance learning

In the previous Deliverable D3.1.2, we discussed that learning object-action relations can benefit from
our powerful knowledge propagation approach [7] that exploits kernelized maximum-margin methods
outperforming standard discriminative learning methods in large, noisy and sparse datasets. In [SUP14],
we extended and applied this method, namely Maximum Margin Multi Valued Regression (MMMVR),
to a learning task of predicting the effects of the actions that are applied on pairs of objects. In the
experiments, we evaluated this method with a dataset composed of 83 objects and 83x83 interactions.
We compared the prediction performance with standard classifiers that predict the effect category given
object pairs low-level features or single-object affordances. The experiments showed that proposed method
achieves significantly higher prediction performance especially when supported with Active Learning.

The knowledge propagation approach, which we verified above, achieves bootstrapping in one level of
learning. In the technical report [8] attached to the previous Deliverable D3.1.2, we verified that stacking
the learners, i.e. forming hierarchical affordance prediction structures that use outputs of simple affor-
dance predictors as inputs of complex affordance predictors, speeds-up learning of complex affordances
compared to a non-stacked flat prediction structure where all learners use the same low-level visual at-
tributes. We presented these results in [USP14b] and further showed that by actively selecting the next
objects and by increasing the diversity of the training set using a distance measure based on learned
simple-object affordances, the effect of bootstrapping can be further increased in [USP14a]. A truly
developmental system, on the other hand, should be able to self-discover this manually designed hierar-
chical structure along with a suitable learning order. In [UP14], we showed that the hierarchical structure
and the development order can emerge through use of two principles, namely Intrinsic Motivation and
prediction based on the most distinctive attributes. We implemented our method in an online learning
setup, and tested it in a real dataset that includes 83 objects and manually coded discrete effects (such
as pushed, rolled, inserted) of three poke actions and one stack action.

While, the above work provides a natural setting for bootstrapping affordance learning in different levels,
goal-oriented complex task execution requires use of the learned affordances, concepts and predictions as
components of complex reasoning and planning. In [UP15], we studied the problem of symbol formation
for planning. The robot discovers object categories, discrete effects, and the corresponding logical rules
through its single-object and paired-object explorations, and directly use them as components of symbolic
domain representation and symbolic planning. Development of the symbolic knowledge is achieved in
two stages. In the first stage, the robot explores the environment by executing different actions on
single objects, forms effect and object categories, and learns to predict object/effect categories from
visual properties of the objects. In the next stage, with further interactions that involve stack actions
on pairs of objects, the system learns logical high-level rules that return stack effect category given the
categories of the involved objects and discrete relations between them. Finally, these categories and rules

6

Xperience 270273 PU

are encoded in Planning Domain Definition Language (PDDL), enabling symbolic planning. We realized
our method by learning the categories and rules in a physics-based simulator through exploration. The
learned symbols and operators were verified by generating and executing non-trivial symbolic plans in
the real robot in a tower building task.

3.2 Novel Learning for Multi-Label Prediction

Affordance prediction can be cast into a multi-label learning framework where each affordance is consid-
ered as a label and object attributes (or properties) are fed as inputs. For example, in our construction of
ROAR, various attributes can be extracted from visual appearance/features of objects or other sources,
while objects’ affordances and functionalities are role labels. In [XSP14b], [XSP14d], [XSP14a], [XSP14c],
we investigated the difficulties in multi-label learing from different perspective (e.g. inter-label depen-
dency, efficiency, structural dependency regularization and heterogeneous information fusion), and devel-
oped two novel learning methods: Joint-SVM and KGHA (Kernel Generalized Homogeneity Analysis)
which considerably improved the performance in predicting multiple labels.

3.2.1 Joint SVM

Structural SVM (support vector machine) is an extension of SVM for structured-outputs, in which,
however, the margin to be maximized is defined as the score gap between the desired output and the
runner-up. Assume that inputs x ∈ X , structured outputs y ∈ Y, and the score function is linear in
some combined feature representation of inputs and outputs Ψ(x,y): F (x,y; W) = 〈W,Ψ(x,y)〉, then
the objective function of structural SVM is:

arg min
W∈RΨ

1

2
||W||2 + C

m∑
i=1

max
y′∈Y

{
d(y(i),y′)−∆F (y(i),y′)

}
(3.1)

where ∆F (y(i),y′) = F (x(i),y(i); W) − F (x(i),y′; W) and d(y(i),y′) is a distance function defined on
structured outputs. In multi-label scenario, given a set of T labels, then outputs are T -dimensional
binary vector y = [y1, · · · , yt, · · · , yT]> ∈ BT . When we define the score function F

(
x(i),y(i); W

)
=

〈W, φ(x(i))⊗ y(i)〉, and use Hamming distance on outputs, then because of linear decomposability, (3.1)
can be rewritten as:

arg min
W∈RHφ×RT

1
2 ||W||2F + C

∑m
i=1

∑T
t=1 maxy′t={−1,+1}

{
d(y

(i)
t , y′t)−∆F (y

(i)
t , y′t)

}
⇓

arg min
w1,··· ,wT∈RHφ

∑T
t=1

{
1
2 ||wt||2 + C

∑m
i=1 max

{
0, d(y

(i)
t ,−y(i)t)−∆F (y

(i)
t ,−y(i)t)

}} (3.2)

where 〈·, ·〉F denotes Frobenius product and ||W||F is the Frobenius norm of matrix W.

It can be seen (in (3.2)) that, with linearly decomposable score functions and output distances, using
structural SVM on multi-label learning is equivalent to learning T SVMs jointly. This is closely related
to multi-task learning frameworks, where different learning tasks are connected by summing up their
objectives and constraints respectively:

min 1
2

∑T
t=1 ||wt||2 + C

∑T
t=1

∑m
i=1 ξ

(i)
t

w.r.t. w1,w2, . . . ,wT ∈ RHφ×1

s.t.
∑T
t=1 y

(i)
t

(
w>t φ(x(i))

)
≥ T −∑T

t=1 ξ
(i)
t

(3.3)

By denoting y(i) = [y
(1)
1 , . . . , y

(i)
T], and W = [

w>1
T ; . . . ;

w>T
T]>, we can rewrite (3.3) as:

arg min
W∈RT×Hφ

1
2 ||W||2F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
y(i),Wφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(3.4)

which is referred to as joint SVM. When linear output kernels (Kψ(y(i),y(j)) = 〈ψ(y(i)), ψ(y(j))〉) are
applied on outputs, (3.4) will be:

arg min
W∈RHψ×Hφ

1
2 ||W||2F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
ψ(y(i)),Wφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(3.5)

7

Xperience 270273 PU

Since the linear decomposability of ∆F (y(i),y′) is still preserved, join SVM solves the same problem as
structural SVM. However, one strength of joint SVM is that its training complexity is almost the same
as a single SVM, by contrast to the exponential complexity in structural SVM. Similarly to regular SVM,
joint SVM can be converted to its dual form

arg min
α1,··· ,αm

∑m
i=1 αi −

∑m
i,j=1 αiαjKψ(y(i),y(j))Kφ(x(i),x(j))

s.t ∀i, 0 ≤ αi ≤ C
(3.6)

with W =
∑m
i αiψ(y(i))φ(x(i))>. It can be seen that, with the kernel matrix on outputs pre-computed,

the computational complexity of joint SVM (3.6) is the same as the learning of one single SVM, which is
a great advantage in efficiency. Meanwhile, when more general output kernels are used, then the linear
decomposability of ∆F (y(i),y′) will be violated, then joint SVM becomes a special case of max-margin
regression, which seeks to learn linear operators W : Hφ → Hψ from general φ(x)⊗ ψ(y).

Assume that the statistics of tags’ pairwise co-occurrence can be encoded in a T ×T matrix P, via which
the output vectors can be linearly mapped as ψ(y) = Py, and thus the corresponding linear output
kernel is:

KLin
ψ (y(i),y(j)) = y(i)>Ωy(j) (3.7)

where Ω = P>P = PP>. By denoting U = P>W, we can rewrite joint SVM (3.5) as:

arg min
W∈RHψ×Hφ

1
2 ||W||2F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
y(i),Uφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(3.8)

Meanwhile, we need to control the scale of P, otherwise the constraints in (3.8) will be pointless. Different
regularizations on P have been proposed in previous work. Here, we would like to add a regularization
to control overfitting from output dependency-structures. By merging regularization on W and P, we
obtain a more compact regularizer, 1

2W>ΩW, resulting in:

arg min
U∈RHψ×Hφ

1
2 ||U||2F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
y(i),Uφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(3.9)

Remarkably, (3.9) is equivalent to (3.5) with W substituted by U, which suggests that a linear output
kernel is implicitly learned, and absorbed in W, when we training a plain joint SVM with no explicit
kernel on outputs. In addition, a regularization on the output kernel is also implicitly added.

More details on other derivations of Joint-SVM and experiment results are referred to [XSP14b],
[XSP14d], [XSP14a].

3.2.2 Kernel Generalized Homogeneity Analysis

Canonical correlation analysis (CCA) and homogeneity analysis (HA) are two popular methods for an-
alyzing multivariate data. Although they are applied to different data types (CCA is used on two sets
of continuous variables while HA operates on multivariate categorical variables), we reveal that they
are actually closely related. Building on this relation, we generalize homogeneity analysis to continuous
variables, which leads to a relaxed variant of multiple-set-CCA. Furthermore, kernel functions are also
utilized to enable generalized HA to learn nonlinear dependencies within data.

In [XSP14c], we study KGHA in the multi-label learning case, although it can also be applied to more
general multiple output regression. We show that when used for learning vector-valued functions (e.g.
in multi-label, multi-class predictions), KGHA works as low-rank output kernel learning with manifold
regularization on heterogeneous information fusion (HIF). Low-rank output kernel learning, to a certain
degree, coincides with multi-label dimensionality reduction, which enables learners to gain higher effi-
ciency and accuracy. Also, manifold regularization on HIF is related to multiple kernel learning (MKL),
in which heterogeneous information is encoded in an ensemble of kernels to match outputs. Instead
of regularizing on smoothness of instance-based manifold, the regularization of KGHA is based on the
smoothness of prediction space from heterogeneous information.

8

Xperience 270273 PU

3.2.3 Conditional Boltzmann Machines

It is also possible to conduct multi-label learning with conditional random fields with each binary node
denoting the presence/absence of a label. To take inter-label dependency into account, the random fields
can be constructed as a Boltzmann machine, which thus results in a conditional Boltzmann machine
(CBM) (see Figure 3.1),

· · ·

· · ·
· · ·

... ...

y1

y2

y3
y4

yL

x

Figure 3.1: Conditional Boltzmann machine for multi-label learning.

Similar to other undirected graphical models, extract learning with maximum likelihood is intractable
even for medium-scale model. For our purpose of multi-label learning, we plan to train CBMs with
our novel approximation learning method, persistent sequential Monte Carlo [9], which is detailed in
Deliverable D2.3.3.

3.3 Structural Bootstrapping for Action Learning

Figure 3.2: Learning to push with and without bootstrapping

Learning the effect of actions in complex cluttered environments using vision input is a difficult task.
Especially the effect of multi-object manipulating actions requires many training samples to learn reliable
outcome predictors.

In [FKKG14] we learn Random Forest based success predictors from high level visual input histograms

9

Xperience 270273 PU

(see [4, 1]) and demonstrate bootstrapping by reusing already learnt knowledge from previously learnt
actions in two different ways.

We demonstrate both, direct and abstract knowledge transfer for bootstrapping. In direct bootstrapping,
predictors are trained with the outputs of previously learnt predictors as additional inputs beside the state
space. For abstract knowledge transfer we learn abstract concepts that capture underlying commonalities
of two or more existing predictors and use the output of these concepts as additional data inputs for new
predictors.

Figure 3.2 illustrates the prediction accuracy for a pushing action involving 2 objects. Related to this
pushing action are the actions Pull and Lift and the Lift Pull concept which is created from the Lift
and Pull predictor knowledge. The Take action is unrelated. It can be seen in the Figure 3.2 that unre-
lated knowledge does not help to bootstrap learning. Related knowledge, however, leads to remarkable
bootstrapping effects with the abstract knowledge concepts bootstrapping surpassing direct bootstrapping.

3.4 Action Learning through Directed Exploration

In our previous work we showed that exploration as realised by standard reinforcement learning tech-
niques [3] can be integrated with statistical learning techniques [6, 5]. Based on a database of example
movements, which solve the given task in specific situations, statistical learning can generate new move-
ments for similar but not the same situations as in the example database. For example, the knowledge
of reaching movements to a number of different locations can facilitate the generation of reaching move-
ments to nearby locations. Based on this insight we defined a new, structured reinforcement learning
algorithm, which can find new example movement patterns in the neighborhood of the example trajectory
manifold much quicker than standard reinforcement learning algorithms. The key to this accelerated con-
vergence of the autonomous learning process (see Figure 3.3) lies in the fact that thanks to the statistical
generalization of existing movements, a significant part of the search process could be moved from the
high-dimensional trajectory space spanned by DMPs to the low-dimensional space determined by query
points, which are defined as task-relevant parameters that characterize the task. Another important fea-
ture of our approach is that statistical generalization provides a reference movement, which can be used
to define intermediate rewards in terms of the distance between trajectories explored by reinforcement
learning and the reference trajectory. This is needed to ensure that the newly found trajectories are
similar to the trajectories in the example database. In this way the robot can autonomously augment
the database of example movements.

0 10 20 30 40 50
60

80

100

120

140

160

180

200

220

240

260

iterations

co
st

Figure 3.3: Convergence of the learning process. The bars show standard deviation of 8 learning trials.
The red shaded part of the graph shows costs of trials using policies from prior knowledge. The green
shaded area corresponds to learning where exploration was performed using ILC, while the yellow shaded
area corresponds to final, random based exploration.

10

Xperience 270273 PU

However, learning in reduced dimensionality can not guarantee that an optimal policy will be obtained
in general because the optimal solution might lie outside of the reduced dimensionality space. Therefore,
in Year 4 we explored how to accelerate the exploration of space outside the existing trajectory manifold.
For this purpose we developed a new formulation of dynamic movement primitives (DMPs), which enables
nonuniform time scaling of trajectories (see the attached paper [VNU14]). By normalizing the DMPs
with respect to the arc length of the underlying trajectory, we were able to compare movement patterns
across different tasks and employ example movements from non-related tasks when searching for the
optimal movement for a new given task. In this way we were able to significantly accelerate the learning
process even if no prior movements specific to the new task were available.

In our experiments we focused on trajectory speed adaptation. We showed experimentally that the
proposed approach is effective at learning high precision tasks such as fast transfer of a cup full of liquid
without spilling.

3.5 Integrating Symbolic Planning and ROAR for the Final
Demonstration in Scenario 1

This section introduces the theoretical outlines of the integration of symbolic planning and ROAR for the
final demonstration in Scenario 1 (salad scenario, module B in Figure 2.1). The complete demonstration
will be presented in deliverable D5.2.4.

The salad scenario contains several actions: pick and place, cut, chop, drop, pour, and stir, with different
objects: knife, cutting board, bowl, cleaver, cucumber, carrot, etc. The main idea is that the robot
prepare a salad executing a symbolic plan. For the plan execution, the robot must make sure that all the
required objects are in the scene. If any of these objects is missing, the robot searches for its replacement
using ROAR, update the plan accordingly, and execute, in a structural bootstrapping process.

Figure 3.4 shows the general diagram of the plan generation and object replacement process. First, a plan
is generated from the original list of objects of the recipe. Once the plan is generated, the robot checks if
all the required objects are in the scenario. If there are missing objects, the robot connects to ROAR to
find out which of the existing objects have the same affordances of the missing ones. If replacements are
found, the plan is updated and executed. This process could be compared to when we are at the office
thinking of what we will have for dinner when we arrive home. We first recall the food we have in the
kitchen and then plan the dinner. Once at home, we may find out that some of the elements are actually
missing. In this case, we search for replacements of these elements and update our dinner plan.

Figure 3.4: General diagram for plan generation and object replacement.

11

Xperience 270273 PU

For the successful updating of the plan, it is mandatory that the replacements have the same affordances
as the missing objects. This demands that the predicates, coding the object affordances in the planning
domain definition, and the notation used in ROAR, are fully compatible. Table 3.1 presents an example
list of objects and their affordances in ROAR notation and the corresponding predicates defined for
planning. ROAR notation involves the object name, the related action, the preposition, indicating the
specific function of the object in that action, and the score. We can see in the table that a cucumber and
a banana are two objects that can be cut, dropped, or picked and placed, facts represented in planning
notation with the predicates cutObj, dropObj, PPObj, respectively.

Table 3.1: Object Affordances Notation Example.
Object Action Preposition Predicate Score
cucumber cut null cutObj 1
banana cut null cutObj 1
knife cut with cutWith 1
cleaver cut with cutWith 1
cucumber drop null dropObj 1
banana drop null dropObj 1
board drop from dropFrom 1
cucumber pick place null PPObj 1
banana pick place null PPObj 1
board pick place from PPFrom 1

To provide a more concrete idea of the role of ROAR in the planning domain definition, Figure 3.5
presents a detailed description of the elements involved in this process. Note that the diagram represents
the same four modules of the left-hand side of Figure 3.4. We can see that the initial specification of the

Figure 3.5: General diagram the planning domain and problem definitions and plan generation.

12

Xperience 270273 PU

objects for the recipe not only consider the list of objects, but also the relation between them and their
status. From the list of objects in memory (original recipe) the system generates the predicates coding
the affordances (e.g. cucumber is cuttable: cutObj(cucumber)), relations (e.g. cucumber on the board:
on(cucumber, board)), and status (e.g. cucumber not cut (!cut(cucumber))). These predicates are used,
in turn, to describe the initial state and goal, as well as to code the planning operators. Finally, a plan is
generated, using the PKS planner. Example planning operators in PKS notation are shown in Figure 3.6
while Figure 3.7 presents an example plan generated by the PKS planner for the preparation of a salad
using a cucumber.

Figure 3.6: Example planning operators in PKS notation for the salad scenario. The predicates coding
affordances compatible with ROAR are marked in red.

Figure 3.7: Example plan generated by the PKS planner for the preparation of a cucumber salad. In the
demonstration the sand replaces the salad dressing.

Finally, to shed more light on the object replacement process, Figure 3.8 shows an example of the process
taking place when the object to be replaced is a cucumber. In this case, the cucumber is missing from
the scenario but a banana is present (among other objects). The predicates coding affordances of the cu-
cumber involved in the plan generation are: PPobj(cucumber) (pick and place-able), cutObj(cucumber)
(cuttable), dropObj(cucumber) (droppable). For each of the objects in the scene, the robot evaluates, via
ROAR, which of them has all these three affordances. The first object found fulfilling these affordances
is a banana. Then, the plan is updated replacing the cucumber with a banana, as shown in the figure.

13

Xperience 270273 PU

Figure 3.8: Example of object replacement and plan updating.

14

Chapter 4

Conclusion

In the fourth year of the project the members of the consortium focused in WP3.1 on designing and
building a general, broadly applicable learning infrastructure. The high level autonomy of the ROAR
system can open up new application areas where the idea of structural bootstrapping can be exploited
in the future.

15

References

[1] Severin Fichtl, Andrew McManus, Wail Mustafa, Dirk Kraft, Norbert Krüger, and Frank Guerin.
Learning spatial relationships from 3D vision using histograms. In 2014 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 501–508, Hong Kong, May 2014. IEEE.

[2] Peter Kaiser, Mike Lewis, Ronald P. A. Petrick, Tamim Asfour, and Mark Steedman. Extracting
common sense knowledge from text for robot planning. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA 2014), Hong Kong, China, 31 May– 7 June 2014.

[3] Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

[4] Wail Mustafa, Nicolas Pugeault, and N Krüger. Multi-View Object Recognition using View-Point In-
variant Shape Relations and Appearance Information. In IEEE International Conference on Robotics
and Automation, 2013.

[5] Bojan Nemec, Denis Forte, Rok Vuga, Minija Tamosiunaite, Florentin Wörgötter, and Aleš Ude. Ap-
plying statistical generalization to determine search direction for reinforcement learning of movement
primitives. In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids),
pages 65–70, Osaka, Japan, 2012.

[6] Bojan Nemec, Rok Vuga, and Aleš Ude. Exploiting previous experience to constrain robot sensorimo-
tor learning. In 2011 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids),
pages 727–732, Bled, Slovenia, 2011.

[7] Sandor Szedmak and Justus Piater. Learning object-action relations via knowledge propagation.
Technical report, University of Innsbruck, 2012.

[8] Emre Ugur. Bootstrapping multi-object affordance learning using learned single-affordance features.
Technical report, University of Innsbruck, 2014.

[9] Hanchen Xiong, Sandor Szedmak, and Justus Piater. Towards maximum likelihood: Learning undi-
rected graphical models using persistent sequential Monte Carlo. In 6th Asian Conference on Machine
Learning (ACML14), 2014. (To appear.).

16

Attached Articles

[FKKG14] Severin Fichtl, Dirk Kraft, Norbert Krüger, and Frank Guerin. Bootstrapping: Knowledge
Transfer from Learned Action Preconditions to new Actionsaffordance learning with learned
single-affordance features. 2014. To be submitted.

[SP14] Sandor Szedmak and Justus Piater. Roar server interface. Technical report, University of
Innsbruck, 2014.

[SUP14] Sandor Szedmak, Emre Ugur, and Justus Piater. Knowledge Propagation and Relation Learn-
ing for Predicting Action Effects. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 623–629. IEEE, 09 2014.

[UP14] Emre Ugur and Justus Piater. Emergent Structuring of Interdependent Affordance Learning
Tasks. In The Fourth Joint IEEE International Conference on Development and Learning
and on Epigenetic Robotics, 10 2014. To appear.

[UP15] Emre Ugur and Justus Piater. Bottom-Up Learning of Object Categories, Action Effects and
Logical Rules: From Continuous Manipulative Exploration to Symbolic Planning. Technical
report, University of Innsbruck, 2015.

[USP14a] Emre Ugur, Sandor Szedmak, and Justus Piater. Bootstrapping paired-object affordance
learning with learned single-affordance features. In The Fourth Joint IEEE International
Conference on Development and Learning and on Epigenetic Robotics, 10 2014. To appear.

[USP14b] Emre Ugur, Sandor Szedmak, and Justus Piater. Complex affordance learning based on basic
affordances. In 22nd Signal Processing and Communications Applications Conference, pages
698–701. IEEE, 04 2014.

[VNU14] Rok Vuga, Bojan Nemec, and Aleš Ude. Speed profile optimization through directed explo-
rative learning. In IEEE-RAS International Conference on Humanoid Robots (Humanoids),
pages 547–553, Madrid, Spain, 2014.

[XSP14a] Hanchen Xiong, Sandor Szedmak, and Justus Piater. Implicit Learning of Simpler Output
Kernels for Multi-Label Prediction. In NIPS workshop on Representation and Learning for
Complex Outputs, 2014. To appear.

[XSP14b] Hanchen Xiong, Sandor Szedmak, and Justus Piater. Joint SVM for Accurate and Fast Image
Tagging. In European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning, 4 2014.

[XSP14c] Hanchen Xiong, Sandor Szedmak, and Justus Piater. Multi-Label Learning with Kernel
Generalized Homogeneity Analysis. Technical report, 2014.

[XSP14d] Hanchen Xiong, Sandor Szedmak, and Justus Piater. Scalable, Accurate Image Annotation
with Joint SVMs and Output Kernels. Neurocomputing, 2014. To appear.

17

1

Bootstrapping: Knowledge Transfer from Learned
Action Preconditions to new Actions

Severin Fichtl, Dirk Kraft, Norbert Krüger and Frank Guerin

CONTENTS

I Introduction 1

II Related Work 2

III Methods 4
III-A Experimental Setup 4

III-A1 Objects 4
III-A2 Actions 4

III-B The Robotic Perception System 5
III-B1 Sensed Internal State Space . 5
III-B2 Vision Based External State

Space 5
III-C Classifiers 9

IV Learning Preconditions and Categories for Boot-
strapping 9

IV-A Learning (Visual) Preconditions 9
IV-B Learning of (Visual) Categories 9

IV-B1 Manual Learning of Categories 10
IV-B2 Automatic Detection and

Learning of Categories . . . 10

V Transfer of Knowledge for Bootstrapping 11
V-A Bootstrapping With Already Learnt Ac-

tion Preconditions As Knowledge Source 12
V-B Bootstrapping With Manualy Learned

Categories 12
V-C Bootstrapping With Automatically Cre-

ated Categories 12
V-D Comparison of Results 12

References 14

Abstract—Learning the effect of actions in complex cluttered
environments using vision input is a difficult task. Especially
the effect of multi-object manipulating actions requires many
training samples to learn reliable outcome predictors.

We learn Random Forest based success predictors from high
level visual input histograms (see [1], [2]) and demonstrate boot-
strapping by reusing already learnt knowledge from previously
learnt actions in two different ways.

We demonstrate both, direct and abstract knowledge transfer
for bootstrapping. In direct bootstrapping, predictors are trained
with the outputs of previously learnt predictors as additional
inputs beside the state space. For abstract knowledge transfer
we learn abstract concepts that capture underlying commonalities
of two or more existing predictors and use the output of these
concepts as additional data inputs for new predictors.

Figure 1 illustrates the prediction accuracy for a pushing
action involving 2 objects. Related to this pushing action are

the actions Pull and Lift and the Lift_Pull concept which
is created from the Lift and Pull predictor knowledge. The
Take action is unrelated. It can be seen in the Figure 1 that
unrelated knowledge does not help to bootstrap learning. Related
knowledge, however, leads to remarkable bootstrapping effects
with the abstract knowledge concepts bootstrapping surpassing
direct bootstrapping.

Fig. 1: Learning to push with and without bootstrapping

I. INTRODUCTION

We are interested in grounding knowledge in a robot’s
own sensorimotor experience, this approach is an accepted
principle of developmental robotics [3]. A major problem with
this approach is that it takes a long time to learn through
robot experience. The state of the art in artificial development
and learning methods does not permit a robot to learn from
experience as rapidly as an infant. This mirrors problems in
other areas of artificial intelligence such as speech recognition
where systems need orders of magnitude more data to learn
from than a small child is exposed to [4]. The added difficulty
in robotics is that we do not have a large data set to run
the learning algorithm on, a robot must first go through the
slow process of trying actions out in the world. This problem
of slow learning has generated interest in methods that can
bootstrap the learning [5], [6]1. The basic idea is that if we
have some grounded knowledge we should be able to learn
more or similar things faster. In this paper we focus on one
type of knowledge that is important to a robot that must
manipulate various objects, that is the knowledge of spatial
relationships that determine the outcome of actions on object
pairs. In summary our problem has three aspects:

1Note that the use of ‘bootstrap’ here is not the standard use in Machine
Learning, but more akin to the layman’s use.

2

1) Learning spatial relationships that determine the outcome
of actions.

2) Learning by grounding in the robot’s own action.
3) Learning rapidly.

In previous work we have developed a histogram feature
which is good at capturing knowledge of spatial relationships
for a variety of objects [2]. This paper uses this feature and
focuses on speeding up the learning of preconditions that
determine the outcome of actions, such as pushing an object
which is under another, or lifting an object which contains
another.

We now discuss the importance of the three aspects of our
problem. Firstly spatial relationships are extremely important
for robotic manipulation e.g. in service robots, to determine
the outcome of actions in everyday home environments; for
example, trying to reach something that is partly obstructed by
another object, or pulling or lifting something when another
object is on top or inside of it. These are the kinds of situations
that children are competent with, and in looking at how infants
first acquire this knowledge we see the close connection with
means-ends behaviours involving more than one object (i.e.
when one action is used as a means to achieve some other
end goal). Infants start to appreciate importance of spatial
relationships when they begin exploring means-end actions
at around 8 months [7], [8], and means-end behaviour is the
start of planning: how to use one action as a step to achieve
some more distant goal. Hence learning spatial relationships
that determine the outcome of actions are a crucial part
of the problem of robots learning planning operators for
manipulation.

Secondly, grounding in a robot’s own actions helps to
avoid problems with classical AI which relied on a human’s
judgement of what knowledge and representation might be
appropriate for the robot [9]. Handcoded knowledge tended
to result in brittle systems (i.e. they broke down when the
task went outside the scenarios that the human had foreseen).
Knowledge learnt from action can be expected to be more use-
ful to the robot, and more robust, in line with the “Verification
Principle” [3], [10]:

An AI system can create and maintain knowledge
only to the extent that it can verify that knowledge
itself.

Thirdly rapid learning is important because there is a great deal
to be learnt in order to achieve a basic level of manipulation
competence in everyday environments, such as a child has.
Spatial relationships are only one small segment of the com-
monsense knowledge that is required. Also it typically takes
a large amount of data to ground knowledge in the robot’s
own actions, and this data is usually hard to generate. If any
technique can reduce the requirement for data it would be
enormously beneficial.

Previous work has tackled learning spatial relationships
from vision [2], [11], and grounding knowledge [12], [13],
[14], our focus in this paper is the rapid bootstrapping of the
learning.

In artificial Intelligence in general various methods have
been tried to accelerate learning. For example intrinsic moti-
vation or active learning [15], [16] which can avoid wasting
time on training examples which are not useful. This seems to
be one of the techniques employed by humans in development,
but it alone does not account for the rapidity of learning;
what is needed in addition is some way to reuse past similar
knowledge when it is relevant to the current learning task. This
is also called transfer learning [17]. There are good examples
of transfer learning for motor policies for example [18], [19],
[20], but we do not find many examples of transfer learning
in the learning of preconditions determining the success of
actions (recent work by Ugur et al. [6] being an exception).
This is a relatively new area of investigation.

Our key technique for bootstrapping is inspired by works
in cognitive science where symbolic knowledge is learnt from
interaction and can then be reused where it benefits subsequent
learning, for example the ‘synthetic item’ of Drescher and
Chaput [21], [22]. These techniques have not been applied to
high dimensional robot manipulation scenarios to the best of
our knowledge (Ugur et al. [6] being an exception). In our
work we learn categories from early experience, where these
categories correspond with spatial relationships like ‘on top’
or ‘inside’. Note that these categories are not imposed by the
human designer, but rather are learnt by a classifier whose task
is to discriminate situations, from visual input, where a certain
action will have one outcome or another. These categories can
be then used as a binary input to subsequent learning, resulting
in a speedup where they have discriminative power. The visual
input used for learning is RGB-D data which is compiled into
histograms (as in [2]). We learn from simulated robot actions
as this was the only feasible way to generate the thousands
of examples we needed to compare different approaches. Our
results show that learning from these categories gives a greater
speedup in learning than other approaches, e.g. to achieve 90%
accuracy take 10% of the number of training samples (see
Sec. V-B).

This work is related to and partly builds on previous
work [12], [23], [2] which did learn classifiers predicting
the outcomes of actions. The main new contribution here
is the bootstrapping of the learning, evaluating various new
techniques (Sect. V); in addition Sect. IV-B1 provides new
more extensive results than presented in Fichtl et al. [2].

II. RELATED WORK

Our work learns classifiers which discriminate between
possible effects of an action on a pair of objects in some
relationship. This is quite close to work on learning relational
“affordances” (i.e. not just the affordance of a single object, but
a pair). Ugur et al. [6] learn “paired object affordances” for the
action of stacking. In this work the stack action was attempted
with 18 pairs of random objects. The input to the learner was a
set of shape features for each object (consisting of histograms
of normal vectors for various points on the object’s surface).
The effects observed were “tumbled over”, “piled up” (i.e.
successfully stacked), “covered” (when the top object is a
cup that covers and completely contains the lower object),

3

and “inserted in” (when the lower object is the container and
the top object drops into it). Classifiers were learnt to predict
which effect would occur given the visual features of the pair
of objects. There are some similarities and differences with
our work. There is a significant difference in the training data
in that we are looking at objects already in a relationship, in
order to determine the effect of an action, whereas Ugur et al.
are looking at the features of the two objects before they are
put in a relationship, in order to determine what relationship
they might end up in after an action. Because of this it is
clear that it is important for us to look at relative position,
whereas that would not make sense in Ugur et al.’s case. Ugur
et al. give as input the combined set of shape features of the
two objects, hence their classifier has the opportunity to learn
relationships among the objects’ features. This is similar to
our work, except that we go even further, and to some extent
“rig the game” in favour of paying attention to relationships,
because our histogram feature is compiled from relationships
among parts of the objects.

Our histogram approach is inspired by the approach of
Mustafa et al. [1]. That work compiles histograms over re-
lationships between surface patches (distances and angles) in
a single object. These histograms characterise the object, and
are quite robust to variations in viewpoint. Mustafa et al.
use this for object recognition. In our work we borrow the
idea of compiling histograms over relationships among surface
patches; however we look at pairs of objects, and compile
histograms which relate every patch on the first object with
every patch on the second. Our idea is that these histograms
should characterise the relationship between the objects. We
are not aware of any other work which uses a feature computed
from relationships among parts of two different objects.

Although there is rather a lot of work on affordances, it has
been noted by Moldovan et al. [24] that there is very little work
on relational affordances (i.e. the actions afforded by a pair of
objects in a particular spatial relationship). In their work the
relational features considered are relative distance between two
objects, the relative orientation of one with respect to the other,
and whether or not they are touching. We go for a much richer
relational description looking at much finer grained details of
the objects, which can capture such things as one object having
elements enclosing another, or in front of another etc. Rosman
and Ramamoorthy [11] learn spatial relationships between
objects using a support vector machine based approach. In this
approach the support vectors are picked from for their ability
to differentiate the point cloud into two objects. This has the
effect that the subset of points considered by the classifier are
on the edges of the object. Relations are then learnt based upon
the relative positions of clusters of the support vectors (the
scene is reduced to clusters with xyz coordinates). Compared
to both of the above cited works believe that our histogram
based approach captures a higher proportion of the important
information about the relations between objects in the scene,
whereas much of this information is discarded by the above
approaches.

One particularly interesting work on support relations is
by Panda et al. [25]. This is considerable more elaborate
and advanced than our approach in a number of respects.

With regard to manipulating objects in clutter the authors
state that “The interaction with surrounding objects in the
environment must be considered in order to perform the task
without causing the objects fall or get damaged.” The work
exploits a number of visually derived features regarding the
relationship between the objects: proximity, boundary overlap,
depth boundary, containment, relative stability. In addition a
rule based method is employed to infer what supports what,
when multiple objects are stacked or leaning on each other.
This method implicitly embodies significant commonsense
knowledge about how things can be supported in a hierarchy.
The system allows for more sophisticated reasoning about
support relations than is possible with our method. However,
we have approached the problem more from a developmental
robotics perspective; we are attempting to see what the system
can learn without significant prior knowledge, and learning
from the effects of its actions. Our approach to reach the level
of sophistication of Panda et al.’s work would be to attempt
to get the system itself to learn about the rules governing
hierarchical support orders in gradual incremental steps. The
reasons for our preferring the developmental approach have
been discussed elsewhere [12]. Briefly: such an approach
could be more robust because the system’s knowledge (e.g.
naive physics) is grounded in its own experience, and can be
revisited at any time if new data calls it into question and
requires adjustment for cases not encountered before [10]. In
contrast, where knowledge is input by a human designer the
system will be brittle, and will only be reliable in situations
that the human designer has foreseen, and it is unlikely that all
eventualities can be foreseen for robots working in everyday
environments.

A second aspect of our work which deserves comparison
with others is the bootstrapping. Ugur et al. [6] bootstrap
the learning of a “stacking” affordance by first learning a
“rolling” affordance (items which can roll are usually not good
candidates to stack something on top of). This is in the same
spirit as our approach; where Ugur has rollable as an input
to the second stage of learning, we have several categories.
We have attempted to learn a variety of categories because
the robot does not know in advance which (if any) might be
useful in later stages of learning.

We do not feel that our work is particularly close to com-
puter vision work in scene understanding (e.g. [26]) because
those works typically recognise all objects, and then can use
higher level knowledge to assist in understanding. Our work
in contrast is at a lower level, and is more concerned with
the physical relationships among surfaces without regard for
object knowledge. We think of it more like how an infant might
recognise simple physical relationships between household
objects without any idea of what their names are or what their
typical purposes are.

We can also relate our work to infant development. In
the period from six months of age through to two years
human infants undergo significant development in their skills
and understanding relating to physical world objects and
their manipulation. Observations of infants show that, at any
particular age, they possess a repertoire of behaviours or
manual skills which they apply to various objects or surfaces

4

they encounter [7], [27]. Each such behaviour could be seen
as roughly analogous to a planning operator in Artificial
Intelligence, because there are situations which make them
likely to be executed (like the precondition of a planning op-
erator), and expected effects (postcondition), as well as some
motor control program describing the behaviour executed. As
infants develop they solve the problems of (i) identifying
when a new behaviour should be created, (ii) learning the
new precondition, (iii) postcondition, and (iv) motor program
for the new behaviour. In this paper, we focus on learning
the precondition for a new behaviour. This is a particularly
interesting problem in the case of means-ends behaviours
(i.e. where one action is used in order to facilitate another
[28]), because it is through learning means-ends behaviours
that infants begin to learn about relationships between objects
[29]. The precondition must capture the relationship between
objects which determines where the behaviour works or does
not work. In preconditions the infant is learning new important
abstractions over its sensor space. This can change how an
infant understands a scene because the infant can begin to see
things at a higher level of abstraction, seeing precisely those
relationships which are important in determining what object
manipulations are possible (by itself or other agents).

III. METHODS

In this section we describe the simulated environment, the
objects and actions used, the robotic perception system and
the classifier algorithm used for experiments and learning in
section IV.

A. Experimental Setup

In this work, we collected data using a physically realistic
simulation environment [30], [31] designed for robot simula-
tions and a vision system using a simulated Kinect camera (See
III-B). As robot we use a simulated six degrees of freedom
(DOF) arm mounted on a table with a two finger gripper as
its hand.

DIFFERENTIATION

INITIAL SCHEMA NEW SCHEMA

Pulling the cloth/tray toexamine/touch/feel it. Pulling the cloth/tray inorder to get the keys
SENSORIMOTOR

Fig. 2: Illustration of Robot Simulation Environment.

In the experiments, the robot used a set of object pairs (See
III-A1) to perform a series of actions (See III-A2) on them
and recorded the initial and final state spaces (See III-B) and
also action success/failure labels. To compare the contribution
of this work to earlier work [2], the spatial relations between
object pairs in the environment during the initial states have
also been labeled2. Labels can be one of the following three:

1) “Ontop”: One object resides on top of another object, e.g.
a cup on top of a kitchen tray

2) “Inside”: One object is inside of another object, e.g. a die
inside of a box

3) “Beside”: The two objects are just lying around, and
neither of the two other relations holds.

Code was written to automate the labelling, based on the
known positions of the objects from the simulator, and their
dimensions (e.g. it was possible to work out if one object was
on top of another). The data gathered during these experiments
is used in all subsequent learning sections.

In the following, we will describe in more detail the objects
used, their distribution in the environment and the actions
performed during the experiments.

1) Objects: In our experiments we used an overall set of
24 Objects, which can be grouped into four different groups
(See Figures 3 to 6)3:

1. Toys (5 Objects)
2. Bases (15 Objects)
3. Obstacles (5 Objects)
4. Rakes (5 Objects)

2) Actions: The robot was equipped with nine actions it
could perform.

1) Lift: Grasp base object and Lift both objects in one go.
2) Move: Move to toy object and push both objects aside

together by pushing against toy.
3) Pull: Grasp base object and Pull both objects in one go.
4) Push: Grasp base object and Push both objects in one go.
5) Rake: Use rake to bring toy object closer.
6) Take: Grasp and Lift toy object without running into other

objects, e.g. side of a container.
7) Tilt (pour): Lift and tilt base object with toy object

remaining in relative position to base object, e.g. Dice
in Cup.

8) Tilt (slide): Lift and tilt base object with toy object
changing relative position to base object, e.g. Cup on
Plate.

9) Unobstruct: Grasp and move obstacle object to turn toy
object reachable.4

The Figures 7 to 15 Illustrate the how the actions work.
The subfigures a) and b) show the scene either before or after
the initial part of the action, e.g. in Figure 7a shows the robot
after moving to grasp the base object, but before Lifting it

2Note that these spatial relations recorded here are independent of any
actions.

3One Object (Cup) is member of two Groups (Toys and Sup-
ports/Containers)

4Here, reachability of toy object before and after moving potentially
obstructing object was tested via inverse kinematics

5

(a) Cup (b) Dice (c) Duck (d) Teddybear (e) Turtle

Fig. 3: Toy Objects

(a) Bowl (b) BowlHigh (c) BowlMedium (d) BowlShallow (e) Box

(f) BoxShallow (g) Cup (h) Plate (i) PlateContainer (j) PlateHole

(k) PlatePlateau (l) Tray (m) TrayCut (n) TrayExt (o) TrayPlateau

Fig. 4: Base Objects

(a) Corny box (b) Obstacle1 (c) Obstacle2 (d) Obstacle3 (e) Obstacle4

Fig. 5: Obstacle Objects

(a) Rake1 (b) Rake2 (c) Rake3 (d) Rake4 (e) Rake5

Fig. 6: Rake Objects

as seen in 7b. Subfigures c) and d) show the same action
but demonstrate a scene where the action fails. Note, that the
actions where preprogrammed and followed simple paths, not
taking into account potentially obstructing objects or changes
in the environment caused or happening during the action. For
example in the case of the Take action illustrated in Figures
12c and 12d, the robot follows a simple straight path towards
the toy object to grasp. By doing so the robot runs into the side
of the object containing the target toy, moving the container
with the toy away. The robot then proceeds with the grasp
where it expected to find the toy, leading to action failure.

If the object selected to perform the action on is out of
reach, naturally the action will fail (See Figures 16d and 16e.)
Another reason for failure is the fact that the action motor
program follows a too simple approach. The robot calculates
a target position for the gripper to manipulate an object and
calculates approriate joint angles via forward kinematics. The
robot then drives the joint angles directly to the calculated
values even if such a path is not possible. See Figures 16a to
16c as examples of such cases.

(a) Before grasping
target object

(b) Following naiv tra-
jectory

(c) Illustration of the
error made by follow-
ing naiv trjaectory

(d) Before attempting grasp on
out of reach object

(e) After attempting grasp on out
of reach object

Fig. 16: Action Failures

For data collection purposes, every action was performed
many times on an overall of 57 Object pair combinations (Ran-
dom combinations of Toy and Base objects). Two exceptions
exist; a) the Unobstruct action was performed on 61 object pair
combinations as the Obstacle objects where used alongside the
base objects as potential obstructions. And b) the Rake action,
which was perfomed on only 23 object pairs5

B. The Robotic Perception System

A system’s state space represents the robot and its environ-
ment to the degree that it is observable to the robot itself. The
state space of our robot consists of two parts, an internal and
an external state space.

The internal state space describes the state of the robot
embodiment (see section III-B1). The external state space
describes the perceptible environment outside of the robot (see
section III-B2).

1) Sensed Internal State Space: In our system, the robot
is aware of its own configuration that makes up the internal
internal state space. In particular the robot “senses” the
following properties:

• The Joint Angles of the 6DOF Arm (6 values)
• The resulting Gripper Position (3 values)
• The resulting Gripper Orientation (3 values)
• The finger configuration/openness (1 value)
These 13 values make for the internal state space.

2) Vision Based External State Space: To perceive its
environment, the robot is equipped with Kinect-based vision
capabilities, enabling the robot to extract information about
objects in the scene.

A Kinect is a 3D scanner camera system developed by
Microsoft as motion sensing input device for the Microsoft
game console Xbox 360. It is a popular alternative to expensive

5All Rake & Toy object combinations appart from Rake4 & Cup and Rake4
& TeddyBear, due to problems with the simulation with these two object pairs.

6

(a) Lift Before Suc-
cess

(b) Lift After Suc-
cess

(c) Lift Before Fail (d) Lift After Fail

Fig. 7: Lift

(a) Move Before
Success

(b) Move After Suc-
cess

(c) Move Before Fail (d) Move After Fail

Fig. 8: Move

(a) Pull Before Suc-
cess

(b) Pull After Suc-
cess

(c) Pull Before Fail (d) Pull After Fail

Fig. 9: Pull

(a) Push Before Suc-
cess

(b) Push After Suc-
cess

(c) Push Before Fail (d) Push After Fail

Fig. 10: Push

(a) Rake Before Suc-
cess

(b) Rake After Suc-
cess

(c) Rake Before Fail (d) Rake After Fail

Fig. 11: Rake

(a) Take Before Suc-
cess

(b) Take After Suc-
cess

(c) Take Before Fail (d) Take After Fail

Fig. 12: Take

(a) Tilt(pour) Before
Success

(b) Tilt(pour) After
Success

(c) Tilt(pour) Before
Fail

(d) Tilt(pour) After
Fail

Fig. 13: Tilt(pour)

(a) Tilt(slide) Before
Success

(b) Tilt(slide) After
Success

(c) Tilt(slide) Before
Fail

(d) Tilt(slide) After
Fail

Fig. 14: Tilt(slide)

(a) Unobstruct Be-
fore Success

(b) Unobstruct After
Success

(c) Unobstruct Be-
fore Fail

(d) Unobstruct After
Fail

Fig. 15: Unobstruct

stereo camera systems and provides good results in close range
applications with up to three meters distance from the Kinect
device [32].

Using a simulator for the robotic experiments, we also
simulate the Kinect camera, inclusive the noise of real Kinect
devices. This gives us data about the depth to the objects in our
3D scene just as we would have obtained from a real Kinect
looking at a real scene with 3D objects. The data from the

simulated vision system is hence more noisy and less accurate
than the perfectly accurate data which could be provided our
simulator.

The Kinect camera sensor is mounted at a high position of
the work space at the opposite side of the robot, looking down
towards the performing robot, as illustrated in Figure 17.

The Kinect records images with VGA resolution (640x480
pixels) and the vision system calculates a 3D point cloud

7

(a) Dice on a Plate (b) Robot using Rake to retrieve Dice

Fig. 17: Kinect camera looking at workspace. Scene (a) shows
a die on a plate-like object, with the robot “shoulder” visible
at the top. Scene (b) shows the robot using a rake-like tool to
pull another object.

point per pixel (307200 points per scene) (See Figure 18).
For performance reasons we sub sampled this point cloud
and used point clouds with only around 50000 points per
cloud (the actual amount of points in the sub sampled cloud
varies between 40k and 50k points). Figure 19 highlights the
difference between the high resolution and the sub sampled
point clouds.

Fig. 18: High resolution point cloud for the same scene as
Figure 17a.

(a) High Resolution Point Cloud (b) Low Resolution Point Cloud

Fig. 19: Illustration of the difference between high resolu-
tion (a) and sub sampled point clouds (b).

We acknowledge that highly sophisticated object segmenta-
tion algorithms exist [33] and we assume they could be em-
ployed to work in a more complex environment. In this work,
however, we used a trivial method for Object Segmentation.
The method we present here is based on colour information
of the “ Point Cloud”.

For this simple method to work, it is assumed that the

objects are coloured in one of a known set of colours. This
is a strong assumption also made by others, e.g. Rosman &
Ramamoorthy [11], but it could be relaxed by using more
sophisticated segmentation methods, which could take into
consideration factors like discontinuities of surface curvatures
and colour differences.

We coloured our objects either red, blue or green and the
background was black and the robot arm/hand Grey. The
points where then grouped based on their colour or were
neglected if they were Black or Grey (or any colour other
than Red, Green or Blue).

After segmentation, each object is assigned its unique set of
points. Two segmented point clouds can be seen in Figure 20.

(a) Segmented Plate (b) Segmented Die

Fig. 20: Illustration of the sub sampled and segmented point
clouds. (a) shows the Plate and (b) shows the Die

From each segmented point cloud, our vision system ex-
tracts, using PCA, the position of the object’s centre of gravity,
the object’s orientation and the object’s dimensions. Each of
these are described by three variables. These are X, Y and Z
for the position, Roll, Pitch and Yaw for the orientation and
three size values for the elongation along the objects three
PCA axes.

Fig. 21: Illustration of the Histogram creation process from
point clouds to histograms.

Using the segmented point cloud based scene representa-
tion, we create Relational Histograms to capture the spatial
relations between objects. These Relational Histograms form a
relational space into which the absolute geometric information

8

(3D position and orientation) of the 3D points is transferred.
To achieve this transfer, we define a set of relational features
which encode the spatial relationship structure of the objects
in the scene.

More specifically, for each scene we have two point clouds
Π1 and Π2 representing the segmented objects 1 and 2 in the
scene. For each cross object pair of points of the form Π1

i ⊕
Π2

j we calculate four Euclidean Distances Rd(Π1
i ,Π

2
j) (The

Euclidean Distances along the X, Y and Z axes respectively
and in the XY plane) and three Angle Relations Ra(Π1

i ,Π
2
j)

(The line through the two points is projected onto one of the
planes XY, XZ, or YZ, and we look at the angle between
the projected line and the axes X, Z and Z respectively). The
size of these feature vectors, describing the relation between
the two objects in the scene, is variable and determined by
the amount of points extracted by the vision system. As we
want to apply Supervised Learning Algorithms, we need the
input vector to be generic and of fixed length, for all possible
scenarios.

For this, instead of using the data vectors Rd(Π1
i ,Π

2
j) and

Ra(Π1
i ,Π

2
j) directly, we compute 1-, 2- or 3 Dimensional

“Relational” Histograms from the data vectors and use these
as learning data input, similar to Mustafa et al. [1].

In this work we experimented with three different kinds of
Histograms for learning spatial relations. A composite of 1D
Relational Histograms, one 2D and one 3D Histogram.

• 1D Histograms capture simple relational features between
inter-object pairs of points. For the first 1D composite
Relational Histogram, we calculate three 1D histograms
capturing the distances between points along each of
the three main axes X, Y and Z respectively and put
them together as 1D learning input. For the second 1D
composite Relational Histogram we compute the angle
relations in the 3 planes in the space opened by the three
main axes (XY, XZ and YZ planes) and calculate the
angles between points in these planes as described above.
These angle relations put together alongside the three
distance histograms, make up the second 1D Relational
Histogram.

• The 2D Histogram used in this work, captures the ab-
solute distance of inter-object pairs of points in the XY
plane and puts it into relation with the height difference
of the two points (i.e. Z difference). This process is
illustrated in Figure 21.

• The 3D Relational Histogram captures distances between
points amongst three Dimensions, in a similar fashion
as the 2D Histogram does for two Dimensions. For the
3D Histogram, however, we used the actual position
differences amongst all three main axes (X, Y and Z).
3D Histograms have not been graphically illustrated in
this paper mainly because they did not give particularly
good results, so it was less interesting to inspect them
visually.

Mustafa et al. [1] have demonstrated the potential of his-
tograms for object recognition. However, we found the lack
of generalisation capabilities of Random Forests to be a limi-
tation in their applicability when it comes to learning spatial

relations, as it is of major importance to be able, to not only
recognise relations between known objects, but also for never
before seen objects. In this we differ from Mustafa et al. who
aimed at recognizing known objects. Therefore in order to not
only increase the learning performance, but especially increase
the robustness of recognising spatial relations among novel
objects, we implemented some feature vector and histogram
post processing methods.

The efficiency of these post processing methods on the
spatial recognition rate and robustness was investigated in prior
work [34]. Given the clear improvements shown there, we use
these methods for all learning in this paper.

• Histogram Normalisation
Histogram Normalisation proved to vastly increase the robust-
ness of the recognition rate when it comes to novel object
pairs and their relations [34]. This is not surprising as the
numbers in the un-normalised histograms rely heavily on the
sizes of the objects, and the amount of point cloud points
extracted for them by the vision system. Hence, two large
objects would generate bigger numbers than two small objects
in the same relation. The according histograms would hence
look very similar but with different scales. Normalising these
histograms removes these scaling effects caused by the sizes
of the objects.

E.g. the two imaginary histograms [1|2|4|1] and [2|4|8|2]
could describe the same relations for objects pairs with differ-
ent sized objects. Normalisation would bring both histograms
down to [0.25|0.5|1|0.25] and hence remove the differences
caused by the object sizes, allowing them to be recognised as
the same spatial relation.

• Histogram Smoothing
Histogram Smoothing using normal Gaussian smoothing con-
sidering only direct neighbours (i.e. Window size 3) was also
found to increase performance, but with a smaller effect on
the robustness in case of novel objects [34]. For Smoothing
we applied a standard Gaussian Smoothing algorithm with a
variance σ2 = 1 and a window size of three bins, i.e. only
direct neighbours to values are taken into account for the
smoothing.

Smoothing was found especially useful when used on 2D
and 3D Histograms as these are naturally quite sparse, also
compared to the according 1D histograms. The smoothing
accounts for noise in the histograms caused by Kinect camera
and the limits in its resolution.

• Logarithmic Scaling
We apply Logarithmic Scaling to the feature vectors preceding
the creation of Histograms. This logarithmic scaling had the
biggest impact on general classification performance [34] but
was only applied on distance features; the angle relation
features were not scaled as this would not be sensible.

To scale the data, we replaced the original values of the
feature vectors, i.e. distances, with f(x) = ln(x + 1). This
logarithmic scaling has the effect that in the histograms created

9

from the scaled feature vectors, for small distances there is a
higher resolution than for larger distances. This has a positive
effect because in the smaller distances lies the most useful
information about spatial relationships. It is evident, that if
the distance between inter-object pairs of points is large, the
two objects are unlikely to be in a “Ontop” or “Inside” relation,
but instead are unrelated distributed in the scene.

C. Classifiers

To predict success of actions in a particular scene, we
use ensemble classifiers based on the Random Forest [35]
algorithm. Random Forests (RF) are particularly well suited
for our use case, as they inherently do feature selection and
hence identify the relevant features from the (potentially) large
amount of state space variables (See III-B).

Figure 22 illustrates the a schematic of predicting action
success based on internal and external state space inputs.

Vision
System

(Object positions
and orientations

and relational
histograms)

Random
Forest

Classifier

Success
Prediction

Internal State Space
Robot Arm Joint Angles
Gripper opening etc.

External State Space
 Vision Input

Fig. 22: Learning of Visual Preconditions.

To parameterise the Random Forests we followed Breiman’s
et al. guidelines as layed out in his paper [35] and on his
web page about Random Forests [36]. The amount of trees
(ntrees) in our forests is dependent on both, the amount of
samples available for training (nSamples), and the amount
of variables in the state space (nDims), where

nTrees = 150 +
√
nSamples ∗ nDims

For each tree in the forrest we use 2
3 of the samples in the

training set to train the tree. We use standard C4.5 Trees as
base classifiers using Gini impurity criterion to split nodes and
do not prune the Trees in any way. To grow each tree as much
as possible, we set the minimum size for a partition is set to
1 and the maximum depth of the tree to the largest possible
signed 32bit integer value

depthMax = 231 − 1

For every split, each tree uses all samples available to it (23
of the samples available to the Forest). But, for every split, at
each node, out of nDims, only m << nDims are randomly
picked and the best split on these is used to split the node,
where

m =
√
nDims

IV. LEARNING PRECONDITIONS AND CATEGORIES FOR
BOOTSTRAPPING

In this paper we aim to demonstrate how the learning
of preconditions for robot manipulation actions can be ac-
celerated by knowledge transfer from already learnt actions
(Bootstrapping). More specifically, we find that preconditions
learnt for certain actions may implicitly capture a category,
for example the category of being ‘on top’, or ‘not on top,
or ‘inside’, etc. We avoid calling these concepts because
a concept suggests a complex package of information, e.g.
knowledge of situations or associated actions (see Barsalou
[]), whereas we are talking about something more restricted: a
simple classifier determining the presence of a critical aspect
of a scene, e.g. spatial relationship category. These implicit
categories can be extracted and treated as an explicit symbol
to be used as input to the learning of subsequent preconditions.
Our results found that this approach effectively bootstrapped
the learning.

A. Learning (Visual) Preconditions
In this section, we will first demonstrate and evaluate

learning action preconditions using a “standard” approach
without any bootstrapping.

The goal of the classifiers trained here is to accurately
predict whether their associated action can be executed suc-
cessfully in a given scene, depending on the objects and their
relative positions. The training input for, and the classifiers
themselves, are collected and created as described in section
III-A. Figure 22 illustrates a schematic of predicting action
success.

These basic precondition classifiers serve two purposes:
Firstly, they illustrate the “standard” learning rate for learning
preconditions when learning without bootstrapping and will be
used as a baseline for comparison in the following sections.
Secondly, they constitute the “knowledge” which will be used
for bootstrapping in the following sections.

Figures 23a to 23d illustrate the learning rate for the
different actions using different state space representations.

As can be seen by comparing the different Figures, an
appropriate state space representation is of significant im-
portance for learning. The more expressive state representa-
tion using Histograms massively outperforms learning without
Histograms. The “Take” action, however, serves as a good
example of the potential shortcomings of hand designed state
spaces. The extended state space representation does not ben-
efit the “Take” precondition classifier, instead, the increased
amount of input variables causes a decrease of it’s learning
speed (curse of Dimensionality).

In Section V we not only demonstrate that competetive im-
provements can be achieved using bootstrapping in a develop-
mental robotics approach, rather than engineering state space
representations. We also demonstrate that both approaches
can work together where bootstrapping further increases the
learning performance in hand designed state spaces.

B. Learning of (Visual) Categories
In this section we compare two different approaches for

obtaining categories. These categories will subsequently be

10

(a) Learning without Histogram based state space. (b) Learning with 1D Histogram based state space.

(c) Learning with 2D Histogram based state space. (d) Learning with 3D Histogram based state space.

Fig. 23: Illustration of the precondition learning speed for 6 actions in different state spaces without bootstrapping.

used to bootstrap learning of preconditions in Section V.
1) Manual Learning of Categories: Our first approach for

learning categories relies on human supervision to define
categories expected to be useful, e.g. the spatial second order
categories “On top”, “Inside” and “Beside” (See Section III-A
for a more detailed description of the spatial categories used).
This is an approach we followed previously in [2], where we
trained classifiers to recognise spatial categories.

In this work we partly repeated this work on our new
and extended sample data base, but focussed on the spatial
categories mentioned above.

These manually learnt categories will serve as another
baseline for comparison. They demonstrate the performance
boost achievable via bootstrapping when using engineered
categories, and will compete against autonomously found
categories.

Section V-B will demonstrate how these recognised cate-
gories can be used to improve the speed of convergence when
learning action precondition classifiers.

Figure 24 illustrates the performance of recognising the
manually chosen categories in Different State spaces. As can
be seen, the Histogram based state spaces allow for higher
performance. These results, however, are based on only 300
training samples and 150 validation samples. Both, training
set and validation set, incorporate data from the same object
pair combinations and only a subset of two toy objects (Duck
and Dice) and six base objects (Bowl, Box, BoxShallow, Plate,
PlateContainer and Tray) have been used. For a more thorough
analysis of spatial category learning we refer the reader to [2].

2) Automatic Detection and Learning of Categories: One
contribution of this work is the automatic detection of cate-
gories in the environment. Unlike above, the goal is to have
the robot find these categories of the environment through

Fig. 24: Illustration of spatial category recognision perfor-
mance in different state spaces. 0D represents a state space
without Histogram extension, while 1D, 2D and 3D stand for
respective Histograms used to extend the state space.

interaction, without utilising human knowledge.

Our approach aims to focus on categories that are indeed
useful, not just any category in the environment as e.g. unsu-
pervised Learning / clustering could find them. Our hypothesis
here is, that basing the creation of categories on already
established predictors and their commonalities, lets us find
categories that describe exactly these commonalities that are
in fact important for predicting some already existing action
outcomes. We assume that categories important for at least two
predictors might be important for further action predictors and
are therefore worthwhile to create and extend the state space
with. Categories in the environment that are unpredictive, i.e.

11

not useful for predicting the outcome of actions, would only
clutter up the state space without adding any benefit.

The robot can automatically find the categories as follows:
After learning at least two action precondition classifiers, the
system records the correlation between pairs of classifiers. To
compute the correlation between classifiers, both classifiers are
presented with the same inputs, e.g. as the robot interacts with
the environment. The robot then records the prediction of each
of the classifiers for all inputs and calculates the correlation
between these predictions.

This correlation serves as a heuristic, indicating that there
might be a common underlying category shared between the
two actions and their preconditions. If the correlation between
two classifiers exceeds a certain threshold, a category classifier
is created. Figure 25 illustrates the search for correlations
between two action precondition classifiers.

Action Precondition Classifier J

Action Precondition Classifier I

Vision
System

(Object positions
and orientations

and relational
histograms)

Random
Forest

Classifier

Success
Prediction

Internal State Space
Robot Arm Joint Angles
Gripper opening etc.

External State Space
 Vision Input

Vision
System

(Object positions
and orientations

and relational
histograms)

Random
Forest

Classifier

Check for Correlation here
create concept if appropriate

Success
Prediction

Fig. 25: Searching for correlations between precondition clas-
sifier as heuristic for learning new categories.

There are different possibilities how a category classifier
could be created from two individual classifiers. In this work,
we describe and present results of the simplest method.

To create a category classifier, we combine the training data
that was used to train the two or more individual classifiers
that were found to correlate. This combined training set is
then used to train a new classifier, that encodes the underlying
commonalities of the original classifiers. Figure 26 illustrates
the creation of a category classifier.

Internally we use supervised learning to create classifiers
here, however we do not report any learning performance
results at this point. The idea here is that the classifiers cap-
ture arbitrary potential underlying commonalities. Reporting
performance is meaningless without understanding what the
classifiers actually captured. Our hyptothesis is, that these
automatically created categories resemble, to some degree,
the manually created spatial categories from Section IV-B1.
We are in the process of analysing the similarities between
manually and automaticaly created categories and will report
our findings in a future publication. Most likely, automatically

Category Detector

Vision
System

(Object positions
and orientations

and relational
histograms)

Random
Forest

Classifier Category
Label

Training Dataset I

Training Dataset J
&

Fig. 26: Illustration of creating a new category classifier. Using
the combined data, used for learning individual preconditions,
a new classifier is created to detect common underlying
categories.

created category classifiers capture even more knowledge, e.g.
the fact that objects can not be manipulated if they are too far
away from the robot. Unlike the manually created categories,
the automatically created ones will capture multiple such
commonalities between actions at the same time.

V. TRANSFER OF KNOWLEDGE FOR BOOTSTRAPPING

In this Section we describe our approach to bootstrapping
in more detail and present results using different knowledge
Sources for bootstrapping.

The idea behind bootstrapping is to reuse knowledge to
increase learning speed of new actions. We achieve boot-
strapping by using the classifiers presented in Section IV-A
as knowledge sources. In particular, we add the output (pre-
diction) of already learnt action precondition classifiers or
category classifiers as input for learning of new problems.
Figure 27 illustrates the general structure of learning with
bootstrapping.

Vision
System

(Object positions
and orientations

and relational
histograms)

Random
Forest

Classifier

Success
Prediction

Internal State Space
Robot Arm Joint Angles
Gripper opening etc.

External State Space
 Vision Input

Category

Fig. 27: Bootstrapping learning by reusing existing (category)
knowledge.

In the following subsection we will first present brief results
of the individual approaches to bootstrapping. A more thor-
ough comparison of the different approaches to bootstrapping
can be found in section V-D.

12

A. Bootstrapping With Already Learnt Action Preconditions
As Knowledge Source

The most basic approach to bootstrapping followed here,
is extending the state space of a new action precondition
classifier with the prediction output of a precontidion classifier
learnt for a different action.

If these two actions are related or at least have similar pre-
conditions required for the actions to succeed, then knowing
the prediction for one action can be seen as a heuristic to
predict success of the other action.

Figure 28 demonstrates the bootstrapping results of this
approach in the different state spaces. Comparing 28a with
Figure 23a from above, the increase in learning speed achiev-
able through bootstrapping becomes evident.

Figure 29 illustrates the bootstrapping effect on the “Lift”
action when using different actions as Input. As can be
seen bootstrapping “Lift” with “Pull” a significant increase
in learning speed can be achieved, while bootstrapping “Lift”
with “Take” does not improve learning speed, but is slightly
counter productive instead. This confirms that positive results
require a “good” knowledge source for bootstrapping, e.g. in
this case similar or related actions.

B. Bootstrapping With Manualy Learned Categories

In our previous work [2], we argued for the usefulness of
recognising spatial relations for (multi object) manipulation
tasks in complex environments. In this work, we want to put
our claims to the test and evaluate whether - and if so, to
what extend - our manually learnt abstractions can be used to
improve a robotic system’s performance.

Following the approach outlined above, we extend the state
space of the action precondition classifiers with the output of
the spatial category recognising classifiers.

Figure 30 demonstrates the bootstrapping result of this
approach in different state spaces. Again, with the plain state
space without Histogram in Figure 30a, the bootstrapping
effect is more evident than in state spaces with Histograms.

Figure 31 illustrates the bootstrapping effect on the “Lift”
action when using different spatial categories as Input. As in
Figure 29, one can see in Figure 31 that the availability of an
appropriate knowlegde source is crucial.

C. Bootstrapping With Automatically Created Categories

The final approach to bootstrapping followed here, is to
extend the state space of a new action precondition classifier
with the output of an automatically created category recognis-
ing classifier (see Section IV-B2 above).

Similar to our reasoning in Section V-A and Section V-B,
we expect positive bootstrapping results if the actions used
for creating the category are related to the new action (as in
Section V-A) or if the underlying category abstracted from
these actions describes a more universal aspect of the state
space (as in Section V-B).

Figure 32 Illustrates the bootstrapping result of this ap-
proach in different state spaces (as before, the bootstrap-
ping effect is most apparent in the state space without his-
togram 32a).

Figure 33 illustrates the bootstrapping effect on the “Lift”
action when using different automatically created categories
as Input. Two things can be noted here: a) the amount
of categories potentially created in our approach increases
polynomial with the number of actions available. A heuristic
for pruning out candidates before creating and trying cate-
gories is inevitable, b) the different category inputs are less
clearly separable into useful/useless than in the results above.
This is due to both, more inputs than before means more
mediocre outcomes and even from unrelated actions (unrelated
to the target action “Lift” in this case), universally “useful”
knowledge can be extracted and used for bootstrapping with
many actions.

D. Comparison of Results

Here we will more thoroughly compare the different ap-
proaches to bootstrapping presented above.

Figure 34 presents the results of the different approaches to
bootstrapping in the state space without Histograms.

Plot 34a shows learning without bootstrapping.
Plot 34b shows learning with bootstrapping using another

action as knowledge source. These results show that this
approach to bootstrapping can compete with hand designed
state space representations, in terms of achievable learning
speed of actions. Similar to the results presented in Figures 23b
to 23d, we can achieve near final performance with only 10
- 15 training samples, even in simple and unoptimised state
spaces.

Plot 34c The results show that manually learnt spatial rela-
tionship categories outperform other action classifiers when it
comes to bootstrapping.

Plot 34d This result shows that automatically created cate-
gories outperform other action classifiers as knowledge source
for bootstrapping, but they fall behind the manually learnt
categories from Figure 34c. This is not surprising, however, as
we created our manually learnt categories with the aim of im-
proving performance of actions like the ones used in this work.
Also, manually created categories cover single fundamental
categories, unlike the automatically created categories which
might weakly capture multiple aspects of the environment at
the same time (See Section IV-B2). If not all these captured
aspects are useful for bootstrapping a new action precondition
classifier, the result will be inferior to a category that is more
selective in the aspects covered. It is part of our planned
future work, to change the automatic creation of categories
in a way that leads to more individual categories, instead
of a mixture thereof. Hierarchical learning or Unsupervised
learning approaches might be the way forward.

Figure 35 shows the different approaches to bootstrapping
on three selected actions learnt with simple state space without
Histograms (left column) and 3D Histogram based state space
(right column). It can be seen, that even in hand designed state
spaces like the 3D Histogram based one, bootstrapping can
further improve the learning speed. More than in Figure 34,
the order of performance gains of the different approaches is
evident here. In both state spaces and for all three actions, the
spatial category based bootstrapping has the best performance.

13

(a) Learning without Histogram based state space (b) Learning with 1D Histogram based state space

(c) Learning with 2D Histogram based state space (d) Learning with 3D Histogram based state space

Fig. 28: Illustration of the precondition learning speed for 6 actions in different state spaces using another action precondition
output for bootstrapping. Of all the potential knowledge sources for bootstrapping, for each action, only the best result is
presented.

(a) Learning without Histogram based state space (b) Learning with 3D Histogram based state space

Fig. 29: Illustration of different bootstrapping results for Learning preconditions for the “Lift” action in (a) 0D & (b) 3D
Histogram based state spaces using different action classifiers as knowledge sources.

(a) Learning without Histogram based state space (b) Learning with 3D Histogram based state space

Fig. 30: Illustration of the precondition learning speed for 6 actions in different state spaces using spatial categories for
bootstrapping. Of all the potential knowlede sources for bootstrapping, for each action, only the best result is presented.

For bootstrapping with other actions and bootstrapping with
automatically created categories, this is less clear, however the
latter seems to tend to perform better than the first.

ACKNOWLEDGMENTS

This work was supported by the EU Cognitive Systems project
XPERIENCE (FP7-ICT-270273).

14

(a) Learning without Histogram based state space (b) Learning with 3D Histogram based state space

Fig. 31: Illustration of different bootstrapping results for Learning preconditions for the “Lift” action in (a) 0D & (b) 3D
Histogram based state spaces using different spatial category classifier outputs as knowledge sourse for bootstrapping

(a) Learning without Histogram based state space (b) Learning with 1D Histogram based state space

(c) Learning with 2D Histogram based state space (d) Learning with 3D Histogram based state space

Fig. 32: Illustration of the precondition learning speed for 6 actions in different state spaces using automatically created
categories for bootstrapping. From all categories available for bootstrapping each action, only the best result is presented

(a) Learning without Histogram based state space (b) Learning with 3D Histogram based state space

Fig. 33: Illustration of different bootstrapping results for Learning preconditions for the “Lift” action in (a) 0D & (b) 3D
Histogram based state spaces using different automatically created category classifier outputs for bootstrapping.

REFERENCES

[1] W. Mustafa, N. Pugeault, and N. Krüger, “Multi-view object recognition
using view-point invariant shape relations and appearance information,”
in IEEE International Conference on Robotics and Automation (ICRA),
2013.

[2] S. Fichtl, A. McManus, W. Mustafa, D. Kraft, N. Kruger,
and F. Guerin, “Learning spatial relationships from
3D vision using histograms,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA). Hong Kong:
IEEE, May 2014, pp. 501–508. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6906902

15

(a) Learning without bootstrapping (b) Learning with another action as knowledge source for bootstrapping

(c) Learning with spatial categories as knowledge source for bootstrapping (d) Learning with automatically created categories as knowledge source for
bootstrapping

Fig. 34: Comparisson of approaches to bootstrapping in state space without Histogram. Only the best result of each action
with bootstrapping is presented

[3] A. Stoytchev, “Some basic principles of developmental robotics,” IEEE
Transactions on Autonomous Mental Development, vol. 1, no. 2, pp.
1–9, 2009.

[4] R. Moore, “Spoken Language Processing: Where Do We Go from
Here?” in Your Virtual Butler, ser. Lecture Notes in Computer
Science, R. Trappl, Ed. Springer Berlin Heidelberg, 2013, vol. 7407,
pp. 119–133. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
37346-6_10

[5] M. Do, J. Schill, J. Ernesti, and T. Asfour, “Learn to wipe: A case study
of structural bootstrapping from sensorimotor experience,” in Robotics
and Automation (ICRA), 2014 IEEE International Conference on, May
2014, pp. 1858–1864.

[6] E. Ugur, S. Szedmak, and J. Piater, “Bootstrapping paired-object affor-
dance learning with learned single-affordance features,” in The Fourth
Joint IEEE Intl. Conf. on Development and Learning and on Epigenetic
Robotics (ICDL-Epirob), Genoa, Italy, 2014, pp. 468–473.

[7] J. Piaget, “The Origins of Intelligence in Children,” 1952.
[8] P. Willatts, “Pulling a support to retrieve a distant object,” Developmental

Psychology, vol. 35, no. 3, pp. 651–667, 1999.
[9] R. A. Brooks, “Intelligence without representation,” Artificial Intelli-

gence, vol. 47, pp. 139–159, 1991.
[10] R. S. Sutton, “Verification, the key to ai,” 2006, unpublished docu-

ment, available on author’s webpage http://www.cs.ualberta.ca/∼sutton
/IncIdeas/KeytoAI.html.

[11] B. Rosman and S. Ramamoorthy, “Learning spatial rela-
tionships between objects,” The International Journal of Robotics
Research, vol. 30, no. 11, pp. 1328–1342, Sep. 2011.
[Online]. Available: http://dx.doi.org/10.1177/0278364911408155
http://ijr.sagepub.com/content/30/11/1328.abstract

[12] S. Fichtl, J. Alexander, D. Kraft, J. Jø rgensen, N. Krüger, and
F. Guerin, “Learning object relationships which determine the outcome
of actions,” Paladyn, vol. 3, no. 4, pp. 188–199, 2012. [Online].
Available: http://dx.doi.org/10.2478/s13230-013-0104-x

[13] E. Ugur, E. Oztop, and E. Sahin, “Goal emulation and planning in
perceptual space using learned affordances,” Robotics and Autonomous
Systems, vol. 59, no. 7–8, pp. 580–595, 2011.

[14] J. Sinapov, C. Schenck, K. Staley, V. Sukhoy, and A. Stoytchev,
“Grounding semantic categories in behavioral interactions:
Experiments with 100 objects,” Robotics and Autonomous Systems,
vol. 62, no. 5, pp. 632–645, May 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S092188901200190X

[15] A. Baranes and P.-Y. Oudeyer, “Robust intrinsically motivated explo-

ration and active learning,” in Development and Learning, 2009. ICDL
2009. IEEE 8th International Conference on, Jun. 2009, pp. 1–6.

[16] S. Fichtl, J. Alexander, F. Guerin, J. A. Jorgensen, D. Kraft, and
N. Krueger, “Rapidly learning preconditions for means-ends behaviour
using active learning,” in Development and Learning and Epigenetic
Robotics (ICDL), 2012 IEEE International Conference on, Nov. 2012,
pp. 1–2.

[17] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” Knowledge
and Data Engineering, IEEE Transactions on, vol. 22, no. 10, pp. 1345–
1359, Oct. 2010.

[18] A. Lazaric, “Transfer in Reinforcement Learning: A Framework and a
Survey,” in Reinforcement Learning: State of the Art, ser. Adaptation,
Learning, and Optimization, M. Wiering and M. van Otterlo, Eds.
Springer Berlin Heidelberg, 2012, pp. 143–173. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-27645-3_5

[19] F. Doshi-Velez and G. D. Konidaris, “Transfer Learning by Discovering
Latent Task Parametrizations,” in NIPS 2012 Workshop on Bayesian
Nonparametric Models for Reliable Planning And Decision-Making
Under Uncertainty, 2012.

[20] B. C. da Silva, G. D. Konidaris, and A. G. Barto, “Learning Parame-
terized Skills,” in Proceedings of the 29th International Conference on
Machine Learning, 2012.

[21] G. Drescher, “Made-Up Minds: A Constructivist Approach to Artificial
Intelligence,” 1991.

[22] H. Chaput, “The Constructivist Learning Architecture: A Model of
Cognitive Development for Robust Autonomous Robots,” PhD Thesis,
no. The University of Texas at Austin, Artificial Intelligence Laboratory,
2004.

[23] S. Fichtl, J. Alexander, F. Guerin, W. Mustafa, D. Kraft, and N. Kruger,
“Learning spatial relations between objects from 3D scenes,” in Devel-
opment and Learning and Epigenetic Robotics (ICDL), 2013 IEEE Third
Joint International Conference on, Aug. 2013, pp. 1–2.

[24] B. Moldovan, P. Moreno, M. van Otterlo, J. Santos-Victor, and L. De
Raedt, “Learning relational affordance models for robots in multi-object
manipulation tasks,” in IEEE Intl. Conf. on Robotics and Automation,
2012, pp. 4373–4378.

[25] S. Panda, A. H. A. Hafez, and C. V. Jawahar, “Learning support order
for manipulation in clutter,” in Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on, Nov. 2013, pp. 809–815.

[26] W. Choi, Y.-W. Chao, C. Pantofaru, and S. Savarese, “Understanding
indoor scenes using 3d geometric phrases,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2011.

16

(a) Learning “Lift” without Histogram based state space (b) Learning “Lift” with 3D Histogram based state space

(c) Learning “Pour” without Histogram based state space (d) Learning “Pour” with 3D Histogram based state space

(e) Learning “Slide” without Histogram based state space (f) Learning “Slide” with 3D Histogram based state space

Fig. 35: Comparison of the different approaches to bootstrapping on 3 selected actions learnt with simple state space without
Histograms (left column) and 3D Histogram based state space (right column). In each Subfigure, each approach to bootstrapping
is represented with it’s best performing candidate.

[27] J. J. Lockman, “A perception-action perspective on tool use develop-
ment,” Child Development, vol. 71, no. 1, pp. 137–144, 2000.

[28] P. Willatts, “Development of problem-solving strategies in infancy,” in
Children’s Strategies: Contemporary Views of Cognitive Development,
D. Bjorklund, Ed. Lawrence Erlbaum, 1990, pp. 23–66.

[29] J. Piaget, The Construction of Reality in the Child. London: Routledge
& Kegan Paul, 1937, (French version 1937, translation 1955).

[30] G. Kootstra, M. Popović, J. A. Jø rgensen, K. Kuklinski, K. Miatliuk,
D. Kragic, and N. Krüger, “Enabling grasping of unknown objects
through a synergistic use of edge and surface information,” Int. J. Rob.
Res., vol. 31, no. 10, pp. 1190–1213, Sep. 2012. [Online]. Available:
http://dx.doi.org/10.1177/0278364912452621

[31] J. A. Jørgensen, L.-P. Ellekilde, and H. G. Petersen, “RobWorkSim -
an Open Simulator for Sensor based Grasping,” in ISR/ROBOTIK 2010
(41st International Symposium). VDE-Verlag, Jun. 2010. [Online].

Available: http://www.vde-verlag.de/proceedings-en/453273198.html
[32] K. Khoshelham and S. O. Elberink, “Accuracy and Resolution of Kinect

Depth Data for Indoor Mapping Applications,” Sensors, vol. 12, no. 2,
pp. 1437–1454, 2012. [Online]. Available: http://www.mdpi.com/1424-
8220/12/2/1437

[33] K. M. Varadarajan and M. Vincze, “Object part segmentation and
classification in range images for grasping,” in Advanced Robotics
(ICAR), 2011 15th International Conference on, Jun. 2011, pp. 21–27.

[34] A. McManus, “Learning Spatial Relationships,” Master Thesis, 2013.
[35] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.

5–32, 2001.
[36] L. Breiman and A. Cutler, “Random Forests,” 2004. [Online]. Available:

https://www.stat.berkeley.edu/ breiman/RandomForests/cc_home.htm

Object-action relation learning and replacement

infrastructure: ROAR server interface

Sandor Szedmak
University of Innsbruck

sandor.szedmak@uibk.ac.at

January 12, 2015

Contents

1 Introduction 2

2 General view 2

3 SQL-type interface 4

4 Learning infrastructure 6

5 Database structure 6

6 Database interface 8
6.1 SQL commands . 8

6.1.1 Create table . 9
6.1.2 Insert or update . 9
6.1.3 Query . 10

6.2 Meta information - DB structure 10
6.3 Programming interfaces . 10
6.4 C++ . 10
6.5 Python . 11
6.6 Basic workflow . 12

7 Setting up the database 12

8 Connection to a DB server via pgadmin3 utility 14

9 Sample DB 15

1

1 Introduction

The object-action relation learning and replacement infrastructure is built
around the ROAR module. That module behaves as a certain type of object
memory where the set of available or potentially available objects together
with their affordances are stored. The ROAR stands for repository of objects
and attributes with roles. This prior knowledge can be recorded by hand
made annotations or by experiences carried out on real robots or simulators.
It allows objects to be retrieved by their attributes, and the attributes of
novel objects can be inferred. General description and details about the
aim of the ROAR can be found in Deliverable D3.1.2. Here we focus on the
interface of the ROAR and its internal structure.

2 General view

The ROAR behaves as an active database(DB), which not only stores and re-
turns the data items, but via machine learning tools it extends the database
with predicted elements. In this way it can provide data not observed earlier
by the users connected to the database. The active database might be called
as “Intelligent Relational Database” as well.

Considering the ROAR as an enriched DB has several advantages:

• The operations acting on the DB, inserting new data, updating the
available ones, and executing queries on the available knowledge stored
in the DB, can be implemented in a general, standard way.

• The standard realization of the DB operations allow the users to ap-
ply sophisticated program packages, e.g. object-relational database
management systems (ORDBMS).

• Object-relational database management systems can provide

– consistent handling of complicated relationships between the dif-
ferent data categories,

– complex querying tools, which allow conditional data selections to
be combined with different kind of set operations, e.g. automatic
intersection, union, on the data satisfying some given conditions.

– a unified programming environment, e.g. SQL, to implement the
data handling tasks.

– concurrent handling of the database, thus several users can load
and request data in the same time without additional program-
ming efforts.

2

In the reliable implementation of the ROAR all the above mentioned
properties can play crucial roles. The learning system of the ROAR has to
extend the available knowledge concurrently with users loading new infor-
mation, e.g. web mining, or users requesting predicted data to carry out
object or action substitutions, e.g. plan execution monitor.

Example 1. Consider the situation:
By an insertion of new data the learner is triggered to predict the missing

items and incorporate them into the database. The learner starts a new
training process and when it is finished inserts the new data or updates
relating to the predictions. During the execution of the training some the new
data insertion, update and query requests could arrive in the DB system from
any users. The ROAR control system has to deal with the synchronization of
the training and those requests, and preserve the consistency of the database.

The general layout of the ROAR with its environment is presented by
Figure 1.

ROAR

Relational
DB

External clients

Memory-X

Web mining

Object features
and primitives

Plan
execution
monitoring

DB
insert,
update

DB
query

Learner

Internal client

DB
interface

Concurrent data
handling

Insert new data
Update old one

Query DB

Trigger by
External change
(Insert, Update)

Figure 1: General layout of the internal structure and the interface of the
ROAR

The base structure of the DB is displayed in Figure 2
An additional requirement that the system needs to fulfill is the high

level of independence from the programming languages (e.g. C++, Java,
Python), of operating systems(e.g. Linux based systems, Windows) and of
the applied network connection system (e.g. ICE, ROS).

3

General database structure

Predicted data
Provided by the learner

Observed data
Provided by

the external clients
Remote client

Write
And
Read

Only read

Learner

Only read

Write
And
Read

Figure 2: Database structure: the learner generates new, predicted database
records based on the available observations

Further requirement is that the components which addresses the prob-
lems mentioned above have to have an open-source implementation, to be
freely available and to have a large, active developing community.

Based on all these requirements the PostgreSQL (see general description
on the web site: postgresql.org) ORDMBS system seems to be a good
choice. It has highly advanced capability to handle concurrent processes,
and its SQL implementation imposes very few restrictions on the general
SQL specification, in this way all the SQL commands needed for the realize
ROAR functionality can be used without restrictions.

PostgreSQL runs a full server-client model and has an extensive support
to work in an online environment, e.g. www, by directly connecting remote
users to the database without the need for additional packages.

3 SQL-type interface

The ROAR formally behaves as a RDBMS (Relational Database Manage-
ment System). It provides a table view on all the stored data.

The basic commands allowing the database handling are implemented
via SQL (Structures Query Languages). The insertion of the new data
items, the updates of the earlier stored ones and returning the contents of

4

the database are carried out via SQL commands.
The SQL interface can provide a highly transparent interface which can

be implemented in several different programming languages (C++, Python,
JAVA, etc.) The SQL uses string based commands to realize all the data
handling functionality, see details in Section “Database interface”.

Some alternatives of the connection of the users to the database are
shown in Figure 3.

ROAR

DB
Remote

client

Direct DB client
connected via Net
C, Python, Java

+SQL

SQL Proxy
sends SQL
commands,

receives answers

Direct DB client
receives

SQL commands,
sends answers

Application
specific proxy
with application

 specific
interface

ICE
or

ROS
interface

SQL request,
and answer

converter

ICE
or

ROS
interface

DB interface - Alternatives

Figure 3: Alternatives of the DB interface; the remote Direct DB client
interface could be the default

The three alternatives presented in Figure 3 can be summarized in the
following points:

Direct DB client: The users are connected to the DB directly via a client
module provided by PostgreSQL, or some other vendors. This module
can be linked to almost all well known programming languages, C++,
Java, Python, Perl etc. This client behaves as an SQL wrapper. The
clients are connected to the DB via the standard internet protocol
available in all known operating systems.

SQL Proxy: The users generate the SQL commands by their own pro-
gram modules and sending the SQL commands as strings to the ROAR
module, where those commands are channeled into a DB client for ex-
ecution. In case of queries the ROAR can send back the results as

5

tables in a comma separated text file format(CVS). The communica-
tion can be built on the top of Zeroc-ICE or on the proper modules of
the ROS.

Application specific Proxy: The users can send and receive ROS/ICE
specific messages containing the data for insertion and updates, and
the answers on queries. The network communication can follow the
protocol of the SQL Proxy interface mentioned in the previous point.

It should be emphasized that this specific approach could be the source
of several programming and communication errors and ought to be
avoided as much as possible!

The most general approach is the Direct DB client which has
the smallest overhead, and the broadest available support.

4 Learning infrastructure

The ROAR database system is built around those learning modules which
have been introduced in earlier deliverables, the maximum margin based
recommender- , and the homogeneity analysis systems, see in D3.1.1 and
D3.1.2.: [2] and [3].

Here only the general structure of the learning modules is presented,
since the robot system has no direct connection to the learner itself, it can
see only the tables of the database which are completed by the learners in
the background.

5 Database structure

Here some examples are shown about the possible correspondences between
the terminology of the SQL and the functionality of the ROAR. Since the
general DB framework allows high level of flexibility in representing the
available knowledge therefore the contents of these examples can be easily
adapted to new problems.

SQL database tables: The DB tables correspond to the potential rela-
tionships between the categories of the ROAR. Those categories are:

Actions,
Objects,
Action features,
Object Features.

The categories correspond to the DB fields (columns of the tables).

6

Maximum Margin
Multi-valued
Regression

M3vR

Alias
“recommender system”

Homogeneity
Analysis

Learner

Common infrastructure:
Feature and

Kernel computations
DB interface

… new
Modules(?)

Figure 4: The internal structure of the learning module working behind the
DB interface.

The possible relations, and in turn the SQL tables, are

Relations Examples stored in that table

Action-Object “cut” - “knife”
Object-Object, “knife” - “cucumber”
Object-Object features, “knife” - “elongated”
Action-Object features, “cut” - “soft”
Action-Action features, “cut” - “oscillatory trajectory”

The structure of the tables follow the general schema:

Category 1 Category 2 Value 1 of the relation, Value 2 of the relation,
. . .

Examples:

Table of the “Action-Object” relations

Category 1 Role Category 2 Value 1 Value 2

Action Object Relation Confidence

“cut” “with” “knife” “True” 0.95
“cut” NULL “cucumber” “True” 0.95
“stir” NULL “juice” “True” 0.9

7

Object-
object

relations

Action-
Object

relations

Object
features

Training module

Parameter validation

Running on
available DB

Off-line

Validated
parameters

Test module

Relies on validated
Parameters

On-line

Data tables

Learner

Only read

Read and update

Figure 5: The connection between the main learning modules.

“NULL” corresponds to missing or omitted value.

Table of the “Object-Object feature” relations

Category 1 Category 2 Value 1 Value 2

Object Object-feature Relation Confidence

“cucumber” “cuttable” “True” 0.95
“cucumber” “soft” “True” 0.9
“juice” “ liquid” “True” 0.9

Here we can see that any category can occur several time in a table, and
all the available values of the other category can be paired with that.

The DB system can be extended in any time with further tables (rela-
tions) and columns or fields(categories) without interfering with the earlier
system, i.e. only the SQL commands created before the extension need not
be modified.

6 Database interface

6.1 SQL commands

Here the most important commands are presented with simple examples.
Very detailed tutorials, user guides with plenty of examples can be found on

8

these sites:

postgresql.org/docs/9.3/interactive/index.html

postgresql.org/docs/8.0/static/tutorial.html

tutorialspoint.com/postgresql/

In the SQL the “NULL” symbol represent the missing values. It is
possible to load the “NULL” everywhere into the tables if it is not prohibited
in the “CREATE TABLE” command by a “NOT NULL” statement. The
“NULL” marks those fields for the ROAR which have to be be replaced with
predicted values.

6.1.1 Create table

Basic format:

CREATE TABLE table_name

(

column_name1 data_type(size),

column_name2 data_type(size),

column_name3 data_type(size),

....

);

Example:

CREATE TABLE action_object

(

action text, NOT NULL,

object text,

affordance boolean,

confidence real,

....

);

6.1.2 Insert or update

Basic format:

INSERT INTO TABLE_NAME (column1, column2, column3,...columnN)]

VALUES (value1, value2, value3,...valueN);

Example:

INSERT INTO object_object_feature (object, cutable, rollable,

main_color,edible)]

VALUES (carrot, true, NULL, orange, true);

9

Basic format:

UPDATE table_name

SET column1 = value1, column2 = value2...., columnN = valueN

WHERE [condition];

Example:

UPDATE object_object_feature

SET main_color = lighrred,

WHERE [object=carrot];

6.1.3 Query

SELECT object FROM action_object where action = cut

INTERSECT

SELECT object FROM object_object_feature where edible=true;

6.2 Meta information - DB structure

The internal structure of the DB, available tables, the field (column) names
and their types of each table can be read similarly to all other data stored in
the DB. These information can be gained from predefined tables of the DB.
For example the names of the tables can be asked from the table “pg class”.
Similarly the names of the fields (columns) are available from the table
“pg attribute” and there types from “pg type”.

6.3 Programming interfaces

Here the representation of the SQL “INSERT INTO table” command is
shown for C++ and Python, the same example is similarly in other lan-
guages as well. See the implementation of other commands for example:

C++ tutorialspoint.com/postgresql/postgresql c cpp.htm
http://pqxx.org/development/libpqxx/

Python tutorialspoint.com/postgresql/postgresql python.htm
wiki.postgresql.org/wiki/Psycopg2 Tutorial

6.4 C++

#include <iostream>

#include <pqxx/pqxx>

using namespace std;

using namespace pqxx;

10

int main(int argc, char* argv[])

{

char * sql;

try{

connection C("dbname=ROAR user=postgres password="pswrd" \

hostaddr=127.0.0.1 port=8888");

if (C.is_open()) {

cout << "Database successfully opened: " << C.dbname() << endl;

} else {

cout << "Can’t open database" << endl;

return 1;

}

/* Create SQL statement */

sql = "INSERT INTO object_object_feature (object, cutable," \

"rolable, main_color, edible) " \

"VALUES (’carrot’ , true, NULL, ’orange’ , true); ";

/* Create a transactional object. */

work W(C);

/* Execute SQL query */

W.exec(sql);

W.commit();

cout << "Records successfully created" << endl;

C.disconnect ();

}catch (const std::exception &e){

cerr << e.what() << std::endl;

return 1;

}

return 0;

}

6.5 Python

#!/usr/bin/python

import psycopg2

conn = psycopg2.connect(database="testdb", \

user="postgres", password="pswrd", \

host="127.0.0.1", port="8888")

11

print("Database successfully opened") ## Python Version 3

cur = conn.cursor()

cur.execute("INSERT INTO object_object_feature (object, cutable, \

rolable, main_color, edible) \

VALUES (’carrot’ , true, NULL, ’orange’ , true);")

conn.commit()

print "Records successfully created";

conn.close()

6.6 Basic workflow

A creation, insertion and a query sequence

CREATE TABLE object_action(

object VARCHAR(50),

action VARCHAR(50),

preposition VARCHAR(50),

score REAl

);

INSERT INTO object_action(object, action, preposition, score)

VALUES (’bowl_blue’,’pour’,’to’,1.0)

);

SELECT object FROM object_action WHERE action=’cut’ and

preposition=NULL and MAX(score);

7 Setting up the database

This series of commands with some modification is based on the following
source : 1

INSTALL POSTGRESQL 1. Install latest PostgreSQL, the most re-
cent version is 9.4, for example via the console:

sudo apt-get install postgresql libpq-dev

1http://stackoverflow.com/questions/8200917/postgresql-create-a-new-db-through-
pgadmin-ui

12

2. PostgreSQL has a super user is called postgres. Change user to
the PostgreSQL user:

sudo su - postgres

3. Change password of postgres user:

psql -d postgres -U postgres

After entering into psql the following prompt is shown:

postgres=#

The prompt text refers to the name of database to which the user
is connected. In the following sequence the lines not containing

postgres=#

are the messages of the system. To change the user password we
might have this protocol:

psql (9.1.3) Type "help" for help

postgres=# alter user postgres with password ’YOUR_NEW_PASSWORD’;

ALTER ROLE

postgres=# \q

#logout postgres user

logout

4. Restart the PostgreSQL server:

sudo /etc/init.d/postgresql restart

pgAdmin III: provide PostgreSQL administration and manage-
ment tools. If pgAdminIII is not installed, the installation is
easy:

sudo apt-get install pgadmin3

ADD A NEW DATABASE Here we assume that the database is on the
localhost.

psql -d postgres -h localhost -U postgres

postgres=#create database database_name;

where “database name” can be “salad scenario”.

ADD A NEW USER Creating a new user with password for a database

psql -d postgres -h localhost -U postgres

13

postgres=# create user user_name with password ’user_password’;

Grant all privileges to a user on the database salad scenario:

postgres=# grant all privileges on database salad_scenario to user_name;

postgres=# \q

Try to login as new user to test the user creation:

psql -d salad scenario -h localhost -U user name

The prompt text is similar to this:

salad_scenario=>

Then the user with granted privileges can add new tables to the
database “salad scenario”, and inserting new data items by following
the work-flow outline in Section 6.6.

SAVE(EXPORT) DATABASE INTO SQL FILE Saving the basic post-
gres template database into SQL we need the command:

pg dump -U user name -d database name -h localhost > db save.sql

or saving the database salad scenario

pg dump -U user name -d salad scenario -h localhost > salad scenario.sql

In both cases the user with “user name” has to have all granted priv-
ileges on the database saved, see in the point “ADD A NEW USER”.

LOAD(IMPORT) DATABASE FROM SQL FILE This is the inverse
operation of the pg dump database exporting utility. First a new
database has to be created and then the SQL dump file, see in the
previous point, can be loaded into the new database.

pg restore -U user name -d salad scenario new -h localhost
-f salad scenario.sql

8 Connection to a DB server via pgadmin3 utility

ADD A SEVER Open pgAdminIII and add new localhost server. Go to
menu File > Add Server

Set up pgAdmin III server instrumentation:

When connecting to a PostgreSQL database using pgAdmin you may
receive an error letting you know that the server instrumentation is
not installed.

14

Install postgresql-contrib package:

sudo apt-get install postgresql-contrib

Install adminpack extension:

sudo -u postgres psql

postgres=# CREATE EXTENSION "adminpack";

postgres=# \q

9 Sample DB

Here on the next page an example of the data tables is presented. This table
is part of the database comprising the information extracted from web about
the potential relations between objects and actions. The “preposition” field
shows the type of those relations, and “score” field provides the estimated
confidence on relations. In the table presented only those object-action pairs
are enumerated which have higher estimated confidence than 0.95. The
creation of web related object-action database is relying on the approach
presented in [1].

object | action | preposition | score

-----------+--------+-------------+--------

knife | drop | from | 1

spatula | drop | from | 1

potato | cut | from | 1

butter | get | from | 1

yogurt | get | from | 1

oven | get | from | 1

wok | drain | from | 1

fork | drop | from | 1

cucumber | stir | in | 1

zucchini | stir | in | 1

banana | roll | in | 1

knife | cut | in | 1

artichoke | stir | in | 1

broccoli | stir | in | 1

lettuce | place | in | 1

spinach | stir | in | 1

canister | put | in | 1

fork | put | in | 0.9874

zucchini | stir | into | 1

artichoke | put | into | 1

carrot | stir | into | 1

broccoli | stir | into | 1

pepper | cut | into | 1

spinach | stir | into | 1

15

yogurt | stir | into | 1

microwave | put | into | 1

fridge | put | into | 1

toaster | put | into | 1

canister | put | into | 1

fork | put | into | 1

fridge | get | | 1

tomato | pour | on | 1

pepper | cut | on | 1

potato | put | on | 1

pot | put | on | 0.999

microwave | cook | on | 1

fridge | put | on | 1

toaster | put | on | 1

kettle | put | on | 0.9923

spatula | pour | onto | 1

stove | put | onto | 1

dish | put | onto | 1

banana | put | with_by | 1

cleaver | cut | with_by | 1

artichoke | cut | with_by | 1

carrot | mix | with_by | 1

lettuce | put | with_by | 1

oven | cook | with_by | 1

canister | cut | with_by | 1

container | get | with_by | 1

dish | put | with_by | 1

References

[1] Peter Kaiser, Mike Lewis, Ronald P. A. Petrick, Tamim Asfour, and
Mark Steedman. Extracting common sense knowledge from text for
robot planning. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA 2014), Hong Kong, China, 31 May– 7
June 2014.

[2] Sandor Szedmak. Learning object-action relations via knowledge propa-
gation. Technical report, University of Innsbruck, 2012. Technical report.

[3] Hanchen Xiong, Sandor Szedmak, and Justus Piater. Homogeneity anal-
ysis for object-action relation reasoning in kitchen scenarios. In 2nd
Workshop on Machine Learning for Interactive Systems, (Workshop at
IJCAI), page 3744. 2013.

16

Knowledge Propagation and Relation Learning for Predicting Action

Effects

Sandor Szedmak, Emre Ugur and Justus Piater

Intelligent and Interactive Systems, Institute of Computer Science,

University of Innsbruck

Abstract— Learning to predict the effects of actions applied
to pairs of objects is a difficult task that requires learning com-
plex relations with sparse, incomplete and noisy information.
Our Knowledge Propagation approach propagates affordance
predictions by exploiting similarities among object properties,
action parameters and resulting effects. The knowledge is prop-
agated in a graph where a missing edge, corresponding to an
unknown interaction between two objects (nodes), is predicted
via the superposition of all paths connecting those objects in
the graph. The high complexity of affordance representation is
addressed through the use of Maximum Margin Multi-Valued
Regression (MMMVR), which scales well to complex problems
of multiple layers. With increased diversity and size of object
databases and the addition of other parametric combinatory
actions, we expect to achieve complex systems that leverage
learned structure for subsequent learning, achieving structural
bootstrapping over lifelong development and learning.

In this paper, we extend MMMVR for learning of paired-
object affordances, i.e., for predicting the effects of actions
applied to pairs of objects. In our experiments, we evaluated
this method on a dataset composed of 83 objects and 83×83
interactions. We compared the prediction performance with
standard classifiers that predict the effect category given the
object pair’s low-level features or single-object affordances.
The experiments show that our proposed method achieves
significantly higher prediction performance especially when
supported with Active Learning.

I. INTRODUCTION

Learning object-object relations is a difficult task. The

difficulty comes from two main sources. First, the structure

of descriptions of particular objects is very complex, while

those descriptions are generally incomplete. The descriptions

are derived from several sources, and the corresponding

feature spaces are high-, even infinite-dimensional. Some fea-

tures possess intriguing internal structure, e.g. graphs, which

require computationally intensive preprocessing. The second

source of difficulties is the small number of experiments

which can confirm our hypotheses about the relationships

between paired objects and the corresponding action. The

experiments might even provide contradicting outcomes; thus

the reliability of our knowledge is limited.

A general framework to learn sparse incomplete relations

between several data sources was introduced by Szedmak

et al. [1]. This general framework has been applied to rec-

ommender systems [2], [3]. Recommender systems connect

users to objects, e.g. books, movies etc., and have to tackle

problems of very high level of sparsity, since most of the

user-object pairs are missing. Very frequently less than one

percent of pairs can be observed; therefore the others need to

be predicted. We face a similar problem in learning object-

object relations, where actions can only be tried on a very

small number object pairs in real experiments. Therefore,

predicting the outcome of an action executed on a pair of

objects can borrow the approach applied on recommender

systems.

The learning task in this paper is to predict the effect

of an action that is applied to a pair of objects. In object-

object relation learning we consider the case where large

numbers of objects are available but the tried actions on

pairs of these objects is small. In this case, if the structure

of the space spanned by the objects is sufficiently rich and

the feature specific properties between any two objects can

be transformed into each other by exploiting the similarity

among those objects, then this similarity can be used to

propagate information in a network of object pairs to other

interaction instances. In other words, object information can

be propagated over the object-pair space. We will call this

approach Knowledge Propagation in the rest of the paper.

In our paper, we compare three different approaches with

the aim of predicting the effect of a stacking action. The

first approach is a standard one where low level features

such as shape and dimensions of the object pairs are used

as input attributes for state-of-the-art classifiers to predict

the effect categories. The second approach utilizes the same

classification method [4], but instead of using low-level

features, it uses pre-learned single-object affordance features

that already include some invariance related to object-robot-

environment dynamics. The third method uses Knowledge

Propagation that assumes the existence and knowledge of

object identifiers. This is indeed a strong assumption, but

we discuss that object identifiers can be derived from object

features and affordances, which is a challenge not in the

scope of this paper.

In the context of robot affordance learning research, multi-

object affordance learning has not been studied extensively

with exceptions of [5] where ‘tool objects’ interact with

other objects, and [6] where two-object relational interaction

models were learned. Several recent studies focused on

learning of expected sensory feedback to predict the outcome

of future trials [7], [8] and to predict the discrete changes in

the system’s dynamics to guide manipulation actions [9]. Our

2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014)
September 14-18, 2014, Chicago, IL, USA

978-1-4799-6934-0/14/$31.00 ©2014 IEEE 623

focus, on the other hand, is on predicting the action outcomes

using Knowledge Propagation that enables propagation of the

predictions through exploiting the similarities among objects,

in sparse and incomplete datasets.

A. Knowledge Propagation

The learning problem we are facing can be summarized in

the following way. There is given a matrix whose rows and

columns are indexed by labels of objects. The elements of

the matrix express the outcome of the interactions between

the object pairs. The matrix elements might contain not only

simple numbers but complex, structured elements, categories

of multi-class systems, vectors or graphs. In the concrete

case applied in this paper, these elements are categories. The

elements of the matrix are only partially given. For example,

if we are given 1000 objects, then collecting the interactions

between all possible object pairs will be infeasible in a

real robot environment. Therefore the matrix is incomplete

and even very sparse; hence the learning task is to learn a

function which can be predict all the missing elements based

on the available ones. Additionally we might be given feature

vectors describing the objects as well, e.g. shape descriptors,

which can be another source of exploitable information.

In learning the outcome of unknown interactions we can

exploit the geometric structure of the feature space spanned

by the known elements. Based on that structure, the objects

can be connected by certain similarity measures, and along

these connections the knowledge can be transferred from

the outcome of the small number of known object pairs to

those that have not been tried so far. One can imagine the

underlying geometry as a graph with objects represented by

nodes which are connected by edges, and the edges equipped

with weights expressing the similarity of the incident objects.

One can refer to a similar, semi-supervised learning based,

model presented for example in [10].

The base learning method, described in Section II, can

predict the missing elements of the matrix, and can provide

confidences of prediction of each missing element. This

method grew out of a combination of different maximum-

margin based structured learning approaches. One group

of those models build upon Markov Random Fields [11],

[12], [13], [14]. These models can provide highly accurate

predictions but at a very high cost of computation. The other

group is derived directly from the Support Vector Machine,

by preserving the same computational complexity but those

models can predict complex output structures as well [15],

[16]. In [16] the performance of models of both groups

are directly compared in predicting hierarchical structures.

The approach used in this paper is based on a synthesis of

those mentioned above, and can tackle very large data sets

containing millions of potential interactions [1], [2], [3].

II. METHODS

In this section, we explain the methods used to learn

paired-object affordances and the Active Learning approach

that speeds up affordance learning. In order to learn the map-

ping from objects’ features to the paired-object affordances,

we will use SVM-like classifiers as summarized in Section II-

B. On the other hand, in order to learn to predict paired-

affordances given object identifiers, we will use KnowPropC

that is detailed in Section II-C. The last subsection provides

the algorithmic details of applying Active Learning in our

framework.

A. Problem Description

The aim is to learn to predict the effect of actions that are

applied to pair of objects. In other words, given objects the

classifier learns to predict the effect category of an action.

Objects are represented in three different ways:

• Basic features correspond to conventional, manually-

designed features computed mostly from visual percep-

tion with no explicit link to robot’s actions.

• Affordance features encode the list of affordances of-

fered by single objects considering robot actions. For

example, (pinch-graspable, not-power-graspable, front-

rollable, side-pushable) is an affordance feature vector

composed of categorical values. Affordance features are

assumed to be learned and can be computed from basic

features of the object.

• Object ids correspond to labels of the objects. Known

object ids can be computed based on object feature

similarity or can be given by a human expert.

In a standard learning approach where object features

are input and effects are predicted, as object ids have no

generalization power, they do not yield high accuracy. The

Knowledge Propagation method detailed below can propa-

gate the effect information across different object ids.

B. Maximum Margin Classifier (MMC)

This classifier is used to predict the effect of stack action

given object features or given object affordances. For this

purpose we use Maximum Margin Regression (MMR) as

we showed that MMR can improve classification accuracy in

multi-class learning problems [4]. MMR is realized by the

same optimization problem of SVM but can produce vector-

valued output. Fig. 1 shows the main differences between

SVM and MMR. For more details, please refer to [1], [16].

C. Knowledge Propagation based relational Classifier

(KnowPropC)

In this paper, we propose an extension to MMR (see for-

mulation in Eqn. 6) to learn the effect category of interactions

given the two object identifiers. This problem is not a pure

supervised learning problem since one object might appear

in interactions with several other objects, or we have no

observation of the interaction between several object pairs,

thus we face the problem of missing values, an incomplete

database.

1) Description of the relational learner: The details of

an earlier version of the learning model can be found for

example in [1], [2] and [3]. Here we provide a summary of

the model applied.

We are given two sets B and U , and we can assume that

they are finite. Let R be an arbitrary relation between B and

624

Binary class learning Vector label learning

Support Vector Machine Maximum Margin Regression

min 1

2
w′w
︸ ︷︷ ︸

‖w‖22

+C1′ξ 1

2
tr(W′W)
︸ ︷︷ ︸

‖W‖2
F

+C1′ξ

w.r.t. w : Hφ → R, normal vec. W : Hφ → Hψ , linear op.,

b ∈ R, bias, b ∈ Hψ , translation(bias),

ξ ∈ R
m, error vector, ξ ∈ R

m, error vector,

s.t. yi(w
′φ(xi) + b)

〈
ψ(yi),Wφ(xi) + b

〉

Hψ

≥ 1− ξi, ≥ 1− ξi,
ξ ≥ 0, i = 1, . . . ,m, ξ ≥ 0, i = 1, . . . ,m.

(1)

Fig. 1. Primal problems for maximum margin learning: Support Vector
Machine for binary classification, and Maximum Margin Regression for
general feature represented outputs. Hφ and Hψ denote the input and output
feature spaces.

U given by a subset D of the ordered pairs of the elements

of U and B. Assume that to any pair of (b, u) ∈ D there

is given a certain collection of information describing how

the items in that pair relate to each other. This information

can be obtained by some experiments. For a pair (b, u) it is

described by zbu taken from a set of possible descriptions

Z .

The information characterizing the relation between the

pairs might be given by a binary variable, e.g. (b, u) relate

to each other or not, or by a real number, e.g. the probability

of observing b given u. If the sets B and U consist of complex

objects, e.g. B contains objects and U is a collection of action

identifiers, then the relationship between a pair (b, u) can

be described by the affordances where action u is applied

on object b. In the current work where effects of paired-

objects are learned for the stacking action, both B and U
will correspond to objects, one being dropped and the other

on the table. On the other hand, zbu will refer to the effect

of the stacking action applied on these objects.

The available sample of observations that can be used to

capture the structure of the relation can be given by a set of

triples (b, u, zbu), a pair of objects and the description of the

available information.

The proposed learning model is summarized in the fol-

lowing points:

• Given two finite sets B and U .

• There is given a function f : B×U → Z, where Z is a

set whose elements are the descriptions of the available

information connecting a pair (b, u) ∈ B × U and it is

denoted by zbu.

• Let the subset D ⊆ B × U express a relation between

B and U . Let f(b, u) = ∅ if (b, u) /∈ D; the function f
is only partially given on its domain.

• We can collect for all b the relating values of u, Db =
{u|(b, u) ∈ D}, and similarly for all u the relating b,
Du = {b|(b, u) ∈ D}. We might call them b- or u-

related sections or projections of D.

• φZ : Z → Hz a feature mapping into the Hilbert space

HZ .

• Feature vectors of the elements of B and U can be

defined by the mappings

φB : ×card(U)HZ → HB

and by

φU : ×card(B)HZ → HU ,

where HB and HU are Hilbert spaces.

2) Learning task: The learning task is given by a sample

set of tuples consisting of three elements (b, u, zbu). The

sample might not contain references to all elements of the

sets B and U , and consequently the set D describing the

relation is also partially given. Let B(o) ⊆ B and U (o) ⊆ U
be the sets whose references are observed in the sample, and

let D(o) ⊆ (B(0)×U (o))∩D be the set of ordered pairs (b, u)
for which the corresponding information zbu is available.

Furthermore we have the projections D
(o)
b = {u|(b, u) ∈

D(o)} and D
(o)
b = {u|(b, u) ∈ D(o)} into the observed sets

U (o) and B(o).

Now the task is to find the function f : B×U → Z based

on the knowledge given by {zbu|zbu ∈ D(o)}.

3) Optimization problem, first approach: The aim of the

learning problem can be rephrased as finding a multilinear

function F : HZ ×HB ×HU → R, which has higher value

if the feature vectors of two items b and u can better predict

the feature vector of zbu

φZ(zbu) ∼ W(φB(b)⊗ φU (u)). (2)

The function F as a multilinear function can therefore be

expressed as

F (φZ(zbu), φB(b), φU (u))
= 〈W, φZ(zbu)⊗ φB(b)⊗ φU (u)〉 ,

(3)

where W is a tensor describing the function itself, and the

variables are connected by the tensor product; see details for

example in [17].

We can rewrite the function F as

F (φZ(zbu), φB(b), φU (u))
= 〈W, φZ(zbu)⊗ φB(b)⊗ φU (u)〉
= 〈φZ(zbu),W(φB(b)⊗ φU (u))〉 ,

(4)

where W plays the role of a linear operator mapping the

tensor product (φB(b) ⊗ φU (u)) into the space of HZ and

then the inner product is computed between the image of that

map W(φB(b) ⊗ φU (u)) and φZ(zbu). This inner product

will have a higher value if the correlation between the image

vector W(φB(b)⊗ φU (u)) and φZ(zbu) is higher.

4) Poly-learning – learning via an ensemble of weakly-

coupled learners: We can reformulate the optimization prob-

lem by bearing in mind two problems that can occur in a real

application:

• Solving the problem when the cardinality of the ob-

served tuples, i.e. card(D(o)), is high can require too

much resources measured in memory and also in time.

625

For example in a recommender system, where books

are offered to users, the number of users can grow up

to millions or even more, and the number of books can

be several tens of thousands as well, and the possible

observed pairs of users and books can be more than a

billion.

• In a large data set built upon several sources the distri-

bution of the items could be a highly multimodal one,

namely a mixture of plenty of different distributions.

To overcome these difficulties we introduce a learning

model which decomposes the entire problem into weakly

coupled subproblems. In this model the role of the object sets

B and U are asymmetric. To every element of B(o) a learner

Lb is assigned. To connect those learners the following

assumption is applied. A learner assigned to a b tries to

predict the interaction between b and the set of u ∈ D0
b .

If there are given b1 and b2 and the intersection D0
b1

⋂
D0

b2

is not empty, then both learners have to predict the common

u elements in the same way in the sense that the values of

the loss functions of both learners on those elements have to

be equal.

The learners are defined via the multilinear function Fb :
b × D

(o)
b × {zbu|u ∈ D

(o)
b } → R. Each of the multilinear

functions is given by the linear operator Wi which plays

the role of a similarity measure between its parameters.

The loss functions are defined by applying a version of

the hinge loss:

Lb(b, u, zbu) =

{
0, if Fb(b, u, zbu) ≥ 1,
maxu(1− Fb(b, u, zbu)), otherwise,

for all u ∈ D
(o)
b .

(5)

The optimization problem expressing the ideas introduced

above can be stated as

min 1
2‖W‖2b + C

∑

u∈U(o) ξu
w.r.t. Wb ∈ (HZ ⊗HB ⊗HU)

∗, linear operator

s.t. 〈φZ(zbu),WbφU (u)〉 ≥ 1− ξu, b ∈ B(o), u ∈ D
(o)
b ,

ξu ≥ 0, , u ∈ U (o),
(6)

Note that the roles of B and U can be swapped. In our

case since B = U this casting of the roles can be ignored.

After solving the joint optimization problem we have

Wb =
∑

u∈Db
αbu(φZ(zbu)⊗ φU (u)), b ∈ B0, (7)

where αbu are optimal Lagrangian multipliers, and ⊗ denotes

the tensor product.

The prediction for a given (b̂, û) pair can be derived by

z
b̂û

= maxt φZ(zt)Wb̂
φU (û)

= maxt φZ(zt)
∑

u∈D
b̂
αbu(φZ(zbu)⊗ φU (u))φU (û)

= maxt
∑

u∈D
b̂
αbu 〈φZ(zt), φZ(zbu)〉

︸ ︷︷ ︸

K(zt,φZ(zt)

〈φU (u), φU (û)〉
︸ ︷︷ ︸

K(u,û)

,

(8)

where K(zt, φZ(zt) and K(u, û) are kernel matrices ex-

pressing the inner product between the corresponding ele-

ments.

D. Active Learning

To implement knowledge propagation, an active leaning

algorithm is applied. The main steps of this algorithm are:

1) Start on a small subset of all object pairs as training

set of the learner.

2) Train the learner on the available outcomes.

3) Predict all untried elements of the matrix, and com-

pute confidences for those predictions. This confidence

is equal to the difference of the probability of the

predicted category of the effect minus the probability

assuming uniform distribution over all categories.

4) Choose that untried pair of objects for which the con-

fidence is smallest, and check the interaction between

this pair, and then include that into the training set.

5) Repeat the procedure from Step 2.

The confidences relate to information that we can gain if

the predicted elements are included into the training set. If

the confidence is high then that element does not provide

much useful information since it is highly similar to those

appearing in the training set. The low confidence points to

the least similar elements, thus they can yield sufficient new

information about the general structure of the interactions.

Technically, the learner yields a distribution over the possible

outcome categories. If the entropy of this distribution is high,

categories are predicted with similar probabilities, and the

confidence of the prediction is low.

This learning scheme can be straightforwardly extended

by including different kinds of object features, e.g. shape

descriptors. These features can be seen as new nodes of the

graph connecting the objects. Those feature-related nodes

can be connected by edges expressing the similarity between

the object features. In this way the interaction between two

objects can be predicted even if they have never appeared

earlier in any experiments.

III. EXPERIMENTS

In this section, we report our experimental results obtained

from a database of 83 objects and their pairwise stacking

interactions.

1) Interaction Dataset: We collected data from 83 objects

(Fig. 2) by placing them on the table. In order to analyze

our learning algorithms, we aimed to create an interaction

database composed of (object, action, effect) triples with

4 actions that enable single- and multi-object manipula-

tion. Poking actions, namely s-poke, f-poke, and t-poke, are

designed to poke the object from its side, front and top,

respectively. The stack action, on the other hand, is designed

to release one object above another.

In order to collect this database, a robot was required to

make 3 × 83 + 1 × (83 × 83) = 7138 interactions which is

not feasible in the real world. Thus, we used a human expert

who observed robot action executions on different sample

objects and then filled the complete table in analogy with

his observations. We used a 7 dof. Kuka arm and a 7 dof.

Schunk gripper to let the expert develop an intuition of the

robot-object-object dynamics. In cases where the effect is

626

Fig. 2. Objects used in the experiments. Each object-orientation pair is assigned to a new object index in the experiments.

difficult to assess, the human emulated the robot’s actions

physically.

2) Action effects: The effect of stacking objects on top of

each other depends on their relative size. For example, while

‘inserted-in’ effect is generated when a small box is stacked

on a hollow cylinder, the ‘piled-up’ effect is observed when

the box is larger than the opening on top of the cylinder.

Using the objects, we marked the interaction results for each

object pair for the stacking action. Different poking actions

also generate different effects even on the same objects. For

example, when poked from side, lying cylinders will roll

away, boxes will be pushed, objects with holes in the poking

direction will not be affected as finger would go into the

hole without any interaction, and tall objects will topple over.

The set of manually encoded actions and their effects are as

follows:

• Actions: {side-poke, top-poke, front-poke, stack}
• Poking effects: {pushed, rolled, toppled, resisted, noth-

ing}
• Stacking effects: {piled-up, inserted-in, covered,

tumbled-over}

3) Object representation: The objects are segmented

based on depth information of a Kinect sensor that is placed

on the torso of the robot. In these experiments an object can

represented by object id (assigned index), basic features or

affordance features.

• Object id (object-ido) is the index of the object.

• Basic features (basic-feato) are encoded in a

continuous-valued vector composed of features

relating to shape, size and local distance for object o:

basic-feato = (shapeo, dimo, disto)

Shape features are encoded as the distribution of local

surface normal vectors from object surface1. Specifi-

cally histograms of normal vectors along each axis, 8

bins each, are computed to form 3 × 18 = 54 sized

1Point Cloud Library normal estimation software is used to compute
normal vectors.

feature vector. dim encodes the object size in different

axes. dist features encode the distribution of the local

distance of all pixels to the neighboring pixels. For

this purpose, for each pixel we computed distances

to the neighboring pixels along each 4 direction on

Kinect’s 2D depth image. For each direction, we created

a histogram of 20 bins with bin size of 0.5cm, obtaining

a 4× 20 = 100 sized vector for the dist.
• Affordance features (afford-feato) are encoded as the list

of single-object action effects:

afford-feato = (εos-poke, ε
o
p-poke, ε

o
t-poke)

where

εo ∈ {pushed, rolled, resisted, no-change}

refers to the effect categories of the corresponding

poking action on object o. Although εo is manually

coded for each object category by the human expert, we

previously showed that this can be learned in previous

stages of development and can be computed from basic

features (basic-feat) [18].

4) Paired affordance learning: Our system learns to pre-

dict the effect of stacking actions given the descriptors of the

two objects. This learning refers to building classifiers that

predict a multi-class value of the stacking effect:

εstack ∈ {piled, inserted-in, covered, tumbled-over}

Depending on the object description, different learning meth-

ods that are detailed in Section II will be used:

• When basic features or affordance features are used,

learning corresponds to finding a mapping from these

features to the effect class using Maximum Margin

Classification (MMC):

εo1,o2stack = MMC(basic-feato1 , basic-feato2)

εo1,o2stack = MMC(afford-feato1 , afford-feato2)

• When object ids are used, then our Knowledge Propa-

gation based relational Classifier (KnowPropC) is em-

ployed. Note that this classifier learns and propagates

627

the effects of the underlying graph in the object-object

interaction table. We will add the additional meta-term

learned-pairwise-relations to denote this characteristics:

εo1,o2stack = KnowPropC learned-pairwise-relations(ido1 , ido2)

A. Action propagation results

In this section, we compare the performance of the classi-

fiers that are trained with different object descriptors: basic-

feature based MMC, affordance-feature based MMC, and

object-id based KnowPropC. We evaluated the performance

of each classifier type by systematically changing the number

of training samples. Using the stacking interaction dataset

composed of 83× 83 samples of (object-pair, effect) triples,

we created training datasets of increasing sizes. We trained a

classifier with each training set, and tested the performance

of the classifier using the remaining samples. The prediction

results obtained from different classifier types using different

training sets are provided in Fig. 3. Mean and variance of

the prediction performance with 10-fold cross-validation are

provided with the corresponding bars.

1 2 3 4 5 10 15 20 30 40 50 60 70 80 90
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Percentage of the interactions used in training

P
re

d
ic

ti
o
n
 p

e
rf

o
rm

a
n
c
e
 w

it
h
 c

ro
s
s
−

v
a
lid

a
ti
o
n

Classifier based on basic features

Classifier based on affordances

Action propagation based on object−id

Fig. 3. The prediction performance of the classifiers based on basic features
and affordances, and action propagation system based on object id. All
predictors predict the effect of stack action in a database composed of 83
objects and 83× 83 interactions in total.

As shown in the figure, even with very small train-

ing datasets (1% of the complete data), object-id based

and afford-feat based classifiers perform significantly better

than basic-feat based classifier. While the performance of

afford-feat based classifiers levels off at training sets of

around 15%, basicf based classifier performance continually

improves with increasing training size and becomes similar

to afford-feat performance at the end. The performance of

object-id based classifiers also increases continually, but at a

higher level, and outperforms afford-feat performance at the

end. We can interpret these results as follows:

• basic-feat and afford-feat based classifiers use the same

classification method. Thus, their performance differ-

ence with small training sets should be related to the

representation of these features. As afford-feat include

the effects of single-object actions, they already include

some properties related to object-robot-environment dy-

namics. As a result, this feature bootstraps the learning

in the beginning. On the other hand, basic-feat is

a high-dimensional, continuous-valued vector without

explicit interaction properties of the objects. However,

afford-feat can be computed based on basic-feat as we

discussed before, so information encoded in basic-feat

should be compatible with afford-feat. Therefore, as

expected, with increased size of training data, basic-feat

and afford-feat based classifier performances become

similar.

• The object-id based classifier also has high performance

with small datasets and its performance gets signifi-

cantly higher compared to the feature based classifiers.

This result demonstrates the success of the knowledge-

propagation approach where instead of object properties

alone, the classifier uses the connected nodes in the

underlying graph of interactions to transfer knowledge

from one object pair to another.

• It is difficult to compare afford-feat based and object-id

based classifiers as they use different structures in

training and predictions. We can assume that the sim-

ilarity in their performance in initial steps of learning

might be mere coincidence but the significantly higher

performance of object-id based classifiers is a result of

the powerful knowledge propagation mechanism.

B. Bootstrapping through active learning results

In this section, we evaluate the effect of active learning on

prediction performance of object-id based classifier. Starting

with a random set of few elements (1%), we increased

the training sample set by selecting the next sample based

on the criteria described in Section II-D. The prediction

performances of the classifiers with active learning and with

random sampling of training data are provided in Fig. 4. As

shown, the performance of the classifier remains same until

the underlying interaction network that is used for knowledge

propagation is established. Then, after around 6% of the

dataset, the performance boosts up and quickly surpasses that

without active learning. The initial phase of slow learning is

related to the exploration-exploitation dilemma, i.e. it can be

viewed as preparing the underlying structure of KnowPropC

for the active learner for bootstrapping in the later phases.

IV. CONCLUSION

In this study, we introduced a method that was successfully

used in recommender systems to the robotics community and

proposed to use this method in learning paired object affor-

dances in robots with large datasets. We evaluated the results

of such learning, which is based on knowledge propagation

of the relations on the underlying (object-pair, effect) graph

nodes. We compared the results with more conventional ap-

proaches, state-of-the-art classifiers that use low-level object

features or previously learned object affordances as input

attributes. With a focus on Knowledge Propagation in the

current paper, we showed that the prediction performance

of the proposed method is significantly higher compared to

628

1 6 11 16 21 26 31
0.65

0.7

0.75

0.8

0.85

0.9

Percentage of the interactions used in training

P
re

d
ic

ti
o

n
 p

e
rf

o
rm

a
n

c
e

Random sampling of training data

Active learning

Fig. 4. The prediction performance of predictors that are trained with
increasing number of training samples that is either randomly sampled from
the dataset or selected according to active learning criteria. Both classifiers
use randomly sampled initial training sets to achieve a connected underlying
graph. As shown, the active learning speed and performance is superior
compared to random sample selection.

the standard classifiers especially when active learning is

applied.

The disadvantage of the proposed knowledge propagation

method is the requirement of using object id’s for learning.

We discussed that this id can be provided by an expert or

found by the robot by comparing its features against the

objects in its database. The incorporation of novel objects

into the object id dataset and prediction of action effects

using the knowledge propagation algorithm is a challenging

problem. In our future work, we will study creating object

id’s on the fly based on the feature and effect similarities

and based on the prediction failures.

Collecting the interaction dataset by experts is very time

consuming and probably introduces bias to the system. On

the other hand, executing thousands of action to create this

dataset is not realistic with real robots as well. In this paper,

we showed that knowledge propagation based classification

with active learning significantly speeds up learning. Yet,

we need datasets to test and analyze our algorithms. In

the future, we plan to use physics-based simulators for this

purpose with the purpose of transferring the results to the

real world.

Finally, we provide the object perception and interaction

dataset used in this paper along with the open-source code

of the learning method at

https://iis.uibk.ac.at/public/szedmak/

IROS2014-KnowProb/.

ACKNOWLEDGEMENTS

This research was supported by European Community’s

Seventh Framework Programme FP7/2007-2013 (Specific

Programme Cooperation, Theme 3, Information and Com-

munication Technologies) under grant agreement no. 270273,

Xperience.

REFERENCES

[1] S. Szedmak, Y. Ni, and S. R. Gunn, “Maximum margin learning
with incomplete data: Learning networks instead of tables,”
Journal of Machine Learning Research, Proceedings, vol. 11,
Workshop on Applications of Pattern Analysis, pp. 96–102, 2010,
jmlr.csail.mit.edu/proceedings/papers/v11/szedmak10a/szedmak10a.pdf.

[2] M. Ghazanfar, S. Szedmak, and A. Prugel-Bennett, “Incremental
kernel mapping algorithms for scalable recommender systems,” in
IEEE International Conference on Tools with Artificial Intelligence

(ICTAI), Special Session on Recommender Systems in e-Commerce

(RSEC), 2011.
[3] M. Ghazanfar, A. Prugel-Bennett, and S. Szedmak, “Kernel mapping

recommender system algorithms,” Information Sciences, 2012.
[4] S. Szedmak, J. Shawe-Taylor, and E. Parado-Hernandez, “Learning via

linear operators: Maximum margin regression,” PASCAL Southamp-
ton, UK, Southampton, Tech. Rep., 2006, technical Report.

[5] J. Sinapov and A. Stoytchev, “Detecting the functional similarities
between tools using a hierarchical representation of outcomes,” in
Proceedings of the 7th IEEE International Conference on Development

and Learning. IEEE, Aug. 2008, pp. 91–96.
[6] M. B., P. Moreno, M. van Otterlo, J. Santos-Victor, and L. De Raedt,

“Learning relational affordance models for robots in multi-object
manipulation tasks,” in Prof. of IEEE Int. Conf. on Robotics and

Automation (ICRA), 2012, pp. 4373–4378.
[7] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal,

“Skill learning and task outcome prediction for manipulation,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference

on. IEEE, 2011, pp. 3828–3834.
[8] P. Pastor, M. Kalakrishnan, L. Righetti, and S. Schaal, “Towards

associative skill memories,” in Humanoid Robots (Humanoids), 2012

12th IEEE-RAS International Conference on. IEEE, 2012, pp. 309–
315.

[9] O. Kroemer, H. van Hoof, G. Neumann, and J. Peters, “Learning to
predict phases of manipulation tasks as hidden states,” in Robotics and

Automation (ICRA), 2014 IEEE International Conference on. IEEE,
2014.

[10] O. Chapelle, B. Schölkopf, and A. Z. Editors, Semi-Supervised Learn-

ing. MIT Press, Cambridge, MA, 2010.
[11] B. Taskar, C. Guestrin, and D. Koller, “Max-margin markov networks,”

in NIPS 2003, 2003.
[12] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large

margin methods for structured and interdependent output variables,”
Journal of Machine Learning Research (JMLR), vol. 6(Sep), pp. 1453–
1484, 2005.

[13] J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor, “Kernel-
based learning of hierarchical multilabel classification models,” Jour-

nal of Machine Learning Research, vol. Special issue on Machine
Learning and Large Scale Optimization, 2006.

[14] J. Rousu, C. Saunders, S. Szedmak, and J. ShaweTaylor, “Efficient
algorithms for maxmargin structured classification,” in Predicting

Structured Data. MIT Press, 2007, pp. 105–129.
[15] S. Szedmak and Z. Hussain, “A universal machine learning opti-

mization framework for arbitrary outputs,” 2009, http://eprints.pascal-
network.org.

[16] K. Astikainen, L. Holm, E. Pitkänen, S. Szedmak, and J. Rousu,
“Towards structured output prediction of enzyme function,” in BMC

Proceedings, 2(Suppl 4):S2, 2008.
[17] J. Lee, Introduction to Smooth Manifolds, ser. Graduate Texts in

Mathematics. Springer, 2003, vol. 218.
[18] E. Ugur, E. Oztop, and E. Sahin, “Goal emulation and planning in

perceptual space using learned affordances,” Robotics and Autonomous

Systems, vol. 59, no. 7–8, pp. 580–595, 2011.

629

Emergent Structuring of Interdependent Affordance Learning Tasks

Emre Ugur and Justus Piater

Intelligent and Interactive Systems, Institute of Computer Science,

University of Innsbruck

Abstract— In this paper, we study the learning mechanisms
that facilitate autonomous discovery of an effective affordance
prediction structure with multiple actions of different levels of
complexity. A robot can benefit from a hierarchical structure
where pre-learned basic affordances are used as inputs to
bootstrap learning of complex affordances. In a developmental
setting, links from basic affordances to the related complex
affordances should be self-discovered by the robot, along with a
suitable learning order. In order to discover the developmental
order, we use Intrinsic Motivation approach that can guide
the robot to explore the actions it should execute in order
to maximize the learning progress. During this learning, the
robot also discovers the structure by discovering and using the
most distinctive object features for predicting affordances. We
implemented our method in an online learning setup, and tested
it in a real dataset that includes 83 objects and the discrete
effects (such as pushed, rolled, inserted) created by three poke
and one stack action. The results show that the hierarchical
structure and the development order emerged from the learning
dynamics that is guided by Intrinsic Motivation mechanisms
and distinctive feature selection approach.

I. INTRODUCTION

Studies with infant chimpanzees[1] and human infants[2]

revealed that there is a dramatic increase in exploration

and success of object-object combinatory actions at around

1.5 years of age while such actions were at a very low

frequency before that period. This data suggests that the

infants first develop basic skills and affordances that are

precursors of combinatory manipulation actions. They also

probably use the learned action grounded object properties

in further development of complex action affordances.

In learning complex action affordances, i.e. affordances

that are provided by pairs of objects, we proposed a learning

framework where a developmental robotic system learns

object affordances1 in two-stages [3]. In the first stage,

the robot learns predicting single-object affordances (such

as pushability and rollability) by pushing single objects in

different directions, and learning the relations between visual

object features and the created discrete effects. In the second

stage, these single-object affordance predictions, i.e. effects

predicted to be obtained by the single-object actions, were

used along with other object features to learn paired-object

1In this study, the affordances provided by an object is defined as the list
of discrete effects (e.g. pushed, rolled, inserted) predicted to be obtained
by the discrete actions such as ‘poke a single object’ and ‘stack a pair of
objects’. Learning affordances refers to building a multi-category classifier
for each action that predicts the effect of that action given continuous
visual features and other predicted affordances of the object(s) involved. The
discrete actions and discrete effects are assumed to be discovered before.

(a) Flat prediction (b) Hierarchical prediction

Fig. 1. (a) shows a flat affordance learning structure, where the affordances
are predicted based on low level object features, action parameters, and all
other perceived affordances. (b) shows a simple hierarchical structure where
simple affordance predictions can be used to detect complex affordances.
This paper aims automatic discovery of such a hierarchical structure along
with the corresponding development order of its components.

affordances in stacking task. In this context, we showed

how complex affordance learning was bootstrapped by using

pre-learned basic-affordances encoded as additional features.

While such an approach was effective in efficient learning

of increasingly more complex affordances, the development

order and hierarchical prediction structure was manually

designed based on the pre-defined complexity levels of ac-

tions and affordances. A truly developmental system, on the

other hand, should be able to self-discover such a structure

(see Fig. 1(b)), i.e. links from basic to related complex

affordances, along with a suitable learning order.

E. J. Gibson argued that learning affordances is neither

the construction of representations from smaller pieces, nor

the association of a response to a stimulus. Instead, she

claimed, learning is “discovering distinctive features and

invariant properties of things and events” [4]. Learning is not

“enriching the input” but discovering the critical perceptual

information in that input. We will argue that learning and

prediction based on the most distinctive features not only

provide perceptual economy (as in [5]), but can be used

to autonomously determine the structure of the learning

problem.

4th International Conference on
Development and Learning and on Epigenetic Robotics
October 13-16, 2014. Palazzo Ducale, Genoa, Italy

ThAFFP.4

Copyright ©2014 European Union 481

Affordance learning through exploration requires the em-

bodied agent to deal with the high-dimensional nature of

the sensorimotor development in an open-ended learning

framework. Intrinsic Motivation approach, which can be

regarded as a set of active learning mechanisms for de-

velopmental robots, enables efficient and effective learning

in such environments by guiding the robot learning with

intelligent exploration strategies[6]. Intrinsic Motivation (IM)

approach in developmental robots [7] was inspired from

curiosity based motivation mechanisms in human develop-

ment, and has recently been effectively applied to cognitive

robots where object knowledge is developed through self-

exploration and social guidance [8]. This approach adap-

tively partitions agent’s sensorimotor space into regions of

exploration and guides the agent to select the regions that

are in intermediate level of difficulty. This is achieved by

maximizing reduction in prediction error, in other words by

maximizing the learning progress. In this paper, we propose

to use this approach to guide the robot to explore different

affordances by adaptively selecting the actions to execute,

and updating the models of the affordance predictions based

on the results of these actions. Through IM approach, we aim

to achieve a developmental progression similar to those of

infants in learning simple-to-complex skills and affordances.

In summary, we study the mechanisms that enable au-

tonomous structuring of affordance learning problem along

with development order of its components. Our prediction

system starts in a flat form as shown in Fig. 1(a) with

no assumption on the relative complexity of actions and

predictions. In each learning step, the robot actively selects

the most “interesting” action to explore based on Intrinsic

Motivation[9], and updates the prediction model of the

corresponding action based on the observed effect. The

robot also distinguishes “the most distinctive features” for

prediction of each different affordance in order to “discover

the information that specifies an affordance”[10] in training

the prediction model. We expect these two mechanisms,

namely (i) the Intrinsic Motivation based selection of actions

to explore, and (ii) the use of the most distinctive features

in affordance predictions, enable emergence of a hierarchical

structure, similar to the one shown in Fig. 1(b) along with

the corresponding developmental order of its components.

II. ACTIVE LEARNING OF AFFORDANCES WITH

DISTINCTIVE FEATURES

This section gives the outline of the online learning

algorithm. In our scenario, the robot needs to interact with

the objects using its action repertoire in order to learn their

affordances. Learning affordances corresponds to training a

classifier for each action that predicts the effect of that action

given object features. Thus, in each learning episode, the

robot selects an action, executes this action on a number

of objects, observes the effects created on these objects, and

updates the predictor of the explored action with the acquired

experience.

Algorithm 1 gives the online learning outline. At line 1,

visual object features are computed for the objects observed

in the environment. Next, predictors and their learning-

progresses are initialized with an initial phase of random

exploration which correspond to 10 interactions for each

action. The first step of the main loop (line 4) is to select

the next action to explore with the highest learning progress

based on Intrinsic Motivation criteria (see Section II-C).

Next, a number of objects are selected for exploration by

this action (Section II-D). The selected action is executed

on each selected object and the effects generated by these

executions are observed (line 6). Based on the observed

effects, the predictor of the executed action, along with its

learning progress, is updated (lines 7 and 8). The most

distinctive features used for predicting the effect of this

action are also updated by finding the relevant features of the

updated predictor at the same step (Section II-B). Finally, the

effect predictions for all objects are updated. Note that we

described the algorithm with single-object actions in order to

provide a clear overall picture, thus omitted several details.

Algorithm 1 Active learning of affordances with distinctive

features
1: compute object features
2: initialize predictors and affordance predictions
3: for each online learning time-step do
4: select action based on Intrinsic Motivation
5: select objects to explore
6: execute the selected action on the objects and observe effects
7: update the effect predictor of the selected action
8: find the most distinctive features for the updated predictor
9: update learning progress of the selected action

10: update the effect predictions for all objects for the selected
action

11: end for

A. Learning of affordances

Learning of affordances corresponds to learning the re-

lations between objects, actions and effects [11]. In this

study, object affordances are encoded as the list of effects

achievable by executing different actions of the robot:

affordanceso = (εoa1
, εoa2

, ...)

where εoa1
is the discrete effect created on object o by action

a1.

Predicting the effect of each action is learned by executing

the corresponding action on different objects. The resulting

effect of one action depends on various features of objects,

and is related to the other affordances the object provide. For

example, stackability affordance can be related to rollability

affordance and some other object features such as the object

sizes. Here, object features corresponds to general-purpose

basic ones computed mostly from visual perception with no

explicit link to robot’s actions. These may include standard

features used in literature, related to size and shape properties

of the objects. On the other hand, as we defined above,

affordances encode object-action interaction dynamics for the

available actions.

In order to learn affordances, and acquire the ability to

predict action effect based on object features and affordances,

Copyright ©2014 European Union 482

the following classifier (Pred) is trained for each action.

Specifically, we use Support Vector Machine (SVM) classi-

fiers with Radial Basis Function (RBF) kernel and optimized

parameters to learn these predictors[12]. The multi-category

classifier, after training, can predict the effect category given

features and affordances as follows:

εoai
= Predai

(featureso, affordanceso\εoai
)

Here, affordances\εoai
denotes ‘other affordances’, i.e.

the effect predictions of other classifiers. The general in-

put/output structure is provided in Fig. 2.

Fig. 2. Input/output links of the affordance predictors.

The recurrent connections in Fig. 2 might seem counter-

intuitive in a non-dynamical system, where both of the

predictors expect input from each other. This is achieved by

keeping the predictions for all the objects in memory, and

using the input values from the memory. Before training,

the predictions for all objects are fixed to non-existing effect

categories (-1). When a predictor is updated with exploration

and learning, its predicted effects on all objects are updated

in the memory as well. However these updated predictions

are not propagated to other predictors immediately; they are

used only by a new predictor that is being updated in the

next time-step. In this way, we avoided potential instability

issues of interdependent predictors.

Finally, this prediction mechanism can be generalized

to actions that involve more than one object, by simply

including all object features and affordances as the input

attributes of the predictors. In this paper, we indeed use an

action that involves two objects, where the predictor takes

the following form:

ε(o1,o2)ai
= Predai

(featureso1 , featureso2 ,

affordances(o1,o2)\ε(o1,o2)ai
)

(1)

Paired-object affordances, i.e. affordances offered by the

corresponding two objects, correspond to collection of the

effects (expected to be) obtained by the execution of all

available actions:

affordances(o1,o2) = (εo1a1
, εo1a2

, ...εo2a1
, εo2a2

, ..., ε(o1,o2)ai
, ε(o1,o2)aj

)

B. Discovering the most distinctive features

The most distinctive features that specify an affordance

correspond to the minimal set of inputs of the corresponding

effect predictor with the maximum achievable prediction ac-

curacy. We used Sequentialfs (sequential features selection)

method to select these features. The Sequentialfs method

generates near-optimal relevant feature sets in a way similar

to the one used in Schemata Search[13]. Starting from an

empty relevance feature set, it selects one feature and adds

it to the feature set of previous iteration. At each iteration,

a candidate feature set for each not-yet-selected feature is

formed by adding the corresponding feature to the previous

feature set. Then, the candidate feature sets are evaluated

through 10-fold cross-validations on SVM classifiers that

use these candidate feature sets. The best performing can-

didate set is then transferred to the next iteration. In the

experiments, we empirically observed that not more than 10

features were necessary to achieve best accuracy, thus we

limited the iteration number to 10. We also eliminated the

ones that have no effect in accuracy increase, finalizing the

most distinctive features for each trained predictor Pred.

C. Action selection with Intrinsic Motivation

Intrinsic Motivation, in its original formulation by Oudeyer

et. al.[7], is used to adaptively partition agent’s sensorimotor

space into regions of exploration, and to guide the agent to

select the regions that provide maximal learning progress.

In our study, Intrinsic Motivation is used to guide our robot

to select actions in order to maximize the learning progress,

which is defined as the increase in prediction accuracy of the

corresponding action.

The robot keeps learning progress of each action and in

each time-step, it selects an action to explore based on the

learning progress using ǫ-greedy strategy[14] where ǫ is set

to 0.05. If an action (ai) and a number of objects are selected

for exploration at time-step t, the robot first computes the

effects predicted to be achieved on these objects using

Predai
. Next, the action is executed on these objects and

the generated effects are observed. The success of the robot

in predicting the effects, denoted by γai
(t), is defined as the

ratio of the correct predictions on objects explored by ai,
and is used to update the learning progress of the action.

The learning progress (LP) of action ai is formally

defined as the actual increase in the mean prediction accuracy

of the predictor (Predai
) of the corresponding action:

LPai
(t+ 1) = γai

(t+ 1)− γai
(t+ 1− τ)

where γai
(t + 1) and γai

(t + 1 − τ) are defined as the

current and previous mean prediction accuracies of the effect

predictor, and τ is a time window, set to 2.

Here we define mean prediction accuracy by setting a

smoothing parameter θ to 5:

γai
(t+ 1) =

∑θ

j=0 γai
(t+ 1− j)

θ + 1

This is only a local measure that approximates the real

accuracy. We used this local accuracy measure in our online

incremental learning setup as the robot cannot access to

ground truth, i.e. it cannot know the effect categories of the

objects without actually executing its actions on all of them

in a real setting.

Copyright ©2014 European Union 483

Fig. 3. A subset of the objects used in the experiments.

D. Active object selection

The aim is to select the next object set so that the

diversity of the objects in the training set is maximized.

For this purpose, the Euclidean distance between objects are

computed using one of the three feature types randomly (as

computing distance in the joint space of different types would

be sensitive to relative weighting of the features). We select

the next object from the set of possible objects (PossObjs)

by maximizing the total distance from the next object to the

already explored objects (ExpObjs) as follows:

nextObj = argmax
o1∈PossObjs

∑

o2∈ExpObjs

distt(o1, o2)

where distt(o1, o2) is the Euclidean distance between two

objects in space t, which is sampled uniformly from the set

of feature types {size, shape, distance}.

III. EXPERIMENT SETUP

1) Interaction Dataset: We collected data from 83 objects

(Fig. 3) by placing them on the table in front of our

robot. Using these objects, we aimed to create an interaction

database composed of (object, action, effect) tuples. In order

to collect such a dataset, the robot, for example, was required

to make (83 × 83) = 6889 interactions for an action that

involves two objects, which is not feasible in the real world.

Thus, we used a human expert to fill-up the effect field of

the complete table2

2) Actions: The robot is equipped with a number of

manually coded actions that enable single and multi object

manipulation. The robot can poke a single object from

different sides using front-poke, side-poke, and top-poke

actions. It can also stack one object on the other using stack

action, where it grasps the first object, move it on top of the

other one and release it.

2Guessing the effects of actions and filling up the table without any ref-
erence to robot’s real world performance have the risk of creating a human-
biased interaction dataset. In order to reduce this risk, we implemented poke
and stack in our hand-arm robot system and let the expert observe the robot
action executions on a number of different sample objects; and generalize
his observations to other objects.

3) Action effects: The effect of stacking objects on top of

each other depends on their relative size. For example, while

‘inserted-in’ effect is generated when a small box is stacked

on a hollow cylinder, ‘piled-up’ effect is observed when the

box is larger than the opening on top of the cylinder. Using

the objects, we marked the interaction results for each object

pair for stack action. Different poke actions also generate

different effects even on the same objects. For example, when

poked from side, lying cylinders will roll away, boxes will

be pushed, objects with holes in poke direction will not be

affected as finger would go through the hole without any

interaction, and tall objects will topple down. The set of

manually encoded actions and their effects are as follows

• Actions: {side-poke, top-poke, front-poke, stack}

• Poke-effects: {pushed, rolled, toppled, resisted, nothing}

• Stack-effects: {piled-up, inserted-in, covered, tumbled-over}

Note that all the effects can be differentiated based on

changes in visual features of the objects, except for the

effects ‘resisted’ and ‘nothing’, which require force readings

from the end effector of the robot.

4) Object features: The objects are segmented based on

depth information of Kinect sensor that is placed over the

torso of the robot. Features are encoded in a continuous

vector composed of shape, size and local distance related

properties for object o:

featureso = (shapeo, dimo, disto)

Shape features are encoded as the distribution of local surface

normal vectors from object surface. Specifically histograms

of normal vectors along each axis, 8 bins each, are computed

to form 3 × 8 = 24 sized feature vector. dim encodes

the object size in different axes. dist features encode the

distribution of the local distance of all pixels to the neigh-

boring pixels. For this purpose, for each pixel we computed

distances to the neighboring pixels along each 4 direction

on Kinect’s 2D depth image. For each direction, we created

a histogram of 20 bins with bin size of 0.5cm, obtaining a

4× 20 = 100 sized vector for the dist.

IV. EXPERIMENT RESULTS

Using the database of 83 objects, 4 actions, and their cor-

responding effects, we applied active learning of affordances

with distinctive features method (Algorithm 1) to discover

the structure and development order of the affordance learn-

ing system.

A. Discovered development order

This section provides the obtained development order of

the affordance predictors. Recall that development order

refers to maturation order of the action predictors, and can be

analyzed by examining the order and frequency of actions,

selected during each iteration of the online learning of the

complete system (Algorithm 1, Step 7). The action selected

for exploration in each iteration step is shown in Fig. 4. As

shown, the less complex poke actions are learned first, and

more complex stack action is learned later. As the effect

of paired-object actions depend on the relations between

Copyright ©2014 European Union 484

properties of two objects, stack is a more complicated

action, difficult to learn. Prediction of stack action can also

benefit from simple-affordances (as we will show in the

next section). Thus, stack action is explored and learned

automatically after all other simpler actions are explored. In

the figure, the stack action is observed to be explored also

in the beginning of the learning in a number of steps either

because of momentarily increases in local accuracy or due

to the ǫ-greedy strategy.

0 40 80 120 160 200 240 280 320

Front−poke

Side−poke

Top−poke

Stack

Number of interactions

Fig. 4. The action selected for exploration and learning in each iteration
of online learning of affordances. As shown, single-object affordances, i.e.
prediction of effects of top-poke, side-poke and front-poke. are learned ini-
tially. As prediction of the effect of stack action requires learning of features
(and probably affordances) of both objects, paired-object affordances are
explored later.

We also plotted the local prediction accuracy γ evolution

of each action in Fig. 5. The actions that are selected in

the corresponding iteration step is illustrated with a mark

along with its accuracy plot. As we defined in Section II-A,

the accuracy of the predictors are computed using the small

number of objects (denoted by objs in Algorithm 1; 4 objects

in this experiment) explored in that iteration. This causes a

jerky performance evolution as shown in the figure. We run

the same algorithm with different initial conditions (initial

objects), and observed that the exact shape of each accuracy

plot and the exact order among single-object actions change.

However, the tendency of learning single-object affordances

first, and paired-object affordances later, remained consistent.

0 40 80 120 160 200 240 280 320
0

20

40

60

80

100

Number of interactions

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y

Front−poke

Side−poke

Top−poke

Stack

Fig. 5. The evolution of prediction accuracy of each predictor during online
learning. In each time-step, one of the four predictors is being updated
depending on the selected action, where this selection is illustrated by the
marks on the plots.

B. Discovered affordance prediction structure

This section gives the results of the structure evolution of

the affordance prediction system. Recall that the prediction

Fig. 6. Evolution of the distinctive features for prediction, where solid
lines correspond distance, shape and dimension features, and dashed lines
correspond to the predicted affordances. As shown, only effect prediction
of the stack action uses affordances as distinctive features. Note that use
of affordances for prediction starts after step 30, probably after effect
predictors of poke actions (and their affordance corresponding predictions)
have developed.

structure is defined over the most distinctive features that

are discovered to be most effective in predicting affordances

(Section II-B). The robot learns the affordances similar to the

previous experiment, but in order to analyze the discovered

structure independent of an action selection strategy, the

next action in each iteration is selected randomly in this

experiment. The ratio of the types of distinctive features

used in prediction in different phases of the online learning

are shown in Fig.6. Each plot in this figure corresponds

to evolution of the used features and affordances for a

different action. As shown in the plots, each low-level feature

affects affordance predictions in different levels, and shape

features are observed to be the first discovered distinctive

features especially in the initial phases of development for

all actions. However, more important in the context of this

paper, affordances are observed not to be used in the initial

phases, and are only found to be used in predicting effect

of stack action, i.e. predicting stackability affordances. Note

that stack predictor starts using single-object affordances

after around 30 samples, probably because the single-object

affordance prediction was not good enough before that time-

point.

We also plotted the exact structure, i.e. features and af-

fordances used by different effect predictors by highlighting

the links in the prediction system in Fig.7. Different plots

provide the structure in different iterations of learning. As

shown, at the end, a hierarchical structure is formed as

expected, where learned simple affordances are used in

learning and prediction of more complex affordances.

V. CONCLUSION

In this paper, we studied how interdependent affordance

learning tasks can be autonomously structured along with its

developmental order. In an online learning framework, we

showed that intrinsic motivation mechanism, which select

Copyright ©2014 European Union 485

(a) Initial structure with no training. (b) Discovered structure after trained with 10 objects.

(c) Discovered structure after trained with 20 objects. (d) Discovered structure after trained with 80 objects.

Fig. 7. Evolution of the structure discovery of the affordance prediction system. Black lines correspond to the “distinctive” features that are used by
affordance predictors. As shown, a hierarchy gradually emerges where at the end (d), single-object affordances are predicted based on only object features,
and further used in predicting paired-object affordances.

the next action to explore, based on learning progress of the

model of that action, can discover such a development order

where paired-object affordance learning follows maturation

of single-object affordances learning. Next, we showed that

by using the most discriminative features for affordance

prediction, the expected hierarchical structure emerged au-

tonomously where the learning system discovered that pre-

dictions of the single-object affordances are connected to

the paired-object affordances. We validated our approach

in a real dataset composed of 83 objects and pairs of

these objects along with the effects of three poke actions

and one stack action. The results show that hierarchical

structure and development order emerged from the learning

dynamics that is guided by Intrinsic Motivation mechanisms

and feature selection approach. In order to further verify our

approach, we are currently working on realizing the learning

cycle in the real robot with the aim of self-discovering the

effect categories autonomously and analyzing the results with

multiple independent trials.

In this paper, we assumed existence of discrete action

primitives and effect categories. We safely made such sim-

plifications and assumptions in the developmental setting of

this paper, as we already showed that a set of basic primitive

actions can be self-discovered through in interaction based

on observed tactile profiles in [15], and effect categories can

be autonomously found for different actions, such as rolled-

out-of-table, pushed, no-change, grasped in [11].

ACKNOWLEDGEMENTS

This research was supported by European Community’s

Seventh Framework Programme FP7/2007-2013 (Specific

Programme Cooperation, Theme 3, Information and Com-

munication Technologies) under grant agreement no. 270273,

Xperience.

REFERENCES

[1] M. Hayashi and T. Matsuzawa, “Cognitive development in object
manipulation by infant chimpanzees,” Animal Cognition, vol. 6, pp.
225–233, 2003.

[2] M. Ikuzawa, Development diagnostic tests for children, 2000.
[3] E. Ugur, S. Szedmak, and J. Piater, “Bootstrapping paired-object

affordance learning with learned single-affordance features,” in 4th

International Conference on Development and Learning and on Epi-

genetic Robotics, Genoa, Italy, 2014.
[4] E. J. Gibson, “Perceptual learning in development: Some basic con-

cepts,” Ecological Psychology, vol. 12, no. 4, pp. 295–302, 2000.
[5] E. Ugur and E. Şahin, “Traversability: A case study for learning and

perceiving affordances in robots,” Adaptive Behavior, vol. 18, no. 3-4,
2010.

[6] M. Lopes, P.-Y. Oudeyer, et al., “Guest editorial active learning and in-
trinsically motivated exploration in robots: Advances and challenges,”
IEEE Transactions on Autonomous Mental Development, vol. 2, no. 2,
pp. 65–69, 2010.

[7] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic motivation
systems for autonomous mental development,” IEEE Transactions on

Evolutionary Computation, vol. 11, no. 2, pp. 265–286, 2007.
[8] S. Ivaldi, S. Nguyen, N. Lyubova, A. Droniou, V. Padois, D. Filliat,

P.-Y. Oudeyer, and O. Sigaud, “Object learning through active explo-
ration,” IEEE Transactions on Autonomous Mental Development, pp.
56–72, 2013.

[9] P.-Y. Oudeyer and F. Kaplan, “What is intrinsic motivation? a typology
of computational approaches,” Frontiers in neurorobotics, vol. 1, pp.
1–6, 2007.

[10] A. Szokolszky, “An interview with Eleanor Gibson,” Ecological Psy-

chology, vol. 15, no. 4, pp. 271–281, 2003.
[11] E. Ugur, E. Oztop, and E. Sahin, “Goal emulation and planning in

perceptual space using learned affordances,” Robotics and Autonomous

Systems, vol. 59, no. 7–8, pp. 580–595, 2011.
[12] C.-C. Chang and C.-J. Lin, “Libsvm : a library for support vector

machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 27, pp. 1–27, 2011.

[13] A. W. Moore and M. S. Lee, “Efficient algorithms for minimizing cross
validation error,” in Proceedings of the 11th International Conference

on Machine Learning, R. Greiner and D. Schuurmans, Eds. Morgan
Kaufmann, 1994, pp. 190–198.

[14] R. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 1998.

[15] E. Ugur, E. Sahin, and E. Oztop, “Self-discovery of motor primitives
and learning grasp affordances,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2012, pp. 3260–3267.

Copyright ©2014 European Union 486

Bottom-Up Learning of Object Categories, Action Effects and Logical

Rules: From Continuous Manipulative Exploration to Symbolic

Planning

Emre Ugur and Justus Piater

Abstract— This work aims bottom-up and autonomous de-
velopment of symbolic planning operators from continuous
interaction experience of a manipulator robot that explores
the environment using its action repertoire. The core idea is
that the system discovers compact, descriptive, and predictable
effect categories by grouping the interactions that produce
similar continuous effects, and forms object categories in the
form of list of generated discrete effects for different actions.
After forming object categories, it learns the relations between
continuous properties of the objects and the created effects,
effectively building mechanisms that detect object categories
from the observed properties of the objects.

Development of the symbolic knowledge is achieved in two
stages. In the first stage, the robot explores the environment
by executing actions on single objects, forms effect and object
categories, and learns to predict object/effect categories from
visual properties of the objects. In the next stage, with further
interactions that involve stack actions on pairs of objects, the
system learns logical high-level rules that return stack effect
category given the categories of the involved objects and discrete
relations between them. Finally, these categories and rules are
encoded in Planning Domain Definition Language (PDDL), en-
abling symbolic planning. We realized our method by learning
the categories and rules in a physics-based simulator through
exploration. The learned symbols and operators are further
verified by generating and executing non-trivial symbolic plans
in the real robot in tower building task.

I. INTRODUCTION

There exists a representational gap between continuous

sensorimotor world of a robot and discrete symbols and

operator used by advanced AI planning methods. Learning

of the mapping between the sensorimotor readings and these

symbols is one approach to bridge the gap and is a part of the

so called symbol grounding problem [1]. The learning studies

in this context typically assume that the planning symbols are

pre-coded, and the relations between continuous sensorimo-

tor readings and these pre-coded symbols are learned [2].

They generally define transition rules as actions linked by

logical preconditions and effect predicates, and sensorimotor

experience of the robot is used to associate the predicates of

the transition rules. For example in [3], these preconditions

were pre-defined binary functions of sensor readings, where

the robot learned to combine the preconditions with effects

and effects through human assistance. In [4], pre-defined

This research was supported by European Community’s Seventh Frame-
work Programme FP7/2007-2013 (Specific Programme Cooperation, Theme
3, Information and Communication Technologies) under grant agreement no.
270273, Xperience.

University of Innsbruck Institute of Computer Science, IIS Innsbruck,
Austria firstname.lastname@uibk.ac.at

high-level object and environment properties are used as

the predicates of the transition rules. Similarly, [5] studied

learning of predefined action effects using kernel perceptrons

for STRIPS and ADL planning domains.

On the other hand, Sun argued that symbols “are not

formed in isolation” and that “they are formed in relation

to the experience of agents, through their perceptual/motor

apparatuses, in their world and linked to their goals and

actions” [6]. In this vein, symbol formation in a robot

interacting with its world was studied in [7], where self-

organizing maps were used to cluster low-level sensory data

and to form perceptual states; and the planning was is per-

formed by successively predicting the next perceptual states.

Our previous work [8] also addresses planning in perceptual

space, where the affordances that the robot learned during

its interactions with the environment were used to develop

multi-step plans in perceptual space with effect predictions

and forward chaining in continuous domain. However, in

these studies, the structures used for multi-step planning were

still in continuous space, limiting the use of powerful AI

planning techniques. [9], on the other hand, took a path in

between, and used a teacher to learn grounded relational non-

predefined symbols.

Mugan and Kuiper’s recent work [10] is probably the

closest one to our current study, in terms of the target

research goal of acquiring discrete representations; while the

methods differ significantly. They also proposed a method

to learn qualitative representations of states and predictive

models in a bottom-up manner by discretizing the continuous

variables of the environment. Based on the predictive models

that are learned using Dynamic Bayesian Networks (DBNs),

Markov decision processes (MDP) framework is used to plan

goal-oriented hand/arm control in the simulator.

The current study is part of a research effort where a

robot system gradually develops skills and competencies in

subsequent stages of development, similar to human infants.

Previously we showed that a robot that is initialized with

a basic reach-and-grasp movement capability can discover a

set of action primitives [11], learn a library of affordances

and associated predictors [8], and finally use these structures

to bootstrap complex imitation with the help of a cooperative

tutor [12]. The methods provided in the current study enable

the robot to reach a higher-level of cognitive competence

where it starts forming symbols and reasoning in symbolic

level, and makes non-trivial plans in real world with the

symbols developed in a bottom-up manner.

II. METHODS

A. Representation

The environment and the generated effects are observed by

the robot and originally represented in continuous variables,

such as continuous object percept and continuous propriocep-

tive signals. With the methods provided, to use in symbolic

planning, the robot learns categorical representation of the

environment and the effects. The following notation will be

used in our paper.

The robot is equipped with a number of manually coded

actions that enable single and multi object manipulation.

The robot can poke a single object from different sides

using front-poke (f-poke), side-poke (s-poke), and top-poke

(t-poke); grasp it using pick, and drop it at a given position

using release actions. It can also stack one object on the

other using stack action, which is a combination of pick and

release actions, where the vertical aligned gripper grasps the

object first, carries it on top of the other one and releases it.

Continuous object state is represented by fo and includes

the list of object features obtained from the visual perception,

including features related to the existence, shape and size

of the object. The continuous proprioceptive state of the

robot, which includes the gripper position, is represented

by fr. Thus, the continuous world state with n objects

is represented by

(fo1
,fo1

, ..fon
,f r)

Continuous effect of action a on object o is represented

by ∆(fo,fr)
a and corresponds to the changes in object

features and proprioceptive readings.

Discrete effect (εao), on the other hand, is discovered by

the robot during its development, and used for symbolic

planning. Planner also uses discrete object state, which is a

collection of discrete effects expected to be obtained by the

available m actions:

So = (εa1 , εa2 , ..εam)o (1)

The discrete object state can also be represented by object

category, where each category is assigned an index that is

uniquely represented in the vector. Object state and category

will be used interchangeably through the document as they

refer to the same concept.

Finally, discrete world state is represented by the list of

discrete object states and discrete relations between pairs of

these objects:

S = (So1 , So2 ..Son , R1o1,o2 , R2o1,o2 ...)

where R corresponds a discrete relation between the corre-

sponding pairs of objects, such as the size relation, ‘below-

bigger’.

J.J. Gibson coined the term affordance to refer to the

action possibilities that objects offer to an organism in an

environment [13]. In our formalism, object states include the

list of action possibilities encoded with the corresponding

expected effects. The robot will learn the relations between

object features and action effects, effectively learning to

perceive object categories given object features. In other

words, it learns to perceive the possibilities provided by the

objects with the explored set of actions, i.e. it learns object

affordances. The learned affordances are used for planning

as detailed in the next sections.

B. Development of symbols and prediction capability

The robot explores the environment using its action reper-

toire, and encodes its observations in terms of continuous

world states and continuous effects. Because our aim is to

build discrete symbols for the symbolic planning, the robot

needs to form categories in these continuous spaces, i.e. learn

encoding environment in discrete variables. For this purpose,

the robot progressively learns discrete and abstract structures

and rules to represent the world and do reasoning; and uses

these high-level symbolic structures for symbolic planning

at the end. The stages of development and use of knowledge

representations are as follows:

1) Stage I: Learning of single-object affordances: In the

first stage, the robot explores the environment with its actions

that are executed on single objects such as poke, pick and

release. It observes and stores the continuous effects gener-

ated during these interactions. After experiencing Na number

of interactions for any action a, unsupervised clustering

methods are applied in continuous effect space

{εai }
I
i=1 = Cluster({∆(fo,f r)

a
j }

Na

j=1, (2)

in order to find I discrete effect categories for each action.

Recall that in (1), we defined a discrete object state as a

collection of the discrete effect categories. Thus, through this

clustering process, the robot learns the object categories it

encountered in terms of the action effects.

Next, the robot learns to relate these categories to the

features of the objects in order to detect object categories

without any action execution. For this purpose, it learns the

mapping from continuous object features to the effect cate-

gories by training multi-category classifiers (Predictorai(fo))
for each action ai, with the following training data:

{(fo,f r)j , ε
a
j }

Na

j=1 (3)

After learning, given object features, the robot can predict

the list of offered discrete effects, and perceive the discrete

object state:

So = (Predictora1(fo), ...Predictoram(fo)) (4)

For instance, if one object is predicted to be rolled with

poke action, lifted with pick action, and tumbled off when it

is released, it is categorized with (rolled, lifted, and stable)

discrete variables. At the end of this phase, the robot acquires

the ability to categorize the observed objects with the type

of effects its action repertoire can generate.

2) Stage II.a: Discovering the effect categories of stack

action: In this stage, the robot explores the environment with

its actions that involve pairs of objects. Stack action is used

for this purpose. Similar to Stage I, the robot executes this

action on different pairs of objects, observes the continuous

effects generated, and finds representative and meaningful

discrete effect categories created on the pair.

For effect category generation in this stage, we observed

that a naive clustering in continuous effect space was not

effective as the interacting objects can generate various ef-

fects due to the complex interactions between them. Thus the

robot applies a number of further exploratory actions on the

objects after stack action, and groups the effects generated

during the execution of this sequence. For example, after

stack action, it can grasp the object below, lift and rotate it;

and can observe the generated effects on both object directly.

If they move together then they are properly-inserted. In the

current work, poke action is used as the exploratory action.

After stacking, the robot pokes both of the objects one by

one, observes the additional generated effects, and includes

all these data to find a grouping in interactions:

{εstack
i }Ii=1 = Cluster({∆(fo1

,fo2
,f r)

astack ,

∆(fo1
,fo2

,fr)
af-poke,o1 ,∆(fo1

,fo2
,f r)

af-poke,o2})
(5)

where af-poke,oi denotes front-poke action applied to the

object pair:(o1, o2). The order of pairing is important, and

the indexes will be replaced with the ‘below’ and ‘above’

keywords, in the rest of the text.

3) Stage II.b: Learning logical rules for stack affordances:

In this stage, the robot builds rules for stack action. It already

learned how to categorize single-objects with the list of the

predicted action effects based on perceived object features.

It uses the stack instances, and use the object categories and

discretized relations between them (such as below-bigger or

below-higher) to represent the states. Then, it attempts to

obtain logical rules from the noisy and possibly inconsistent

interactions, so that the rules can be used to predict stack

effects. It uses decision tree rule learning methods to build

a decision tree for a compact rule set using the following

training data:

{(So1 , So2 , R1o1,o2 , R2o1,o2) → εastack} (6)

where R1 and R2 represent discrete relations between ob-

jects, and εas is the effect category obtained by the stack

action, that was found in (5).

4) Stage III: Symbolic planning: In Stage III, the robot

builds symbolic domain and problem descriptions based on

the object states and the rules learned in the previous stages.

This description, realized in STRIPS notation, includes all

the predicates and actions. The predicates correspond to auto-

matically discovered discrete object categories and relations,

and actions correspond to the learned rules. The actions in

PDDL (Planning Domain Definition Language) contain the

following three fields:

• Action name: We used stack action in this work.

• Preconditions: The list of the predicates that should be

valid in order to apply the action. This corresponds to

the discrete object states and their discrete relations (left

part of (6)) for each learned rule.

• Effects: The list of the predicates that change if the

preconditions are satisfied and the action is executed.

(a) Real robot (b) Simulation

Fig. 1: The experimental setup. KUKA LWR robot arm

and Schunk gripper are used for manipulation and Kinect is

used to extract object features including object’s position and

to compute object affordances. The simulation environment

includes one and two objects during single-object and paired-

object affordance learning experiments, respectively. Several

objects are included while testing the planning capability for

tower-building task in the real world.

The predicted effect categories (right part of (6)) are

provided in this field.

Therefore, domain description includes a separate action for

each learned rule along with the corresponding preconditions

and effects.

The system, after automatically constructing the domain

description, can solve various problems depending on the

state of the world and the goal. The initial state of the

world, i.e. states of the objects and discrete relations between

them, and the goal is defined in the problem description,

in STRIPS notation as well. Given domain and problem

descriptions, off-the-shelf symbolic planners are used to

acquire the desired tasks. Please see Section III-E for the

implementation details.

III. EXPERIMENTS

In this section, we will present the results obtained through

staged development of the robot and its planning perfor-

mance. The single and paired affordances are learned through

interactions and self-exploration in the simulated platform.

After rules are learned, the plan generation and execution is

verified in the real robot.

A. Robot Platform

Our experimental setup is composed of a KUKA Light

Weight Robot (LWR) arm and a Schunk gripper for manip-

ulation, a Kinect sensor for environment perception, and a

number of objects that are placed on the table for exploration

(Fig. 1a).

For environment perception, Kinect sensor placed over

the torso is used. The robot’s workspace consists of several

objects and a table where the region of interest is defined as

the volume over the table. The objects are then segmented

by the Connected Component Labeling algorithm which

differentiates object regions that are spatially separated by a

preset threshold value (3 cm in the current implementation).

Features are encoded in a continuous vector composed of

different properties for object o:

fo = (viso, poso, shapeo, dimo, disto)

vis feature corresponds to object visibility which encodes

the knowledge regarding the existence of the object. shape
features are encoded as the distribution of local surface

normal vectors from object surface1. Specifically histograms

of normal vectors along each axis, 8 bins each, are computed

to form 3 × 8 = 24 sized feature vector. pos and dim
correspond to the center and size of the object, respectively.

dist features encode the distribution of the local distance

of all pixels to the neighboring pixels. For this purpose, for

each pixel we computed distances to the neighboring pixels

along each 4 direction on Kinect’s 2D depth image. For each

direction, we created a histogram of 20 bins with bin size of

0.5cm, obtaining a 4× 20 = 100 sized vector for the dist.
The robot can manipulate objects using its action reper-

toire that includes pick, release, f-poke, t-poke, s-poke, and

stack actions. These actions are parameterized with target

object position (poso), and the orientation of the gripper,

depending on the action type. Once the target pose in task

space is identified, the corresponding target joint angles are

computed using inverse kinematics functions provided by the

Kinematics and Dynamics Library (KDL)2. Finally, given

the current and target joint angles, a smooth trajectory is

computed by Reflexxes library [14], and this point-to-point

movement is executed. The object is gripped from top using

the built-in spherical grip of the Schunk hand.

For exploration and learning, the robot is required to make

large number of interactions with the objects, which is time-

consuming and risky in real world. For this purpose, we

used the V-Rep3 robot simulation platform (Fig. 1b) with

Bullet physics engine. The complete simulated setup was

built using the publicly available models of the arm and

the gripper; and Robot Operating System (ROS) is used to

communicate with both the real robot and the simulated one

with exactly same interfaces. The objects used in training

include boxes, cylinders, spheres, box walls, cylinder walls

as shown in Fig. 1b, where small sticks are inserted into the

hollow objects to illustrate the hollow objects.

B. Learned single-object affordances

In the first stage of learning, the simulated robot ex-

ecutes poke, pick, and release actions on single objects,

monitors the environment, and stores the continuous ob-

ject states along with the continuous effects generated by

different actions. After collecting the interaction instances

{fo,f r,∆(fo,fr)
aj , aj}, first it applies X-means cluster-

ing method in continuous effect space, {∆(fo,f r)
aj}, and

finds a number of effect categories for each different action.

In our previous work [8], we already showed that mean-

ingful and predictable effect categories cannot be obtained

1PCL normal estimation software is used to compute normal vectors.
2http://www.orocos.org/kdl
3http://coppeliarobotics.com

TABLE I: Discovered effect categories for single-object

actions.

Action Effect prototype εai Interpretation

Pick - 0 Grasped

Release
change in object position 0 Tumbled
no change 1 Stable

Front-poke
change in object visibility 0 Rolled off the table
no change 1 Pushed

Side-poke
change in object visibility 0 Rolled off the table
no change 1 Pushed

Top-poke
large change in gripper pos 0 Finger goes through
small change in gripper pos 1 Finger obstructed

if clustering is performed in complex spaces such as size

and shape features space. Therefore, we applied clustering in

object position, object visibility and gripper position spaces

and obtained the effect categories presented in Table I.

As all the objects used in the experiments were graspable,

the effect of applying pick action were always same. For

other actions, different distinguishable effects were created

in different spaces. When these effects are enumerated, the

following compact object category representation is obtained:

So ∈ {SOLID, ROLLABLE, HOLLOW, UNSTABLE}

where

SOLID = (0, 1, 1, 1, 1) ROLLABLE = (0, 1, 0, 0, 1)
HOLLOW = (0, 1, 1, 1, 0) UNSTABLE = (-, 0, -, -, -)

The effect categories for UNSTABLE objects are unknown,

as they are generally thin objects that lie on the ground (after

being released on the table and tumbled-off), and risky to

interact with manipulation actions.

Finally, the mapping from object features to object cat-

egories, i.e. fo → So, is learned using Support Vector

Machine (SVM) with with Radial Basis Function (RBF)

kernel and optimized parameters [15].

C. Discovered stack effect categories

In this stage, the simulated robot executes stack actions

on pairs of objects, monitors the environment, and stores the

continuous object states along with the continuous effects

generated by different actions. As we described before,

the effects do not only correspond to immediate effect of

stack action, but is a collection of effects generated by the

following exploratory front-poke actions applied both of the

objects. Furthermore, as the effect space was very complex,

only the changes in the visibility and position of the object

are used as the effect features. The grouped instances of

these features are provided in Table II. We interpreted these

effect categories based on position and visibility changes,

and provided labels for each effect category in the table.

STACKED1 and STACKED2 effect categories correspond to

SOLID-on-SOLID and ROLLABLE-on-SOLID stacking in gen-

eral. TUMBLED1 and TUMBLED2 effect categories on the

other hand both correspond to SOLID-on-ROLLABLE stacking

interactions, where in the first case poking one object does

not affect the other, and in the second case, the poked

ROLLABLE object also pushes the SOLID object. The labels

TABLE II: Discovered effect categories of stack action. Number of occurrences of the clusters, the corresponding changes

in object features, and interpretation.

After stacko1,o2 After f-pokeo1 After f-pokeo2 Interpretation

∆viso1 ∆viso2 ∆poso1 ∆poso2 ∆viso1 ∆viso2 ∆poso1 ∆poso2 ∆viso1 ∆viso2
49 1 1 1 1 1 1 1 1 1 1 INSERTED

127 1 1 1 1 1 0 1 1 1 1 STACKED1

28 1 1 1 1 1 0 0 1 1 1 STACKED2

67 1 1 0 0 0 1 0 1 0 1 TUMBLED1

13 1 1 0 1 0 1 0 1 0 1 TUMBLED2

6 1 1 1 1 1 1 0 0 1 1 -

4 1 1 0 0 0 0 0 0 0 0 -

..

TABLE III: K-means clustering in effect category space.

εstack µ1 σ1 µ2 σ2 Cat.

INSERTED [0,0,0] [0,0,-9] [0, 2, 0] [2, 4, 4] 0

STACKED1 [0,0,0] [1,0,-2] [1, 1, 0] [4, 3, 5] 1

STACKED2 [0,0,0] [1,-1,-1] [0, 1, 0] [4, 4, 2] 1

TUMBLED1 [2,0,0] [0,-9,-12] [3, 3, 0] [7, 11, 4] 2

TUMBLED2 [-1,0,0] [1,-5,-16] [3, 2, 0] [9, 13, 3] 2

of the effect categories will be used in the rest of the text

(similar to use of object category labels) solely to ease the

understandability of the text.

Note that only the most occurring effect categories are

used in the rest. If we assume that the number of meaningful

effect categories is 3, and apply further clustering (K-Means)

using mean and variance of the object position changes for

each effect category, a more ‘intuitive’ categorization can be

obtained at the end as shown in Table III. As seen in the

table, STACKED1 and STACKED2 are assigned to a single

category; and TUMBLED1 and TUMBLED2 are assigned to

another category. While these results with a hierarchical

clustering give some insights about the complexity of the

problem, and the necessity for human intervention to obtain

the most meaningful clusters, we are not going to use these

clusters, and let the system continue learning bottom-up in

a completely unsupervised way.

D. Rule Learning

Based on the discovered object categories (Table II) and

the discovered effect categories (Table III), now the robot

can represent the interactions with discrete variables. Here,

to represent discrete world state, we use discovered object

categories, and size and height relations. The set of interac-

tions the robot observed is encoded as follows:

{(So1 , So2 ,Rel-Widtho1,o2 ,Rel-Heighto1,o2), (ε
stack)}

where

So = {SOLID, ROLLABLE, HOLLOW, tumbled}

Rel-Width = {below-bigger, is-same, below-smaller}

Rel-Height = {below-higher, is-same, below-shorter}

εstack ={INSERTED, STACKED1, STACKED2, TUMBLED1, TUMBLED2}

A number of sample interaction instances obtained during

experiments and encoded in the discovered discrete struc-

tures are shown below, where the first and second objects

corresponds to the object below and above during stacking.

’HOLLOW’,’HOLLOW’,’below-smaller’,’below-shorter’,’STACKED1’
’HOLLOW’,’HOLLOW’,’below-bigger’,’below-shorter’,’INSERTED’
’HOLLOW’,’SOLID’,’same-width’,’below-higher’,’STACKED1’
’SOLID’,’HOLLOW’,’below-smaller’,’below-shorter’,’STACKED1’
’SOLID’,’ROLLABLE’,’below-smaller’,’same-height’,’STACKED2’
’ROLLABLE’,’SOLID’,’below-bigger’,’same-height’,’TUMBLED1’

Below = HOLLOW

— Rel-Width = below-smaller

01 — — Above = HOLLOW: STACKED1

02 — — Above = SOLID: STACKED1

03 — — Above = ROLLABLE: INSERTED

04 — — Above = UNSTABLE: INSERTED

— Rel-Width = same-width

05 — — Above = HOLLOW: STACKED1

06 — — Above = SOLID: STACKED1

07 — — Above = ROLLABLE: INSERTED

08 — — Above = UNSTABLE: INSERTED

09 — Rel-Width = below-bigger: INSERTED

Below = SOLID

10 — Above = HOLLOW: STACKED1

11 — Above = SOLID: STACKED1

12 — Above = ROLLABLE: STACKED2

13 — Above = UNSTABLE: STACKED1

14 Below = ROLLABLE: TUMBLED1

15 Below = UNSTABLE: STACKED1

Fig. 2: Results of decision tree learning

C4.5 decision tree learning with pruning is used to find a

compact representation of rules with Weka software package

[16]. The obtained decision tree is presented in Fig. 2. As

shown, if the object below is a HOLLOW one, then depending

on the size of the object above, the effects are different. For

example, if the object below is bigger, then independent of

any other factor, the resulting effect is always INSERTED.

Otherwise, depending on the category of the above object and

its relative width, it can get INSERTED in or stacked on the

HOLLOW object. If the object below is SOLID, then, again de-

pending on the object above, different types of stacked effects

are expected to be generated. Note that in both STACKED1

and STACKED2, the above object stacks on the below object,

but the STACKED2 case is more UNSTABLE (as detected

and learned by the successive exploratory poke actions).

Finally according to the decision tree, if the below object is

ROLLABLE or UNSTABLE, independent of the object above,

the effect would be tumbled or stacked, respectively. The

tumbled effect in response to a stack action on ROLLABLE

objects was expected. However, the stacked effect in response

(define (domain stack)

(:requirements :strips)

(:predicates

(hollow ?x) (below-smaller ?x ?y)

(solid ?x) (below-bigger ?x ?y)

(rollable ?x) (same-size ?x ?y)

(unstable ?x) (below-shorter ?x ?y)

(pickloc ?x) (below-higher ?x ?y)

(stackloc ?x) (same-height ?x ?y)

(instack ?x))

Fig. 3: Predicates that are used in domain definition.

to stack action on UNSTABLE objects is not intuitive, and

needs more elaborate analysis of the decision tree learner.

Note that the rule learner was able to find out that the relative

height of the objects do not have any significant influence

on the generated effects in the simulated interactions; thus

height relation is not included in any learned rule.

E. Planning

Based on the rules learned in the previous section, the

system automatically constructs domain definition in STRIPS

notation. We already mentioned that the domain is described

by a number of predicates (discovered object and effect cat-

egories, and discrete relations between objects in our case),

and a number of actions along with their preconditions and

effects. Here, the stack action is included into the domain file,

with the preconditions and effects given in Fig. 2. The pred-

icates used in planning are given in Fig. 3. (pickloc ?x)

and (stackloc ?x) predicates are set to true if the objects

are at pick-up and stacked locations, respectively. (instack

?x) predicate is set to true if the effect category is in the

following set: {INSERTED, STACKED1, STACKED2}.

Fig. 4 gives sample action descriptions generated from

rules 01, 03, and 14, which have effects of TUMBLED1,

INSERTED and STACKED1, respectively. We also added

predicates that represent the height of the stack (‘H’) and the

number of the objects (’S’) in the stack. As the increment

operator is not supported in STRIPS notation, a separate

action is automatically generated for each level of height

and stack increment.

While INSERTED does not affect the height of the stack

significantly, STACKED1 and STACKED2 do increase the

height, as shown by the mean position changes of the

objects in Table III. Thus, ‘H’ is increased in rule (01),

but not in rule (03). Similarly, the number of objects is

increased with STACKED1 and INSERTED effects, not with

the TUMBLED1effect; thus there is no change in ’S’ in

TUMBLED1 effect and the corresponding rule no 14. Finally,

in this study we assumed that the category of the tower/stack

is determined by the latest included element. For example,

if a ROLLABLE object is added to the stack with SOLID or

HOLLOW object on top, the next category of the stack is set

as ROLLABLE. We plan to relax this constraint in our next

work, by learning a rule that predicts the next ’category’

of the stack, depending on the categories and relations of

the pairs of objects being stacked. In this way, the system

should learn that the category of the stack should be kept

(:action stack ;;; rule no: 01

:parameters (?Below ?Above)

:precondition (and (pickloc ?Above)

(stackloc ?Below) (hollow ?Below) (H0) (S0)

(below-smaller ?Below ?Above) (hollow ?Above))

:effect

(not (pickloc ?Above)) (not (H0)) (H1) (not (S0)) (S1)

(instack ?Above) (stackloc ?Above)

(not (stackloc ?Below)))

(:action stack ;;; rule no: 03

:parameters (?Below ?Above)

:precondition (and (pickloc ?Above)

(stackloc ?Below) (hollow ?Below) (S0)

(below-smaller ?Below ?Above) (rollable ?Above))

:effect

(not (pickloc ?Above)) (not (S0)) (S1)

(instack ?Above) (stackloc ?Above)

(not (stackloc ?Below)))

(:action stack ;;; rule no: 14

:parameters (?Below ?ABOVE)

:precondition (and (pickloc ?Above)

(stackloc ?Below) (rollable ?Below))

:effect

(not (pickloc ?ABOVE)))

Fig. 4: A number of automatically generated actions in

domain definition

(define (problem simple-1)

(:domain stack)

(:objects o1 o2 table)

(:init (stackloc table)

(solid table)

(pickloc o1) (pickloc o2)

(hollow o1) (solid o2)

(below-bigger o1 o2)

(H0) (S0))

(:goal (and (S2) (H2))))

PLAN:

1 (stack table o2)

2 (stack o2 o1)

Fig. 5: Left: Sample domain and problem descriptions that

include initial world state and the goal. Initial world contains

one HOLLOW and one SOLID object, and an empty stack

(S0), with 0 height, (H0). The goal is to build a stack of

height 2 (H2) with 2 objects (S2). Right: The generated

plan first stacks SOLID object on the empty table, then stacks

the HOLLOW object on top of SOLID, further increasing the

height of the tower.

HOLLOW, if a very small ROLLABLE object is dropped-on a

big HOLLOW object.

The goal/problem is defined with STRIPS notation as

well. When we define the initial world state, we always

assume that the objects are placed to a location/object with

(stackloc table) predicate where a is a stackable object

(SOLID table). Fig. 5 shows a sample world with two objects,

that were categorized as HOLLOW and SOLID. The goal is to

obtain a predicate with (H2), which means to obtain a stack

of height 2. In order to achieve this goal, the system plans to

stack HOLLOW object on top of the SOLID object. But with

the same objects, if the goal is set to have two objects in

a stack of height 1, (S2) (H1), then the plan would be

different, stacking SOLID object on the bigger HOLLOW one:

1 (stack table o1) 2 (stack o1 o2)

Note that, if the height of the stack is not important,

Fig. 6: Tower building experiment. The goal is to build a tower of (S4) and (H1), i.e. a tower with 4 objects of height

1. The plan was first stacking the HOLLOW objects on top of each other, starting from the bigger ones; and finally stacking

the ball at the end. As the objects are predicted to be inserted into each other, the height of the tower is correctly predicted

to be kept fixed.

the tower-building goal can also be defined by using the

(instack o) predicate. For plan generation, we use an

off-the-shelf planning software, namely Blackbox4, which

transforms the facts and operators defined in STRIPS no-

tation into propositional satisfiability (SAT) problem and

solves the problem it with randomized systematic solvers

[17].

F. Real World Experiments

In this section, our system is partially verified by the

real robot experiments, where the effect category prediction

(learned in the real world), and the rules (learned in the

simulator as described above) are used to build and execute

plans in tower building task. Given a number of objects,

the task of the robot is to build compact towers with all

objects included. Such a task is useful in transporting objects

together, to ensure the stability by keeping the stack compact.

Thus, the robot needs to plan a sequence of stack actions,

and ensure that all objects are stacked with minimal final

height of a single tower.

Given objects, the robot first computes the categories using

the classifiers learned, then encodes world state in terms

of these categories and the categorical relations among the

objects. Finally, it runs the planner, setting ‘S’ predicate to

the number of objects, and ‘H’ predicate to the minimum

number (1) initially. In case, no plan is found, the constraint

is relaxed, i.e. the goal ‘H’ predicate is increased by one in a

loop, until a plan is found. After the plan is constructed, the

robot selects the next objects to stack according to the plan

and sequentially executes the stack actions. As the planned

effect categories are grounded, the robot can also monitor

the plan execution, and check whether the observed effect

categories are in accordance with the expected ones; but this

feature is not implemented in the current system.

In case study 1, three cups and one ball is presented to

the robot as shown in Fig. 6. The robot first detects that

they belong to ‘HOLLOW’ and ‘ROLLABLE’ categories, and

encodes the category information along with the relative size

and height relations in the initial world state as follows:

4www.cs.rochester.edu/ kautz/satplan/blackbox/

(define (problem tower-real-1)

(:domain stack) (:objects o0 o1 o2 o3 table)

(:init (stackloc table) (solid table) (S0) (H0)

(pickloc o0) (pickloc o1) (pickloc o2) (pickloc o3)

(hollow o0) (hollow o1) (rollable o2) (hollow o3)

;;; width and height relations

(:goal (and (S4) (H1))))

Above, the objects correspond to the white-cup, the green-

cup, the ball, and the bigger coffee mug, respectively. The

robot generated a plan where the HOLLOW objects are

stacked on top of each other in decreasing order of width

first, and the ball is stacked as the final action. The actions

were successfully executed, and a compact and complete

tower is built as shown in the snapshots of Fig. 6.

In the next case study, a SOLID object, which is a cylindri-

cal shaped salt container, is included to the scene as shown

in Fig 6, left-most snapshot. The robot is asked to make a

plan with the same goal:

(define (problem tower-simple-2)

(:domain stack) (:objects o0 o1 o2 o3 o4 table)

(:init (stackloc table) (solid table) (H0) (S0)

(rollable o0) (hollow o1) (solid o2) (hollow o3)

(hollow o4) (pickloc o0) (pickloc o1) (pickloc o2)

;;; relations here

(:goal (and (S5) (H1))))

A plan was not generated with these constraints, thus the

constraints were relaxed by incrementing the goal height of

the tower: small (:goal (and (S5) (H2))). The

plan generated for this goal is as follows:

1 (stack table o3)

2 (stack o3 o4)

3 (stack o4 o2)

4 (stack o2 o1)

5 (stack o1 o0)

where the largest two HOLLOW objects and the salt-

container are ‘inserted’ in each other first; then the white-

cup is ‘stacked’, increasing the size; and finally the ball

is ‘inserted’. This plan was executed two times, leading to

successful and unsuccessful results at the end, as shown in

the final snapshots of Fig. 7. One can notice that the height

of the tower is more than (H2), i.e. more than height of

2 objects, because, contrary to the action predictions, the

‘inserted’ tall salt container and the ‘inserted’ ball increased

the height considerably. A more compact tower could have

been obtained by inserting all cups into each other and

Fig. 7: Tower building experiment with an additional SOLID object. The goal is to build a tower of (S5) and (H2). The

generated plan first stacks two HOLLOW objects on top of each other, starting from the biggest one; adding salt-container

and small cup next, and finally stacking the ball at the end. The execution of the same plan fails in one execution and

succeeds in the other one due to the noise in perception and actuation.

inserting salt-container into the inserted cups. Also, note

that while the action with ‘inserted’ effect reliably works

as planned, the action with ‘stacked’ effect is not reliable in

the real world. This brings the necessity to use probabilistic

planners and re-learning in the real world while building the

towers, instead of learning only from paired stacks.

IV. CONCLUSION

In this study, we developed a system that forms symbols

and operators in the continuous sensorimotor experience of

the robot through self-exploration. These formed structures

were used to generate symbolic plans in the robot in a sample

tower building task. While our study provides a proof-of-the-

concept realization of the proposed system, through analysis

of the learned symbols and operators, and execution of plans

in the real world; realizing a learning robotic system with

the long-term goal of developing high-level cognitive skills

stands as a big challenge.

The most immediate extension of this research is to

incorporate probabilistic techniques in discovering symbols,

learning operators and generating plans. Particularly, we plan

to construct probabilistic rules from robot’s noisy interactions

based on category prediction confidences, and use planners

that can deal with incomplete and noisy information (e.g.

Planning with Knowledge and Sensing planning system

[18]). During our experiments, we observed that, in addition

to noise in sensing and perception, failures in plan execution

were partially due to the simple encoding of the currently

used motion primitives and the object perception that only

relies on vision. Therefore, our system should incorporate

vision and force guided closed-loop motion representation

frameworks such as Dynamic Motor Primitives [19] that can

also be used as exploratory actions to acquire other properties

of objects, such as mass and material properties [20].

Finally, we provide the data and source code used in this

study, along with the robot videos in http://emreugur.

net/icra2015/.

REFERENCES

[1] S. Harnad, “The symbol grounding problem,” Physica D, vol. 42, no.
1-2, pp. 335–346, 1990.

[2] V. Klingspor, K. Morik, and A. D. Rieger, “Learning concepts from
sensor data of a mobile robot,” Machine Learning, vol. 23, no. 2-3,
pp. 305–332, 1996.

[3] F. Wörgötter, A. Agostini, N. Krüger, N. Shylo, and B. Porr, “Cogni-
tive agents: A procedural perspective relying on the predictability of
Object-Action-Complexes OACs,” Robotics and Autonomous Systems,
vol. 57, no. 4, pp. 420–432, Apr. 2009.

[4] R. Petrick, D. Kraft, K. Mourao, N. Pugeault, N. Krüger, and M. Steed-
man, “Representation and integration: Combining robot control, high-
level planning, and action learning,” in Proceedings of the 6th inter-

national cognitive robotics workshop, 2008, pp. 32–41.
[5] K. Mourao, R. P. Petrick, and M. Steedman, “Using kernel perceptrons

to learn action effects for planning,” in Int. Conf. on Cognitive Systems

(CogSys 2008), 2008, pp. 45–50.
[6] R. Sun, “Symbol grounding: A new look at an old idea,” Philosophical

Psychology, vol. 13, no. 149–172, 2000.
[7] J. Pisokas and U. Nehmzow, “Experiments in subsymbolic action

planning with mobile robots,” in Adaptive Agents and Multi-Agent

Systems II, Lecture Notes in AI. Springer, 2005, pp. 80–87.
[8] E. Ugur, E. Oztop, and E. Sahin, “Goal emulation and planning in

perceptual space using learned affordances,” Robotics and Autonomous

Systems, vol. 59, no. 7–8, pp. 580–595, 2011.
[9] J. Kulick, M. Toussaint, T. Lang, and M. Lopes, “Active learning for

teaching a robot grounded relational symbols,” in Proc. 23rd Int. Joint.

Conf. AI. AAAI Press, 2013, pp. 1451–1457.
[10] J. Mugan and B. Kuipers, “Autonomous learning of high-level states

and actions in continuous environments,” Autonomous Mental Devel-

opment, IEEE Transactions on, vol. 4, no. 1, pp. 70–86, 2012.
[11] E. Ugur, E. Sahin, and E. Oztop, “Self-discovery of motor primitives

and learning grasp affordances,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2012, pp. 3260–3267.
[12] E. Ugur, Y. Nagai, and E. Oztop, “Parental scaffolding as a bootstrap-

ping mechanism for learning grasp affordances and imitation skills,”
Robotica, 2014, in press.

[13] J. J. Gibson, The Ecological Approach to Visual Perception. Lawrence
Erlbaum Associates, 1986.

[14] T. Kroger, “Opening the door to new sensor-based robot applications
– the reflexxes motion libraries,” in ICRA, 2011, pp. 1–4.

[15] C.-C. Chang and C.-J. Lin, “Libsvm : a library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 27, pp. 1–27, 2011.

[16] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD

explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.
[17] H. Kautz and B. Selman, “Unifying sat-based and graph-based plan-

ning,” in Proc. IJCAI-99, 1999.
[18] R. P. A. Petrick and F. Bacchus, “Extending the knowledge-based

approach to planning with incomplete information and sensing,” in
Proceedings of the Int. Conference on Automated Planning and

Scheduling (ICAPS). AAAI Press, 2004, pp. 2–11.
[19] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal, “Online

movement adaptation based on previous sensor experiences,” in Int.

Conf. on Intelligent Robots and Systems (IROS).
[20] S. Takamuku, G. Gomez, K. Hosoda, and R. Pfeifer, “Haptic dis-

crimination of material properties by a robotic hand,” in Int. Conf. on

Development and Learning ICDL, 2007, pp. 1–6.

Bootstrapping paired-object affordance learning with learned

single-affordance features

Emre Ugur, Sandor Szedmak, and Justus Piater

Intelligent and Interactive Systems, Institute of Computer Science,

University of Innsbruck

Abstract— The aim of this paper is to propose a system
where complex affordance learning is bootstrapped through
using pre-learned basic-affordances as additional inputs of the
complex affordance predictors or as cues in selecting the next
objects to explore during learning. In the first stage, the robot
learns affordances in the form of developing classifiers that
predict effect categories given object features for different
discrete actions applicable to single objects. These predictions
are later added to robot’s feature set as higher-level affordance

features. In the second stage, the robot learns more complex
multi-object affordances using object and affordance features.
We first applied our idea in an artificial interaction database
which includes discrete actions, several manually coded object
categories, and actions effects. Finally, we validated our boot-
strapping approach in a real robot with poke and stack actions.
We expected to obtain higher performance with affordance-

features especially in small training datasets as the object-
robot-environment dynamics should have already been partially
learned and encoded in affordances. The experiment results
showed that complex affordance learning significantly speeds up
with predictors that are bootstrapped with affordance-features

compared to predictors that use low-level features such as shape
descriptors. We also showed that by actively selecting the next
objects and by increasing the diversity of the training set using
a distance measure based on learned single-object affordances,
the effect of bootstrapping can be further increased.

I. INTRODUCTION

This study is part of a research effort where a robot system

gradually develops skills and competencies in subsequent

stages of development, similar to human infants. In our

previous work, we showed that similar to human infants

who learn a set of actions by the age of 7 months such

as grasp, hit and drop [1], a robot could also self-discover

a number of behavior primitives such as push, grasp and

release by interacting with objects using its crude ‘reach’

action and grasp reflex, and observing the changes in its

tactile perception [2]. Next, we showed that similar to infants

who learn object dynamics after 7-9 month of age, our

robot could learn affordances in an unsupervised way by

first discovering the effect categories it could generate in

the environment, and then by learning the mapping from

the object features to the effect categories. After learning,

the robot was shown make plans to achieve desired goals,

emulate end states of demonstrated actions, monitor the plan

execution and take corrective actions using the perceptual

structures employed or discovered during learning. Finally,

we showed that more complex actions that involve multiple

objects (such as bring object 1 over object 2) can be taught to

the robot through imitation using the structures developed in

the previous stages with mechanisms inspired from parental

scaffolding and motionese [?]. In the current study, we

assume that a number of actions (such as push and stack)

and effect categories (such as rolled and pushed), which

were discovered in the previous stages as summarized above,

are transferred to the next stage where complex affordances

such as stackability are learned. We study how this complex

affordance learning can be bootstrapped by use of learned

simple affordances as (i) additional inputs in prediction, and

(ii) in active selection of objects to explore next in an active

learning setting.

One hallmark feature of bootstrapped learning is that

learning problems stack in the sense that higher-level learners

use as input attributes concepts produced by lower-level

learners. These higher-level attributes should allow faster

learning than if the higher-level concepts had to be learned

from the lower-level attributes alone. The aim of this paper is

to propose a learning system where a developmental robotic

system benefits from bootstrapping where learned simpler

structures (affordances) that encode robot’s interaction dy-

namics with the world are used in learning of complex

affordances. In detail, our robot learns the affordances of

single objects and uses these affordances as additional fea-

tures in the next stages of development where paired-object

affordances are discovered. The use of learned similarities in

the form of affordances are expected to bootstrap the learning

in the next stages.

Our approach can be explained by the following intuitive

example: Let us assume that the robot learned rollability

affordances of the objects in the first development stage,

and can now predict the rollability based on object shape

properties. In the next stage, robot learns a more complex

affordance such as stackability from two sample interactions

where it observes that stacked two balls tumble over and

stacked two boxes pile up. The robot, trained only with those

two stacking interactions, can find a correspondence between

stackability and rollability. Then, even if the robot does not

have any stacking experience with cylindrical objects, it can

make better predictions for stackability depending on the roll

orientation (and affordance) of the cylinders.

In the context of robot affordance learning research,

paired-object affordance learning has not been studied ex-

4th International Conference on
Development and Learning and on Epigenetic Robotics
October 13-16, 2014. Palazzo Ducale, Genoa, Italy

ThAFFP.2

Copyright ©2014 European Union 468

Fig. 1. Learning and prediction of action effects using basic-features (visual
features) are shown with solid lines. The learned affordance-features, i.e.
predicted effects, can be further used as input to classifiers which predict
action effects of object pairs, i.e. in learning paired-object affordances.

tensively with exceptions of [3] where ‘tool objects’ are

interacting with other objects, and [4] where two-object

relational interaction models were directly learned. However

none of these studies attempted to bootstrap their robot-

object-object interaction dynamics with previously obtained

skills and affordance knowledge.

Our method summarized in the next section is validated

with an artificial interaction dataset that includes rich set of

objects and interactions in Section III, in real world with

robot experiments in Section IV.

II. METHOD

Learning of affordances corresponds to learning the re-

lations between objects, actions and effects [5]. In this

study, affordances are acquired through learning to predict

what type of effects, i.e. discrete effect categories, can be

generated given discrete robot actions and continuous object

properties. To achieve this, we simply train a classifier for

each action, which takes object features as input and predicts

the effect category.

A. Object features

Here, we distinguish two different sets of object features.

The first set includes hand-coded basic general-purpose

features, computed from visual perception1 with no explicit

link to robot’s actions. These may include standard features

used in literature related to size, shape and local distance

properties of the objects. The second set of features are

acquired through interaction and they correspond to the

higher-level learned ones that are computed from basic

features. They encode the dynamics between robot actions

(A) and object response (effect, ε). The first set of features

is called basic-features whereas the second that is learned

through interaction is called affordance-features as the latter

includes the relations between objects, actions and effects.

1In this paper, we limit ourselves with the features that can be captured
by vision only. However, object properties such as object friction or
weight plays an important role on object-robot interaction dynamics. Thus,
exploratory actions that can be used to perceive such properties should be
implemented in a full-fledged scenario.

The straightforward approach to learn effect prediction is

to train a classifier c for each action a that takes basic-

features as input:

cabasic(basic-feat) → effect

whereas we propose to speed up learning of complex effect

prediction using affordance-features that are computed using

the learned basic effect prediction:

cacomplex(basic-feat, cbasic(.)) → effect

which, in a flat form, corresponds to:

cacomplex(basic-feat, affordance-feat) → effect

Our approach is summarized in Fig. 1. The features

shown with blue and red solid lines correspond to basic-

features and action predictions based on these features give

rise to affordance-features. The dashed lines correspond to

affordance-features, that are learned in previous stages. The

learning and prediction of complex affordances benefit from

previously learned affordance features as shown in ‘Predict

effect of action k’ predictor. Note that action k is considered

to be a complex action as two objects are involved in

execution.

In particular affordance features are represented as a vector

of categorical variables, i.e. the list of the effect categories,

predicted to be generated by single-object actions:

affordance-feat = (εoa1
, εoa2

, ...)

where

εoai
= cai

basic(basic-feat)

Complex affordance learning can be realized in different

ways. In this paper, the action possibilities that are provided

by two (or more) objects are considered to be complex.

For instance, the effects created by a stack action (where

the object is grasped and released over another one) is

determined by the properties of both objects. We will use

affordance-features (such as rollability, pushability, etc) and

basic-features to learn and predict stackability affordances,

and show that this learning significantly speeds up with

predictors that are bootstrapped with affordance-features.

B. Active object selection based on affordances

We claim that the bootstrapping effect can be further

increased if the objects to be explored (and learned next)

are selected intelligently. A learner which is provided with

a rich set of qualitatively different objects in its initial

phases of development can perform better compared to the

ones trained with complete random objects. Thus, an online

learning system actively selects the next object to maximize

the diversity of the training set, and the learned single-object

affordances will be used as ‘high-level’ similarity measures

between objects in computing this diversity.

Copyright ©2014 European Union 469

The next object is selected from the set of possible objects

(PossObjs) by maximizing the total distance from the next

object to the already explored objects (ExpObjs) as follows:

nextObj = argmax
o1∈PossObjs

∑

o2∈ExpObjs

distt(o1, o2)

where distt(o1, o2) is the distance between two objects in

the space of affordances.

distt(o1, o2) =
∑

a

(1− δεo1a ,ε
o2
a
)

where a ∈ ABasic, and δi,j is Kronecker delta function.

III. BOOTSTRAPPING IN ARTIFICIAL DATA

In this section, we report our bootstrapping results ob-

tained from a manually prepared artificial database of objects

and interactions. The set of objects include cylinders, boxes,

spheres and triangular prisms in different orientations and

with/without holes as shown in Fig. 2. The set of manually

encoded actions and their effects are as follows:

• Actions: {side-poke, top-poke, front-poke, stack}

• Poke-effects: {pushed, rolled, toppled, resisted, nothing}

• Stack-effects: {piled-up, inserted-in, covered, tumbled-over}

When poked from different directions, hypothetically,

different effects can be generated with these objects. For

example, when poked from side, lying cylinders would roll

away, boxes would be pushed, objects with holes in poke

direction would not be affected as finger would go through

the hole without any interaction, and the tall objects would

topple down. The effect of stacking objects on top of each

other depends not only on their shape but also on their

relative size as well. For example, while ‘inserted-in’ effect

would generated when a small box is stacked on a hollow

cylinder, ‘piled-up’ effect would be observed when the box

is larger than the opening on top of the cylinder. Based on

these assumptions, we manually created a hypothetical set

of rules that give the effect based on object categories and

their relative sizes.

A. Basic and affordance features

The classifier trained with basic-features uses the follow-

ing features for training (and prediction later):

TSbasic = {(shapeo1 , shapeo2 , dimo1 , dimo2)}

where shape includes mean and variance of the normals of

the lateral surfaces, and the direction of the hole if it exists;

and dim encodes the object size in different axes.

The classifier trained with affordance-features uses the

following features:

TSaff = {(εo1*-poke, ε
o2
*-poke, dim

o1 , dimo2)}

where εo refers to the effects of the corresponding poke

action on the object o.

Fig. 2. The set of objects used in the artificial interaction database.

B. Bootstrapping Results

The performances of the classifiers trained with basic-

features and affordance-features are provided in Fig. 3.

We evaluated the classifiers by systematically changing the

number of categories used in training set. For each number

of categories, we trained 10 classifiers by selecting 5 objects

of random size from each training category. To test these

classifiers, we created test sets with random sized object

from the remaining categories. Each bar corresponds to mean

performance of these 10 classifiers. As shown, the prediction

performance of both basic-features and affordance-features

based classifiers improve by including more categories into

the training set. We also included the performance of a

category based predictor (which takes category index as

input) to show the baseline. Because the categories used in

training set are never included into test set, category-based

predictors do fail independent of the training set size.

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70
P

re
d

ic
ti
o

n
 p

e
rf

o
rm

a
n

c
e

 w
it
h

 c
ro

s
s
−

v
a

lid
a

ti
o

n

Number of categories used in training

Category based prediction

Shape features based prediction

Affordance features based prediction

Fig. 3. The effect prediction performance of stack action obtained in
artificial interaction database. The training of classifiers are done with the
indicated number of categories with either shape features or affordance
features. As shown, use of affordance features enable bootstrapping of the
learning system.

These results show that because affordance-features al-

ready include properties related to object dynamics (pusha-

bility, rollability etc), classifiers that use these features have

better performance especially for small training sets. With

the increasing training set size, the effect of using high-level

features is reduced as the basic-features classifier can also

find the invariance related to stackability affordance with

large dataset. Finding this invariance with small datasets is

easier with affordance-features as they already include some

properties of the agent-object-environment interactions.

IV. BOOTSTRAPPING IN REAL WORLD

This section provides the details of the real world experi-

ments where the effect of bootstrapping is analyzed. We first

present the robot setup along with the details of robot’s action

Copyright ©2014 European Union 470

Fig. 4. The experiment setup. The environment includes one or two objects
during experiments depending on the action type.

control and perception. Next, we showed that single-object

affordances can be learned through interaction, and use of

these acquired single-object affordances bootstraps paired-

object affordance learning.

A. Robot system

The robot system employs a 7 DOF Kuka Light Weight

Robot (LWR) arm, which is placed on a vertical bar similar

to human arm in Fig. 4. A 3 fingered Schunk gripper is

mounted on the arm to enable manipulation. For environment

perception, Kinect sensor placed over the torso is used. The

objects shown in Fig. 4 are used in learning single-object

affordances as well as pairwise-affordances.

1) Object features: The robot’s workspace consists of

several objects and a table where the region of interest is

defined as the volume over the table. First, the point cloud

obtained from Kinect is transformed to robot’s task space,

then table is removed from the point cloud with a filtering

along z-axis (see Fig 4), and finally objects are segmented

based on depth information. Point Cloud Library normal

estimation software is used next to compute a normal vector

for each point of the object. The projection of each normal

vector along each axis is separated, and histograms of normal

vectors along each axis are computed. Using 8 bins for each

histogram, 3 × 18 = 54 sized feature vector is obtained for

shape related features. Note that in these experiments, an

object is represented by a feature vector composed of only

shape related features. Please see [5] for more details on

histogram representation of normal vectors.

2) Robot Actions: The robot is equipped with a number of

manually coded actions that enable single and paired object

manipulation. The robot can ‘poke’ a single object from its

side, front and top with s-poke, f-poke, and t-poke actions,

respectively. It can also stack one object on the other using

stack behavior, where it grasps the first object, move it on

top of the other one and release it. The object position in

world coordinate (shown in Fig. 4) is computed using the

depth image of Kinect sensor. An inverse kinematic solver

is used to compute the joint angles for initial and final

Fig. 5. The training set used for learning single-object affordances.

points defined in Cartesian space, and Reflexxes library [6]

is utilized to generate smooth trajectories to achieve point-

to-point movement. The action execution is as follows:

• Regarding to poke actions, the robot gripper is placed

on one side of the object with 5cm distance with an

orientation depending on the poke type. Two of the

fingers are flexed to enable only the third finger to

physically interact with the object (similar to index

finger poking in humans). Next, the robot hand moves

in the corresponding direction for 10cm towards the

object and it is retracted after the poking is completed.

• Regarding to stack action, one object is grasped from

above first by placing the gripper in a vertical orien-

tation 10cm over of the object, then moving the wide-

open gripper towards the object and finally enclosing it.

Next, the gripper that carries the grasped object is repo-

sitioned over the second object in a vertical orientation

again, and the object in the gripper is released over the

first one by extending all the fingers.

3) Effect Categories: In the real world experiments, de-

pending on the object(s) and the action executed, different

effects were generated. When poke action was executed, the

object was pushed, toppled over or rolled away depending

on its shape. There was no effect in object state or robot’s

sensors if the robot finger went through the hole on the

object. Finally, for t-poke action, all solid objects created re-

sistance and obstructed gripper’s movement that was detected

using the force sensors. When stack action was executed, the

objects in general piled up on top of each other if the object

below provided a proper support (for example if it had a flat

top surface). Depending on the existence of concave surfaces

and holes, the released object was inserted in or hided the

object below by encapsulating it. The released object also

tumbled over due to the lack of stable support. Based on the

above possibilities that we observed empirically, the sets of

effect categories (E) were set same as in previous section.

B. Experiment Results

1) Learning single-object affordances: The robot exe-

cuted its poke actions on the objects (Fig. 4) placed in

different orientations, and it collected 24 interaction instances

for each poke action. The object shape features along with

generated effect categories are stored for learning affor-

dances. Support Vector Machine classifiers are used to learn

the mapping between object features and effect categories.

In order to analyze if the affordances for poke action are

generalizable, we divide the interaction set into training and

Copyright ©2014 European Union 471

Fig. 6. Robot’s basic-affordance prediction on objects which are not
included in the training set with the same orientations. Prediction fails in
the examples with star (*), which are difficult cases to predict.

test sets with the deliberate purpose of distributing objects

with same affordances into different sets. For each poke

action, we trained a classifier using the objects given in

Fig. 5. Then, we tested these classifiers by predicting the

action effects on novel objects given in Fig. 6. As shown,

the robot was able to detect the affordances of the object (in

terms of effect prediction) correctly, except a small number

of cases shown with stars (∗), where the prediction also

required perception and learning of material properties.

The trained three classifiers (for s-poke, t-poke, and f-poke)

are transferred to the next stage and their predictions are used

as high-level features to learn complex affordances.

2) Learning paired object affordances: In this section, the

robot learns the paired-object affordances by exploring the

two-object environments with its stack action. This learning

is again achieved by training an SVM classifier that predicts

the effect of the stack action given object features. Here we

compare the prediction performance of the classifiers that

are trained either with basic-features or affordance-features.

Regarding to basic-features, normal vector histograms are

used as we did in learning single-affordances in the previous

subsection. Regarding to affordance-features, the list of ef-

fect predictions (provided by the classifiers transferred from

the previous stage) for the poke actions are used.

The robot executed stack action with 18 pairs of random

objects. A number of snapshots taken during these inter-

actions are given in Fig. 7, where all the possible effects

were observed with different object pairs. In each interaction,

basic-features and affordance-features of both objects are

computed and stored along with the observed effect category.

The classifier trained with basic-features uses the follow-

ing features for training (and prediction later):

TSbasic = {(shapeo1 , shapeo2)}

Fig. 7. Sample interactions observed during stack action execution.

and the classifier trained with affordance-features uses the

following features:

TSaff = {(εo1s-poke, ε
o1
f-poke, ε

o1
t-poke, ε

o2
s-poke, ε

o2
f-poke, ε

o2
t-poke)}

where {} corresponds to the set operator.

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

Number of training samples

P
re

d
ic

ti
o

n
 p

e
rf

o
rm

a
n

c
e

 w
it
h

 c
ro

s
s
−

v
a

lid
a

ti
o

n

Shape features based prediction

Affordance based prediction

Fig. 8. The effect prediction performance of stack action that involves
two objects. The training of classifiers are done with the indicated number
of samples (interactions) with either shape features or affordance features.
The initial high performance of affordance-features based classifiers demon-
strates the advantage of using bootstrapping.

We evaluated the performance of these classifiers by

systematically changing the size of the training set. For each

training set size, we trained 10 classifiers using randomly

selected samples. We tested each classifier using the remain-

ing sample interactions. Fig. 8 gives these cross-validation

results. Real-world experiment results are similar to the

results obtained from the synthetic interaction dataset. As the

affordance-features were obtained through interaction with

the environment, they already encode the object-environment

dynamics, which provides bootstrapping effect in learning

multi-object affordances as shown. The basic-features are

real valued larger sized vectors that encode object shape

properties independent of robot-object dynamics. Thus they

require more training data for learning. Additionally, basic-

features are used in computation of affordance-features,

so they contain the information to make predictions with

the performance of affordance features. As shown in the

figure, with increasing number of training samples, basic-

features based classifier’s performance indeed approached to

the bootstrapped classifier’s performance.

Copyright ©2014 European Union 472

Fig. 9. The bootstrapping obtained by active selection of pairs of objects
for learning of stack affordances.

V. ACTIVE SELECTION OF OBJECTS BASED ON

AFFORDANCES

We used affordance distance measure defined in Sec-

tion II.B, to maximize the diversity in training of paired-

object affordance learning in an online learning setting. 83

objects and their poke and stack effects are used in this

experiment (please see [7] for the complete list of objects).

The object features are computed from Kinect depth image

as in previous section, however, we used a human expert

to label stack effect categories and it was not feasible to

execute 83 × 83 = 6889 stack actions in the real robot.

Fig. 9 shows the resulting performance of the basic-features

and affordance-features based effect predictors trained with

randomly selected objects, and of the effect predictors trained

with the proposed active object selection strategy. Each type

of predictor was trained 10 times, starting from a different

random set of objects, and the thick lines correspond to

the average accuracy for each predictor type. As shown,

active selection of objects based on single-affordances pro-

vides a further bootstrapping effect in learning paired-object

affordances. The best predictor was trained with affordance-

features, but we observed that a similar performance was

achieved even if it was trained with basic-features.

VI. CONCLUSION

Single-object affordances encode characteristics related

to robot-object-environment dynamics as they are learned

through robot’s interaction with the objects. In this study,

we showed that learned basic affordances can be used as

additional features in order to bootstrap the next stage of

development where complex paired-object affordances are

learned. In our general model, affordances are used as

‘additional features’ for learning complex affordances, but

in the experiments, in order to compare their independent

performances, we used either only basic features or only

affordance features. If an important basic action (such as

top-poke) was unavailable, the affordance features, i.e. effect

predictions for side-poke and front-poke actions, would have

failed to predict insertability. Therefore, both channels should

be used during learning and possibly a feature selection

algorithm can filter out unnecessary channels.

While this work serves as one of the proof-of-concept

application of the structural bootstrapping idea, we need to

adapt advanced representations and learning methods (such

as knowledge propagation framework of [8]) that can truly

exhibit the real potential of this idea. We showed that this

bootstrapping enabled the robot to speed up its learning par-

ticularly with small training data. Recently generative models

have been proved to be effective in their ability in capturing

object-action-effect dynamics, and in making predictions in

different directions, for example in inferring the required

actions to achieve desired effects given object properties

[9], [4]. Particularly, hierarchical Bayesian networks directly

encodes the desired structure and allows inference in several

directions [10]. We discuss that our ‘discriminative’ model

still provides powerful mechanisms as it can effectively

map the continuous object feature and behavior parameter

spaces to the corresponding effects [11] without any initial

categorization of object properties as in [9], [4]. Furthermore,

while bi-directional relations are not explicitly encoded in

our system, we showed that our robot was able to make pre-

dictions in different directions, and made plans that involved

sequence of actions on automatically selected objects[5].

ACKNOWLEDGEMENTS

This research was supported by European Community’s

Seventh Framework Programme FP7/2007-2013 (Specific

Programme Cooperation, Theme 3, Information and Com-

munication Technologies) under grant agreement no. 270273,

Xperience.

REFERENCES

[1] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui,
Y. Yoshikawa, M. Ogino, and C. Yoshida, “Cognitive developmental
robotics: a survey,” IEEE Tran. Auton. Mental Dev., vol. 1-1, 2009.

[2] E. Ugur, E. Sahin, and E. Oztop, “Self-discovery of motor primitives
and learning grasp affordances,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2012, pp. 3260–3267.
[3] J. Sinapov and A. Stoytchev, “Detecting the functional similarities

between tools using a hierarchical representation of outcomes,” in
Proceedings of the 7th IEEE International Conference on Development

and Learning. IEEE, Aug. 2008, pp. 91–96.
[4] B. Moldovan, P. Moreno, M. van Otterlo, J. Santos-Victor, and

L. De Raedt, “Learning relational affordance models for robots in
multi-object manipulation tasks,” in Proc. of IEEE Int. Conf. on

Robotics and Automation (ICRA), 2012, pp. 4373–4378.
[5] E. Ugur, E. Oztop, and E. Sahin, “Goal emulation and planning in

perceptual space using learned affordances,” Robotics and Autonomous

Systems, vol. 59, no. 7–8, pp. 580–595, 2011.
[6] T. Kroger, “Opening the door to new sensor-based robot applications –

the reflexxes motion libraries,” in Proc. of IEEE Int. Conf. on Robotics

and Automation (ICRA), 2011, pp. 1–4.
[7] S. Szedmak, E. Ugur, and J. Piater, “Knowledge propagation and rela-

tion learning for predicting action effects,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2014.
[8] S. Szedmak and J. Piater, “An active learning based sampling design

for structural bootstrapping,” Univ. of Innsbruck, Tech. Rep., 2014.
[9] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learn-

ing object affordances: From sensory–motor maps to imitation,” IEEE

Transactions on Robotics, vol. 24, no. 1, pp. 15–26, 2008.
[10] E. Gyftodimos and P. A. Flach, “Hierarchical bayesian networks: A

probabilistic reasoning model for structured domains,” in ICML WS

on Development of Representations, 2002, pp. 23–30.
[11] E. Ugur, E. Oztop, and E. Sahin, “Going beyond the perception

of affordances: Learning how to actualize them through behavioral
parameters,” in IEEE International Conference on Robotics and Au-

tomation (ICRA), 2011.

Copyright ©2014 European Union 473

TEMEL SAĞLARLIK TABANLI KARMAŞIK
SAĞLARLIK ÖĞRENİMİ

COMPLEX AFFORDANCE LEARNING BASED
ON BASIC AFFORDANCES

Emre Ugur, Sandor Szedmak ve Justus Piater
Intelligent and Interactive Systems, Institute of Computer Science

Innsbruck University
{emre.ugur,sandor.szedmak,justus.piater}@uibk.ac.at

Özetçe —Biz bu bildiride, objelerin sunduğu ‘karmaşık sağlar-
lıkların’ robotlar tarafından nasıl etkili bir şekilde öğrenilebile-
ceğini ve bu amaçla önce öğrenilen yapıların nasıl kullanıla-
bileceğini çalışmaktayız. Standart görsel özelliklerin yanısıra,
robotun daha önce öğrendiği temel obje sağlarlıklarının kullanıl-
masının karmaşık sağlarlık öğrenmesini hızlandıracağını savun-
maktayız. Bu hipotezimizi kanıtlamak için karmaşık sağlarlıkları
öğrenen iki prediktör tipinin performansını karşılaştırdık: Ob-
jelerin şekil özelliklerine göre tahmin yapanlar ile objelerin temel
sağlarlıklarına göre tahmin yapanlar. Yapay olarak yaratılmış
bir (obje, aksiyon) etkileşim veritabanı kullanarak elde edilen
sonuçlar, temel-sağlarlık bazlı prediktörlerin küçük öğrenme
kümeleriyle eğitilseler bile daha önce karşılaşmadıkları ob-
jeler üzerinde önemli ölçüde genelleme yapabildiklerini göster-
miştir. Bu sonuçlar göstermektedir ki karmaşık aksiyon etki-
leri öğrenmede kullanılan temel-sağlarlıklar, basit aksiyonlardan
öğrenilmiş olsalar da, içlerinde obje-robot-ortam dinamiklerini
barındırmakta ve karmaşık aksiyon öğrenmesini hızlandırmak-
tadır.

Anahtar Kelimeler—sağlarlık, gelişimsel robotik

Abstract—In this paper, we study how complex object affor-
dances can be efficiently learned and how previously learned
structures can be used for this purpose. We discuss that besides
standard visual features, using previously learned basic affor-
dances in predicting complex affordances would speed up this
complex learning task. In order to prove our hypothesis, we
compared two different types of complex affordance predictors:
The predictors that are based on shape features and the ones
that use basic affordances. The results obtained from a synthetic
(object, action) interaction database showed that basic-affordance
based predictors can generalize over novel objects even with
small training sets. This result shows that although the basic
affordances are related to basic simpler actions, as they encode
object-robot-environment dynamics, they can speed up learning
of complex actions.

Keywords—affordances, developmental robotics

I. GİRİŞ

Sağlarlıklar (affordances), Ekolojik Psikoloji’de ortam
tarafından canlılara sunulan ve canlıların direkt algılayabildiği

aksiyon potansiyelleri olarak tanımlanmaktadır [1]. Örnek
olarak önünde top gören bir insan bu objenin yuvarlanabilir-
lik sağladığını, yani ittirme davranışı ile yuvarlanacağını ob-
jenin şekilsel özelliklerinden hızlıca tahmin edebilmektedir.
Araştırmacılar, ortam ve cisim sağlarlıklarının makine öğrenme
yöntemleriyle robotlar tarafından öğrenilmesi konusunda özel-
likle son on yıldır yoğun olarak çalışmaktadırlar. Bu bildiri,
çoklu objelerin sunduğu ‘üstüstekoyulabilme’ gibi karmaşık
sağlarlıkları öğrenirken, robotun bir önceki gelişim evrelerinde
öğrendiği daha temel sağlarlıkları kullanarak, bu karmaşık
öğrenmenin nasıl hızlandırılabileceğini çalışmaktadır. Daha net
bir şekilde ifade etmek istersek, önceki gelişim aşamasında
bir objenin sunduğu sağlarlıkları algılamayı öğrenen robot,
bir sonraki gelişim aşamasında çoklu obje sağlarlıklarını al-
gılarken önceki aşamadan aktardığı tek-obje sağlarlıklarını
kullanacaktır. Karmaşık sağlarlıkları en baştan öğrenmek yer-
ine basit sağlarlıklar üzerinden öğrenmesi robot gelişimini
özellikle ilk aşamalarında çok hızlandıracaktır.

Yukarıda özetlediğimiz yaklaşım şu örnek ile daha rahat
anlaşılabilir: Robotun ilk gelişim aşamasında objelerin yuvar-
lanabilirliklerini (rollability affordance), çeşitli objeleri değişik
noktalarından çeşitli yönlerde iterek öğrendiğini varsayalım.
Öğrenme sonunda bu robot, önüne gelen bir objenin görsel
algısından hesapladığı şekil özelliklerini kullanarak o objenin
yuvarlanabilirliğini tahmin edebilme yeteneğine kavuşmuştur.
Bir sonraki aşamada robotun objelerin üstüstekoyulabilirlik-
lerini (stackability affordance) öğrenmeye çalıştığını düşüne-
lim. Bu ikinci aşama öğrenme sırasında robot iki örnek
etkileşimde bulunmuş olsun. Birinci etkileşimde robot bir
kutuyu diğerinin üzerine koyduğunda kutuların devrilmediğini
gözlemlemekte, ikinci etkileşimde ise üst üste koymaya
çalıştığı kürelerin devrildiğini görmektedir. Bu gözlemlerden
yola çıkan öğrenme sistemi yuvarlanabilirlik ile yığılabilir-
lik/devrilebilirlik arasında bir bağlantı kurarsa, ikinci aşamada
daha önce etkileşimde bulunmadığı yeni nesnelerin sağlarlık-
larına dair genellenebilen daha iyi tahminlerde bulunabilecek-
tir. Örnek olarak ikinci aşamada silindirleri üst üste koyma
deneyimi olmasa da, silindirlerin yuvarlanabilirliklerini bir
önceki aşamada öğrendiği için, yatay silindirlerin üst üste
konulduklarında devrilirken dikey silindirlerin devrilmeye-
ceğini tahmin edebilecektir.978-1-4673-5563-6/13/$31.00 c©2013 IEEE

698

2014 IEEE 22nd Signal Processing and Communications Applications Conference (SIU 2014)

Şekil 1: Basit aksiyon etkilerinin öğrenim ve tahmininde kullanılan birincil-özellikler kesintisiz çizgilerle gösterilmektedir.
Kesintili çizgilerle gösterilen öğrenilmiş sağlarlık-özellikleri ise, çoklu obje etkilerini tahmin eden, bir başka deyişle çoklu obje
sağlarlıklarını öğrenen sınıflandırıcıya tarafından kullanılmaktadır.

Literatürü taradığımız zaman, tek-obje sağlarlıklarının
yoğun olarak çalışılmasına karşın çoklu-obje sağlarlıklarına
dair çalışmaların kısıtlı olduğunu görüyoruz. İstisna olarak
yakın zamanda çoklu-obje sağlarlıkları, ittirilen objelerin masa
üzerindeki diğerler objelerle etkileşebileceği ortamlarda göre-
celi uzaklık ve oryantasyonları hesaba katılarak öğrenilmiştir
[2]. Bunun yanında araç sağlarlıklarının (tool affordances)
çalışıldığı, yani ortamdaki objeler ile robotun kullandığı araç
objeler arasındaki dinamiklerin öğrenildiği çalışmalar çoklu
obje sağlarlıkları kategorisinde değerlendirilebilir [3]. Fakat
geçmiş çalışmaların hiçbiri çoklu sağlarlık öğrenmesini, öğre-
nilmiş tek obje sağlarlık bilgisi üzerine inşa etmemektedir.

II. METOD

Genel olarak sağlarlık öğrenimi, objeler, robot aksiyon-
ları ve aksiyonların uygulanması sonucunda yaratılan etkiler
arasındaki ilişkileri öğrenmeye karşılık gelmektedir [4]. Bu
çalışmada ise sağlarlık öğrenimi, robotun özelliklerini al-
gıladığı obje üzerinde aksiyonlarından birisini uyguladığı za-
man ne çeşit etkiler yaratacağını tahmin etme yeteneği kazan-
masına denk gelmektedir. Örnek olarak, robot önündeki bir
objeyi ittiği zaman obje masa üzerinde sürüklenebilir, yuvarlak
olursa yuvarlanıp masadan düşebilir yada çok ağır olup hareket
etmeyebilir. Robotun herhangi bir aksiyonda ne çeşit bir etki
yaratacağını objenin özelliklerine göre tahmin etmesi, objenin
sağlarlığını tahmin etmesine denk düşmektedir. Bu yeteneği
elde edebilmek için robot, aksiyonlarını özellikleri farklı ob-
jeler üzerinde uygulayarak ve oluşan etki kategorilerini gözley-
erek (obje-özellikleri, ekti-kategorileri) deneyimlerini biriktirir.
Daha sonra her aksiyonu için obje özelliklerini girdi olarak alıp
etki kategorisini çıktı olarak veren sınıflandırıcılar (classifiers)
eğitmektedir.

Burada obje özelliklerini iki sınıfa ayırmaktayız. Birinci
sınıf el ile kodlanmış genel amaçlı özellikleri kapsamaktadır.
Bu özellikler görsel algıdan hesaplanan ve robotun aksiyon-
larıyla belirgin ilişkisi olmayan özelliklerdir. Örnek olarak
literatürde standart olarak kullanılan büyüklük, şekil, renk
ve obje-parçalarıyla ilgili özellikler bu sınıfa dahildir. İkinci
sınıftaki özellikler ise robotun çevresiyle etkileşimi sonu-
cunda elde edilmiş olup birinci seviyeli özellikler kullanılarak

hesaplanan ikincil yüksek sıralı (higher-order) özelliklerdir.
Dolayısıyla ikincil özellikler robotun aksiyonlarıyla objeler
arasındaki dinamiği kodlamaktadırlar. Bu noktadan itibaren el
ile kodlanmış genel özellikleri birincil-özellikler, etkileşim ve
öğrenme yoluyla elde edilenleri ise sağlarlık-özellikleri olarak
adlandıracağız.

Etki kategorilerini tahmin etmenin en dolambaçsız yolu
objenin birincil özellikleri ve aksiyonları girdi olarak alıp
etkiyi bulan fonksiyonlar bulmak iken

fbirincil(aksiyon, birincil-özellikler) → etki

biz, etkilerin karmaşık aksiyonlarda ve karmaşık ortamlarda
tahmininin öğrenimini kolaylaştırmak ve hızlandırmak için
sağlarlık-özelliklerinin de girdi olarak kullanılmasını önermek-
teyiz:

fkarmaşık(aksiyon, birincil-özellikler, fbirincil()) → etki

Karmaşık etki tahminini yatay bir şekilde yazacak olursak,
aşağıdaki forma dönüşecektir:

fkarmaşık(aksion, birincil-özellikler, sağlarlık-özellikleri)

→ etki

Yaklaşımımız Şekil 1’de özetlenmektedir. Mavi ve kırmızı
kesintisiz oklarla ile gösterilen özellikler objenin birincil-
özelliklerine denk gelmekte ve bu özellikleri kullanarak yapılan
etki tahminleri sağlarlık-özelliklerini (kesikli yeşil çizgiler)
oluşturmaktadır. ‘k aksiyonunun etkisinin tahmini’ ile göster-
ilen sınıflandırıcı, karmaşık sağlarlıkları öğrenmek ve tahmin
etmekte önceki aşamalarda öğrenilmiş sağlarlık özelliklerinden
faydalanmaktadır (k aksiyonunun karmaşık aksiyon olarak ad-
landırılmasının bu figürdeki nedeni, birden fazla obje üzerinde
uygulanmasıdır).

Bu çalışmada iki yada daha fazla objenin sunduğu sağlar-
lıklar karmaşık sağlarlık olarak nitelendirilmektedir. Örnek
olarak üst üste koyma aksiyonunun sonucunda oluşacak
etki, hem yukarıdan bırakılan hem de aşağıdaki objelerin
ilişkisel özelliklerine bağlıdır. Yuvarlanabilirlik, ittirilebilir-
lik gibi sağlarlık-özellikleri ve şekil, büyüklük gibi birincil-
özellikler kullanılarak üstüstekoyulabilirlik sağarlığı öğrenile-
cektir. Amacımız, bu öğrenmenin hızının sağlarlık-özellikleri
kullanılarak önemli ölçüde arttığını göstermektir.

699

2014 IEEE 22nd Signal Processing and Communications Applications Conference (SIU 2014)

Tablo I: Üst üste koy aksiyonu sonucu oluşan etkileri belirleyen kurallar kümesi. Üst satırda gösterilen objelerin solda gösterilen
objelerin üzerine düşmesi sonucu oluşan etkiler, denk gelen tablo hücrelerindeki kurallara göre belirlenmektedir. Etkiler objelerin
şekillerinin yanında büyüklükleri tarafından da etkilenmektedir. Burada d, g ve u, cisimlerin derinlik, genişlik ve uzunluklarını
ifade etmektedir.

Dik silindir (DS) Boş dik silindir (BDS) Yatay silindir 1 (YS1) Yatay silindir 2 (YS2) Küp Boş Küp (BKüp) Küre Üçgen Prizma (UP)

d1>d2 � devril d1>d2 � kapsa u1<d2 � otur u1<d2 � otur g1<d2 & d1<d2 g1<d2 & d1<d2 � otur d2 > C � otur g1>d2 & d1>d2 � otur
DS d1<d2 � otur at. � otur at. � devril at. � devril � otur g1>d2 & d1>d2 � kapsa at. � devril at. � devril

at. � devril at. � devril

d1>d2 � devril d1>d2 � kapsa u1<d2 � içine u1<d2 � içine g1<d2 & d1<d2 g1<d2 & d1<d2 � içine g1>d2 & d1>d2 � içine
BDS d1<d2 � içine d1<d2 � içine at. � devril at. � devril � içine g1>d2 & d1>d2 � kapsa içine at. � devril

at. � devril at. � devril

d1>u2 & d1>d2 g1>u2 & d1>d2
YS1 devril & u1>d2/2 � kapsa devril devril devril & u1>d2/2 � kapsa devril devril

at. � devril at. � devril

d1>u2 & d1>d2 g1>d2 & d1>u2
YS2 devril & u1>d2/2 � kapsa devril devril devril & u1>d2/2 � kapsa devril devril

at. � devril at. � devril

d1<g2 & d1<d2 d1<g2 & d1<d2 � otur u1<g2 & d2>C u1<d2 & g2>C g1<g2 & d1<d2 g1>g2 & d1>d2 � kapsa d2>C & g2>C g1<g2 & d1<d2 � otur
Küp � otur d1>g2 & d1>d2 � kapsa � otur � otur � otur g1<g2 & d1<d2 � otur � otur at. � devril

at. � devril at. � devril at. � devril at. � devril at. � devril at. � devril at. � devril

d1<g2 & d1<d2 d1<g2 & d1<d2 � içine u1<g2 � içine u1<d2 � içine g1<g2 & d1<d2 g1>g2 & d1>d2 � kapsa g1<g2 & d1<d2 � içine
BKüp � içine d1>g2 & d1>d2 � kapsa at. � devril at. � devril � içine g1<g2 & d1<d2 � içine içine at. � devril

at. � devril at. � devril at. � devril at. � devril

d1>d2 & u1>d2/2 � kapsa d1>d2 & g1>d2
Küre devril at. � devril devril devril devril & u1>d2/2 � kapsa devril devril

at. � devril

devril d1>d2 � kapsa d1>d2 � kapsa
UP devril at. � devril devril devril devril at. � devril devril devril

III. DENEYLER

A. Deney Düzeni

Deneylerde farklı şekil ve büyüklükte boş ve dolu silindir,
kutu, küre ve üçgen prizmalardan oluşan bir yapay obje kümesi
kullanılmıştır. Bu cisimler değişik yönlerde ittirildiklerinde
değişik etkiler gözlemlenebilir. Örnek olarak yandan itildiğinde
yana yatmış silindirler yuvarlanacak, kutular bir miktar sürük-
lenecek, uzun objeler devrilecektir. Boş silindirin tepesinden
bir dürtme hiçbir etkileşim yaratmayacağı için ne robotun
kuvvet sensörlerinde ne de objenin kendisinde bir etki yarat-
mayacak, tepeden dürtülen dolu dik bir silindir ise robotun
hareketine direnç gösterecek ve robotun kuvvet sensörlerinde
ters yönde yüksek etki yaratacaktır. Manuel olarak kodlanmış
aksiyonlar ve olası etkileri aşağıda verilmiştir:

• Aksiyonlar: {yandan-dürt (y-dürt), tepeden-dürt (t-
dürt), önden-dürt (ö-dürt), üst-üste-koy}

• Dürtme etkileri: {sürüklendi, yuvarlandı, devrildi, di-
rendi, etkisiz}

• Üstüste-koyma etkileri: {Üstünde-durdu, içine-girdi,
üzerini-örttü, devrildi}

Üst üste koyma sonucunda oluşan etkiler, objelerin şekil-
lerine ve göreceli büyüklüklerine bağlıdır. Örnek olarak ‘içine-
girdi’ etkisi küçük bir kutu büyük boş bir silindirin üzer-
ine koyulunca gözlenirken, eğer kutu silindirin boşluğundan
büyükse ‘üstünde-durdu’ etkisi oluşacaktır. Bu ve buna benzer
varsayımları kullanarak, obje kategorilerine ve büyüklüklerine
bağlı olarak etkileri hesaplayan hipotetik bir kurallar kümesi
Tablo I’de açıklanmaktadır. Burada, d, g ve u objelerın farklı
eksenlerdeki boyutlarına denk gelmektedir ve sırasıyla derin-
lik, genişlik ve uzunluk olarak adlandırılabilir.

B. Birincil özellikler ve sağlarlık özellikleri

Birincil özelliklerle eğitilmiş sınıflandırıcılar öğrenme ve
daha sonra tahmin için aşağıdaki eğitim kümesini (EK) kul-
lanmaktadır:

EKbirincil = {(şekilo1 , şekilo2 , boyuto1 , boyuto2)}

Burada şekil özellikleri yüksek seviyeli eğim bilgisini ve
eğer bir boşluk varsa boşluğun yönünü içermekte, boyut ise
objenin boyutlarını farklı eksenlerde kodlamaktadır. Sağlarlık
özellikleri ile eğitilen sınıflandırıcılar ise girdi olarak aşağıdaki
özellikleri kullanmaktadır.

EKsağlarlık = {(εo1y-dürt, ε
o1

ö-dürt, ε
o1

t-dürt, ε
o2

y-dürt, ε
o2

ö-dürt, ε
o2

t-dürt,

boyuto1 , boyuto2)}

Burada εo, objeye uygulanan dürtme aksiyonuna karşılık gelen
etki kategorisini ifade etmektedir (εo ∈ {sürüklendi, yuvar-
landı, devrildi, direndi, sıfır}). εo her dürtme aksiyonu ve obje
kategorisi için manuel olarak kodlanmış olsa da, bu etkinin
şekil özelliklerinden hesaplanabileceğini ve bir önceki gelişim
aşamasında öğrenilebildiğini daha önceki çalışmalarımızda
göstermiştik [5].

C. Deney Sonuçları

Birincil-özellikler ve sağlarlık özelliklerini kullanan
sınıflandırıcıları, öğrenmede kullanılan obje kategorilerinin
sayısını (n) sistematik olarak arttırarak değerlendirdik ve
performans sonuçlarını Şekil 2’de sunduk. Sınıflandırıcı
olarak RBF kernelli Support Vector Machine kullandık.
Her sınıflandırıcının öğrenme kümesinde kullanması için 9
kategori içerisinden n kategori rastgele seçilmiş, seçilen her
kategoriden 5 rastgele büyüklükte obje yaratılmıştır. Yaratılan
her obje çifti için üst üste koy aksiyonu sonucunda oluşan
etkiler Tablo I kurallar kullanarak otomatik olarak hesaplanmış
ve ((n× 5)× (n× 5)) elemandan oluşan etkileşimler kümesi
öğrenme için kullanılmıştır. Sınıflandırıcıyı test etmek

700

2014 IEEE 22nd Signal Processing and Communications Applications Conference (SIU 2014)

Şekil 2: Yapay etkileşim verikümesi kullanılarak elde
edilen etki tahmin performansı. Kategori indeks numarası,
birincil özellikler yada sağlarlık özellikleri kullanan 3
sınıflandırıcı türünün sonuçları karşılaştırılmaktadır. Göster-
ildiği üzere, sağlarlık özellikleri, zaten obje-dünya dinamik-
lerini barındırdıkları için, eğitimlerinde az sayıda obje kate-
gorisi kullansalar bile çok daha iyi genelleme yapabilmekte ve
yüksek performans gösterebilmektedir.

için ise geri kalan (9 − n) kategoriden benzer şekilde
oluşturulan ((9 − n) × 5) × ((9 − n) × 5) elemanlı etkileşim
kümesi kullanılmıştır. Grafikte sunulan değerler, her kategori
sayısı için eğitilen 10 farklı sınıflandırıcının ortalama
performans değerleridir. Birincil-özellikler ve sağlarlık-
özellikleri kullanan sınıflandırıcıların yanısıra, objelerin
kategori indeks numarasını girdi olarak alan üçüncü bir
sınıflandırıcı kullandık. Kategori indeks numarası üzerinden
bir genelleme yapılamayacağı için, bu sınıflandırıcılardan elde
edilen sonuçlar sistemin baz performansı kabul edildi. Şekilde
görüldüğü üzere, hem birincil özellikleri kullanan hem de
sağlarlık özelliklerini kullanan sınıflandırıcıların eğitimindeki
kategori sayısı arttıkça performansı artmaktadır. Oysa, gelişim
kümesinde kullanılan kategoriler test kümesinde yer almadığı
için, kategori indeks bazlı sınıflandırıcılar kullanılan kategori
sayısından bağımsız olarak başarısız kalmaktadır.

Bu sonuçlar göstermektedir ki, sağlarlık-özellikleri
obje dinamiklerini (itilebilirlik, yuvarlanabilirlik vs.) içinde
barındırdıkları için, bu özellikleri kullanan sınıflandırıcıların
performansı özellikle küçük eğitim kümelerinde daha
yüksektir. Eğitim kümesi büyüklüğü ve çeşitliliğinin
artması ile sağlarlık özelliklerinde zaten kısmi olarak
varolan değişmezlikler (invariance), birincil-özellikler
tarafından da bulunmaya başlamaktadır. Değişmezliklerin
sağlarlık özellikleri üzerinden küçük veri kümelerinde dahi
bulunabilmesinin nedeni, robot-obje-ortam dinamiklerini
temsil eden yapısal özelliklerin zaten bu özelliklerin içinde
(basit aksiyonlarla) öğrenilmiş ve kodlanmış olmasıdır.

D. SONUÇ

Bu çalışmada robotun bir önceki aşamada öğrendiği temel
sağlarlıkların sonraki aşamalara aktarıldığında karmaşık sağlar-

lık öğrenimini hızlandırabileceğini gösterdik. Yapay olarak
yaratılmış veritabanından elde ettiğimiz sonuçlar bu yak-
laşımımızı desteklese de sistemimizi gerçek robotlarla ya-
pacağımız benzer deneylerle desteklemek zorundayız. Ayrıca
bu bildirede önerilen metoddaki en önemli sınır, tahmin ve
öğrenmenin tek yönlü yapısıdır (F.igür 1). Örnek olarak bu
öğrenme sistemi istenen bir etkiyi yaratmak için gerekli aksi-
yonları direkt tahmin etmek mümkün değildir. Fakat bu aksi-
yonlar ve kullanılıyorsa aksiyon parametreleri iteratif yöntem-
ler yoluyla dolaylı olarak bulunabilmektedir [6]. Diğer yandan
sağlarlık özelliklerinin temsili gücü arttırılarak bu öğrenme
sistemi önemli ölçüde geliştirilebilir. Mevcut durumunda her
aksiyon için sağlarlık özelliği ayrık aksiyonun üreteceği tek
değişkenli etki olarak kodlanmaktadır. Bu, parametrik ak-
siyonun etkilerinin dağılımını özetleyen bir yapısal model
ile değiştirilebilir. Örnek olarak, Detry ve diğerleri’nin öner-
diği [7], nesne yüzeylerinin o bölgelerin robot eliyle nasıl
kavranılacağını temsil eden vektörel yoğunluklar öğrenilebilir
ve daha sonra sağlarlık-özellikleri olarak kodlanarak çok objeli
karmaşık sağlarlıkları öğrenmede kullanılabilir.

TEŞEKKÜR

Bu araştırma Avrupa Birliği Yedinci Çerçeve Programı
(European Community’s Seventh Framework Programme
FP7/2007-2013, Specific Programme Cooperation, Theme 3,
Information and Communication Technologies) 270272 nu-
maralı ödenek sözleşmesi altındaki Xperience projesi tarafın-
dan tarafından desteklenmiştir.

KAYNAKÇA

[1] J. J. Gibson, The Ecological Approach to Visual Perception. Lawrence
Erlbaum Associates, 1986.

[2] M. B., P. Moreno, M. van Otterlo, J. Santos-Victor, and L. De Raedt,
“Learning relational affordance models for robots in multi-object manip-
ulation tasks,” in ICRA, 2012, pp. 4373–4378.

[3] J. Sinapov and A. Stoytchev, “Detecting the functional similarities
between tools using a hierarchical representation of outcomes,” in ICRA,
2008, pp. 91–96.

[4] E. Şahin, M. Çakmak, M. R. Doğar, E. Ugur, and G. Üçoluk, “To afford
or not to afford: A new formalization of affordances toward affordance-
based robot control,” Adaptive Behavior, vol. 15, no. 4, pp. 447–472,
2007.

[5] E. Ugur, E. Oztop, and E. Sahin, “Goal emulation and planning in
perceptual space using learned affordances,” Robotics and Autonomous
Systems, vol. 59, no. 7–8, pp. 580–595, 2011.

[6] E. Ugur, E. Sahin, and E. Oztop, “Self-discovery of motor primitives and
learning grasp affordances,” in IROS, 2012, pp. 3260–3267.

[7] R. Detry, E. Başeski, M. Popović, Y. Touati, N. Krüger, O. Kroemer,
J. Peters, and J. Piater, “Learning continuous grasp affordances by sen-
sorimotor exploration,” in From Motor Learning to Interaction Learning
in Robots, 2010, vol. 264, pp. 451–465.

701

2014 IEEE 22nd Signal Processing and Communications Applications Conference (SIU 2014)

Speed profile optimization through directed explorative learning

Rok Vuga, Bojan Nemec and Aleš Ude1

Abstract— In this paper we propose a new skill learning
framework based on fusing prior knowledge with programming
by demonstration and explorative learning methodologies. Prior
knowledge as well as all partially known models guide the
search process within the proposed adaptation method. The
proposed methodology is based on algorithms originating in
iterative learning control and reinforcement learning. The de-
veloped approach was experimentally verified on the problem of
speed profile optimization for a challenging task of transferring
vessels filled with liquid without spilling. In order to explicitly
encode the speed profiles and to allow their transfer between
tasks, a modified form of dynamic movement primitives has
been developed.

I. INTRODUCTION

Autonomous acquisition and refinement of skills is one
of the major challenges of contemporary humanoid robotics.
An often used paradigm to initiate knowledge transfer from
humans to humanoid robots is programming by demonstra-
tion [1], [2], where the demonstrated actions are used to
seed the learning process. The initially obtained knowledge
should then be adjusted and refined to account for different
kinematic and dynamic capabilities of a human demonstrator
and a target humanoid robot [3]. Adaptation process, where
the robot modifies the available movements by exploring
its action space in the neighborhood of previously acquired
movements, is usually based on reinforcement learning (RL)
techniques [4], [5], [6]. A major problem here is the huge
search space that needs to be explored, which is affected
not only by the high number of degrees of freedom of a
humanoid robot, but also by the underlying policy repre-
sentation and the robot’s environment. Recently proposed
probabilistic RL algorithms like PI2 [7] and PoWER [8]
can scale to significantly more complex problems and reduce
the number of tuning parameters. However, due to the high
dimensionality of the parameter space, the adaptation speed
of these algorithms is still low compared to humans, who are
able to quickly adapt to new situations by exploiting previ-
ous experience and by generalizing from previously solved
similar situations. Therefore, the issues of how to speed up
the adaptation process and how to include knowledge from
previous, similar situations are among the biggest challenges
that need to be overcome to develop truly autonomous
humanoid robots.

1Humanoid and Cognitive Robotics Lab, Department of Auto-
matics, Biocybernetics, and Robotics, Jožef Stefan Institute, Ljubl-
jana, Slovenia. rok.vuga@ijs.si,bojan.nemec@ijs.si,
ales.ude@ijs.si

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme FP7/2007-2013
(Specific Programme Cooperation, Theme 3, Information and Communi-
cation Technologies) under grant agreement no. 270273, Xperience.

Many of the recent approaches address the above problem
by reducing the set of adaptation parameters, consequently
reducing the search space. Kormushev et al. [9] proposed the
parameter update formed as a linear combination of param-
eters reweighted according to the reward in previous roll-
outs. Grollman and Billard [10] constrained the search space
to the area between two appropriately chosen unsuccessful
demonstrations. Kober et al. [11] proposed adaptation of the
control policy based on a small set of global parameters,
called meta-parameters. Nemec et al. [12] combined the ideas
of RL and statistical generalization, where a normally low
dimensional query into a database of movements was adapted
by means of RL. Stulp et al. [13] investigated the adaptation
of the covariance matrix, which governs the generation of
exploration noise in the RL algorithm.

However, learning in reduced dimensionality can not guar-
antee that an optimal policy will be obtained in general
because the optimal solution might lie outside of the reduced
dimensionality space. Therefore, in our previous research
[14] we suggested that learning in reduced dimensionality
should be followed by learning in the full parameter space.
Unfortunately, such approaches require ad hoc hard coding
of switching between the learning algorithms. In this paper
we focus on how to transfer the knowledge between similar
tasks and how to improve the adaptation speed by combining
the ideas of Iterative Learning Control (ILC) [15] and
reinforcement learning. In contrast to the standard approach,
where Gaussian noise is used for parameter exploration, we
propose to combine knowledge transferred from similar tasks
and ILC for the initial parameter exploration. The approach
can be related to the covariance matrix adaptation methods,
which follow a similar idea, i. e. to apply guided search in
the parameter space in order to increase the adaptation speed.
The initial adaptation based on ILC is much faster than what
can be achieved by reinforcement learning and results in skill
knowledge that is much better adapted to the capabilities of
the robot than knowledge originating in user demonstrations.
RL, however, is still needed to achieve the final fine tuning
of the task. The proposed approach was verified on velocity
adaptation task, where the robot carried a cup of liquid as
fast as possible without spilling.

The paper is organized as follows. In Section II we outline
the dynamic movement primitives framework along with the
extension for speed profile encoding. Next, in Section III we
present the main contribution of this paper, the integrated
application of ILC and reinforcement learning to accelerate
policy iteration. An application of the proposed approach to
speed learning is outlined in Section IV. Finally, Section V
presents experimental evaluation.

2014 14th IEEE-RAS International Conference on
Humanoid Robots (Humanoids)
November 18-20, 2014. Madrid, Spain

978-1-4799-7173-2/14/$31.00 ©2014 IEEE 547

II. DMPS AND SPEED PROFILE

We start with initial user demonstration acquired either in
joint or Cartesian space

G = {y(k), ẏ(k), ÿ(k), t(k)}Tk=1, (1)

where y(k) ∈ RD are the corresponding coordinates and T is
the number of samples on the demonstrated trajectory. In the
following we use notation y(k), ẏ(k), ÿ(k), x(k) to denote
the measurements on the trajectory and y(x), ẏ(x), ÿ(x), x
to denote values obtained through integration of (2) – (4).

Next, we parameterize the given policy with dynamic
movement primitives (DMP) [16]. In the original formula-
tion, the speed profile is embedded into the representation
with the DMP parameters, which are normally obtained with
regression. In [17] we proposed a formulation which allows
to non-uniformly change the speed profile, but the initial
speed profile was still encoded by the initial set of DMP
parameters. In order to allow the transfer of speed profiles
between policies, the speed profile has to be explicitly
encoded. As in the original representation every degree of
freedom is described by its own dynamic system, but with a
common phase to synchronize them. For discrete movements,
the trajectory of each robot degree of freedom y is described
by the following system of nonlinear differential equations

τ ż = αz(βz(g − y)− z) + f(x), (2)
τ ẏ = z, (3)
τ ẋ = −αxxν(t). (4)

where x is the phase variable and z is an auxiliary variable.
This way, the system converges to the unique equilibrium
point (z, y, x) = (0, g, 0). The nonlinear forcing term f
contains free parameters that are used to modify the dynam-
ics of the second-order differential equation system. These
parameters can be calculated to approximate any smooth
point-to-point trajectory from the initial position y0 to the
final configuration g

f(x) =

∑N
i=1 wiΨi(x)∑N
i=1 Ψi(x)

x(g − y0),

Ψi(x) = exp
(
−hi (x− ci)2

)
, (5)

with the given initial velocity and final velocity equal to zero.
Here ci are the centers of radial basis functions distributed
along the trajectory and hi > 0 their widths. Weights wi
determine the shape of the system’s response. The time
constant is set to τ = t(T)−t(1), whereas αx, αz , and βz are
set so that the underlying second order linear dynamic system
is critically damped [16], e. g. αz = 12, βz = 3, αx =
2(t(T)− t(1)). Note that (4) is independent of (2) – (3) and
can be solved analytically

x(t) = exp

(
−αx
τ

∫ t

0

ν(r)dr

)
, (6)

where we assumed that t(1) = 0. This can easily be checked
by calculating the derivative of (6).

ν is the temporal scaling function which encodes the speed
profile of the trajectory. It is defined as a time dependent
function of the form

ν(t) =
‖ẏ(t)‖∫ τ

0

‖ẏ(t)‖dt
. (7)

By combining (6) and (7) we obtain

x(t) = exp

−αxτ
∫ t

0

‖ẏ(r)‖dr∫ τ

0

‖ẏ(t)‖dt

 . (8)

Note that expression ∫ t

0

‖ẏ(r)‖dr (9)

defines the arc length of trajectory G up to time t. Recall
that standard DMPs [16] use the canonical equation τ ẋ =
−αxx instead of (4), which solution is given by x(t) =
exp(−αxt/τ). So by defining a new variable

s(t) =

∫ t

0

‖ẏ(r)‖dr∫ τ

0

‖ẏ(t)‖dt
, (10)

we have parameterized the phase with normalized arc length
s. Motion control is simpler if trajectories are parameterized
by arc length instead of time. To move at constant speed
along the path of an arc-length parameterized curve, the
controller needs only to evaluate the parametric function at
parameter values separated by the speed times the inter-frame
time interval [18].

By numerical integration of (7) and (8) we obtain the
following approximations for scaling function ν and phase
x at times t(k)

ν(k) =
‖ẏ(k)‖

Trapzd(T)
(11)

and

x(k) =

 1, k = 1

exp

(
−αx
τ

Trapzd(k)

Trapzd(T)

)
, k > 1

(12)

In the above equations we applied the trapezoidal rule for
numerical integration [19]

Trapzd(k) = ∆t

(
1

2
‖ẏ(1)‖+

k−1∑
n=2

‖ẏ(n)‖+
1

2
‖ẏ(k)‖

)
.

(13)
In (13) we assumed that integration step ∆t is constant.

Next, we rewrite the system of two first order equations
(2) – (3) as one second order equation (by replacing z with
τ ẏ)

τ2ÿ = αz(βz(g − y)− τ ẏ) + f(x). (14)

We then define

f(k) = τ2ÿ(k) + ταz ẏ(k)− αzβz(g − y(k)), (15)

548

where y(k), ẏ(k), ÿ(k) are the samples of one of the com-
ponents of the initially demonstrated trajectory G. For sim-
plicity we omitted the index denoting the dimension of the
trajectory. To calculate the weights of nonlinear forcing term
f(x) from (5), we need to solve the linear equation system∑N

i=1 wiψ(x(k))∑N
i=1 ψi(x(k))

= f(k), k = 1, . . . , T, (16)

which can be rewritten in a vector form, resulting in the
following system of linear equations

Aw = f , (17)

with

w =

 w1

...
wN

 , f =

 f(1)
...

f(T)

 , (18)

and the (T ×N) system matrix A defined as

A =

ψ1(x(1))x(1)∑N
j=1 ψj(x(1))

· · · ψN (x(1))x(1)∑N
j=1 ψj(x(1))

...
...

...
ψ1(x(T))x(T)∑N
j=1 ψj(x(T))

· · · ψN (x(T))x(T)∑N
j=1 ψj(x(T))

 .

A set of weights that solves linear equation system (17) in
least square sense is then calculated using

w = A+f , (19)

where A+ denotes the Moore-Penrose pseudo-inverse of the
system matrix A.

To write ν as a function phase we again use a weighted
sum of Gaussian kernels

ν(x) = 1 +

∑M
j=1 θjΨj(x)∑M
j=1 Ψj(x)

x = 1 + g̃T (x)θθθ, (20)

where

g̃(x) =

 g̃1(x)
· · ·

g̃M (x)

 , g̃i(x) =
Ψi(x)x∑M
j=1 Ψj(x)

(21)

To calculate the weights θj we first define

r(k) = ν(k)− 1. (22)

We then need to solve

Bθ = r, (23)

with

θ =

 θ1
...
θM

 , r =

 r(1)
...

r(T)

 , (24)

and the system matrix B ∈ RT×M defined as

B =

 g̃1(1) · · · g̃M (1)
...

...
...

g̃1(T) · · · g̃M (T)

 .

In this way we expressed the scaling function ν as a function
of phase. We can therefore rewrite Eq. (4) as

τ ẋ = −αxxν(x) = −αxx+ g(x)Tθθθ, (25)

where
g(x) = −αxxg̃(x). (26)

Eqs. (2), (3), and (25) are used when reproducing the learned
trajectory.

By the above construction the rate of phase change be-
comes related to the speed of movement. Lower values of
ν(x) correspond to slower movements and higher values to
faster movements, respectively. Note the differences between
the proposed approach and our previous work [20]. Here we
added the term 1+ to the definition of (20), which ensures
that ν tends to 1 as x tends to 0, which is the desired
behavior. We also inverted relationship between ν(x) and
τ . In [20] slowing down was achieved by increasing the
value of ν, which caused near singularity behavior at parts
of the phase corresponding to low speed. Finally, the main
difference is the initial definition of scaling factor ν. In [20],
ν was initially set to 1, whereas here it is defined as the
function of the normalized arc length, which ensures that
the phase moves uniformly along the trajectory regardless of
the current velocity of motion. This new formulation enables
the transfer of speed profiles between different trajectories by
simply replacing the weights of the temporal scaling function
ν(x) in the DMP.

III. REINFORCEMENT LEARNING WITH DIRECTED
EXPLORATION

Policy search algorithms, the type of reinforcement learn-
ing most commonly used in robotics, follow the general
recipe:

1) Perform exploratory trials with the current policy,
2) Analyze the collected rewards,
3) Improve policy and repeat at step 1.

In essence, different algorithms vary in how steps 2 and
3 are implemented. Drawing from the normal distribution
with mean at the current policy parameters is typically used
to generate random exploration. A class of policy gradient
algorithms exploits the obtained knowledge to estimate the
gradient of the reward function with respect to the policy
parameters. They have strict convergence properties, but
in general suffer from low adaptation speed [4]. Recently,
a novel class of methods gained popularity, which return
directly the update as a weighted combination of exploration
policies [8], [7], [21]. These algorithms employ some notion
of ”eliteness” of exploratory trials, from which the update is
computed, while the ”non-elite” trials are rejected [13].

Note that in gradient based methods, performing random
exploration makes sense, as sampling of the local vicinity
of the policy is needed to obtain a good gradient estimate.
In the case of ranking samples by eliteness, however, every
step made in the wrong direction is rejected by the algo-
rithm. Obviously, the mapping between policy and reward is
unknown in general and random exploration is a safe way to

549

achieve the optimal desired policy. However, in many cases,
some estimate of this mapping can be obtained, either from
prior knowledge, user input, reward function design, etc.
Therefore, we propose to exploit this knowledge as much as
possible by way of using policies inferred from exploration
trials in the earlier stages of learning. Random exploration
can still be used in combination to preserve the generality
of the RL method.

We propose the following exploration strategy to find the
optimal policy:

1) assess policies of known, similar tasks,
2) apply iterative learning control (ILC),
3) perform random exploration guided by PI2 reinforce-

ment learning algorithm.
The first step relies on a database of known control policies,
which the agent executes and collects the corresponding
rewards. After every execution, we update the policy using
the RL method of choice. The RL algorithm can take care
of filtering out policies that are not suitable for the task.

Once the agent runs out of prior knowledge, the explo-
ration is changed from experience based to ILC based. The
basic idea of iterative learning control (ILC, [22], [15]) is that
information about the tracking error can be used to improve
performance in the next repetition of the same trajectory. The
general form of ILC is to update the control signal as follows

u(k, j + 1) = κ(u(k, j) + η1e(k + 1, j)), (27)

where u is the control signal, k denotes the k-th time sample,
j denotes iteration, and κ and η1 are the learning parameters.
ILC is distinguished from simple feedback control by the
prediction of the error e(k+1, j), which serves to anticipate
the error caused by the action taken at the k-th time step. ILC
modifies the control input in the next iteration based on the
control input and error in the previous iteration. In the context
of policy learning, the error is associated with the policy cost
and u is parameterized. In our case, the policy is encoded
by DMP parameters defining the speed profile θ, which is
mapped to the control signal u = [u(1), . . . , u(N)] (see also
Section IV). Mapping from DMP parameters θ to the control
signal u is accomplished with DMP integration (2), (3), (25).
Similarly, mapping from time or phase dependant signal u
to θ is accomplished with regression [23], [16].

The main requirements for the application of ILC are
to carefully design the error signal e in Eq. (27) and to
manually tune the learning parameters κ and η1. Note that
ILC works in a controller-like fashion: at every iteration it
makes a step in the direction given by the sign of the obtained
error. This is hard to achieve for problems where a balance
needs to be found between opposing criteria. In such cases,
reinforcement learning with random exploration can find a
better solution. Therefore, once we observe that ILC does
not improve the cost anymore, a switch to step 3 is made.

Algorithm 1 summarizes the proposed approach, where
we applied reinforcement learning algorithm PI2 [7] for
parameter update. This way, a significant increase in the
speed of convergence can be achieved without sacrificing
convergence properties.

The PI2 implementation in Algorithm 1 contains two
subtle adjustments compared to the original implementation
described in [7]. First, we omitted the quadratic control cost
term from the calculation of S, as it is not justified in our
case. Penalizing high values of policy parameters may slow
the trajectory down, which is the opposite of what we want to
achieve. Furthermore, in the original formulation the update
rule was defined as ∆θn =

∑Nb

k=1 P
b
k(n)Mb

k(n)εk, where
εk is the current exploration noise of the policy parameters.
Instead, we replaced εk with the exploration of the current
parameters with respect to the k-th best known policy from
the whole history of trials, i. e. εk = θ− θbk. In this way we
can perform the policy update after only one trial, as opposed
to the standard implementation of the PI2 algorithm which
requires several trials before the policy can be updated.

IV. LEARNING OF SPEED PROFILE USING ILC
We evaluate the proposed approach on the problem of

learning speed profiles paramaterized as described in Section
II, which enables easy transfer of speed profiles between
different tasks.

The goal of modifying the speed profile is to accelerate
the task execution without degrading the overall performance
of the task. A similar idea was exploited in [17] in order
to gradually increase the speed of an assembly task until
contact forces remained within the prescribed tolerances.
The idea is simple: increase the speed of task execution
until some essential task constrains are violated. These task
constrains together with policy execution time determine the
error function e(x), used for parameter update with ILC,
as well as the cost function used for RL. However, it is
important to note that the two criteria are not the same. RL
algorithms require unsigned value to determine the cost of an
experiment, while ILC operates with signed error function.

A suitable error function for ILC to adapt the speed of
motion is given by

e(x) = ξν(νmax − ν(x))− ξdb(x), (28)

where ν is the previously defined temporal scaling function,
b is a scalar function quantifying deviations from the pre-
specified task constraints, νmax > 1 is the upper bound for
the temporal scaling factor, x is the phase along the trajectory
at time t, x = x(t), and ξν , ξd are the corresponding
weighting factors. Function b describing deviations from task
constraints might be anything from a norm of excessive
forces and torques as in [17] to a signal indicating the spilling
of liquid as in this paper.

As noted in [17], standard ILC approach cannot be applied
to the trajectory speed learning in time domain, since one of
the assumptions of ILC is that each trial has the same number
of samples [15]. Therefore, in [17] the ILC was implemented
in phase domain, where the phase signal was anticipated for
a fixed phase offset. Since mapping from the phase to the
displacement is not linear, this choice is not optimal. Instead,
we propose the following ILC-type algorithm to realize the
learning of the temporal scaling function

ν(xn, j + 1) = κ(ν(xn, j) + η1e(xn + δxn
, j), (29)

550

Algorithm 1: PI2 algorithm augmented with prior knowl-
edge and ILC directed exploration.

Input: parameterized policy θ (Eq. (20) and (25))
basis functions g for parameterization (Eq. (26))
intermediate cost functions r(xn), n = 1, . . . , N
terminal cost function r(xN+1)
ILC error function e(xn)
learning parameters Σ, Nb, κ, η1, δs
initial approximation θ1
knowledge base containing policies θkb1 , . . . ,θ

kb
Nkb

Output: optimal policy θopt
use random = false
for i = 1 : max iterations do

calculate exploration step:
if i < Nkb then

θ = θkbi
else

if C decreasing and use random = false then
calculate trajectory using ILC:
for n = 1 : N do

u(xn, i) =
κ(u(xn, i− 1) + η1e(xn + δxn , i− 1))
find θ which parameterizes ui with g

else
use random exploration policy:
draw θ from N (θi,Σ)
use random = true

perform exploration experiment using θ and collect
costs r(xn), n = 1, . . . , N + 1

calculate total cost C =
∑N+1
n=1 r(xn)

sort all past trials by C so that θbk is k-th best
policy and rbk its return, i. e. C
if i < Nb then

θi+1 = θ1

else
update policy using algorithm PI2:
for n = 1 : N do

for k = 1 : Nb do
Sbk(n) = rbk(N + 1) +

∑N
j=n r

b
k(j)

P bk(n) =
exp(−Sbk(n)/λ)

Nb∑
m=1

exp(−Sbm(n)/λ)

Mb
k(n) =

g(n)bkg(n)bk
T

g(n)bk
T
g(n)bk

∆θn =
∑Nb

k=1 P
b
k(n)Mb

k(n)(θ − θbk)

for j = 1 : M do

δθj =

∑N
n=1 (N + 1− n)gj(n)∆θn,j∑N

n=1 gj(n)(N + 1− n)

θi+1 = θi + [δθ1, . . . , δθM]
T

θopt = θi

V

Fig. 1. Sensory system used to detect spilling. The circuit was powered
with a 9 volt battery and voltage measured on a 10 MΩ resistor. When
the water closes the circuit, the resistor takes an overwhelming part of the
voltage drop and the reading increases from 0 to 9 V.

where xn denotes the phase, k is the sampling index, j is
the learning iteration index, and κ and η1 are the manually
selected ILC gains. The error signal e(xn + δxn , j) is used
to anticipate the deviation from the desired behavior, with
δxn

denoting the magnitude of the step in the phase domain
from which the prediction is calculated. δxn

can be obtained
by calculating the derivative of (8)

δxn = −αx
τ

exp
(
−αx
τ
s(tn)

)
ν(tn)δt, (30)

where δt = (tT − t1)/N and tn = (tT − t1)(n − 1)/N,
n = 1, . . . , N . N is the parameter chosen by the user and
defines the number of steps in the ILC algorithm.

V. EXPERIMENTAL EVALUATION

The proposed methodology was used for speeding up the
task of delivering a glass full of liquid from a tray onto a
table. The goal of adaptation was to speed up the execution
time as much as possible, without spilling the liquid. This
is an example of a process, for which it would be very
difficult to find a model-based solution. Our experimental
setup consisted of an antropomorphic Kuka LWR arm with
FRI interface and a three finger Barret hand, shown in Fig.
3. The desired path of the robot was demonstrated using
kinesthetic guiding. The cup was equipped with a resistance
sensor to detect spilling (see Figure 1). Whenever the level
of the liquid reached the conductive ring at the edge of the
cup, an increase in voltage was detected.

The intermediate cost function was defined as

r(x) =

{
0 if U(x) < U0

γ if U(x) ≥ U0

, (31)

where r(x) denotes an intermediate cost at phase x, U(x)
the current voltage, U0 the threshold voltage, which signifies
spilling, and γ is a positive constant. In our experiment we
used γ = 10, U0 = 5V . The terminal cost was defined as
duration of the trajectory in seconds multiplied by scaling
factor 50.

Prior knowledge consisted of several recordings of two
similar tasks, shown in Fig. 2: first, placing a cup of water
from a tray onto a table, and second, inserting a small cubical
object (resembling a small candy) into an ice cube tray
(resembling a candy box). Even though the cup moving task
seems similar to the assigned robot’s task, the path by which
the movement was done was substantially different from

551

the one demonstrated to the robot; therefore, just directly
transferring the recorded speed profile is not feasible.

The human demonstrated motion was captured using
NaturalPoint Optitrack motion capture system with passive
markers. In total, 5 trajectories were captured: 3 for cup
moving and 2 for cube moving. We encoded them into DMPs
as presented in Section II.

The speed profiles (20) gathered from the demonstrated
motions were then used as initial exploration policies in the
first stage of learning. Figure 4 shows convergence results.
The first five data points (red shaded area) correspond to the
costs obtained during execution of these policies.

Next, starting from sixth iteration, policies were calculated
and executed using ILC. Error function (28) was finalized by
monitoring the spilling sensor voltage

b(x) = U(x)− U0, (32)

where U(x) denotes the sensor’s output voltage and U0

denotes the threshold voltage. For U(x) smaller than U0,
signifying no spilling, b will be negative and will cause
the trajectory at the corresponding phase to speed up. Con-
versely, U(x) higher than U0 slows down the motion. The
speed profile for the next iteration νj+1 was obtained by Eq.
(29), with constants chosen as κ = 1 and η1 = 0.01. The
policy update ∆θj+1 was then obtained by parameterizing
νj+1 as per Eq. (20) and calculating the difference to
the current policy provided by reinforcement learning as
explained in Section III.

As shown in Fig. 4, the policy improves quickly. However,
the main drawback of ILC is that it cannot efficiently find a
balance between opposing effects. Imagine that during an
episode, no liquid spilling is detected. Therefore, for the
next learning iteration, ILC will generate a faster trajectory.
As a result, some liquid will spill and in the next iteration,

Fig. 2. Recording trajectories for prior knowledge. Top: placing a cube
into a compartment. Bottom: placing a cup on a table.

Fig. 3. Upper body humanoid system used in the experiments.

0 10 20 30 40 50
60

80

100

120

140

160

180

200

220

240

260

iterations

co
st

Fig. 4. Convergence of the learning process. The bars show standard
deviation of 8 learning trials. The red shaded part of the graph shows
costs of trials using policies from prior knowledge. The green shaded area
corresponds to learning where exploration was performed using ILC, while
the yellow shaded area corresponds to final, random based exploration.

the movement will be slower again, catching the learning
process in an oscillatory cycle. This is due to the controller-
like nature of ILC - it tries to reduce the error signal to zero,
which is sometimes not possible to achieve.

Thus, after 11th iteration, the cost has been observed to
stop converging. Random exploration is then used to perform
fine tuning of the policy.

VI. CONCLUSIONS

In this paper we presented a novel method for autonomous
learning of control policies. Reinforcement learning meth-
ods typically use random exploration to obtain information
about reward fluctuation in the local vicinity of the policy.
We proposed to supplement random exploration by prior
knowledge and iterative learning control (ILC). This way,
prior knowledge about promising search directions is inserted
into the system, which is followed by a few iterations of
ILC. Since ILC’s convergence properties are not as strong
as those of RL, the algorithm stops converging at some point,
and the exploration switches to standard random exploration.

552

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

s

v
[m

/s
]

Fig. 5. Result of the learning process. Blue line shows speed of the initially
demonstrated task. Green line shows an example of a learned speed profile
after 50 learning trials. Note that the profiles are plotted against normalized
arc length s, not time.

Fig. 6. In this experiment the robot moves the cup from the tray onto the
table. The path was obtained using kinesthetic guiding and the speed profile
(shown in Fig. 5) was learned using our novel approach.

This way we retain the best of both worlds, the initial fast
convergence of ILC and fine tuning achievable by RL.

In our experiments we focused on trajectory speed adap-
tation. For this purpose we developed a new formulation for
speed profile parameterziation within a DMP framework. Our
experimental results showed that the proposed approach is
effective at learning high precision tasks such as fast transfer
of a cup full of liquid without spilling.

REFERENCES

[1] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in Cognitive Sciences, vol. 3, no. 6, pp. 233–242, 1999.

[2] R. Dillmann, “Teaching and learning of robot tasks via observation of
human performance,” Robotics and Autonomous Systems, vol. 47, no.
2-3, pp. 109–116, 2004.

[3] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot pro-
gramming by demonstration,” in Springer Handbook of Robotics,
B. Siciliano and O. Khatib, Eds. Springer Berlin Heidelberg, 2008,
pp. 1371–1394.

[4] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural Networks, vol. 21, pp. 682–697, 2008.

[5] M. Tamosiunaite, B. Nemec, A. Ude, and F. Wörgötter, “Learning to
pour with a robot arm combining goal and shape learning for dynamic
movement primitives,” Robotics and Autonomous Systems, vol. 59,
no. 11, pp. 910–922, 2011.

[6] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” International Journal of Robotic Research, vol. 32,
no. 11, pp. 1238–1274, 2013.

[7] E. A.Theodorou, J. Buchli, and S. Schaal, “A generalized path integral
control approach to reinforcement learning,” Journal of Machine
Learning Research, vol. 11, pp. 3137–3181, 2010.

[8] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
in Advances in Neural Information Processing Systems 21 (NIPS),
Vancouver, B. C., Canada, 2008, pp. 852–859.

[9] P. Kormushev, S. Calinon, R. Saegusa, and G. Metta, “Learning the
skill of archery by a humanoid robot iCub,” in IEEE-RAS International
Conference on Humanoid Robots, Nashville, TN, 2010, pp. 352–357.

[10] D. H. Grollman and A. Billard, “Donut as I do: Learning from failed
demonstrations,” in IEEE International Conference on Robotics and
Automation, Shanghai, China, 2011, pp. 3804–3809.

[11] J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Reinforcement
learning to adjust parametrized motor primitives to new situations,”
Autonomous Robots, vol. 33, no. 4, pp. 361–379, 2012.

[12] B. Nemec, R. Vuga, and A. Ude, “Efficient sensorimotor learning
from multiple demonstrations,” Advanced Robotics, vol. 27, no. 13,
pp. 1023–1031, 2013.

[13] F. Stulp and O. Sigaud, “Path integral policy improvement with
covariance matrix adaptation,” in 29th International Conference on
Machine Learning, Edinburgh, UK, 2012, pp. 281–288.

[14] B. Nemec, R. Vuga, and A. Ude, “Exploiting previous experience
to constrain robot sensorimotor learning,” in IEEE-RAS International
Conference on Humanoid Robots, Bled, Slovenia, 2011, pp. 727–723.

[15] D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative
learning control,” IEEE Control Systems, vol. 26, no. 3, pp. 96–114,
2006.

[16] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, 2013.

[17] B. Nemec, F. Abu-Dakka, J. A. Jørgensen, T. R. Savarimuthu,
B. Ridge, J. Jouffroy, H. G. Petersen, N. Krüger, and A. Ude, “Transfer
of assembly operations to new workpiece poses by adaptation to
the desired force profile,” in International Conference on Advanced
Robotics, Montevideo, Uruguay, 2013.

[18] H. Wang, J. Kearney, and K. Atkinson, “Arc-length parameterized
spline curves for real-time simulation,” in 5th International Conference
on Curves and Surfaces, San Malo, France, 2002, pp. 387–396.

[19] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipies; The Art of Scientific Computing. Cambridge:
Cambridge University Press, 2007.

[20] B. Nemec, A. Gams, and A. Ude, “Velocity adaptation for self-
improvement of skills learned from user demonstrations,” in IEEE-
RAS International Conference on Humanoid Robots, Atlanta, Georgia,
USA, 2013, pp. 423–428.

[21] V. Heidrich-Meisner and C. Igel, “Neuroevolution strategies for
episodic reinforcement learning,” Journal of Algorithms, vol. 64, no. 4,
pp. 152–168, 2009.

[22] K. L. Moore, Y. Chen, and H.-S. Ahn, “Iterative learning control: A
tutorial and big picture view,” in IEEE Conference on Decision and
Control, San Diego, CA, 2006, pp. 2352–2357.

[23] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific general-
ization of discrete and periodic dynamic movement primitives,” IEEE
Transactions on Robotics, vol. 26, no. 5, pp. 800–815, 2010.

553

Implicit Learning of Simpler Output Kernels for
Multi-Label Prediction

Hanchen Xiong Sandor Szedmak Justus Piater
Institute of Computer Science, University of Innsbruck

Innsbruck, A-6020, Austria
{hanchen.xiong, sandor.szedmak, justus.piater}@uibk.ac.at

Abstract

It has been widely agreed that, in multi-label prediction tasks, capturing and utiliz-
ing dependencies among labels is quite critical. Therefore, a research tendency in
multi-label learning is that increasingly more sophisticated dependency structures
on labels (e.g. output kernels) are proposed. We show that, however, over-complex
dependency structures will harm more than help learning when the underling de-
pendency is relatively weak. To avoid overfitting on structures, a regularization on
label-dependency is desirable. In this paper, we put forward a novel joint-SVM for
multi-label learning. Compared to other discriminative learning schemes, joint-
SVM has two strengths: at first, the complexity of training joint-SVM is almost
the same as training a single regular SVM, which is quite efficient; secondly, in
joint-SVM, a linear output kernel on multi-label is implicitly learned and a regu-
larization on the output kernel is implicitly added, which enhances generalization
ability. In our experimental results on image annotation, joint-SVM compares
favorably state-of-the-arts methods.

1 Predict Multi-label as Structured Outputs

In the past two decades, support vector machines (SVMs) have displayed remarkable successes in
various application domains. The achievements of SVMs mainly stems from its two advantageous
components: maximum margins and input kernels. The maximum-margin principle is a reflection of
statistical learning theory [12] on linear binary classification. Kernels provide powerful mechanisms
enabling the linear classifier to separate highly non-linear data. The critical observation of kernel
methods is that a kernel function can be defined on a pair of data instances to implicitly map them
to a reproducing kernel Hilbert space (RKHS):

Kφ(x(i),x(j)) = 〈φ(x(i)), φ(x(j))〉 (1)

where x(i),x(j) ∈ Rd are two input training instances, φ is the feature map induced by kernel
function Kφ, and φ(x(i)) is the representation of x(i) in the RKHS Hφ. Given the training dataset
{x(i) ∈ Rd, y(i) ∈ {+1,−1}}mi=1, the primal form of training SVM is:

arg min
w∈RHφ

1
2 ||w||

2 + C
∑m
i=1 ξ

(i)

s.t. y(i)
(
w>φ(x(i))

)
≥ 1− ξ(i), ξ(i) ≥ 0, i ∈ {1, . . . ,m}

(2)

where w is a linear hyperplane in Hφ, ξ(i) are slack variables for the tolerance of noise, and C is a
trade-off parameter. (2) differs from usual SVM formulation slightly at the absence of a bias term.
Here we ignore the bias since it can be absorbed in w . The computational advantage of kernels
become obvious when the primal form of SVM (2) is reformulated to its dual form:

arg min
α1,α2,...,αm

∑m
i=1 αi −

1
2

∑m
i,j=1 αiαjy

(i)y(j)Kφ(x(i),x(j))

s.t. ∀i, 0 ≤ αi ≤ C
(3)

1

The dual representation of w is
∑m
i=1 αiy

(i)φ(x(i)), and thus the prediction of a test instance x̂ is

ŷ = sgn
(
w>φ(x̂)

)
= sgn

(
m∑
i=1

αiy
(i)Kφ(x(i), x̂)

)
. (4)

We can denote y(i)
(
w>φ(x(i))

)
in the constraints of (2) as a score function F (x(i), y(i); w), then

for binary outputs y(i), F
(
x(i), y(i); w

)
− F

(
x(i),−y(i); w

)
= 2 × F

(
x(i)), y(i); w

)
. Also, a

distance function between binary outputs can be denoted as d(y(i),−y(i)) = |y(i) − (−y(i))| = 2.
Then by replacing C with C

2 , (2) can be rewritten as:

arg min
w∈RHφ

1
2 ||w||

2 + C
∑m
i=1 ξ

(i)

s.t. ∀i, F
(
x(i), y(i); w

)
− F

(
x(i),−y(i); w

)
︸ ︷︷ ︸

∆F (y(i),−y(i))

≥ d(y(i),−y(i))− ξ(i), ξ(i) ≥ 0 (5)

which is a binary-output case of structural SVM [11] (see later). By using hinge-loss representation
for ξ(i), (5) is:

arg min
w∈RHφ

1

2
||w||2 + C

m∑
i=1

max{0, d(y(i),−y(i))−∆F (y(i),−y(i))} (6)

Structural SVM [11] is an extension of SVM for structured-outputs, in which, however, the margin to
be maximized is defined as the score gap between the desired output and the runner-up. Assume that
structured outputs y ∈ Y , and the score function is linear in some combined feature representation of
inputs and outputs Ψ(x,y): F (x,y; W) = 〈W,Ψ(x,y)〉, then the objective function of structural
SVM is:

arg min
W∈RΨ

1

2
||W||2 + C

m∑
i=1

max
y′∈Y

{
d(y(i),y′)−∆F (y(i),y′)

}
(7)

where ∆F (y(i),y′) = F (x(i),y(i); W) − F (x(i),y′; W) and d(y(i),y′) is a distance function
defined on structured outputs. In multi-label scenario, given a set of T labels, then outputs are T -
dimensional binary vector y = [y1, · · · , yt, · · · , yT]> ∈ BT . When we define the score function
F
(
x(i),y(i); W

)
= 〈W, φ(x(i)) ⊗ y(i)〉, and use Hamming distance on outputs, then because of

linear decomposability, (7) can be rewritten as:

arg min
W∈RHφ×RT

1
2 ||W||

2
F + C

∑m
i=1

∑T
t=1 maxy′t={−1,+1}

{
d(y

(i)
t , y′t)−∆F (y

(i)
t , y′t)

}
⇓

arg min
w1,··· ,wT∈RHφ

∑T
t=1

{
1
2 ||wt||2 + C

∑m
i=1 max

{
0, d(y

(i)
t ,−y(i)

t)−∆F (y
(i)
t ,−y(i)

t)
}}

(8)
where 〈·, ·〉F denotes Frobenius product and ||W||F is the Frobenius norm of matrix W.

2 Joint SVM

It can be seen (by linking (6) and (8)) that, with linearly decomposable score functions and output
distances, using structural SVM on multi-label learning is equivalent to learning T SVMs jointly.
This is closely related to multi-task learning frameworks [1], where different learning tasks are
connected by summing up their objectives and constraints respectively:

min 1
2

∑T
t=1 ||wt||2 + C

∑T
t=1

∑m
i=1 ξ

(i)
t

w.r.t. w1,w2, . . . ,wT ∈ RHφ×1

s.t.
∑T
t=1 y

(i)
t

(
w>t φ(x(i))

)
≥ T −

∑T
t=1 ξ

(i)
t

(9)

By denoting y(i) = [y
(1)
1 , . . . , y

(i)
T], and W = [

w>1
T ; . . . ;

w>T
T]>, we can rewrite (9) as:

arg min
W∈RT×Hφ

1
2 ||W||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
y(i),Wφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(10)

2

which is referred to as joint SVM. When linear output kernels (Kψ(y(i),y(j)) = 〈ψ(y(i)), ψ(y(j))〉)
[4, 7, 13] are applied on outputs, (10) will be:

arg min
W∈RHψ×Hφ

1
2 ||W||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
ψ(y(i)),Wφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(11)

Since the linear decomposability of ∆F (y(i),y′) is still preserved, join SVM solves the same prob-
lem as structural SVM. However, one strength of joint SVM is that its training complexity is almost
the same as a single SVM, by contrast to the exponential complexity in structural SVM. Similarly
to regular SVM, joint SVM can be converted to its dual form

arg min
α1,··· ,αm

∑m
i=1 αi −

∑m
i,j=1 αiαjKψ(y(i),y(j))Kφ(x(i),x(j))

s.t ∀i, 0 ≤ αi ≤ C
(12)

with W =
∑m
i αiψ(y(i))φ(x(i))>. It can be seen that, with the kernel matrix on outputs pre-

computed, the computational complexity of joint SVM (12) is the same as the learning of one single
SVM (3), which is a great advantage in efficiency. Meanwhile, when more general output kernels
are used, then the linear decomposability of ∆F (y(i),y′) will be violated, then joint SVM becomes
a special case of max-margin regression [10], which seeks to learn linear operators W : Hφ → Hψ
from general φ(x)⊗ ψ(y).

Given a test input x̂, the prediction ψ(ŷ) inHψ is

ψ(ŷ) = Wφ(x̂) =

m∑
i=1

αiψ(y(i))Kφ(x(i), x̂). (13)

Meanwhile, there is no direct way (say, by inverting Eq.(13)) to map ψ(ŷ) back to ŷ. Therefore, we
can find the optimal solution ŷ∗, out of all possible y ∈ {+1,−1}T , such that its projection in Hψ
is closest to Wφ(x̂):

ŷ∗ = argmaxy∈{+1,−1}T 〈ψ(y),Wφ(x̂)〉
= argmaxy∈{+1,−1}T

∑m
i=1 αiKφ(x(i), x̂)︸ ︷︷ ︸

βi

Kψ(y(i),y) (14)

In general, there is no closed-form solution to Eq.(14), so here we use a similar neighbour-based
label transferring theme as [9, 6]:

ŷ∗ =

(
K∑
k=1

y(k)wk

)/
K∑
k=1

wk wj =

m∑
i=1

αiβiKψ(y(i),y(j)) (15)

where k = {j ∈ [1,m] : wj > 0} and maximum K = 10 neighbours are taken into account. Since
αi areKψ(y(i),y(j)) were already computed in the training phase, only the computation of {βi}mi=1
is needed during testing. Thus, the complexity in predicting is O(m).

3 Implicit Learning and Regularization of Output Kernels

Assume that the statistics of tags’ pairwise co-occurrence can be encoded in a T×T matrix P[3, 4, 7,
13], via which the output vectors can be linearly mapped as ψ(y) = Py, and thus the corresponding
linear output kernel is:

KLin
ψ (y(i),y(j)) = y(i)>Ωy(j) (16)

where Ω = P>P = PP>. By denoting U = P>W, we can rewrite joint SVM (11) as:

arg min
W∈RHψ×Hφ

1
2 ||W||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
y(i),Uφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(17)

Meanwhile, we need to control the scale of P, otherwise the constraints in (17) will be pointless.
Different regularizations on P have been proposed in previous work. In [4] one extra regularization
on Ω, 1

2 ||Ω||
2
F , was added into the objective function, while ||P ||F = 1 was used in [13]. By

3

Method
MBRM [5]
JEC [9]
TagProp [6]
FastTag [3]
JSVM
JSVM+Pol(2)
JSVM+Pol(3)

Corel5K
P(%) R(%) F1(%)
24.0 25.0 24.0
27.0 32.0 29.0
33.0 42.0 37.0
32.0 43.0 37.0
48.5 38.0 42.6
46.6 37.0 41.3
41.5 31.3 35.7

Espgame
P(%) R(%) F1(%)
18.0 19.0 18.0
24.0 19.0 21.0
39.0 27.0 32.0
46.0 22.0 30.0
32.7 31.6 32.2
32.6 24.4 27.9
28.5 21.3 24.4

Iaprtc12
P(%) R(%) F1(%)
24.0 23.0 23.0
29.0 19.0 23.0
45.0 34.0 39.0
47.0 26.0 34.0
42.2 29.4 34.6
37.9 26.6 31.2
38.0 26.1 31.0

Table 1: Comparison between different versions of joint SVM and other related methods on three
benchmark databases. P, R and F1 denote precision, recall and F1 measure respectively.

contrast, a pseudo regularization on P is used in [3] via the re-construction loss from manually-
corrupted data and P. Similar to [4], we want to add a regularizer to control overfitting from output
dependency-structures. Meanwhile, by merging regularization on W and P, we obtain a more
compact regularizer, 1

2W>ΩW, resulting in:

arg min
U∈RHψ×Hφ

1
2 ||U||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
y(i),Uφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(18)

Remarkably, (18) is equivalent to (11) with W substituted by U, which suggests that a linear output
kernel is implicitly learned, and absorbed in W, when we training a plain joint SVM with no explicit
kernel on outputs. In addition, a regularization on the output kernel is also implicitly added.

4 Experiments

In our experiments, we evaluated the propose joint SVM on image annotation tasks. Here, we used
three benchmark datasets, Corel5k, Espgame and Iaprtc12. These three datasets have been widely
used in image annotation studies [8, 2, 5, 6, 9, 3] with performance evaluations reported therein.
Therefore, we can easily compare our method with others. We used the same visual features as in
[6, 3]. Three types of joint SVMs with different output kernels are tested: plain joint SVM (JSVM),
2-degree polynomial (JSVM+Pol(2)) and 3-degree polynomial (JSVM+Pol(3)).

The experimental results, together with the reported results from other related work, are presented
in Table 1. We can see that plain joint SVM (JSVM) outperforms all other results on Corel5k
and Espgame datasets. JSVM is also the second best result on Iaprtc12 dataset. JSVM+Pol(2) also
worked better than some old methods [5, 9]. Meanwhile, JSVM+Pol(3) is worse than JSVM+Pol(2).

Discussions Based on our experiments, it seems that plain joint SVM (JSVM) works more robustly
than the joint SVMs with explicit output kernels. In order to dig deeper to find an explanation, we
can study the correlation matrices of output tag-sets in three datasets. In Figure 1, for each dataset,
we plot the histograms (in log scale) of all correlation values in both training sets and testing sets.
We found that most entries in correlation matrices are 0, which means that the pairwise correlation
(or roughly speaking, dependencies) is rather sparse. Although JSVM, JSVM+Pol(2) both encode
pairwise dependencies, it should be reminded that the implicit linear output kernel in JSVM is
in regularization term, which implies that simpler output kernels (dependencies) are encouraged.
However, JSVM+Pol(2) does not have this preference. Therefore, JSVM can implicitly learned most
simple output kernels when no more complex ones are needed. Analogously, the same principle can
explain why even JSVM+Pol(3) led to worse results.

5 Conclusions

A novel joint SVM was presented for multi-label learning. One benefit of using joint SVM is that
the learning and regularization of a linear output kernel are implicitly conducted. Moreover, both
training joint SVM and predicting with joint SVM are efficient. As a possible work direction, we
might investigate more interesting output kernel regularization schemes to fit different applications.

4

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

104

105 Training labels:

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

104

105 Test labels:

Histograms of label correlation(log scale), data set:corel5k

(a)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

104

105 Training labels:

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

104

105 Test labels:

Histograms of label correlation(log scale), data set:espgame

(b)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

104

105 Training labels:

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

104

105 Test labels:

Histograms of label correlation(log scale), data set:iaprtc12

(c)

Figure 1: The histograms (in log scale) of all correlation values in both training sets and testing sets:
(a) Corel5k, (b) Espgame (c) Iartc12.

Acknowledgement

The research leading to these results has received funding from the European Community’s Seventh
Framework Programme FP7/2007-2013 (Specific Programme Cooperation, Theme 3, Information
and Communication Technologies) under grant agreement no. 270273, Xperience.

5

References

[1] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task feature
learning. Machine Learning, 73(3):243–272, 2008.

[2] David M. Blei and Michael I. Jordan. Modeling annotated data. In Proceedings of the 26th
Annual International ACM SIGIR Conference on Research and Development in Informaion
Retrieval, 2003.

[3] Minmin Chen, Alice Zheng, and Kilian Q. Weinberger. Fast image tagging. In ICML, 2013.
[4] Francesco Dinuzzo, Cheng Soon Ong, Peter V. Gehler, and Gianluigi Pillonetto. Learning

output kernels with block coordinate descent. In ICML, 2011.
[5] S. L. Feng, R. Manmatha, and V. Lavrenko. Multiple bernoulli relevance models for image

and video annotation. In CVPR, 2004.
[6] Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, and Cordelia Schmid. Tagprop: Dis-

criminative metric learning in nearest neighbor models for image auto-annotation. In ICCV,
2009.

[7] Bharath Hariharan, S. V. N. Vishwanathan, and Manik Varma. Efficient max-margin multi-
label classification with applications to zero-shot learning. Machine Learning, 88(1-2):127–
155, 2012.

[8] Victor Lavrenko, R. Manmatha, and Jiwoon Jeon. A model for learning the semantics of
pictures. In NIPs. 2004.

[9] Ameesh Makadia, Vladimir Pavlovic, and Sanjiv Kumar. Baselines for image annotation.
International Journal of Computer Vision, 90:88–105, 2010.

[10] Sandor Szedmak and John Shawe-taylor. Learning via linear operators: Maximum margin
regression. Technical report, University of Southampton, UK, 2005.

[11] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support
vector machine learning for interdependent and structured output spaces. In ICML, 2004.

[12] Vladimir Vapnik. Statistical learning theory. Wiley, 1998.
[13] Yu Zhang and Dit-Yan Yeung. Multilabel relationship learning. ACM Trans. Knowl. Discov.

Data, 7(2):1–30, August 2013.

6

Joint SVM for Accurate and Fast Image Tagging

Hanchen Xiong Sandor Szedmak Justus Piater ∗

Institute of Computer Science, University of Innsbruck
Technikerstr.21a A-6020, Innsbruck, Austria

Abstract. This paper studies how joint training of multiple support
vector machines (SVMs) can improve the effectiveness and efficiency of au-
tomatic image annotation. We cast image annotation as an output-related
multi-task learning framework, with the prediction of each tag’s presence
as one individual task. Evidently, these tasks are related via correlations
between tags. The proposed joint learning framework, which we call joint
SVM, can encode the correlation between tags by defining appropriate ker-
nel functions on the outputs. Another practical merit of the joint SVM
is that it shares the same computational complexity as one single conven-
tional SVM, although multiple tasks are solved simultaneously. According
to our empirical results on an image-annotation benchmark database, our
joint training strategy of SVMs can yield substantial improvements, in
terms of both accuracy and efficiency, over training them independently.
In particular, it outperforms many other state-of-the-art algorithms.

1 Introduction

Automatic image annotation is an important yet challenging machine learning
task. The importance is based on the fact that the number of images grows
exponentially on the internet, and most of them have no link to semantic tags.
Therefore, automatic annotation is of great significance to generate meaningful
metadata for image retrieval from textual queries. The challenges are usually
considered from two perspectives: first, to directly apply mature binary classi-
fication methods, e.g. Support Vector Machines (SVMs), assumes the indepen-
dence of the labels; secondly, the image data on internet is usually presented in
large volumes, so the desired learning method should be capable of working on
large-scale data with high learning and prediction efficiency. One straightfor-
ward yet naive strategy is to consider each tag’s presence as a binary classifica-
tion problem. Then, multiple SVMs can be trained independently for different
tags. This method, however, will suffer from high computational complexity in
both training and prediction phases when the number of tags is relatively large.
Independently learning multiple SVMs is not expected to work well because it
ignores the correlation between the presences of tags, which is a phenomenal
characteristic of image annotation tasks (e.g., sky and cloud often co-occur). In
this paper, we propose to interpret image annotation as the learning of mul-
tiple related tasks. However, different from most existing multi-task learning
frameworks [1] in which tasks are related through their inputs, our joint learning

∗The research leading to these results has received funding from the European Community’s
Seventh Framework Programme FP7/2007-2013 (Specific Programme Cooperation, Theme 3,
Information and Communication Technologies) under grant agreement no. 270273, Xperience.

method focuses on the relation between outputs. Our strategy is motivated by
two intuitions. First, by connecting multiple SVM classifiers together, the cor-
relation between their outputs (the presences of tags), presumably, can be more
easily encoded. Secondly, if the outputs of multiple SVMs can be merged into
a single vector entity, the optimization problem can be established and solved
over vectors, greatly reducing the computational complexity. These two objec-
tives, surprisingly, can be easily achieved by summing up the objectives and
constraints in different SVMs, plus an appropriately designed kernel on outputs.

2 Joint Learning of Multiple SVMs

2.1 Support Vector Machines and Input Kernels

In the past two decades, support vector machines (SVMs) have seen remarkable
successes in various domains. The achievements of SVMs mainly stems from
its two advantageous components: maximum margins and input kernels. The
maximum-margin principle is a reflection of statistical learning theory [2] on
linear binary classification. Kernels provide powerful mechanisms enabling the
linear classifier to separate highly non-linear data. The critical observation of
kernel methods is that a kernel function can be defined on a pair of data instances
to implicitly map them to a reproducing kernel Hilbert space (RKHS):

Kφ(x(i),x(j)) = 〈φ(x(i)), φ(x(j))〉 (1)

where x(i),x(j) ∈ Rd are ith and jth input training instances, φ is the feature
map induced by kernel function Kφ, and φ(x(i)) is the representation of x(i) in
the RKHS Hφ. Most popularly, a Gaussian (or radial basis function) kernel

Kφ(x(i),x(j)) = exp

(
−‖x(i) − x(j)‖2

2σ2

)
(2)

is employed because its corresponding RKHS is an unnormalized Gaussian den-
sity function

φ(x(i)) ∝ N (τ ;x(i), σ) (3)

which is of infinite dimension, and thus greatly improves the representational ca-
pability of input data. Given the training dataset {x(i) ∈ Rd, y(i) ∈ {+1,−1}}mi=1

of one binary classification problem, the primal form of training SVM is written

min 1
2 ||w||

2 + C
∑m
i=1 ξ

(i)

w.r.t. w ∈ RHφ×1, b ∈ R
s.t. y(i)

(
w>φ(x(i)) + b

)
≥ 1− ξ(i), ξ(i) ≥ 0, i ∈ {1, . . . ,m}

(4)

where w is a linear hyperplane in Hφ, b is bias term, ξ(i) are slack variables
for the tolerance of noise, and C is trade-off parameter between training error
and max-margin regularization. The computational advantage of kernels become

more obvious when the primal form of SVM (4) is reformulated to its dual form
by introducing Lagrange multipliers αi for each constraints:

max
∑m
i=1 αi −

1
2

∑m
i,j=1 αiαjy

(i)y(j)Kφ(x(i),x(j))

w.r.t. α1, α2, . . . , αm
s.t.

∑m
i=1 αiy

(i) = 0;∀i, 0 ≤ αi ≤ C
(5)

The dual representation of w is
∑m
i=1 αiy

(i)φ(x(i)), and thus the prediction of a
test instance x̂ is

ŷ = sgn
(
w>φ(x̂) + b

)
= sgn

(
m∑
i=1

αiy
(i)Kφ(x(i), x̂) + b

)
. (6)

It can be seen that the kernel function Kφ enables the learning of a infinite-
dimensional w without explicit computation in Hφ. (6) shows that the kernel
function yields a similarity measurement between two input instances.

2.2 Joint SVM

Automatic image annotation tasks seek to predict the presence of tags given
an input image. If we consider prediction of each tag’s occurrence as a binary
classification problem, we can enlist as many SVMs as the number of tags.
Similar to other multi-task learning frameworks [1, 3], we connect the learning
tasks of different SVMs by simply summing up their objectives and constraints
respectively in the primal form

max 1
2

∑T
t=1 ||wt||2 + C

∑T
t=1

∑m
i=1 ξ

(i)
t

w.r.t. w1,w2, . . . ,wT ∈ RHφ×1, b1, b2, . . . , bT ∈ R
s.t.

∑K
t=1 y

(i)
t

(
w>t φ(x(i)) + bt

)
≥ T −

∑T
k=1 ξ

(i)
t

(7)

where t indexes different tags or learning tasks, and T is the total number of tags.

By denoting y(i) = [y
(1)
1 , . . . , y

(i)
T], b = [b1T , . . . ,

bT
T] and W = [

w>
1

T ; . . . ;
w>
T

T]>, we
can rewrite (7) as a joint SVM:

min 1
2 ||W||

2
F + C

∑m
i=1 ξ̄

(i)

w.r.t. W ∈ RK×Hφ ,b ∈ RK
s.t.

〈
y(i),Wφ(x(i)) + b

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(8)

where ||W||F is the Frobenius norm of matrix W, and ξ̄(i) = 1
T

∑T
t=1 ξ

(i)
t .

One rationale of (7) is that within the joint form of objectives and constraints,
learning easy tasks can help the learning of challenging tasks. For example, if

training data (x(i,), y
(i)
p) can be easily classified correctly in the pth task (i.e.,

y(i)(w>p x
(i) + b)/T > 1

T), it can offer some ‘freedom’ to other challenging tasks

before violating constraint
〈
y(i),Wφ(x(i)) + b

〉
H ≥ 1. In addition, a key func-

tionality this joint form (8) can afford is that we can define kernel functions
on outputs y to improve their representational power (e.g. correlations). As-
sume the kernel function defined on outputs are Kψ(y(i),y(j)) (the design of

the output kernel will be explained later) and the corresponding feature map is
ψ : RK → Hψ, then (8) is modified to

min 1
2 ||W||

2
F + C

∑m
i=1 ξ̄

(i)

w.r.t. W ∈ RHψ×Hφ ,B ∈ RHψ×1
s.t.

〈
ψ(y(i)),Wφ(x(i)) + B

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(9)

Interestingly, although derived from a rather different starting point, our joint
SVM (9) is the same as Maximum Margin Regression (MMR) [4], wherein
the motivation is to seek a linear operator in arbitrary tensor product space
ψ(y(i)) ⊗ φ(x(i)). In addition, (9) is also related to structured-output learning
[5] by sharing the same objective, yet with different constraints. Basically, the
differences originate from two types of margins used in (9) and [5]. An empirical
comparison of these two methods on structured-output learning is in [6]. The
solution of the MMR stands close to the Minimum Description Length Principle,
see for example in [7], by providing a highly compressed description to complex
learning problems.

2.3 Output Kernels and Solutions

Similarly to a single conventional SVM, the joint SVM learning (9) can be con-
verted to its dual form

max
∑m
i=1 αi −

∑m
i,j=1 αiαjKψ(y(i),y(j))Kφ(x(i),x(j))

w.r.t α1, · · · , αm
s.t

∑m
i=1 αiψ(y(i)) = 0; ∀i, 0 ≤ αi ≤ C

(10)

with W =
∑m
i αiψ(y(i))φ(x(i))>. It can be seen, with kernel matrix on out-

puts pre-computed, that the computational complexity of joint learning (10) is
the same as the learning of one single SVM (5), which is a great advantage in
efficiency. In this paper, the Gaussian kernel function (2) is used on y, hence
ψ(y(i)) corresponds to an unnormalized density function (which is non-negative
everywhere), and the bias-induced constraint

∑m
i=1 αiψ(y(i)) = 0 will lead to a

trivial solution ∀i, αi = 0. Since the Gaussian kernel is translation invariant, the
bias in output space y has no effect, and we can ignore the bias B in (9) and its
corresponding constraint in (10). Therefore, given a test data x̂, the prediction
φ(ŷ) in Hψ is

ψ(ŷ) = Wφ(x̂) =

m∑
i=1

αiψ(y(i))Kφ(x(i), x̂). (11)

With identical scalar σ, the Gaussian kernel (2) on y can be decomposed into
independent Gaussian kernels on each element yt. To preserve the correlation
between every pair of tags, one simple remedy is to use a full covariance matrix
Σ. Here, we use a scaled empirical covariance from outputs in training data.
Another computational issue is that there is no direct way (say, by inverting
(11)) to map ψ(ŷ) back to ŷ. Therefore, instead of finding a closed form solution,

we can find the optimal solution ŷ∗, out of all possible y ∈ {+1,−1}T , such that
its projection in Hψ is closest to Wφ(x̂):

ŷ∗ = argmaxy∈{+1,−1}T 〈ψ(y),Wφ(x̂)〉
= argmaxy∈{+1,−1}T

∑m
i=1 αiKψ(y(i),y)Kφ(x(i), x̂)︸ ︷︷ ︸

βi

= argmaxy∈{+1,−1}T
∑m
i=1 αiβi exp

(
− 1

2 (y − y(i))>Σ−1(y − y(i))
)
(12)

In general, there is no closed-form solution to (12), so usually approximate dy-
namic programming (ADP) is applied in searching for the optimum ŷ∗. Here,
we employ a simpler strategy. Since the number of tags associated with one
image is relatively small, most of the y in {+1,−1}T space are bad solutions.
Therefore, when the training data size is large, the most likely solutions of (12),
presumably, are covered by the outputs in training data {y}mi=1. Consequently,
we can find the optimum ŷ∗ via

argmax
{y(j)}mj=1

m∑
i=1

αiβi exp

(
−1

2
(y(i) − y(j))>Σ−1(y(j) − y(i))

)
︸ ︷︷ ︸

γij

(13)

where {γij}mi,j=1 were already computed in the training phase, {αi}mi=1 are train-
ing results, and only the computation of {βi}mi=1 is needed during testing.

3 Experiment

In our experiment, we used the Corel5K benchmark dataset with image features
extracted as in [8]. The dataset contains 5,000 images of different scenarios and
objects, out of which 4500 images are used as training data and 500 images are
test data. In the database, there exist 260 tags, and on average each image is
annotated with 3.5 tags. For all images in the database, 15 different features [8]
were extracted.

In our experiment, we applied both a joint SVM and independent SVMs
for comparison. To ensure fairness, in the learning phase, the optimization
problems (5) and (10) were solved with the same coordinate descent method [9].
In addition, for both independent SVMs and the joint SVM, 500 instances of
training data were taken out as validation data to find the best parameter C.
In the testing phase, the performance was measured with precision, recall and
F1 score. To measure the efficiency, training and testing times were recorded as
well. We tried two learners on 15 different input visual features and found that
the global “RgbV3H1” feature yields best results for both cases. All experiments
were run on the same simulation and hardware conditions (Python, Intel Core
i7). The comparison of accuracy and efficiency between independent SVMs and
joint SVM is presented in Figure 1. While the learning and testing time of
independent SVMs scale with the number of tags, the computation time of the
joint SVM approximately equals a SVM for single-tag classification. At the same

Training Testing Testing Performance
Time (sec) Time (sec) Precision Recall F1

Independent SVMs 6285.11 317.20 0.1049 0.1225 0.1130
Joint SVM (Gaussian) 80.68 6.92 0.4078 0.3713 0.3887

Joint SVM (Polynomial) 76.48 9.11 0.3908 0.3565 0.3728
The best result in [10] − − 0.27 0.32 0.292

Fig. 1: Performance of different algorithms.

time, in terms of accuracy, the joint SVM worked much better than independent
SVMs. In addition, to test the higher-order dependency among tags, a 3rd-
degree polynomial kernel function was also applied. The performance of this
type kernel falls very close to that the Gaussian kernel provided. However, it is
worth noting that the proposed joint SVM, with either Gaussian or polynomial
kernel, outperforms many other state-of-the-art methods by a large margin (see
a survey in [10]) on the same database.

4 Conclusions

A novel joint SVM was presented for automatic image tagging. Its superiority
over conventional SVMs is obvious from our mathematical derivation and empir-
ical results. Although, in this preliminary work, simple individual features and
kernels already display good results, yet more improvements are expected when
more features and sophisticated kernels, e.g. multi-kernel learning, are employed,
which is a promising direction of future work.

References

[1] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task feature
learning. In NIPS, pages 41–48, 2006.

[2] Vladimir Vapnik. Statistical learning theory. Wiley, 1998.

[3] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task
feature learning. Machine Learning, 73(3):243–272, 2008.

[4] Sandor Szedmak and John Shawe-taylor. Learning via linear operators: Maximum margin
regression. Technical report, University of Southampton, UK, 2005.

[5] Ben Taskar, Vassil Chatalbashev, Daphne Koller, and Carlos Guestrin. Learning struc-
tured prediction models: A large margin approach. In ICML, 2005.

[6] Katja Astikainen, Liisa Holm, Esa Pitkänen, Sandor Szedmak, and Juho Rousu. Towards
structured output prediction of enzyme function. In BMC Proceedings, 2(4):S2. 2008.

[7] Peter D. Grünwald. The Minimum Description Length Principle. MIT Press, 2007.

[8] Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, and Cordelia Schmid. Tagprop:
Discriminative metric learning in nearest neighbor models for image auto-annotation. In
ICCV, 2009.

[9] Francesco Dinuzzo, Cheng Soon Ong, Peter V. Gehler, and Gianluigi Pillonetto. Learning
output kernels with block coordinate descent. In ICML, 2011.

[10] Ameesh Makadia, Vladimir Pavlovic, and Sanjiv Kumar. Baselines for image annotation.
International Journal of Computer Vision, 90:88–105, 2010.

Scalable, Accurate Image Annotation with Joint SVMs and Output Kernels

Hanchen Xiong1, Sandor Szedmak, Justus Piater

Institute of Computer Science, University of Innsbruck, Technikerstr.21a, A-6020 Innsbruck, Austria

Abstract

This paper studies how joint training of multiple support vector machines (SVMs) can improve the ef-
fectiveness and efficiency of automatic image annotation. We cast image annotation as an output-related
multi-task learning framework, with the prediction of each tag’s presence as one individual task. Evidently,
these tasks are related via dependencies between tags. The proposed joint learning framework, which we
call joint SVM, is superior to other related models in its impressive and flexible mechanisms in exploit-
ing the dependencies between tags: first, a linear output kernel can be implicitly learned when we train a
joint SVM; or, a pre-designed kernel can be explicitly applied by users when prior knowledge is available.
Also, a practical merit of joint SVM is that it shares the same computational complexity as one single con-
ventional SVM, although multiple tasks are solved simultaneously. Although derived from the perspective
of multi-task learning, the proposed joint SVM is highly related to structured-output learning techniques,
e.g. max-margin regression [1], structural SVM [2]. According to our empirical results on several image-
annotation benchmark databases, our joint training strategy of SVMs can yield substantial improvements,
in terms of both accuracy and efficiency, over training them independently. In particular, it compares fa-
vorably with many other state-of-the-art algorithms. We also develop a “perceptron-like” online learning
scheme for joint SVM to enable it to scale up better to huge data in real-world practice.

Keywords: image annotation, multi-label learning, output kernels, maximum margin
2014 MSC: 00-01, 99-00

1. Introduction

Automatic image annotation is an important yet challenging machine learning task. The importance is
based on the fact that the number of images grows increasingly fast on the internet, and most of them have
no link to semantic tags (or keywords, labels). Therefore, automatic annotation is of great significance to
generate meaningful meta-data for organizing image collections, and in particular, retrieving images from5

textual queries. The challenges are usually considered from two classical perspectives [3]: first, semantic-
gap, i.e. the gap from low-level image features to textual tags is large and there exist no reliable way to
extract dependencies between them; secondly, absence of correspondence, i.e. for each tag associated with
one image, there is no corresponding region annotated, which hinders learning worse. Meanwhile, when
considering contemporary image annotation, one more difficulty to bear is big data. The image data on10

internet is usually presented in large volumes (million or billion level), so the desired learning method should
be capable of working on large-scale data with high learning and prediction efficiency. One straight-forward
yet naive strategy is to consider each tag’s presence as a binary classification problem. Then, multiple
binary classifiers, e.g. support vector machines (SVMs), can be trained independently for different tags.
This method, however, will suffer from high computational complexity in both training and prediction15

Email addresses: hanchen.xiong@uibk.ac.at (Hanchen Xiong), sandor.szedmak@uibk.ac.at (Sandor Szedmak),
justus.piater@uibk.ac.at (Justus Piater)

1Corresponding author

Preprint submitted to Journal of LATEX Templates October 23, 2014

phases when the number of tags is relatively large. In addition, independently learning multiple SVMs is
not expected to work well because it ignores the dependencies between the presences of tags [4], which is a
phenomenal characteristic of image annotation tasks (e.g., sky and cloud often co-occur).

In this paper, we propose to interpret image annotation as the learning of multiple related tasks. However,
different from most existing multi-task learning frameworks [5] in which tasks are related through their20

inputs, our joint learning method focuses on the relation between outputs. Our strategy is motivated by two
intuitions. First, by connecting multiple SVM classifiers together, the dependencies between their outputs
(the presences of tags), presumably, can be more easily encoded. Secondly, if the outputs of multiple SVMs
can be merged into a single vector entity, the optimization problem can be established and solved over vectors,
greatly reducing the computational complexity. These two objectives, surprisingly, can be easily achieved25

by summing up the objectives and constraints in different SVMs, plus an appropriately designed kernel on
outputs. We refer to the proposed training strategy as joint SVM. The key strength of joint SVM is that
it can flexibly offer two mechanisms to exploit the dependencies between tags: first, when there is no prior
knowledge on the dependencies, a linear output kernel can be implicitly learned when we train a joint SVM; or
a pre-designed, prior-oriented, kernel can be applied on outputs when prior knowledge is available (see section30

4). In addition, as we will see in section 3, the training of joint SVM shares almost the same computation
complexity as a single regular SVM, which is a practical merit when the number of tags is relative large.
Interestingly, although derived from the perspective of multi-task learning, the proposed joint SVM highly
relates to structured-output learning techniques, such as max-margin regression [1], structural SVM [2] or
max-margin Markov network (M3N) [6]. More connections between them will be exploited in section 5.35

In addition, to enable joint SVM to scales up to huge data (million or billion level) in real-world practice,
we develop a “perceptron-like” online learning algorithm for joint SVM in section 6. In our experiment
(section 7), we tested joint SVM on several benchmark image-annotation databases, with comparison against
independent SVMs and other results reported in state-of-the-art algorithms. The experimental results show
that our joint SVM can gain impressive improvement over training SVMs independently. In particular, it40

compares favorably with many other state-of-the-art algorithms.

2. Related Work

Prior to our work, there exist many literatures on image annotation in computer vision and machine
learning communities [7, 8, 9, 10, 3, 11, 12, 13, 14, 4, 15, 16]. Roughly speaking, all algorithms can be cat-
egorized into generative methods or discriminative methods according to how the relevance between image45

features and textual tags are modeled. On one hand, generative methods, mostly inspired by linguistic trans-
lation studies, model the generating or formating procedure of visual features and tags, then tags prediction
from a novel image is inferred by leveraging co-occurrence statistics between visual features and tags in
training data. Continuous Relevance Model (CRM) [7], Correlation Latent Dirichlet Allocation (CorLDA)
[8] and Multiple Bernoulli Relevance Model (MBRM) [9] belong to the generative category. However, one50

drawback of these method is that usually some statistical assumptions (e.g. conditional independence) are
imposed on models, which restricts their modeling capabilities. Furthermore, another practical obstacle of
most generative methods is the intractability of inference in tag prediction phase, therefore, usually some
approximation techniques are applied. On the other hand, discriminative methods directly model the tag-
predicting function, out of which TagProp [10], JEC [3] are metric-learning based approaches, rank-SVM55

[17], LM-K [18] are rank-learning based approaches, M3L [4] and Multi-Label Relationship Learning (MLRL)
[16] are maximum-margin based approaches. One notable issue, and also difficulty, in discriminative meth-
ods is the dependencies between output tags, of which many state-of-the-art studies [4, 11, 18] have being
aware. In several recent studies [10, 3, 11], discriminative methods were reported to displayed empirically
superior performance than generative ones on image annotation task. More comparison and analysis on60

different representative methods can be found in up-to-date reviews [3, 4, 11].
The proposed joint SVM in this paper is a maximum-margin based, discriminative learning frame-

work. Although joint SVM displays strong connections with structured-output learning, the staring point
of our work is to improve the annotation performance by exploiting the relationship between individual tag-
predictors. A conceptually-related work was concurrently, but independently from us, presented in MLRL65

2

[16], of which the authors explicitly model the relationship as a covariance matrix in matrix-variate normal
distribution over individual model parameters. In contrast, in joint SVM, the dependency between different
tags are encoded in output kernels. In this sense, our work is also similar to LM-K [18] and M3L [4]. In-
terestingly, when the output kernel is linear, it is equivalent to the explicit relationship learning in MLRL.
Meanwhile, more sophisticated output kernel can flexibly be constructed and utilized in joint SVM, to afford70

nonlinear, higher-order dependencies, although they are not always of help in practice.

3. Joint Learning of Multiple SVMs

3.1. Support Vector Machines and Input Kernels

In the past two decades, support vector machines (SVMs) have displayed remarkable successes in various
application domains. The achievements of SVMs mainly stems from its two advantageous components:
maximum margins and input kernels. The maximum-margin principle is a reflection of statistical learning
theory [19] on linear binary classification. Kernels provide powerful mechanisms enabling the linear classifier
to separate highly non-linear data. The critical observation of kernel methods is that a kernel function can
be defined on a pair of data instances to implicitly map them to a reproducing kernel Hilbert space (RKHS):

Kφ(x(i),x(j)) = 〈φ(x(i)), φ(x(j))〉 (1)

where x(i),x(j) ∈ Rd are ith and jth input training instances, φ is the feature map induced by kernel function
Kφ, and φ(x(i)) is the representation of x(i) in the RKHS Hφ. Most popularly, a Gaussian (or radial basis
function) kernel

KGau
φ (x(i),x(j)) = exp

(
−‖x(i) − x(j)‖2/2σ2

)
(2)

is employed because its corresponding RKHS is an unnormalized Gaussian density function:

φGau(x(i)) ∝ N (τ ; x(i), σ) (3)

which is of infinite dimension, and thus greatly improves the representational capability of input data.
Another popular kernel function is Polynomial kernel:

KPol
φ (x(i),x(j)) =

(
〈x(i),x(j)〉+ c

)d
(4)

In particular, when the degree d = 1 and constant term c = 0, Polynomial is a simple inner product.
Meanwhile, in 2-degree (d = 2) Polynomial kernel, corresponding feature map is:

φPol(x) = [x2d, · · · , x21,
√

2xdxd−1, · · · ,
√

2x2x1,
√

2cxd, · · · ,
√

2cx1, c]
> (5)

Given the training dataset {x(i) ∈ Rd, y(i) ∈ {+1,−1}}mi=1 of one binary classification problem, the primal
form of training SVM is written

arg minw∈RHφ×1
1
2 ||w||

2 + C
∑m
i=1 ξ

(i)

s.t. y(i)
(
w>φ(x(i))

)
≥ 1− ξ(i), ξ(i) ≥ 0, i ∈ {1, . . . ,m} (6)

where w ∈ RHφ×1 is the normal vector of a linear hyperplane in Hφ (here and later we use H as dim(H)
for simplicity when we denote dimensionality) , ξ(i) are slack variables for the tolerance of noise, and C
is trade-off parameter de between training error and max-margin regularization. Eq.(6) differs from usual
SVM formulation slightly at the absence of a bias term. Here we ignore the bias since it can be absorbed
in w 2. Actually, eliminating the bias is more critical in predicting multiple dependent labels, check [4] for

2When a Polynomial kernel is used, a bias term is already in its corresponding feature map. When a Gaussian kernel is
used, an input vector can be augmented with one extra constant.

3

detailed explanations. The computational advantage of kernels become obvious when the primal form of
SVM (Eq.(6)) is reformulated to its dual form by introducing Lagrange multipliers αi for each constraints:

arg minα1,α2,...,αm

∑m
i=1 αi −

1
2

∑m
i,j=1 αiαjy

(i)y(j)Kφ(x(i),x(j))

s.t. ∀i, 0 ≤ αi ≤ C
(7)

The dual representation of w is
∑m
i=1 αiy

(i)φ(x(i)), and thus the prediction of a test instance x̂ is

ŷ = sgn
(
w>φ(x̂)

)
= sgn

(
m∑
i=1

αiy
(i)Kφ(x(i), x̂)

)
. (8)

It can be seen that the kernel function Kφ enables the learning of a high-dimensional (even infinite) w
without explicit computation in Hφ. Eq.(8) shows that the kernel function yields a similarity measurement75

between two input instances, and the prediction is working as a weighted-sum of all outputs in the training
data.

3.2. Joint SVM

The automatic image annotation task seeks to predict the presence of tags given an input image. Assume
d-dimensional visual features are extracted from input images and there are T tags in a pre-defined dictionary,
then the annotation learning task is to seek a function f : x ∈ Rd → {−1,+1}T . If we consider prediction
of each tag’s occurrence as a binary classification problem, we can list as many SVMs as the number of
tags. Similar to other multi-task learning frameworks [5], we connect the learning tasks of different SVMs
by simply summing up their objectives and constraints respectively in the primal form

min 1
2

∑T
t=1 ||wt||2 + C

∑T
t=1

∑m
i=1 ξ

(i)
t

w.r.t. w1,w2, . . . ,wT ∈ RHφ×1

s.t.
∑T
t=1 y

(i)
t

(
w>t φ(x(i))

)
≥ T −

∑T
t=1 ξ

(i)
t

(9)

where t indexes different tags or learning tasks, and T is the total number of tags. By denoting y(i) =

[y
(1)
1 , . . . , y

(i)
T] and W = [

w>1
T ; . . . ;

w>T
T]>, we can rewrite (Eq.(9)) as a joint SVM:

arg minW∈RT×Hφ
1
2 ||W||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
y(i),Wφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m} (10)

where ||W||F is the Frobenius norm of matrix W, and ξ̄(i) = 1
T

∑T
t=1 ξ

(i)
t . Eq.(10) is referred to as joint

SVM. One rationale of Eq.(10) is that within the joint form of objectives and constraints, learning easy tasks

can help the learning of challenging tasks. For example, if training data (x(i,), y
(i)
p) can be easily classified

correctly in the pth task (i.e., y(i)(w>p x(i))/T > 1
T), it can offer some ‘freedom’ to other challenging tasks

before violating constraint
〈
y(i),Wφ(x(i))

〉
H ≥ 1. Meanwhile, a more critical strength of Eq.(10) is that

a linear output kernel is implicitly learned and absorbed in the model parameters W. More rigorous
explanation will be presented later in section 4.1. In addition, another key functionality joint SVM can
afford is that we can also, based on our prior knowledge, explicitly define kernel functions on outputs
y to improve their representational power (e.g. dependencies). Assume the kernel function defined on
outputs are Kψ(y(i),y(j)) (the output kernel will be explained later) and the corresponding feature map is
ψ : {−1,+1}T → Hψ, then Eq.(10) is modified to

arg minW∈RHψ×Hφ
1
2 ||W||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
ψ(y(i)),Wφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m} (11)

Similarly to a single conventional SVM, joint SVM Eq.(11) can be converted to its dual form

arg minα1,··· ,αm
∑m
i=1 αi −

∑m
i,j=1 αiαjKψ(y(i),y(j))Kφ(x(i),x(j))

s.t ∀i, 0 ≤ αi ≤ C
(12)

4

with W =
∑m
i αiψ(y(i))φ(x(i))>. It can be seen, with the kernel matrix on outputs pre-computed, that the

computational complexity of joint learning (Eq.(12)) is the same as the learning of one single SVM (Eq.(7)),80

which is a great advantage in efficiency.
Given a test input x̂, the prediction φ(ŷ) in Hψ is

ψ(ŷ) = Wφ(x̂) =

m∑
i=1

αiψ(y(i))Kφ(x(i), x̂). (13)

Meanwhile, one computational issue is that there is no direct way (say, by inverting Eq.(13)) to map ψ(ŷ)
back to ŷ. Therefore, we can find the optimal solution ŷ∗, out of all possible y ∈ {+1,−1}T , such that its
projection in Hψ is closest to Wφ(x̂):

ŷ∗ = argmaxy∈{+1,−1}T 〈ψ(y),Wφ(x̂)〉
= argmaxy∈{+1,−1}T

∑m
i=1 αiKφ(x(i), x̂)︸ ︷︷ ︸

βi

Kψ(y(i),y) (14)

In general, there is no closed-form solution to Eq.(14), so usually approximate dynamic programming (ADP)
is applied in searching for the optimum ŷ∗. Here, we employ a simpler yet effective strategy. Since the
number of tags associated with one image is rather small, most of the y in {+1,−1}T space are bad
solutions. Therefore, when the training data size is large, the most likely solutions of Eq.(14), presumably,
are covered by the outputs in training data {y}mi=1. Consequently, we can find the optimum ŷ∗ via a similar
neighbour-based label transferring theme as [3, 10]:

ŷ∗ =

(
K∑
k=1

y(k)wk

)
/

K∑
k=1

wk (15)

wj =

m∑
i=1

αiβiKψ(y(i),y(j)) (16)

where k = {j ∈ [1,m] : wj > 0} and maximum K = 10 neighbours are taken into account. Since αi
are Kψ(y(i),y(j)) were already computed in the training phase, only the computation of {βi}mi=1 is needed
during testing. Thus, the complexity in predicting is O(m).

4. Implicit and Explicit Linear Output Kernels on Tag-Sets85

To transform the pairwise and triplet-wise dependencies between tags into the inner product of two
outputs containing those tags, 2-degree and 3-degree Polynomial kernels are tried in [18] and it was reported
that 2-degree is better than 3-degree. In [4, 16, 20], linear feature maps were exploited also for pairwise
dependencies. In particular, linear output kernels and models were simultaneously learned in [16, 20], while
the output kernel in [4] is pre-computed as a correlation matrix over output vectors. In this paper, based on90

the experience from previous literatures, we also only focus pairwise dependencies and study linear kernels
(although higher-order kernels will also be tried in our experiments, and the performance among different
kernels can be checked in section 7). Here we adopted strategies both in [16, 20] and in [4]. At first, we
present that the linear output kernel can be implicitly, but more simply compared to [16, 20], learned when
we train a joint SVM. Secondly, we developed a novel pre-designed linear kernel function, which can be seen95

as a replacement of the kernel with correlation matrix used in [4].

4.1. Implicit linear output kernel learning

Assume that the statistics of tags’ pairwise co-occurrence can be encoded in a T ×Tmatrix P, via which
the output vectors can be linearly mapped as ψ(y) = Py, and thus output kernel is:

KLin
ψ (y(i),y(j)) = y(i)>Ωy(j) (17)

5

where Ω = P>P = PP>. By denoting U = P>W, we can rewrite joint SVM (Eq.(11)) as:

arg minW∈RHψ×Hφ
1
2 ||W||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
y(i),Uφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m} (18)

Meanwhile, we need to control the scale of P, otherwise the constraints in Eq.(18) will be pointless. In [20]
one extra regularization on Ω, 1

2 ||Ω||
2
F , was added into the objective function, while ||P ||F = 1 was used in

[16]. By contrast, a pseudo regularization on P is used in [11] via the re-construction loss from manually-
corrupted data and P. Here we apply a simpler strategy by using a compact regularizer, 1

2W>ΩW, resulting
in:

arg minU∈RHψ×Hφ
1
2 ||U||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
y(i),Uφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m} (19)

Remarkably, Eq.(19) is equivalent to Eq.(11) with W substituted by U, which suggests that a linear output
kernel is implicitly learned, and absorbed in W, when we training a simple joint SVM with no explicit kernel
on outputs.100

4.2. Odds-ratio based kernel

In this paper, we also explicitly design an odds-ratio based kernel over tag-sets to capture pairwise
dependencies. The dependency between tags measures how much the appearance of one tag increases or
decreases the chance of another tag to occur in the same label set. At first, we can estimate the probability
of co-occurrence of two labels, wr and ws, form training data:

P (wr, ws) =

∑
i=1,...,m y

(i)
r = 1 and y

(i)
s = 1

m
. (20)

according to which, we can compute the odds ratio, a measure, of the dependency between those words by
the well known formula [21]:

Ors =
P (wr, ws)P (wr, ws)

P (wr, ws)P (wr, ws)
, (21)

where wr means the complement of wr (counting those sample items where wr does not occur). Then the
odds ratio is symmetrized by taking its logarithm, where the 0 value expresses the independence and the
positive (or negative) value corresponds to higher (or lower) co-occurrence of those words than the random
case. The higher of the magnitude of the log-odds-ratio shows stronger deviation from the independence.

Qrs ← log(Ors) (22)

The odds-ratio based kernel on a pair of outputs can then be computed:

KOdd
ψ (y(i),y(j)) = y(i)>Qy(j) (23)

where Q is the log-odds-ratio matrix with Qrs = Qrs.

5. Relation to Structured-Output Learning

Interestingly, although derived from a rather different starting point, our joint SVM (Eq.(11)) is the
same as Maximum Margin Regression (MMR) [1], wherein the motivation is to seek a linear operator in105

arbitrary tensor product space ψ(y(i))⊗φ(x(i)). In addition, Eq.(11) is also related to structural SVM [6, 2]
by sharing the same objective, yet with different constraints. An empirical comparison of these two methods
on hierarchical-label learning is in [22]. The solution of the MMR stands close to the Minimum Description
Length Principle, see for example in [23], by providing a highly compressed description to complex learning
problems. In particular, when a linear output kernel and Hamming loss function are used in structural SVM.110

Structural SVM can be converted to a rather similar formulation as joint SVM by decomposing Hamming
loss and y element-wisely. The detailed derivation was presented in [4].

6

6. Online Learning of Joint SVM

In real-word applications, the number of images can be very huge and beyond the memory storage and
computing capacities of normal PCs. For instance, millions of images are uploaded to FacebookTM and
FlickerTM every day. Obviously, the computation of kernel matrix for even daily volume is impractical. The
formulation of joint SVM also suggests an implementation of a “perceptron-like” algorithm . For simplicity,
here we present the case where no output kernel is applied. We aim to demonstrate the transparency of
the formulation of joint SVM, which allows us to inherit most of the machine learning techniques developed
earlier. Consider the optimization problem in Eq.(10) when only the error term is minimized

min

m∑
i=1

h(λ− 〈y(i),Wφ(x(i))〉Hy) (24)

subject to {W|W : Hx → Hy,W a linear operator},

where λ is a prescribed margin, and the function h(u) denotes the Hinge loss, that is

h(u) =

{
u if u > 0,
0 otherwise.

(25)

The error function that we are going to minimize has subgradient with respect to W and this can be
computed independently in an incremental way for each term occurring in the summation Eq.(24). The
reader can consult to [24] and [25] for details of incremental subgradient methods. The term-wise subgradient
is equal to

∂h(λ− 〈y(i),Wφ(x(i))〉Hy)|W =

{
−y(i)φ(x(i))T if λ− 〈y(i),Wφ(x(i))〉Hy > 0

0 otherwise.
(26)

We can define the learning speed with a step size, denoted by s, and we obtain the “perceptron-like”
algorithm given in Figure 1. In that algorithm Wnorm denotes the L2 normalized linear operator.115

Input of the learner: The sample S, step size s
Output of the learner: W ∈ RHy×Hx
Initialization: t = 0; Wt = 0; Wnorm

t = 0; ‖Wt‖ = 0
Repeat

for i = 1, 2, . . . ,m do
read input-output pair: (xi,yi)
βi = 〈yi,Wnorm

t φ(xi)〉Hy
if βi < λ then

Wt+1 = Wt + syiφ(xi)
T

t = t+ 1
‖Wt+1‖2 = ‖Wt‖2 + s2‖yi‖2‖φ(xi)‖2 + 2sβi
Wnorm

t+1 = Wt+1/‖Wt+1‖
end if

end for
until

(27)

Figure 1: Primal “perceptron-like” online learning algorithm for joint SVM.

The departure from the original perceptron algorithm, see for example in [26] and [27], is very moderate.
Here we need to learn a matrix realizing the projection of the input vectors into the output space. The
incremental subgradient based update employs the direct product of the corresponding output and input
vectors to update the projection matrix. Furthermore a normalization step is also included as a certain
regularization step, similar approach is proposed in [28].120

7

A dual version of perceptron algorithm can be derived to learn vector outputs. Assume W is expressible
by the training instances, then we have the optimization problem

min

m∑
i=1

h(λ−
m∑
j=1

αj

κyij︷ ︸︸ ︷
〈y(i),y(j))〉

κφij︷ ︸︸ ︷
〈φ(x(i)),φ(x(j))〉) (28)

subject to αj ≥ 0, j = 1, . . . ,m,

The partial derivatives for αi, k = 1, . . . ,m equals to

∂h(λ−
m∑
j=1

αjκ
y
ijκ

φ
ij)|αi

=

{
−κyijκ

φ
ij if h(λ−

∑m
j=1 αjκ

y
ijκ

φ
ij) > 0

0 otherwise.
(29)

Finally the corresponding dual perceptron algorithm is formulated according to Figure 2. An analogue of

Input of the learner: The training set S, step size s,
Output of the learner: (αj), j = 1, . . . ,m,
Initialization: αj = 0; j = 1, . . . ,m,
Repeat

for i = 1, 2, . . . ,m do
read input: x(i) ∈ Rn;

if 〈
∑m
j=1 αjκ

y
ijκ

φ
ij) < λ then

for j = 1, 2, . . . ,m do

αj = αj + sκyijκ
φ
ij

endif
end if

end for
until

(30)

Figure 2: Dual “perceptron-like” online learning algorithm for joint SVM.

the standard Novikoff theorem provides an upper bound on the number of updates and a lower bound on
the achievable margin in the primal formulation. Here we follow the derivation that was presented in [29].
Let us define the margin for perceptron learner as

γ(W, S, φ) = min
(y(i),x(i))∈S

〈y(i),Wφ(x(i))〉F
‖W‖F

. (31)

Then we can claim the following statement not assuming the normalization step in the algorithm:

Theorem 1. Let S = {(y(i),x(i))} ⊂ (Y × X), i = 1, . . . be a sample set independently and identically
drawn from an unknown distribution and let φ : X → Hφ be an embedding into a Hilbert space, furthermore
assume that ‖φ(x(i))‖ = 1 and ‖y(i)‖ = 1 for all i, and that the learning rate, the step size, s is a fixed
positive real number. Suppose there exists a linear operator W∗ such that ‖W∗‖F = 1 and

γ(W∗, S, φ) ≥ Γ, (32)

and the algorithm stops when the functional margin 1 is achieved.

1. Then the number of updates made by Algorithm (1) is bounded by

t ≤ 1

Γ2

(
1 +

2

s

)
. (33)

8

2. Then for the solution Wt in Algorithm (1) we have

γ(Wt, S, φ) ≥ Γ

s+ 2
. (34)

Proof 1. 1. Following the proof of the original Novikoff theorem [30], we first upper bound the norm of
the matrix Wt obtained after t updates:

‖Wt‖2F = ‖Wt−1‖2F + 2s〈y(i)Wt−1φ(x(i))〉Hy + s2‖y(i)φ(x(i))T ‖2F
≤ ‖Wt−1‖2F + 2s+ s2‖y(i)‖2‖φ(x(i))‖2 (35)

≤ ‖Wt−1‖2F + 2s+ s2

≤ ts(s+ 2).

We now provide a reverse inequality for the inner product with W?:

〈Wt,W
?〉F = 〈Wt−1,W

?〉F + s
〈
y(i)φ(x(i))T ,W?

〉
F

= 〈Wt−1,W
?〉F + s

〈
y(i),W?φ(x(i))

〉
Hy

≥ 〈Wt−1,W
?〉F + sΓ

≥ tsΓ.

Then we can create the squeezing inequality:

ts(s+ 2)‖W?‖2F ≥ ‖Wt‖2F ‖W?‖2F ≥ 〈Wt,W
?〉2F ≥ (tsΓ)2. (36)

implying the result.

2. Taking the bound Eq.(33) for t and substituting into Eq.(35) we arrive at

‖Wt‖F ≤
s+ 2

Γ
. (37)

Then for the margin we have

γ(Wt, S, φ) ≥ min
(y(i),x(i))∈S

〈y(i),Wtφ(x(i))〉F
‖Wt‖F

(38)

≥ 1

‖Wt‖F
(39)

≥ Γ

s+ 2
, (40)

which proves the statement.

Sparsity bounds [31] can also be used to translate this bound on the number of updates into a corresponding125

bound on the generalization of the resulting classifier.
All results included in this paper are assumed the normalization conditions, ‖φ(x(i))‖ = 1 and ‖y(i)‖ = 1,

of Theorem 1. By forcing the normalization of ‖Wt‖ for all t in Algorithm 1 allows us to simplify and sharpen
the proof of Theorem 1. In this case Expression (35) collapses into a identity of both sides of the equation,
therefore instead of (36) we have

1 = ‖Wt‖2F ‖W?‖2F ≥ 〈Wt,W
?〉2F ≥ (tsΓ)2, (41)

from which we gain that

t ≤ 1

sΓ
, (42)

9

Number of
Dataset labels training instances test instances average labels

Corel5k 260 4500 500 3.3965
Espgame 268 18689 2081 4.6859
Iaprtc12 291 17665 1962 5.7187

Table 1: Statistics of three benchmark datasets.

and in case of the margin we can write

γ(Wt, S, φ) ≥ 1, (43)

which statements are significantly stronger than those appearing in the general case. The price that we need
to pay for this result is the slower algorithm.

In comparing our algorithm with other online learning schemes of maximum margin based learning
methods, e.g. SVM, (see some realizations in [32] and [33]), we need to bear in mind that our methods130

learns to predict all components of the label vector within one optimization problem. Those methods which
can deal only with binary classification problems have to solve as many binary label subproblems as the
number of labels independently, therefore their overall computational complexity turns to be significantly
higher than our approach.

7. Experiment135

7.1. Databases

In our experiments, we used three benchmark datasets, Corel5k, Espgame and Iaprtc12. These three
datasets have been widely used in image annotation studies [7, 8, 9, 10, 3, 11] with performance evaluations
reported therein. Therefore, we can easily compare our method with others. Statistics of three benchmark
datasets are summarized in Table 1. Readers are referred to [3] for more details of three datasets.140

7.2. Feature Extraction

In our experiment, we worked with 15 visual features extracted in [10]. More concretely, they contain
one Gist descriptor, six global color histograms and eight histograms of local bag-of-words texture features
3. The description of 15 features are summarized in Table 2. Readers are referred to [10] for more detail on
extracting these features. These features were also used in [10] and [11]. A similar visual feature set without145

layout was extracted and used in [3], while 30 visual feature with spatial layouts were used in [9].

7.3. Evaluation metric

In our experiment, we evaluated annotation performance using precision (P), recall (R), F-1 measure
(F), which were commonly used in previous studies. For each tag, the precision is computed as ratio between
the number of images assigned the tag correctly and total number of images predicted to have the tag, while150

the recall is the number of images assigned the tag correctly, divided by the number of images which truly
have the tag. Then precision and recall are averaged across all tags. At last, F1 measure is calculated as
F = 2P×RP+R .

7.4. Model selection

In three original databases, training/test data are already divided in advance. Therefore, given a learned155

model, there exist no variance in prediction performance on fixed test data. Hyper-parameters in Gaussian
kernels, polynomial kernels and odds-ratio based kernels are found by cross validation restricted to the
training data, namely it is divided into validation test and validation training parts. Then the learner is
trained only on the validation training items. At the end those values of the parameters have been chosen
which maximize the F1 score on the validation test.160

3All features are available on http://lear.inrialpes.fr/people/guillaumin/data.php.

10

Feature Dimension Source Descriptor Location Layout

DenseHue 100 texture hue dense no
DenseHueV3H1 300 texture hue dense yes
DenseSift 1000 texture sift dense no
DenseSiftV3H1 3000 texture sift dense yes
Gist 512 - holistic - -
HarrisHue 100 texture Hue Harris points no
HarrisHueV3H1 300 texture Hue Harris points yes
HarrisSift 1000 texture sift Harris points no
HarrisSiftV3H1 3000 texture sift Harris points yes
Hsv 4096 color HSV - no
HsvV3H1 5184 color HSV - yes
Lab 4096 color LAB - no
LabV3H1 5184 color LAB - yes
Rgb 4096 color RGB - no
RgbV3H1 5184 color RGB - yes

Table 2: Description of 15 visual features tried in our experiments.

Feature
DenseHue
DenseHueV3H1
DenseSift
DenseSiftV3H1
Gist
HarrisHue
HarrisHueV3H1
HarrisSift
HarrisSiftV3H1
Hsv
HsvV3H1
Lab
LabV3H1
Rgb
RgbV3H1

Corel5k
P(%) R(%) F1(%)
33.3 26.0 29.2
38.1 30.7 34.0
40.2 32.2 35.8
43.7 34.6 38.6
33.7 26.9 29.9
31.0 24.6 27.4
34.5 27.7 30.7
39.9 32.1 35.6
40.2 33.4 36.5
38.3 30.6 34.0
40.8 33.8 37.0
35.1 27.5 30.8
39.7 30.7 34.6
42.0 33.4 37.2
42.1 34.5 38.0

Espgame
P(%) R(%) F1(%)
28.5 16.4 20.8
32.9 18.8 23.9
33.3 24.6 28.3
35.2 26.3 30.1
28.3 20.6 23.9
27.4 16.3 20.4
31.5 18.4 23.2
33.2 25.5 28.9
34.6 26.2 29.8
30.0 18.7 23.1
33.8 21.6 26.4
27.2 16.4 20.5
30.0 18.9 23.1
26.2 16.4 20.2
29.6 19.2 23.3

iaprtc12
P(%) R(%) F1(%)
26.7 17.5 21.1
31.8 21.0 25.3
38.4 26.5 31.4
40.5 28.3 33.3
33.2 23.5 27.5
27.6 18.3 22.0
31.9 21.9 26.0
39.4 26.9 32.0
40.7 29.7 34.3
32.6 21.1 25.7
35.4 24.1 28.7
28.4 17.9 22.0
32.7 20.8 25.4
32.8 20.6 25.3
35.7 23.0 28.0

Table 3: Performance of joint SVM without explicit output kernel on different individual features.

7.5. Selecting optimal features

In [10, 11], all 15 features were used for predicting tags. However, we believe that there exist some
redundancies in all 15 features. Also, some features might be weakly relevant to the annotation task. A more
efficient way is to identify a few most relevant features and use them for prediction. To this end, we apply joint
SVM without explicit output kernel on different features, and list their discriminative abilities in Table 3, in165

which the best and second runner-up features are highlighted with bold font. We can see that DenseSfitV3H1
is consistently more reliable than other features in three datasets. In addition, HarrisSiftV3H1 is also
optimal or close to optimal in Espgame and Iaprtc12 respectively. However, HarrisSiftV3H1 is inferior to
RgbV3H1 in Corel5k. Therefore, in our later experiments, we used DenseSfitV3H1+RgbV3H1 on Corel5k,
while DenseSfitV3H1+HarrisSiftV3H1 on Espgame and Iaprtc12. We combined two features by simply170

concatenating one feature vector after the other one.

11

Training Testing Testing Performance
Time (sec) Time (sec) Precision (%) Recall (%) F1 (%)

Independent SVMs (Gau) 6285.11 117.20 15.3 22.1 18.1
Independent SVMs (Pol) 4612.23 147.9 15.1 29.7 20.0

Joint SVM (Gau) 80.68 6.92 40.8 37.1 38.9
Joint SVM (Pol) 76.48 9.11 48.5 38.0 42.6

Table 4: Comparison between one joint SVM and multiple SVMs on Corel5k dataset. Two input kernels (Gaussian and 2-degree
polynomial) are tried in both learners.

Method

MBRM [9]
JEC [3]
TagProp [10]
FastTag [11]

JSVM
JSVM+Odd
JSVM+Pol(2)
JSVM+Pol(3)

JSVM-Per

Corel5K
P(%) R(%) F1(%)

24.0 25.0 24.0
27.0 32.0 29.0
33.0 42.0 37.0
32.0 43.0 37.0

48.5 38.0 42.6
48.8 37.1 42.2
46.6 37.0 41.3
41.5 31.3 35.7

37.5 29.8 33.2

Espgame
P(%) R(%) F1(%)

18.0 19.0 18.0
24.0 19.0 21.0
39.0 27.0 32.0
46.0 22.0 30.0

32.7 31.6 32.2
27.4 27.1 27.2
32.6 24.4 27.9
28.5 21.3 24.4

25.0 19.0 21.6

Iaprtc12
P(%) R(%) F1(%)

24.0 23.0 23.0
29.0 19.0 23.0
45.0 34.0 39.0
47.0 26.0 34.0

42.2 29.4 34.6
32.9 28.6 30.6
37.9 26.6 31.2
38.0 26.1 31.0

29.2 20.8 24.3

Table 5: Comparison between different versions of joint SVM and other related methods on three benchmark databases.

7.6. Comparison with Independent SVMs

At first, we applied both a joint SVM, and many independent SVMs on Corel5k dataset with the feature
combination selected above. To ensure fairness, no user-designed kernel is used on output for the joint SVM
(plain joint SVM), while Gaussian kernel and 2-degree polynomial kernel are tried for inputs in both learners.175

In the learning phase, the optimization problems (Eq.(7)) and (Eq.(12)) were solved with the same coordinate
descent method [20]. In addition, the same cross-validation procedure is used for both many independent
SVMs and the joint SVM to find the best hyper-parameters C, d, c, σ. To measure the efficiency, training
and testing time were recorded as well. All experiments were run on the same simulation and hardware
conditions (Python 3, Intel Core i7). The comparison of accuracy and efficiency between independent SVMs180

and joint SVM is presented in Table 4. While the learning and testing time of independent SVMs scale
with the number of tags, the computation time of joint SVM approximately equals a SVM for single-tag
classification. At the same time, in terms of accuracy, joint SVM also worked much better than independent
SVMs. We can also see that 2-degree polynomial input kernel worked better than Gaussian input kernel for
both learners.185

7.7. Comparison with state-of-the-art

More intensive experiments of joint SVM were conducted with different pre-designed, explicit output
kernels: odds-ratio based kernel (JSVM+Odd), 2-degree polynomial (JSVM+Pol(2)), 3-degree polynomial
(JSVM+Pol(3)). Also, online learning algorithm of joint SVM (JSVM-Per) was also implemented. All
configurations were run on all three datasets, with optimal feature combination and 2-degree polynomial190

kernel on inputs. The experimental results, together with the reported results from other related work, are
presented in Table 5. We can see that plain joint SVM (JSVM) outperforms all other results on Corel5k and
Espgame datasets, yielding the best results so far. JSVM is also the second best result on Iaprtc12 dataset.
The results of JSVM+Odd and JSVM+Pol(2) are similar on all three datasets. It is worth noting that
JSVM+Odd and JSVM+Pol(2) also worked better than previous methods by a large margin. Meanwhile,195

JSVM+Pol(3) is worse than JSVM+Pol(2). JSVM-Per’s performance is inferior to other JSVM versions,
although it is still better than two classic methods [9, 3].

12

7.8. Discussions

Based on our experiments, it seems that plain joint SVM (JSVM) works more robustly than the joint
SVMs with explicit output kernels. In order to dig deeper to find an explanation, we can study the corre-200

lation matrices of output tag-sets in three datasets. In Figure 3, for each dataset, we plot the histograms
(in log scale) of all correlation values in both training sets and testing sets. We can see that most entries in
correlation matrices are 0, which means that the pairwise correlation (or roughly speaking, dependencies)
is rather sparse. Although JSVM, JSVM+Odd both encode linear pairwise dependencies, it should be re-
minded that the implicit output kernel in JSVM is in regularization term, which implies that simpler output205

kernels (dependencies) are encouraged. However, JSVM+Odd does not have this preference. Therefore,
JSVM can implicitly learned most simple output kernels when no more complex ones are needed. Analo-
gously, the same principle can explain why JSVM+Pol(2), or even JSVM+Pol(3) led to worse results. If we
look closer, we can observe that in Corel5k datasets, stronger correlations are displayed in its testing set,
and correspondingly, the performance gaps between JSVM, JSVM+Odd and JSVM+Pol(2) are also rather210

small.
As for JSVM-Per, one reason of its inferiority is that the regularization is computed instance-wisely,

which might conflict the global effect it is supposed to have. However, we gain tractability, for extremely
large datasets, with acceptable accuracy cost. As a future direction work, we will investigate some alternative
online regularization strategies.215

8. Conclusions

A novel joint SVM was presented for automatic image tagging. It is superior to conventional SVMs based
on our empirical results. In particular, it compares favorably with state-of-the-art methods. As possible
future work directions, we would like to apply and improve joint SVM in other multi-label learning domains.

Acknowledgement220

The research leading to these results has received funding from the European Community’s Seventh
Framework Programme FP7/2007-2013 (Specific Programme Cooperation, Theme 3, Information and Com-
munication Technologies) under grant agreement no. 270273, Xperience.

Reference

[1] S. Szedmak, J. Shawe-taylor, Learning via linear operators: Maximum margin regression, Tech. rep., University of225

Southampton, UK (2005).
[2] I. Tsochantaridis, T. Hofmann, T. Joachims, Y. Altun, Support vector machine learning for interdependent and structured

output spaces, in: ICML, 2004.
[3] A. Makadia, V. Pavlovic, S. Kumar, Baselines for image annotation, International Journal of Computer Vision 90 (2010)

88–105.230

[4] B. Hariharan, S. V. N. Vishwanathan, M. Varma, Efficient max-margin multi-label classification with applications to
zero-shot learning, Machine Learning 88 (1-2) (2012) 127–155.

[5] A. Argyriou, T. Evgeniou, M. Pontil, Convex multi-task feature learning, Machine Learning 73 (3) (2008) 243–272.
[6] B. Taskar, V. Chatalbashev, D. Koller, C. Guestrin, Learning structured prediction models: A large margin approach, in:

ICML, 2005.235

[7] V. Lavrenko, R. Manmatha, J. Jeon, A model for learning the semantics of pictures, in: NIPs, 2004.
[8] D. M. Blei, M. I. Jordan, Modeling annotated data, in: Proceedings of the 26th Annual International ACM SIGIR

Conference on Research and Development in Informaion Retrieval, 2003.
[9] S. L. Feng, R. Manmatha, V. Lavrenko, Multiple bernoulli relevance models for image and video annotation, in: CVPR,

2004.240

[10] M. Guillaumin, T. Mensink, J. Verbeek, C. Schmid, Tagprop: Discriminative metric learning in nearest neighbor models
for image auto-annotation, in: ICCV, 2009.

[11] M. Chen, A. Zheng, K. Q. Weinberger, Fast image tagging, in: ICML, 2013.
[12] D. R. Hardoon, S. Szedmak, J. Shawe-Taylor, Canonical correlation analysis: An overview with application to learning

methods, Neural Computation 16 (2004) 2639–2664.245

[13] X. Qi, Y. Han, Incorporating multiple svms for automatic image annotation, Pattern Recogn. 40 (2) (2007) 728–741.

13

[14] S. Szedmák, T. D. Bie, D. R. Hardoon, A metamorphosis of canonical correlation analysis into multivariate maximum
margin learning, in: ESANN, 2007.

[15] J. Rousu, C. Saunders, S. Szedmák, J. Shawe-Taylor, Kernel-based learning of hierarchical multilabel classification models,
Journal of Machine Learning Research 7 (2006) 1601–1626.250

[16] Y. Zhang, D.-Y. Yeung, Multilabel relationship learning, ACM Trans. Knowl. Discov. Data 7 (2) (2013) 1–30.
[17] A. Elisseeff, J. Weston, A kernel method for multi-labelled classification, in: NIPs, 2001.
[18] Y. Guo, D. Schuurmans, Multi-label classification with output kernels, in: ECML/PKDD, 2013.
[19] V. Vapnik, Statistical learning theory, Wiley, 1998.
[20] F. Dinuzzo, C. S. Ong, P. V. Gehler, G. Pillonetto, Learning output kernels with block coordinate descent, in: ICML,255

2011.
[21] S. M. Hailpern, P. F. Visintainer, Odds ratios and logistic regression: further examples of their use and interpretation,

Stata Journal 3 (3) (2003) 213–225.
[22] K. Astikainen, L. Holm, E. Pitkänen, S. Szedmak, J. Rousu, Towards structured output prediction of enzyme function,

in: BMC Proceedings, 2(4):S2, 2008.260

[23] P. D. Grünwald, The Minimum Description Length Principle, MIT Press, 2007.
[24] D. Bertsekas, Nonlinear Programming, 2nd Edition, Athena Scienctific, 1999.
[25] K. Kiwiel, Convergence of approximate and incremental subgradient methods for convex optimization, Journal of Opti-

mization 14, 3 (2004) 807–840.
[26] N. Cristianini, J. Shawe-Taylor, An introduction to Support Vector Machines and other kernel-based learning methods,265

Cambridge University Press, 2000.
[27] N. Cesa-Bianchi, G. Lugosi, Prediction, Learning and Games, Cambridge University Press, 2006.
[28] C. Gentile, A new approximate maximal margin classification algorithm, Journal of Machine Learning Research 2 (2001)

213–242.
[29] Y. Li, H. Zaragoza, R. Herbich, J. Shawe-Taylor, J. Kandola, The perceptron algorithm with uneven margins, in: Pro-270

ceedings of the International Conference of Machine Learning (ICML’2002), 2002.
[30] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines: And Other Kernel-based Learning Methods,

Cambridge University Press, New York, NY, USA, 2000.
[31] T. Graepel, R. Herbrich, J. Shawe-Taylor, Generalisation error bounds for sparse linear classifiers, in: Proceedings of the

Thirteenth Annual Conference on Computational Learning Theory, Morgan Kaufmann Publishers Inc., 2000, pp. 298–303.275

[32] A. Bordes, S. Ertekin, J. Weston, L. Bottou, Fast kernel classifiers with online and active learning, Journal of Machine
Learning Research 6(Sep) (2005) 1579–1619.

[33] S. Shalev-Shwartz, T. Zhang, Stochastic dual coordinate ascent methods for regularized loss minimization, Journal of
Machine Learning Research 14(Feb) (2013) 567–599.

14

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

104

105 Training labels:

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

104

105 Test labels:

Histograms of label correlation(log scale), data set:corel5k

(a)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

104

105 Training labels:

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

104

105 Test labels:

Histograms of label correlation(log scale), data set:espgame

(b)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

104

105 Training labels:

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

104

105 Test labels:

Histograms of label correlation(log scale), data set:iaprtc12

(c)

Figure 3: The histograms (in log scale) of all correlation values in both training sets and testing sets: (a) Corel5k, (b) Espgame
(c) Iartc12.

15

	Executive Summary
	Transfer report on structural bootstrapping
	General description of the ROAR

	Structural Bootstrapping on sensorimotor experience: scientific contribution in Year 4
	Affordance learning
	Novel Learning for Multi-Label Prediction
	Joint SVM
	Kernel Generalized Homogeneity Analysis
	Conditional Boltzmann Machines

	Structural Bootstrapping for Action Learning
	Action Learning through Directed Exploration
	Integrating Symbolic Planning and ROAR for the Final Demonstration in Scenario 1

	Conclusion
	all-attachments.pdf
	Szedmak_uibk_roar_interface_2014.pdf
	Introduction
	General view
	SQL-type interface
	Learning infrastructure
	Database structure
	Database interface
	SQL commands
	Create table
	Insert or update
	Query

	Meta information - DB structure
	Programming interfaces
	C++
	Python
	Basic workflow

	Setting up the database
	Connection to a DB server via pgadmin3 utility
	Sample DB

