
Project Acronym: Xperience
Project Type: IP
Project Title: Robots Bootstrapped through Learning from Experience
Contract Number: 270273
Starting Date: 01-01-2011
Ending Date: 31-12-2015

XXPERIENCEPERIENCE..ORGORG

Deliverable Number: D3.2.3
Deliverable Title : Structural Bootstrapping for Planning (III): Extended Reason-

ing and Indexical Information
Type (Internal, Restricted, Public): PU
Authors: Ron Petrick, Kira Mourão, Aris Valtazanos, and

Mark Steedman
Contributing Partners: UEDIN

Contractual Date of Delivery to the EC: 31-01-2014
Actual Date of Delivery to the EC: 28-02-2014

Contents

Executive Summary 5

References . 9

Attached Papers . 11

3

Xperience 270273 PU

4

Executive Summary

A central contribution of WP3 (Generative Mechanisms), and WP3.2 (Structural Bootstrapping for
Planning) in particular, is to extend the capabilities of current high-level planning models by applying
structural bootstrapping to the knowledge-rich representation of actions and plans, to provide the ap-
paratus needed to support plan generation and execution in low-level robotics domains (WP2; Outside
In: Development and Representations) and higher-level domains requiring language and communication
(WP4; Interaction and Communication). To this end, we describe the work by UEDIN on high-level plan-
ning techniques during the last work period, with a focus on Task 3.2.4 (Extended reasoning about object
and indexical knowledge) and Task 3.2.3 (Plan structure and execution). This deliverable also reports on
contributions related to Task 3.2.2 (Learning knowledge-level control rules) and Task 2.3.2 (Learning high-
level action descriptions (rule learning)), and is related to the project-wide integration and demonstrations
of WP5 (System Integration). Four papers are attached to this deliverable ([Pet14, Pet13, MP13, Val14]),
which provide details of these contributions, as highlighted below.

The ability to reason and plan is essential for an intelligent agent acting in a dynamic and incompletely
known world, such as the robot scenarios that are explored in WP5. High-level planning capabilities
in Xperience are (partly) supplied by the PKS planner [9, 10], which UEDIN is extending for use in
robotic and linguistic domains. PKS is a state-of-the-art conditional planner that constructs plans in the
presence of incomplete information. Unlike traditional planners, PKS builds plans at the knowledge level,
by representing and reasoning about how the planner’s knowledge state changes during plan generation.
Actions are specified in a STRIPS-like [5] manner in terms of action preconditions (state properties that
must be true before an action can be executed) and action effects (the changes the action makes to
properties of the state). PKS can build contingent plans with sensing actions, and supports numerical
reasoning, run-time variables [4], and features like functions that arise in real-world planning scenarios.

Like most AI planners, PKS operates best in discrete, symbolic state spaces described using logical
languages. As a result, research that addresses the problem of integrating planning on real-world robot
platforms often centres around the problem of representation, and how to abstract the capabilities of a
robot and its working environment so that it can be put in a suitable form for use with a goal-directed
planner. A key problem when constructing such a representation is the question of how to encode the
planner’s knowledge about objects that are not completely described in the domain model (but which
are known or believed to exist), and how to make assertions about domain properties that reference
such objects. Similarly, as new information becomes available to the planner, for instance as a result of
sensorimotor processes external to the planner itself, a facility should exist for updating the planner’s
underlying domain model to make use of this more certain information.

To address these problems in complex planning domains, we report on two main threads of research
related to the PKS planner. First, we present an extension of work first reported in deliverable D3.2.1
as part of Task 3.2.4, which uses interval-valued fluents for modelling uncertain numerical information,
in order to capture the effects of noisy sensors and noisy effectors at the planning level. Since noisy
information is common in real-world robot domains, we believe these extensions will be particularly useful
in integrating high-level planning with the low-level sensorimotor systems on Xperience. Moreover, this
representation gives rise to a form of indexical (or relative) referencing during plan generation, which
addresses the problem of making assertions about domain properties for partially-defined objects. This
work is described in [Pet14], attached to this deliverable.

Second, we report on an application programming interface (API) to the planner component, developed
as part of Task 3.2.3, which supports the modification of existing planning domains at run time using

5

Xperience 270273 PU

the Internet Communications Engine (ICE). In particular, the API abstracts common planning activities
already supported by PKS, including functions for adding new actions, properties, and objects to a
planning domain, and offers a network-based solution for communicating with the planner component.
One of the main contributions of this interface is that it is designed to be generic, which offers the
possibility that alternative planners could be used in place of PKS, facilitating future integration tasks,
provided they support the same interface. Additional details are described in the attached paper [Pet13].

In addition to work on PKS, we also report on related research which aims to learn knowledge-level
action representations of the form used by PKS, from noisy and incomplete observations. This work
contributes to Task 3.2.2 and Task 2.3.2, and considers the problem of learning the role of both relational
and functional properties in the precondition and effect blocks of knowledge-level action models. In
particular, learnt functional properties can act as indexical references to objects which may not have
been previously defined in a domain. This work is described in the paper [MP13], attached below.

Finally, we also present preliminary work on a second planning formalism, called reward-adaptive plan-
ning, which combines online Monte-Carlo planning with Inverse Reinforcement Learning. This work
offers an alternative to PKS with particular emphasis on planning in multiagent environments with prob-
abilistic domain models. This work contributes to both Task 3.2.3 and Task 3.2.4, with a view towards
future applications in communication and interaction as part of Task 3.2.5. A short preview of this work
is presented in the final attached paper [Val14].

Overall, this deliverable reports a number of significant developments:

• We have implemented a proof-of-concept extension to PKS for approximate reasoning with numeric
fluents, based on the concept of interval-valued functions. This representation builds on theoretical
work first reported in deliverable D3.2.1 and provides a middle ground between planners that cannot
work with notions of knowledge and belief, and those that use full probabilistic representations. An
initial implementation consists of a standalone software library, providing support for interval-based
reasoning, which has been integrated with PKS using the notion of semantic attachments [3].

• Rule learning was extended for learning knowledge-level domain models, similar to those supported
by PKS, where knowledge is required as a precondition and acquired as an effect. In particular,
the representation was modified to work with knowledge fluents that denote domain properties
modelled as functions. The approach was tested on pre-existing robot data, demonstrating that
the model learns knowledge fluents and functions in line with a ‘gold-standard’ domain description.
This work provides the necessary basis for learning more complex rules related to robot dialogue.

• Reward-adaptive planning provides a novel approach to egocentric planning with unknown team-
mates in partially observable, communication-denied domains. This method extends a state-of-
the-art sample-based POMDP planner with interactive reward learning, in order to simultaneously
select actions and estimate teammate behavioural models. Experimental results demonstrate that
reward-adaptive planning can lead to robust collaboration in varying tasks and team compositions,
while also scaling to large problem spaces with complex teamwork constraints.

• We have continued to develop associated planning machinery, such as the plan execution monitor,
which has been updated to take advantage of improved reasoning capabilities in the planner, and new
features provided by the high-level planning API. In conjunction with this work, we are continuing to
develop high-level domain descriptions for use with our planners (especially our new POMDP-based
planner) on the ARMAR platform. Such domains aim to capture the sophisticated capabilities of
the ARMAR robot, including object manipulation with multiple grippers and movement between
workspaces in its operating environment.

A number of tasks remain open at the time of this report and constitute ongoing and future work:

• We continue to investigate the role of probabilistic and numeric models in high-level planning and
monitoring processes, with our work in [Val14] and [Pet13] adding to our previous contributions
here. Since we expect nondeterminacy to arise as the result of perception and action at the sensori-
motor level, we continue to study how best to utilise such information at the higher control levels.
Currently, we are exploring two approaches: (1) the use of rapid replanning [11], which has been
successfully applied by planners in the probabilistic track of the International Planning Competi-
tion [6], and (2) the integration of probabilistic information with traditional symbolic logic-based
planning approaches.

6

Xperience 270273 PU

• The extensions to PKS we reported in this deliverable have primarily focused on the issue of
representation and generation in task-based robotics domains. However, this workpackage will also
explore the application of modern planning techniques to problems in natural language generation
[8, 1, 7, 2]. We continue to explore the use of general-purpose planning for dialogue planning with
speech acts, which will be reported in future deliverables.

• In real-world settings, actions are typically non-deterministic and observations are often noisy and
incomplete. We plan to make the rule learning model more robust and widely applicable to real-
world data by learning probabilistic planning operators, and by expanding the rule extraction
process to generate more expressive rules when learning from noisy and incomplete observations.

• We are also investigating dialogue-based enhancements to reward-adaptive planning, where collab-
orations can be improved through limited communication between teammates. In particular, we
are currently working towards extensions in challenging multi-agent domains involving interaction
with human-controlled teammates, whose behaviour is not known in advance and is hard to model
precisely.

7

Xperience 270273 PU

8

References

[1] L. Benotti. Accommodation through tacit sensing. In Proceedings of the 12th Workshop on the
Semantics and Pragmatics of Dialogue (LONDIAL 2008), pages 75–82, London, United Kingdom,
2008.

[2] M. Brenner and I. Kruijff-Korbayová. A continual multiagent planning approach to situated dialogue.
In Proceedings of the 12th Workshop on the Semantics and Pragmatics of Dialogue (LONDIAL 2008),
pages 67–74, 2008.

[3] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel. Semantic attachments for
domain-independent planning systems. In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS 2009), pages 114–121, 2009.

[4] O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, and M. Williamson. An approach to planning
with incomplete information. In W. Swartout, B. Nebel, and C. Rich, editors, Proceedings of the
Third International Conference on Principles of Knowledge Representation and Reasoning (KR-92),
pages 115–125, Cambridge, MA, Oct. 1992. Morgan Kaufmann Publishers.

[5] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence, 2:189–208, 1971.

[6] ICAPS. International Planning Competition. http://ipc.icaps-conference.org, 2008.

[7] A. Koller and R. Petrick. Experiences with planning for natural language generation. In Scheduling
and Planning Applications woRKshop (SPARK 2008) at ICAPS 2008, Sept. 2008.

[8] A. Koller and M. Stone. Sentence generation as planning. In Proceedings of the 45th Annual Meeting
of the Association of Computational Linguistics, pages 336–343, Prague, Czech Republic, 2007.

[9] R. P. A. Petrick and F. Bacchus. A knowledge-based approach to planning with incomplete infor-
mation and sensing. In M. Ghallab, J. Hertzberg, and P. Traverso, editors, Proceedings of the Sixth
International Conference on Artificial Intelligence Planning and Scheduling (AIPS-2002), pages 212–
221, Menlo Park, CA, Apr. 2002. AAAI Press.

[10] R. P. A. Petrick and F. Bacchus. Extending the knowledge-based approach to planning with in-
complete information and sensing. In S. Zilberstein, J. Koehler, and S. Koenig, editors, Proceedings
of the International Conference on Automated Planning and Scheduling (ICAPS-04), pages 2–11,
Menlo Park, CA, June 2004. AAAI Press.

[11] S. Yoon, A. Fern, and R. Givan. FF-Replan: A baseline for probabilistic planning. In Proceedings of
the International Conference on Automated Planning and Scheduling (ICAPS-07), pages 352–359,
2007.

9

Xperience 270273 PU

10

Attached Papers

[MP13] Kira Mourão and Ronald P. A. Petrick. Learning knowledge-level domain dynamics. In Proceed-
ings of the ICAPS 2013 Workshop on Planning and Learning (PAL), pages 23–31, Rome, Italy,
June 2013.

[Pet13] Ronald P. A. Petrick. An application programming interface to high-level planning. Technical
Report Internal Technical Report, University of Edinburgh, 2013.

[Pet14] Ronald P. A. Petrick. Approximate reasoning with numeric fluents for contingent planning. In
AAAI Conference on Artificial Intelligence., 2014. submitted.

[Val14] Aris Valtazanos. Reward-adaptive planning with unknown teammates from limited observa-
tions. In Workshop of the UK Planning and Scheduling Special Interest Group (PlanSIG 2013),
Edinburgh, Scotland, United Kingdom, January 2014.

11

Learning knowledge-level domain dynamics

Kira Mourão
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB, UK
kmourao@inf.ed.ac.uk

Ronald P. A. Petrick
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB, UK
rpetrick@inf.ed.ac.uk

Abstract
The ability to learn relational action models from noisy, in-
complete observations is essential to support planning and
decision-making in real-world environments. While some
methods exist to learn models of STRIPS domains in this set-
ting, these approaches do not support learning of actions at
the knowledge level. In contrast, planning at the knowledge
level has been explored and in some domains can be more
successful than planning at the world level. In this paper
we therefore present a method to learn knowledge-level ac-
tion models. We decompose the learning problem into multi-
ple classification problems, generalising previous decomposi-
tional approaches by using a graphical deictic representation.
We also develop a similarity measure based on deictic refer-
ence which generalises previous STRIPS-based approaches
to similarity comparisons of world states. Experiments in a
real robot domain demonstrate our approach is effective.

Introduction
The related problems of planning and learning domain dy-
namics in domains with incomplete knowledge and uncer-
tainty are both challenging. The planning problem has been
tackled using the possible worlds paradigm (Weld et al.,
1998; Bonet and Geffner, 2000; Bertoli et al., 2001), where
the planner reasons about actions across all possible worlds
in which the agent might be operating given its current
knowledge. An alternative is to use a knowledge-level rep-
resentation that describes the agent’s knowledge without
enumerating possible worlds. One such approach is to re-
strict the agent’s knowledge to simple relational and func-
tional properties using knowledge fluents, and then plan with
these structures either directly (Petrick and Bacchus, 2002,
2004) or indirectly through compilation techniques (Pala-
cios and Geffner, 2009), in an attempt to build plans more
efficiently. However, while a few approaches have tack-
led learning domain dynamics with incomplete knowledge
(Amir and Chang, 2008; Zhuo et al., 2010; Mourão et al.,
2012), none have considered learning knowledge-level ac-
tions, such as would be required by a planner operating di-
rectly at that level.

In this paper we present a method for learning action rules
in knowledge domains. We consider the problem of acquir-
ing domain models from the raw experiences of an agent
exploring the world, where the agent’s observations are in-
complete, and observations and actions are subject to noise.

The domains we consider are based on relational STRIPS
domains (Fikes and Nilsson, 1971) but also include func-
tions, run-time variables and knowledge fluents.

We tackle the problem of learning action models from
noisy and incomplete observations by decomposing the
problem into multiple classification problems, similar to the
work of Halbritter and Geibel (2007) and Mourão et al.
(2009; 2010; 2012). Our approach generalises these earlier
approaches by using a decomposition based on a deictic rep-
resentation. We represent world states as graphs and develop
a similarity measure, also based on deictic reference, to per-
form similarity comparisons between states. The features
used to measure similarity are closely related to the rules un-
derlying the true action models. We reuse the rule extraction
method of Mourão et al. (2012) to derive planning operators
from classifiers trained using our new representation.

We test our approach in a real robot domain. The robot
bartender (Petrick and Foster, 2013) serves drinks to cus-
tomers by generating plans based on input from its vision
and dialogue processing systems. State observations derived
from these systems can be incomplete or noisy, due to sens-
ing errors. Therefore states are modelled at the knowledge
level, with functions and run-time variables used to capture
customer requests. Our experiments show that the domain
models we learn for the robot bartender perform as well as a
“gold-standard” hand-written domain model used to gener-
ate the robot’s plans.

The Learning Problem
A domain D is defined as a tuple D = 〈O,P,F ,A〉, where
O is a finite set of world objects, P is a finite set of predicate
(relation) symbols, F is a finite set of function symbols, and
A is a finite set of actions. Each predicate, function, and
action also has an associated arity. A fluent expression of
arity n is a statement of the form:
(i) p(c1, c2, ..., cn), where p ∈ P , and each ci ∈ O, or
(ii)f(c1, c2, ..., cn) = cn+1, where f ∈ F , and each ci ∈ O.

A real-world state is any set of positive or negative fluent
expressions, and S is the set of all possible states. State ob-
servations may be incomplete, so we assume an open world
where unobserved fluents are deemed to be unknown. At the
world level, for any state s ∈ S, fluent φ is true at s iff φ ∈ s,
and false at s iff ¬φ ∈ s. A fluent and its negation cannot
both be in s. If φ /∈ s and ¬φ /∈ s then φ is unobserved.

At the knowledge level we transform state observations
of the real world into knowledge states: statements about
the agent’s knowledge of the world. A knowledge fluent
Kφ denotes whether a real-world fluent φ is known to be
true in the world (Kφ), false in the world (K¬φ) or un-
known (¬Kφ and ¬K¬φ). Therefore at the knowledge
level the closed world assumption can be reinstated and
whenever both Kφ /∈ s and K¬φ /∈ s, we know that
¬Kφ ∈ s and ¬K¬φ ∈ s. Additionally we introduce
the operator Kv which indicates whether the value of a
function f(c1, c2, . . . , cn) is known (Kv(f(c1, c2, . . . , cn)))
or unknown (¬Kv(f(c1, c2, . . . , cn))), regardless of the ac-
tual value. Thus (∃d ∈ O)K(f(c1, . . . , cn) = d) ≡
Kv(f(c1, . . . , cn)). All states at the knowledge level are
written entirely in terms of these knowledge fluents.

Each action a ∈ A is defined by a set of preconditions,
Prea, and a set of effects, Effa. Prea can be any set of knowl-
edge fluent expressions. We consider two different kinds of
action effects. First, we allow STRIPS-like effects, where
each e ∈ Effa has the form add(φ), or del(φ), and φ is any
knowledge fluent expression. Second, we permit conditional
effects of the form Ce ⇒ add(φ) or Ce ⇒ del(φ). Here, Ce
is any set of knowledge fluent expressions, and is referred
to as the secondary preconditions of effect e. Action pre-
conditions and effects can also be parameterised. An action
with all of its parameters replaced with objects fromO is an
action instance.

In contrast to STRIPS domains, which assume that ob-
jects mentioned in the preconditions or the effects must be
listed in the action parameters (the STRIPS scope assump-
tion (SSA)), we make the more general deictic scope as-
sumption that objects mentioned in the preconditions or ef-
fects are either action parameters or are directly or indirectly
related to the action parameters, i.e., they have a deictic term
(see Deictic Reference section).

We restrict previous domain knowledge to the assump-
tion of a weak domain model where the agent knows how to
identify objects, has acquired predicates to describe object
attributes and relations, and knows what types of actions it
may perform, but not the appropriate contexts for the ac-
tions, or their effects. Experience in the world is then devel-
oped by observing changes to object attributes and relations
when “motor-babbling” with primitive actions.

The task of the learning mechanism is to learn the pre-
conditions and effects Prea and Effa for each a ∈ A, from
data generated by an agent performing a sequence of ran-
domly selected actions in the world and observing the re-
sulting states. The sequence of states and action instances
is denoted by s0, a1, s1, ..., an, sn where si ∈ S and ai
is an instance of some a ∈ A. Our data consists of ob-
servations of the sequence of states and action instances
s′0, a1, s

′
1, ..., an, s

′
n, where state observations may be noisy

(some φ ∈ si may be observed as K¬φ ∈ s′i) or incomplete
(some φ ∈ si are not in s′i). Action failures are allowed:
the agent may attempt to perform actions whose precondi-
tions are unsatisfied. In these cases the world state does not
change, but the observed state may still be noisy or incom-
plete. To make accurate predictions in domains where action
failures are permitted, the learning mechanism must learn

both preconditions and effects of actions.
Consider, for example, the dishwasher domain (shown in

Figure 1), a domain where an agent can load and unload a
dishwasher, switch it on, and check the status of the dish-
washer. In our examples we use a PDDL-like syntax to rep-
resent knowledge fluents and states. For a state where the
agent knows the dishwasher contains some dirty dishes, the
real world state could be:
(AND (status=dirty) (¬in washer dish1) (¬in washer dish2)

(in washer dish3) (isdirty dish1) (¬isdirty dish2)

(isdirty dish3) (in washer dish4) (isdirty dish4)).

From this the agent might observe the knowledge state:
(AND Kv(status) K(status=dirty) K(¬in washer dish1)

K(in washer dish3) K(isdirty dish1) K(isdirty dish3)

K(¬in washer dish2) K(¬isdirty dish2)).

A sequence of knowledge states and actions could be:
s0:(AND Kv(status) K(status=dirty) K(¬in washer dish1)

K(in washer dish3) K(isdirty dish1) K(isdirty dish3)

K(¬in washer dish2) K(¬isdirty dish2))

a1:(load washer dish1)

s1:(AND Kv(status) K(status=dirty) K(in washer dish1)

K(in washer dish3) K(isdirty dish1) K(isdirty dish3)

K(¬in washer dish2) K(¬isdirty dish2))

a2:(switchon)

s2:(AND K(in washer dish1) K(in washer dish3)

K(¬in washer dish2) K(¬isdirty dish2))

a3:(checkstatus)

s3:(AND K(in washer dish1) K(in washer dish3)

K(¬in washer dish2) K(¬isdirty dish2)

Kv(status) K(status=clean)).

Taking a sequence of such inputs, we learn action descrip-
tions for each action in the domain, such as in Figure 1.

Related Work
Knowledge-level reasoning is not a new idea (Newell,
1982), and the use of knowledge fluents like Kφ and K¬φ
has been explored as a means of restricting the syntac-
tic form of knowledge assertions in exchange for more
tractable reasoning, e.g., by avoiding the drawbacks of
possible-worlds models (Demolombe and Pozos Parra,
2000; Soutchanski, 2001; Petrick and Levesque, 2002).
Planners like PKS (Petrick and Bacchus, 2002, 2004) at-
tempt to work directly with knowledge-level models, sim-
ilar to those of knowledge fluents, while approaches like
(Palacios and Geffner, 2009) compile traditional open world
planning problems into a classical closed-world form, in the
process automatically generating knowledge fluents.

Only a few approaches to learning action models are capa-
ble of learning under either partial observability (Amir and
Chang, 2008; Yang et al., 2007; Zhuo et al., 2010), noise
in any form (Pasula et al., 2007; Rodrigues et al., 2010),
or both (Halbritter and Geibel, 2007; Mourão et al., 2010).
Some rely on prior knowledge of the action model, such as
using known successful plans (Yang et al., 2007; Zhuo et al.,
2010), or excluding action failures (Amir and Chang, 2008).
None explicitly support functions or knowledge fluents.

While the representation used in our previous work
(Mourão et al., 2012) does not support functions or the Kv

(define (domain dishwasher)

(:predicates (in ?washer ?dish) (isdirty ?dish))

(:functions (status ?washer) = ?washstatus)

(:constants clean dirty)

(:action checkstatus

:parameters (?washer)

:precondition ()

:effect (Kv(status(?washer))))

(:action switchon

:parameters (?washer)

:precondition ()

:effect (¬Kv(status(?washer))))

(:action unload

:parameters (?washer ?dish)

:precondition (and Kv(status(?washer)) K(status(?washer)=clean) K(in ?washer ?dish))

:effect (and K(¬in ?washer ?dish) K(¬isdirty ?dish)))

(:action load

:parameters (?washer ?dish)

:precondition (K¬(in ?washer ?dish))

:effect (and K(in ?washer ?dish)

(when (K(isdirty ?dish)) (Kv(status(?washer)) K(status(?washer)=dirty)))

(when (and ¬K(isdirty ?dish) Kv(status(?washer)) K(status(?washer)=clean)) (¬Kv(status(?washer)))))))

= status load isdirty

clean statusv arg1 arg2

¬in in ¬in

¬isdirty [D2] [D3] isdirty

1 2

1

2

1 21

2

Figure 1: A description of the dishwasher domain (left), and (right) a graphical representation of state s0 when combined with
the load action. The node representing the result of the status(?washer) function is labelled statusv .

operator, it could support knowledge fluents of the formKφ.
In this earlier work, each fluent φ was assigned one of the
values 1, −1 or ∗ which correspond to the Kφ, K¬φ and
¬Kφ/¬K¬φ defined earlier. However, the learning method
depended on the SSA to generate vector representations of
states. With the introduction of functions the SSA no longer
applies and the vector representation can no longer be used.

Our new approach depends upon coding world states (and
correspondingly, preconditions and effects) in terms of de-
ictic reference (Agre and Chapman, 1987). A deictic rep-
resentation maintains pointers to objects of interest in the
world, with objects coded relative to the agent or current
action. Previous work in learning action models has also
used deictic reference (Benson, 1996; Pasula et al., 2007)
because there are benefits in doing so: it reduces the size
of the state representation, by limiting the observations to
a small number of objects, and also permits generalisation
across different instances of the same action, as the obser-
vations are described in terms of the action and the agent
instead of specific objects.

Method outline
Our approach to learning knowledge-level action models is
based on the work of Mourão et al. (2012), but differs signif-
icantly in terms of the representation used and in the details
of the learning process. Real-world states are observed by
an agent as a knowledge state where each fluent φ(¬φ) is
observed as Kφ(K¬φ) and when Kf(c1, . . . , cn) = cn+1,
also Kv(f(c1, . . . , cn)). We represent these observations as
graphs where objects, known fluents and actions are nodes
in the graph, and edges link fluents to their arguments. The
prediction problem is then to determine which nodes in a

graph change as the result of an action. Our strategy is to
decompose the prediction problem into many smaller classi-
fication problems, where each classifier predicts change to a
single fluent of the overall state, given an input situation and
an action. After training the classifiers we derive planning
operators from the learnt parameters, using the same process
described by Mourão et al. (2012).

Central to the classification process is a measure of sim-
ilarity between states. Commonly, similarity comparisons
between graphs are performed using graph kernels which
implicitly map into another feature space; here we define an
explicit mapping of state graphs into a feature space, where
the mapping is calculated via a simple relabelling scheme.

The remainder of this paper is structured as follows. We
define deictic reference and show how it is used to create
the graphical representation of world states. Then we ex-
plain how we calculate a similarity measure for two states
based on deictic reference. The structure and operation of
the classification learning model is described, followed by
an explanation of how rules are extracted from the classi-
fiers. Finally, we give some experimental results and discuss
conclusions and future work.

Deictic reference
Deictic reference underlies a number of aspects of the learn-
ing process. The structure of the state observation graphs is
determined by the deictic terms of the objects in the state.
In turn, this means that the feature space mapping relies on
deictic reference to map objects with the same roles in an
action to the same points in the feature space.

In the deictic representation we use, we code objects with
respect to the action. Every action parameter is referred to

by its own unique deictic term, corresponding to its position
in the parameter list. Constant values are also considered
to have their own deictic terms. Deictic terms referring to
other objects are their definitions in terms of their relations
with the action parameters and other objects.

Thus, similar to Pasula et al. (2007), a deictic term is a
variable Vi and a constraint ρi where ρi is a set of literals
defining Vi in terms of the arguments of the current action
and any previously defined Vj (j < i). Then an object has
a deictic term if it is an argument of the current action, or
it is related directly, or indirectly via other objects, to the
arguments of the action. For functions, every argument must
already have a deictic term in order for the function result to
have a deictic term.

Additionally, we add the constraint that for an object to
have a deictic term, it must be linked by a positive fluent
to either an action parameter, or another object which has
a deictic term (the positive link assumption). This addi-
tional restriction accounts for the open world representation
now in place (at the world level), avoiding deictic terms of
the form “the-object-not-under-the-object-I-am-picking-up-
and-not-on-the-floor”, which will not usually be unique and
seem counter-intuitive. Apart from the action parameters,
any object in a state may be referred to by several deictic
terms, and (unlike Pasula et al. (2007)) any deictic term may
refer to several objects in a state.

We say that an object has an n-th order deictic term when
n is the minimum number of relations relating the object to
an action parameter. Thus the parameters of the action have
zero-order deictic terms, while objects related to the action
parameters have first-order deictic terms.

For example, in the dishwasher domain (Figure 1), if the
action were (load washer dish1) in state s0, then
action parameters washer and dish1 would have deictic
terms arg1 and arg2, indicating their positions in the load
argument list. Relative to the (load washer dish1)
action, dish2 is referred to by deictic terms
x : ¬in(washer, dish2) and x : ¬in(washer, dish2) ∧
¬isdirty(x), but not x : ¬isdirty(x) alone. The dish2
node is labelled [dish2] to indicate that it represents all
objects with the same deictic terms as dish2.

State representation
We represent a knowledge state by a graph, where objects
(as deictic terms), known fluents, and the current action are
represented by nodes in the graph. Edges link fluents (or the
current action) and their arguments, and are labelled with the
argument position.

Both predicates and functions are represented by nodes
and are only present in the graph if known. However, for
functions additionally the result of a function f is repre-
sented by a special node fv , which denotes the deictic term
defined by the function. The actual value of the function
is linked to fv by an equality node. Thus, for example,
K(f(c1, c2) = c3) would be represented as in Figure 2.

The size of the graph is limited by restricting the deictic
terms to zero- or first-order terms only.1 Using only zero-

1Higher order terms are possible but are left to future work.

f

c1 c2 fv c3

=

1 2 3

Figure 2: Representation of K(f(c1, c2) = c3). c1,c2 and
c3 are represented by nodes labelled with their deictic terms
(here we assume they are constants). The function node f
has edges to nodes c1 and c2, indicating they are parameters,
and also an edge connecting to the result node fv . fv and c3
are linked by an equals node, indicating that the value of
f(c1, c2) is c3.

order terms would be equivalent to working with a STRIPS
representation, as we would only consider parameters of the
action during learning. Here, we require first-order deictic
terms to represent functions, as the result of a function will
not usually be an action parameter. Figure 1 shows a graph
encoding the state s0 in the context of the (load washer
dish1) action, after converting the objects to deictic terms.

Calculating changes

Our classification model operates by taking a knowledge
state (as a graph) as input, and predicting which knowledge
fluents will change. Each training example must therefore
consist of a prior state, an action, and the changes resulting
from performing the action on the state.

We denote changes by creating a change graph, cre-
ated by annotating the prior state graph with additional
marker nodes (similar to Halbritter and Geibel (2007)).
Marker nodes have an edge linking to the fluent node which
changed. Given a prior and successor state, a marker node
Mφ is added to the change graph for every fluent φ which
changes real-world value between the states. A marker node
MKφ is added for every fluent which changes knowledge
state between the states. During training, each classifier
will learn to predict the presence or absence of a single
marker node in the graph (i.e. whether the associated flu-
ent changes).

It is straightforward to determine the marker nodes to add
to the change graph, given prior and successor state graphs.
For any fluent φ in the prior state, if ¬φ is in the successor
state, we add Mφ. If neither φ nor ¬φ are present in the suc-
cessor state we addMKφ. Similarly, any fluent present in the
successor state but not the prior state is added to the change
graph, along with MKφ. For example, for the load action
in Figure 1, the changes to the state would be indicated by
a node M= linked to the (statusv = clean)node and a
node Min linked to the (¬in arg1 arg2)node.

Crucially, because the successor state immediately fol-
lows the prior state, matching fluents can be determined by
matching the actual objects which were arguments of the
fluents. In general such matching is not possible between
states. We return to this point when describing the structure
of the learning model.

arg1

¬isdirty in

[dish2]

1

2

(a)

¬isdirty

[dish2]

(b)

Figure 3: Valid (a) and invalid (b) subgraphs of the state
graph in Figure 1.

Comparing states using deictic reference
The classification process requires a measure of similarity
between states. In classification problems, graphical inputs
are usually mapped either implicitly — via graph kernels
— or explicitly into a feature space where the inner product
provides a similarity score.

A feature space where the features are all possible con-
junctions of fluents would seem to be ideal for learning ac-
tion preconditions which are arbitrary conjunctions of flu-
ents. However, similarity calculations in this space are un-
likely to be tractable as it is closely related to the subgraph
kernel (mapping graphs to the space of all possible sub-
graphs), known to be NP-hard (Gärtner et al., 2003), and
contains the feature space of the DNF kernel (Sadohara,
2001; Khardon and Servedio, 2005), which cannot be used
by a perceptron to PAC-learn DNF (Khardon et al., 2005).

Following Mourão et al. (2012) we therefore work with
the space of all possible conjunctions of fluents of length
≤ k for some fixed k. The space is further restricted so that
in every conjunction, every object must have a valid deictic
term depending only on fluents in the conjunction. This re-
striction avoids learning meaningless preconditions where
variables in the preconditions are undefined e.g., action
a(x, y) with precondition p(z). Also, it forces the similarity
comparison to account for the roles of objects (as defined by
their deictic terms) by mapping objects in different states,
but with similar deictic terms, to similar sets of features.

We define an explicit mapping into this space, creating a
(sparse) feature vector. Each element of the vector corre-
sponds to a conjunction of up to k fluents present in the state
graph, subject to the restriction that every object has a valid
deictic term depending only on fluents in the conjunction.
E.g. considering subgraphs of the dishwasher state shown in
Figure 1, Figure 3a would be valid but not Figure 3b. The
value of each element in the vector is the number of occur-
rences of the corresponding subgraph in the state graph.

The feature vector can be constructed via a labelling
scheme similar to the process used in some graph kernel cal-
culations (Shervashidze et al., 2011). First we label object
nodes with either their position in the action parameter list,
or their type if they are not listed in the action parameters.
Next we identify the set of core fluents, whose arguments
are contained within the set of action parameters. By defini-
tion, every argument of a core fluent has a deictic term, and
so any conjunction of core fluents will be valid.

For each conjunction C of i core fluents (1 ≤ i ≤ k),
we identify the set of supported fluents, whose arguments

are also arguments of either the action or a fluent in C. For
example, in Figure 3a, in is a core fluent and isdirty is a
supported fluent. Every argument of a supported fluent will
have a deictic term depending only on fluents in C. Now we
create all possible conjunctions of supported fluents of size
k − i or fewer, and combine each with C in turn to give C ′.

We convert each fluent in C ′ to a string encoding the flu-
ent, the argument positions and their ordering. E.g. (in
arg1 dish) could convert to “in1(arg1)2(dish)”. (Note
that here “dish” is a type.) Next we sort the fluent strings and
concatenate them to give a unique string representing C ′.
This string is looked up in a lookup table mapping strings
to feature vector locations. If the string is not found in the
lookup table, we add a new entry with value 1 to the feature
vector and a matching entry in the lookup table. Otherwise
we increment the existing entry in the feature vector.

Structure of the learning model
Using the state graphs defined above, the structure of the
learning model can be defined. Given a state s ∈ S and
an action a ∈ A, the model predicts the successor state s′.
Equivalently, the set of fluents which change between s and
s′ — the deltas — can be predicted. Our strategy is to use
multiple classifiers where each classifier predicts change to
one or a small set of fluents of the overall state, given an
input situation and an action.

Such a structure requires a classifier for each possible flu-
ent node in any state graph. Then given a state graph, we
predict the effect of an action by predicting whether each
fluent node in the graph changes or not. The conjunction of
all the predicted changes is the predicted effect of the action.
For example, in Figure 1, consider the following fluents:

1. (¬in arg1 arg2)
2. (¬in arg1 [dish2])

where [dish2] = {x : ¬in(arg1, x) ∧ ¬isdirty(x)}
3. (in arg1 [dish4])

where [dish4] = {x : in(arg1, x) ∧ ¬isdirty(x)}
4. (¬in arg1 [dish5])

where [dish5] = {x : ¬in(arg1, x)}
Fluents (1) and (2), present in the graph, and (3), not

present, but possible, would each have their own classifier.
Additionally we must consider fluents with more general de-
ictic terms, such as (4), which includes both (1) and (2). The
classifier associated with (4) predicts whether fluent (in
arg1 x) changes for any x not in arg1, whereas the classi-
fiers associated with (1) and (2) predict whether (in arg1

x) changes for x which is the second argument of the load
action (1), or for x which is not in arg1 and not dirty (2).
However, although there are many possible fluent nodes, in
practice most of the associated classifiers are not instanti-
ated by our algorithm, resulting in a default prediction of no
change for the corresponding fluents.

Our training algorithm therefore has two tasks. First, it
manages sets of classifiers, in terms of deciding which clas-
sifier to train on which data, and when to instantiate new
classifiers. Second, it trains the classifiers. Likewise, at pre-
diction our algorithm must select which classifiers to use,
and then generate a prediction from them.

As in the work of Mourão et al. (2012), we will use voted
perceptron classifiers (Freund and Schapire, 1999), since
they are known to be robust to noise and efficient to train.
We use the standard procedures for training of, and predic-
tion from, individual classifiers. In our algorithm descrip-
tions below, train(c, x, y) denotes updating classifier c with
training example (x, y), and predict(c, x) returns classifier
c’s prediction of the class of example x. We now describe
how classifiers are managed during training and prediction.

Initialisation
The algorithm is provided with the set of action labelsA, the
set of predicates P , the set of functions F , and the number
and types of their arguments. In the following description
we treat any function f(c1, . . . , cn) = cn+1 as two predi-
cates: f ′(c1, . . . , cn, fv) and equals(fv, cn+1), correspond-
ing to the graph structure defined earlier, and contained in
an extended set P ′. The learning algorithm maintains a set
of classifiers Ca,p for each action a and predicate p. Initially
eachCa,p is empty and is populated as training examples are
seen by the algorithm. Every member of Ca,p will be a clas-
sifier cm associated with a different tuple of deictic terms
m which are valid arguments of p. For example, in our
dishwasher domain, one of the sets of classifiers would be
C(load,in): the set of classifiers which predict changes to the
in predicate when the load action is performed. A mem-
ber of C(load,in) could be c(arg1,{x:in(arg1,x)∧¬isdirty(x)}).

Training
Each training example consists of a state description xi, an
action ai, and a successor state x′i. Both state descriptions
are converted into state graphs and a change graph δi, based
on the action ai as previously described. The marker nodes
from the change graphs will provide target values.

The training process is outlined in Algorithm 1. In
the main loop we identify all the fluent nodes p(m)
in a training example x (fluentNodes(x)) and determine
whether each fluent changed in the example, by checking
whether the node has a marker node in the change graph δ
(isFluentInDelta). If the fluent changed, the target value y
is set to 1, otherwise it is set to 0. Then updateClassifiers
is called for each fluent node.

In updateClassifiers , classifiers which match p(m) are
trained, and new classifiers may be instantiated if neces-
sary. Recall that in principle there is one classifier for ev-
ery possible fluent, each initially predicting no change to
the fluent. ’No-change’ classifiers are not actually instan-
tiated since no prediction function is needed. During train-
ing, updateClassifiers must decide which classifiers to up-
date, i.e., first, whether to instantiate a classifier, and second,
which classifier(s) to train. There is also a secondary goal of
minimising the number of instantiated classifiers to keep the
calculation tractable.

Thus given any p(m) we first seek classifiers which pre-
dict for p(m) and then update them with the training exam-
ple (x, y). A classifier predicts for p(m) if it is labelled with
p(m) (an exact match) or labelled with p(m′) where m′ is
equal to or more general than m (a subset match). For ex-
ample, if q({x : a(x) ∧ b(x)}) is a unary predicate then

Algorithm 1 Training

Require: training egs (x1, a1, δ1), ..., (xn, an, δn) ∈ X
Ensure: trained classifiers

1: Ca,p := ∅ ∀a ∈ A,∀p ∈ P
2: for all (x, a, δ) ∈ X do
3: for all p(m) ∈ fluentNodes(x) do
4: y := isFluentInDelta(p(m), δ)
5: Ca,p := updateClassifiers(x, y,m,Ca,p)

function updateClassifiers(state graph x, target y, deictic
terms m, set of classifiers C)

1: exactMatch := false; intersectMatches := ∅
2: for all c ∈ C do
3: if subsetMatch(c,m) then
4: call train(c, x, y)
5: call updateReliability(c)
6: if exactMatch(c,m) then
7: exactMatch := true
8: else if intersectMatch(c,m) then
9: intersectMatches := intersectMatches ∪ {c}

10: if (y 6= 0) ∧ (exactMatch = false) then
11: C := C∪createClassifiers(x, intersectMatches,m)
12: return C

q({x : a(x)}) is more general, and so whenever the for-
mer changes, so will the latter. Thus whenever we update
cq({x:a(x)∧b(x)}) we must also update cq({x:a(x)}). Formally,
we define that if classifier c predicts change for p(n):
• exactMatch(c,m) when n = m;
• subsetMatch(c,m) if the i-th term in n is a subset of the
i-th term in m ∀i;

Any classifier c ∈ Ca,p for which subsetMatch(c,m) holds
is trained on the training example (x, y), and a measure of
its reliability updated (see below).

Next we consider whether any classifiers should be instan-
tiated. There are two cases where instantiation is required.
If there was no exactly matching classifier for p(m) and
in our training example p(m) changed, then cp(m) should
be instantiated. If p(m) did not change then the original
‘no-change’ classifier is still correct. Additionally, the de-
ictic terms seen in training examples may be more specific
than the underlying rules. For example if a and b are de-
ictic terms we may only ever see changes to p(a, arg1) or
p(b, arg1) but the true change could be to p(a ∩ b, arg1).
To predict change to the correct set of fluents we therefore
need to consider more general deictic terms, and so when-
ever a new classifier is instantiated, classifiers for tuples of
more general deictic terms are also instantiated. However, it
is undesirable to add a classifier for every possible tuple, so
only those supported by the data are added. These are cases
where the deictic terms of p(m) intersect with deictic terms
of p(n) already seen in the data. Such p(n) can be found by
considering the terms of previously instantiated classifiers.

Formally, if classifier c predicts change for p(n):
intersectMatch(c,m) if the i-th term in n intersects the i-th
term in m ∀i. A tally is kept of exact matches and intersect
matches for p(m), and if cp(m) in instantiated, so are classi-
fiers for all the intersecting cases (createClassifiers).

Algorithm 2 Prediction

Require: Unlabelled instance (x, a), model parameters
Ca,p

Ensure: Prediction δ
1: δ = ∅
2: for all p(m) ∈ fluentNodes(x) do
3: if getPrediction(Ca,p, x,m) = 1 then
4: δ = δ ∪ {p(m)}

function getPrediction(set of classifiers C, state graph x,
deictic terms m)

1: r := 0, y := 0
2: for all c ∈ C do
3: if subsetMatch(c,m) and r < getReliability(c)

then
4: y := predict(c, x)
5: r := getReliability(c)
6: return y

Reliability and Prediction

The algorithm maintains a reliability score for each classi-
fier (updateReliability), used during prediction to select the
best classifier. The reliability of a classifier is calculated as
the fraction of predictions made which were correct during
training. We also maintain the null reliability, the reliability
which would have been achieved if this classifier had always
predicted no change. The null reliability score is thus the
fraction of training examples where there was no change.
In noisy situations, the null reliability may be higher than
the classifier reliability, indicating that many training exam-
ples were noisy. In this case, predicting no change gives
better results than using the classifier’s predictions (on the
training set). During prediction, getReliability returns ei-
ther the classifier reliability or the null reliability, whichever
is higher. If the null reliability is higher predict will always
predict no change, instead of the classifier’s prediction. (Ad-
ditionally, although not used here, low reliability classifiers
can be deleted if the number of classifiers grows too large.)

At prediction, given a test example x, each fluent node
p(m) of x is considered in turn and a search for matching
classifiers is performed. If no classifiers are found then the
model predicts no change for the fluent p(m). If exactly one
classifier is found then its prediction is used, and if there are
multiple matching classifiers, the classifier with the highest
reliability score is used.

Learning planning operators

Once the classifiers are trained, planning operators can be
derived using the approach of Mourão et al. (2012). First,
rules are extracted from individual classifiers. Since each
voted perceptron classifier predicts change to a single flu-
ent, this results in a set of candidate preconditions for each
candidate effect. Second, the candidate preconditions and
effects are combined via a heuristic merging process to pro-
duce planning operators. These steps are outlined below.

Algorithm 3 Rule extraction

Require: Positive support vectors SV +

Ensure: Rules R = {rulev : v ∈ SV +}
1: for v ∈ SV + do
2: child := v
3: while child only covers +ve training examples do
4: parent := child
5: for each fluent node in parent do
6: flip node to its negation and calculate weight
7: child := child whose parents have least weight dif-

ference
8: rulev := parent

Extracting rules from individual classifiers
Extracting rules from individual classifiers in the graphical
case is a straightforward reapplication of the approach used
for STRIPS vectors (Mourão et al., 2012). A key point is
that the decision function of the voted perceptron is a func-
tion of the set of support vectors identified during learning,
where the set of support vectors is some subset of the set of
training examples.2

Rules are extracted from a voted perceptron with kernelK
and support vectors SV = SV +∪SV −, where SV + (SV −)
is the set of support vectors whose predicted values are 1
(−1). Value 1 means the corresponding fluent changes, and
−1 means there is no change. The positive support vectors
are each instances of some rule learnt by the perceptron, and
so are used to “seed” the search for rules. The extraction
process aims to identify and remove all irrelevant nodes in
each support vector, using the voted perceptron’s prediction
calculation to determine which nodes to remove.

We define the weight of any possible state graph x to be
the value calculated by the voted perceptron’s prediction cal-
culation before thresholding. The basic intuition behind the
rule extraction process is that more discriminative features
will contribute more to the weight of an example. Thus the
rule extraction process operates by taking each positive sup-
port vector and repeatedly deleting the fluent node which
contributes least to the weight until some stopping criterion
is satisfied. This leaves the most discriminative features un-
derlying the example, which can be used to form a precon-
dition. This algorithm is detailed in Algorithm 3.

Combining rules into planning operators
Finally we combine the rule fragments ((precondition,effect)
pairs) resulting from the rule extraction process into
planning operators. For each action the process de-
rives a rule (grule, erule) from the set of rules R =
{(g1, e1), . . . , (gr, er)} produced by rule extraction, ordered
by decreasing weight. The process first initialises grule to
the highest weighted precondition in R and sets erule = ∅.
The rule is then refined by combining it with each of the re-
maining per-fluent rules in turn, in order of highest weight.

Combining rules involves merging the graphs encoding
the preconditions, as well as the markers encoding the ef-
fects, into a new candidate rule. After merging, a simplifica-

2Note that support vectors are therefore state graphs.

tion step removes unnecessary fluents in the preconditions
and effects by testing the coverage and weight of the can-
didate rule without each new fluent. Then the new rule is
accepted if its F-score on the training set is within some tol-
erance of the F-score of the previous rule on the training set.
Lastly the rule is translated into PDDL or some variant.

Experiments
We evaluate our approach by learning planning operators in
a real robot domain, whose underlying model is defined at
the knowledge level. We compare the F-scores for predic-
tions made by both the learnt planning operators and un-
derlying classification model with predictions made by the
“gold-standard” domain description: the original specifica-
tion of the behaviour of the robot.

The data used for training and testing was generated from
logs of the JAMES robot bartender system, recorded dur-
ing a drink ordering scenario in which human subjects were
asked to order drinks from the robot. State descriptions
were generated by the system’s state manager, based on real-
world sensor data (vision and automatic speech recognition),
interleaved with the names of planned actions generated for
the goal of serving all agents. In total, 93 interactions were
recorded for 31 human users. Each interaction involves ap-
proximately 5-10 robot actions.

The robot bartender domain description is at the
knowledge-level, and several actions require functions in
their definitions. One action is of particular interest:
ask-drink, where the robot asks a human customer for
their order. If successful, ask-drink has the effect that
the robot now knows the value of the customer’s requests
(Kv(request ?x)). Although ask-drink will also re-
sult in the robot knowing the actual drink requested (e.g.
K(request(?x) = water)) this is only useful at run-
time, whereas Kv(request ?x) is needed at plan-time.
Furthermore, because ask-drink involves accurately in-
terpreting the user’s chosen drink, it is particularly prone to
failure. Therefore it is of additional interest to investigate
how well this action is learnt.

Results
A ten-fold cross-validation procedure was used to test the
performance of the learning model, and was repeated across
different numbers of training examples to assess how many
examples would be needed to learn an adequate model. The
performance was measured by considering the fluents which
the model predicted would change versus the fluents which
did change, and calculating the F-score, the harmonic mean
of precision and recall (true positives/predicted changes and
true positives/actual changes, respectively).

The results were compared to the predictions made by
the gold-standard model. In Figure 4 we show F-scores for
action predictions made by the classifiers; by rules derived
from the classifiers; and by the gold-standard model on data
from the robot experiment. As can be seen in the graph,
the rules extracted from the classifiers perform similarly to
making predictions directly with the classifiers, but with the
added benefit of providing action descriptions which can

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Number of training examples

F-
sc

or
e

10-fold cross-validation results

Classifier predictions
Rule predictions
Gold standard predictions

Figure 4: Results from the robot experiment: Mean F-scores
from ten-fold cross-validation for predictions from the clas-
sifiers, extracted rules and gold-standard action descriptions.

be used for planning. The F-scores for the classifiers and
extracted rules are not significantly different from the F-
score of the gold standard rules (noise in the domain means
that even the gold-standard rules cannot always predict the
changes which will or will not occur).

An example of an action description learnt for
ask-drink with 200 training examples is given below.
Fluents marked in italic do not exist in the gold standard do-
main description. Some fluents are also missing, all relating
to preconditions involving other agents which we currently
do not represent. However, the crucial Kv(request ?x)
effect is learnt.
(:action ASK-DRINK

:parameters (?x)

:precondition (AND K(transHistory RobotAckAttention ?x)

K(¬transHistory AgentOrdered ?x)

¬Kv(request ?x) K(closeToBar ?x) K(faceseen ?x))

:effect (AND (Kv(request ?x)

K(transHistory AgentOrdered ?x))))

Conclusions and Future Work
Our results show that we can learn knowledge-level planning
operators in a noisy robot domain. The approach we use
depends on decomposing the learning problem into many
small classification problems, using the deictic scope as-
sumption to constrain the problem. Deictic reference also
plays an important role in defining the representation for
functions and in the similarity calculations made by the clas-
sifiers. In future work we plan to test our approach in other
real or simulated knowledge-level domains. Another step
will be to use the learnt planning operators in an automated
knowledge-level planning system such as PKS (Petrick and
Bacchus, 2002, 2004).

Acknowledgements This work was partially funded by the
European Commission through the EU Cognitive Systems and
Robotics projects Xperience (FP7-ICT-270273) and JAMES (FP7-
ICT-270435).

References
Agre, P. E. and Chapman, D. (1987). Pengi: An implemen-

tation of a theory of activity. In AAAI, pages 268–272.
Amir, E. and Chang, A. (2008). Learning partially observ-

able deterministic action models. JAIR, 33, 349–402.
Benson, S. S. (1996). Learning Action Models for Reactive

Autonomous Agents. Ph.D. thesis, Stanford University.
Bertoli, P., Cimatti, A., Roveri, M., and Traverso, P. (2001).

Planning in nondeterministic domains under partial ob-
servability via symbolic model checking. In Proc. of IJ-
CAI 2001, pages 473–478.

Bonet, B. and Geffner, H. (2000). Planning with incomplete
information as heuristic search in belief space. In Proc. of
AIPS 2000, pages 52–61.

Demolombe, R. and Pozos Parra, M. P. (2000). A simple
and tractable extension of situation calculus to epistemic
logic. In Proc. of ISMIS 2000, pages 515–524.

Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artif. Intell., 2, 189–208.

Freund, Y. and Schapire, R. (1999). Large margin classifica-
tion using the perceptron algorithm. Machine Learning,
37, 277–96.

Gärtner, T., Flach, P., and Wrobel, S. (2003). On graph ker-
nels: Hardness results and efficient alternatives. In Proc.
of COLT 2003, pages 129–143.

Halbritter, F. and Geibel, P. (2007). Learning models of re-
lational MDPs using graph kernels. In Proc. of MICAI
2007, pages 409–419.

Khardon, R. and Servedio, R. A. (2005). Maximum margin
algorithms with Boolean kernels. JMLR, 6, 1405–1429.

Khardon, R., Roth, D., and Servedio, R. A. (2005). Effi-
ciency versus convergence of Boolean kernels for on-line
learning algorithms. JAIR, 24, 341–356.

Mourão, K., Petrick, R. P. A., and Steedman, M. (2009).
Learning action effects in partially observable domains
(1). In Proc. of ICAPS 2009 Workshop on Planning and
Learning, pages 15–22.

Mourão, K., Petrick, R. P. A., and Steedman, M. (2010).
Learning action effects in partially observable domains
(2). In Proc. of ECAI 2010, pages 973–974.

Mourão, K., Zettlemoyer, L., Petrick, R. P. A., and Steed-
man, M. (2012). Learning STRIPS operators from noisy
and incomplete observations. In Proc. of UAI 2012, pages
614–623.

Newell, A. (1982). The knowledge level. Artif. Intell., 18(1),
87–127.

Palacios, H. and Geffner, H. (2009). Compiling uncertainty
away in conformant planning problems with bounded
width. JAIR, 35(1), 623–675.

Pasula, H., Zettlemoyer, L. S., and Kaelbling, L. P. (2007).
Learning symbolic models of stochastic domains. JAIR,
29, 309–352.

Petrick, R. P. A. and Bacchus, F. (2002). A knowledge-
based approach to planning with incomplete information
and sensing. In Proc. of AIPS 2002, pages 212–221.

Petrick, R. P. A. and Bacchus, F. (2004). Extending the
knowledge-based approach to planning with incomplete
information and sensing. In Proc. of ICAPS 2004, pages
2–11.

Petrick, R. P. A. and Foster, M. E. (2013). Planning for
social interaction in a robot bartender domain. In Proc.
of ICAPS 2013, Special Track on Novel Applications. To
appear.

Petrick, R. P. A. and Levesque, H. (2002). Knowledge equiv-
alence in combined action theories. In Proc. of KR 2002,
pages 303–314.

Rodrigues, C., Gérard, P., and Rouveirol, C. (2010). Incre-
mental learning of relational action models in noisy envi-
ronments. In Proc. of ILP 2010, pages 206–213.

Sadohara, K. (2001). Learning of Boolean functions using
support vector machines. In Proc. of ALT , pages 106–118.

Shervashidze, N., Schweitzer, P., van Leeuwen, E. J.,
Mehlhorn, K., and Borgwardt, K. M. (2011). Weisfeiler-
Lehman graph kernels. JMLR, 12, 2539–2561.

Soutchanski, M. (2001). A correspondence between two dif-
ferent solutions to the projection task with sensing. In
Commonsense 2001.

Weld, D. S., Anderson, C. R., and Smith, D. E. (1998). Ex-
tending graphplan to handle uncertainty and sensing ac-
tions. In Proc. of AAAI 1998, pages 897–904.

Yang, Q., Wu, K., and Jiang, Y. (2007). Learning action
models from plan examples using weighted MAX-SAT.
Artif. Intell., 171(2-3), 107–143.

Zhuo, H. H., Yang, Q., Hu, D. H., and Li, L. (2010). Learn-
ing complex action models with quantifiers and logical
implications. Artif. Intell., 174(18), 1540–1569.

AN APPLICATION PROGRAMMING INTERFACE TO
HIGH-LEVEL PLANNING

Ronald P. A. Petrick
University of Edinburgh

rpetrick@inf.ed.ac.uk

2013-12-18

Internal technical report – not to be distributed publicly

Abstract

This report describes part of UEDIN’s contribution to the ongoing work of high-level planning in the
Xperience project. In particular, this document reports on the current state of an application program-
ming interface (API) which provides an abstract specification of common planning activities: planner
configuration, domain definition, plan generation, and plan iteration. Although this interface is currently
implemented using PKS as its backend planning system, it is designed to be generic and any planner
which supports the API can be used in its place as an alternative backend. This document presents a
first snapshot of the API and its functions, which may be updated and extended in the future.

Revision history

2013-12-18 : An initial report presenting a snapshot of the current application programming in-
terface (API) for high-level planning, defining a set of abstract planning services
that are implemented by an underlying planning system (currently PKS).

Contents

1 Introduction 3

2 An Application Programming Interface (API) for planning services 4

2.1 Properties and states . 4

2.2 Plan steps and plan sequences . 4

2.3 Planner configuration and debugging . 5

2.4 Domain configuration . 5

2.5 Plan generation and plan iteration . 6

3 Implementation 7

4 Future directions and final notes 9

An Application Programming Interface to High-Level Planning 2

1 Introduction

In this document we focus on the state of high-level planning work by UEDIN in the Xpe-
rience project. This work forms part of WP3 (Generative Mechanisms) and, in particular,
WP3.2 (Structural Bootstrapping for Planning). The present report primarily addresses
Task 3.2.3 (Plan structure and execution) and Task 3.2.4 (Extended reasoning about
object and indexical knowledge) and presents a snapshot of the current application pro-
gramming interface (API) that is used to integrate high-level planning (currently the PKS
planner) with robot platforms in the Xperience project (and beyond). This work is also
closely related to WP4 (Interaction and Communication) and the project-wide integration
work and demonstrations of WP5 (System Integration).

High-level planning capabilities in the Xperience project are currently supplied by the
PKS planner [Petrick and Bacchus, 2002, 2004], which UEDIN is extending for use in
robotic and linguistic domains as part of WP3 (with some connections to WP4). PKS
is a state-of-the-art knowledge-level planner that constructs plans in the presence of
incomplete information. Unlike traditional planners, PKS builds plans at the “knowledge
level”, by representing and reasoning about how the planner’s knowledge state changes
during plan generation. Actions are specified in a STRIPS-like [Fikes and Nilsson, 1971]
manner in terms of action preconditions (state properties that must be true before an
action can be executed) and action effects (the changes the action makes to proper-
ties of the state). PKS is able to construct conditional plans with sensing actions, and
supports numerical reasoning, run-time variables [Etzioni et al., 1992], and features like
functions that arise in real-world planning scenarios.

Like most AI planners, PKS operates best in discrete, symbolic state spaces described
using logical languages. As a result, work that addresses the problem of integrating
planning on real-world robot platforms often centres around the problem of represen-
tation, and how to abstract the capabilities of a robot and its working environment so
that it can be put in a suitable form for use by a goal-directed planner. Integration also
requires the ability to communicate information between system components. Thus, the
design of a planning system often has to take into consideration external concerns, to
ensure proper interoperability with modules that aren’t traditionally considered in pure
theoretical planning settings.

At a purely programming level, the task of integrating the planner on a robot platform (or
other complex system) relies on providing a suitable interface to the underlying planning
capabilities that are required. This involves providing appropriate methods for manipu-
lating domain representations, to improve our ability to model real-world problems at the
planning level, as well as functions for controlling certain aspects of the the plan gen-
eration process itself (e.g., selecting goals, generation strategies, or planner-specific
settings). Moreover, functions that allow plans to be manipulated as first-class entities
are useful when considering multiple behaviour strategies, or when replanning is used
as a means of recovery from unexpected changes in the world.

Overall, the set of functions defined by this API can be thought of as an interface to a se-
ries of abstract planning services which are ultimately implemented by some underlying
“black box” planning system. As with other types of complex software components, such
an interface removes the need for the application programmer to know about how such
services are actually implemented within the black box, but instead allows the designed
to build more complex modules that simply make use of these services. As a result, this
interface is designed to be generic and is not tied to any one platform (or project).

In the remainder of this document we will present a brief overview of the API we have
developed for providing a specification of common planning activities, which we believe
should aid in the task of integrating high-level planning with robot platforms.

An Application Programming Interface to High-Level Planning 3

2 An Application Programming Interface (API) for planning services

The ability to reason and plan is essential for an intelligent agent acting in a dynamic
and incompletely known world—such as the robot scenarios we consider on Xperience.
Achieving goals under such conditions often requires complex deliberation that cannot
easily be achieved by simply reacting to a situation without considering the long term
consequences of a course of action.

In order to facilitate the task of providing planning services to more complex systems
(e.g., robot platforms), we have created an application programming interface (API),
which abstracts many common planning tasks into a series of functions which can be
called by clients that require such services. The current set of functions is shown in
Figure 1, which groups the services into a variety of categories, and also provides some
additional support structures.1 We discuss the main components of the interface below.

2.1 Properties and states

A structure called StateProperty defines the abstract notion of a domain property
(or feature, fluent, relation, function, etc.) as an entity with a name, a list of arguments
args, a sign, and a value. This definition is meant to accommodate both relational
and functional entitles which commonly arise in planning states. For instance, a relation
like ¬F (a) could be encoded as:

name : F
args[0] : a
sign : false
value : (unused),

while a function mapping like f(a) = c could be encoded as:

name : f
args[0] : a
sign : true
value : c.

A state can be thought of as simply a list of StateProperty definitions, denoted in the
API as StatePropertyList. Note that this definition supports the standard STRIPS-
style view of states as collections of instantiated properties, and is consistent with many
types of planning approaches. It can also be used to encode the notion of an observed
state, as a collection of properties as returned from a set of sensors.

2.2 Plan steps and plan sequences

A PlanStep can be thought of as a particular instantiated action in a plan, which is
defined by a structure specifying its name, its type, and a list of parameters, args.
For instance, an instantiated action pickup(blockA, table, lefthand) (pick up
blockA from the table using the lefthand), which denotes a type of manipulation
action, could be encoded in this structure as:

name : pickup
type : manipulation
args[0] : blockA
args[1] : table
args[2] : lefthand.

The type field is not often used by many traditional “linear” (i.e., non-hierarchical) plan-
ners, but may provide useful heuristic information to an execution system at run time.
1 The API is presented in a code-like syntax which is similar to C++. We will not focus on the precise form of

the implementation in this report.

An Application Programming Interface to High-Level Planning 4

A PlanStepList is simply a sequence of PlanSteps (i.e., instantiated actions) which
can also be thought of as a simple linear plan, of the form that most classical planners
are able to generate. This allows the possibility of providing a generic container for
returning plans to external modules that does not rely on the particular plan encoding
used by the underlying planning system. More complex plans (e.g., contingent plans
involving branches, or programs involving loops) could be encoded using standard con-
tainers (e.g., trees, maps, etc.) found in most modern programming languages (e.g.,
STL containers in C++).

2.3 Planner configuration and debugging

The first set of functions in the planning API provide a planner-independent way of
configuring the underlying planning system, and providing access to certain features
needed for debugging:

• reset(): This function resets the planner to its initial state.

• getPlannerProperty(string s): This function returns the state of the plan-
ner property variable s. The precise set of accessible properties is defined by the
underlying planner.

• setPlannerProperty(string s, string t): This function sets the state
of planner property s to value t. The precise set of accessible properties and
associated values is defined by the underlying planner.

• getInternalStructure(string s): This function is a hook to allow internal
planning structures to be queried by external modules. This is primarily included
to provide access to internal debugging information.

In general, the implementation of these functions relies on such features being sup-
ported by the underlying planner. Since many planners offer such functionality already,
these functions simply standardise the interface.

2.4 Domain configuration

The next set of functions provide the main methods for defining planning domain models
to the planning system. These functions provide support for loading predefined models,
or incrementally augmenting existing models at runtime:

• clearDomain(), clearActions(), clearProblems(), clearStates():
These functions direct the planner to delete any domain (similarly, actions, prob-
lems, or states) that are currently defined.

• loadDomain(string s): This function directs the planner to load a domain
from the specified file/URL s. The actual format of the domain is specified by the
backend planner.

• loadSymbols(string s): This function directs the planner to load a set of
symbol definitions from the specified file/URL s. Symbol definitions typically in-
volve a specification of the allowable objects, types, and properties in a planning
domain.

• loadActions(string s): This function directs the planner to load a set of
action definitions from the specified file/URL s. Actions are defined in a language
supported by the backend planner.

• loadProblems(string s): This function directs the planner to load a set of
problem definitions from the specified file/URL s. A problem definition typically
consists of initial state and goal specifications, but may also contain additional
problem constraints or control information. Again, the precise form of a planning
problem is specified by the backend planner.

An Application Programming Interface to High-Level Planning 5

• loadPlanState(string s): This function allows the planner to load a cache
a state definition from the specified file/URL s. Such a state can be used by the
planner as a starting state, or a possible recovery state for replanning purposes.
The only hard requirement this function imposes on the backend planner is that
this state be cached for future use.

• loadObservedState(string s): This function is similar to loadPlanState
except the loaded state is additionally tagged as being an observed state. The
only hard requirement this function imposes on the backend planner is that this
state be cached for future use.

• defineDomain(string s), ..., defineObservedState(string s): These
functions are analogous to the functions loadDomain(string s), ...,
loadObservedState(string s), as defined above, except rather than load-
ing definitions from a specified file or URL, the definitions are directly included in
the parameter string s. These functions allow all domain definitions to be per-
formed directly through function calls, without requiring access to external files.

• definePlanStateFromList(StatePropertyList s),
defineObservedStateFromList(StatePropertyList s): These functions
are similar to their counterparts definePlanState and defineObservedState,
except rather than specifying a state definition in a string s, it is defined using the
state structure StatepropertyList, as described above.

One of the important ideas behind these functions is that they offer the possibility of
specifying domains to the planner incrementally, using function calls alone, rather than
specifying a single monolithic domain file to the planner as a single entity, as is usual
for many off-the-shelf planners from the planning community. This means that an initial
domain could be specified and then later revised, for instance due to additional infor-
mation discovered by an external learning process (e.g., new domain objects, revised
action descriptions, additional properties corresponding to new capabilities of the robot,
etc.). This is a potentially powerful mechanism, however, it pushes the problem of how a
planner should react to a change in the planning domain onto the planner itself. Concep-
tually, this may present problems for the underlying planner, especially in the presence
of partially built plans, and this API offers no solution to this problem.

2.5 Plan generation and plan iteration

The final set of functions defined in the API specify methods for controlling various
aspects of the plan generation process, and for iterating through generated plans:

• buildPlan(): This function directs the planner to generate a plan using the
current settings, domain, and default planning problem.

• clearPlan(): This function directs the planner to clear the current plan in its
memory, if one exists.

• getCurrentPlan(): This function directs the planner to return the current plan
as a string. This function is normally used to direct the planner to return a plan in
its native format.

• getCurrentPlanAsList(): This function directs the planner to return the cur-
rent plan as a PlanStepList structure. As a result, this function currently only
supports plans that can be returned as a linear sequence of actions.

• getNextAction(): This function directs the planner to return the next action in
a plan, as a PlanStep structure.

• getNextActionUsingControlInfo(): This function is similar to getNextAction
except it allows for the specification of additional control information in the parame-

An Application Programming Interface to High-Level Planning 6

ter string s. This information is intended to help resolve plan ambiguities concern-
ing execution decisions (e.g., which branch of a plan should be followed, whether
a loop termination decision has been achieved). The precise form of the control
information is planner dependent.

• isNextActionEndOfPlan(): This function determines whether we have reached
the end of the plan during plan iteration.

• isPlanDefined(): This function returns a status update on whether or not a
valid plan currently exists.

• setProblem(string s): This function informs the planner that it should work
with the planning problem specified by the string s. The string may specify a label
to a previously defined problem, or contain the definition of a new problem.

• setProblemGoal(string s): This function informs the planner that the cur-
rent goal condition should be replaced by the goal specified by the string s. The
problem is otherwise unchanged.

The idea behind many of these functions is to extend a degree of control over the plan
generation and execution processes, as necessary, to components outside the planner
itself, to the extent that simple plan execution monitoring activities can be supported
without reliance on the planner. As a result, a client using these services can determine
whether to generate a plan, and can iteratively ask for individual plan steps, advancing
the plan one step at a time. Entire plans can also be processed by external processes
in their entirety. The functions also support run-time updates to certain aspects of the
planning problem, such as goal change.

3 Implementation

This document is not meant to provide precise details concerning the implementation
of the API, however, we note the following design decisions which affect our current
implementation:

• Internet Communications Engine (ICE): The API in Figure 1 is implemented us-
ing the Internet Communications Engine (http://www.zeroc.com/ice.html),
which provides an object-oriented middleware for building distributed applications.
The default implementation using the PKS planner provides a planning server
which allows clients to to access the services provided by the API.

• Support for multiple backends: The current implementation of the planning API
was adapted from the interface to the PKS planner, but has been abstracted to
avoid PKS-specific representations and syntax. API functions connect the ICE
layer to a version of PKS implemented as a C++ library, which is linked to form
the plan server. However, there is no strict requirement that PKS must be used as
the planning backend, and any planner which is able to implement the API can be
used in its place as an alternative backend.

• Backend-dependent syntax: Many of the functions in our API require specifying
a file or a definition for a particular aspect of the planning domain (e.g., actions,
problems, symbols, etc.). The precise syntactic form of these definitions is left
to the backend planner. As a result, this means that the content (parameters) of
certain function calls may change from backend to backend. However, this also
means that all planning domain entities do not need to be standardised in order
to support the API. This functionality may change in the future as we reconsider
certain aspects of the interface.

More details of the implementation may be included in future versions of this report.

An Application Programming Interface to High-Level Planning 7

1 / / Abs t rac t p roper ty d e f i n i t i o n
2 struct Sta teProper ty {
3 s t r i n g name ;
4 S t r i n g L i s t args ;
5 bool s ign ;
6 s t r i n g value ;
7 } ;
8
9 / / Abs t rac t s t a t e d e f i n i t i o n

10 sequence<StateProper ty> S t a t e P r o p e r t y L i s t ;
11
12 / / Abs t rac t plan step d e f i n i t i o n
13 struct PlanStep {
14 s t r i n g name ;
15 s t r i n g type ;
16 S t r i n g L i s t args ;
17 } ;
18
19 / / Abs t rac t plan sequence d e f i n i t i o n
20 sequence<PlanStep> PlanStepL is t ;
21
22 i n t e r f a c e P lanne rCon t ro l l e r {
23 / / Con f i gu ra t i on and debugging
24 void rese t () ;
25 s t r i n g getP lannerProper ty (s t r i n g s) ;
26 bool setP lannerProper ty (s t r i n g s , s t r i n g t) ;
27 s t r i n g g e t I n t e r n a l S t r u c t u r e (s t r i n g s) ;
28
29 / / Domain c o n f i g u r a t i o n
30 void clearDomain () ;
31 void c lea rAc t i ons () ;
32 void clearProblems () ;
33 void c lea rS ta tes () ;
34
35 bool loadDomain (s t r i n g s) ;
36 bool loadSymbols (s t r i n g s) ;
37 bool l oadAct ions (s t r i n g s) ;
38 bool loadProblems (s t r i n g s) ;
39 bool loadPlanState (s t r i n g s) ;
40 bool loadObservedState (s t r i n g s) ;
41
42 bool defineDomain (s t r i n g s) ;
43 bool defineSymbols (s t r i n g s) ;
44 bool de f ineAc t ions (s t r i n g s) ;
45 bool def ineProblems (s t r i n g s) ;
46 bool def ineP lanSta te (s t r i n g s) ;
47 bool def ineObservedState (s t r i n g s) ;
48 bool de f i neP lanS ta teF roml i s t (S t a t e P r o p e r t y L i s t s) ;
49 bool def ineObservedStateFromList (S t a t e P r o p e r t y L i s t s) ;
50
51 / / Plan generat ion and plan i t e r a t i o n
52 bool bu i ldP lan () ;
53 void c learP lan () ;
54 s t r i n g getCurrentPlan () ;
55 P lanStepL is t ge tCur ren tP lanAsL is t () ;
56 PlanStep getNextAct ion () ;
57 PlanStep ge tNex tAc t ionUs ingCont ro l In fo (s t r i n g s) ;
58 bool isNextAct ionEndOfPlan () ;
59 bool i sP lanDef ined () ;
60 bool setProblem (s t r i n g s) ;
61 bool setProblemGoal (s t r i n g s) ;
62 } ;

Figure 1: An API for high-level planning services

An Application Programming Interface to High-Level Planning 8

4 Future directions and final notes

In this section we briefly note some directions for this work that are currently under
investigation. Some of these tasks are at a very early stage and may not be fully active
until a later stage of the project.

• This report is not meant to provide comprehensive documentation for the planning
API or ICE but, instead, is meant to provide a common basis for future discussions
concerning this interface, especially with regard to integration activities involving
alternative (i.e., non-PKS) planners. (Code-level documentation may be provided
at a later time.) It is important to note that this interface evolved naturally from the
pre-existing PKS interface and, as a result, will continue to be used with PKS in
some form, regardless of any future project-specific decisions that are taken.

• The API we presented is a snapshot of our current implementation and is subject
to change. In particular, as we attempt to integrate new planners using this inter-
face, subtle changes may be required to accommodate new features, alternative
state representations, or different action models. However, we note that the exist-
ing interface is more than suitable for the needs of PKS and has been success fully
used to integrate the planner on multiple robot platforms, including some beyond
the Xperience project. In fact, one of the strengths of the current API is that it is
not tied to any one project or robot platform; instead it simply provides the abstract
planning interface from which one could build the necessary interfaces to a range
of (robot) platforms. Thus, it is important to note that extra layers of abstraction
may be needed to properly integrate a planner on a specific robot platform: this
API is meant to address the problem of abstracting planning features, which is a
necessary first step towards wider integration as part of a complex system.

• The current API does not include any direct references to probabilistic representa-
tions, temporal constraints, or cost-based encodings. We are exploring extensions
to include these ideas as native concepts in our API.

• Unlike many off-the-shelf planners, our API doesn’t rely on text files as the main
interface to the planner. As a proof-of-concept example of the genericity of our
interface, we plan to adapt the interface to a PDDL-based planner, to show it can
work with our interface. As a first step, we may address this problem by writing
a new interface layer that works with ordinary PDDL files, before adapting the
interface to the planner directly.

• The current API provides limited features for iterating through plans, in a manner
that is external to a plan execution monitor. We are considering extensions to this
interface that provide the necessary functionality for processing different types of
plans (linear, branching, looping), so that an external controller could be built,
using these functions.

• One part of the API that isn’t (currently) constrained, is the content of many of
the domain configuration functions, which simply require a string as a parame-
ter. Since the precise syntactic definition of certain planning concepts often differs
greatly between planners, this interface offers the possibility of each planner inter-
preting how a domain element should be defined, given the backend planner. This
situation isn’t completely ideal, however, and we are in the process of designing a
more well-structured interface for these operations.

Acknowledgements

Special thanks go to Nils Adermann whose ideas helped shape this API. Discussions
with Nils helped motivate the need for methods that support incremental domain defini-
tion, which lead to interesting questions (which haven’t completely been answered yet)
on how best a planner should work with partially-defined domain models.

An Application Programming Interface to High-Level Planning 9

References
O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, and M. Williamson. An approach

to planning with incomplete information. In W. Swartout, B. Nebel, and C. Rich, ed-
itors, Proceedings of the Third International Conference on Principles of Knowledge
Representation and Reasoning (KR-92), pages 115–125, Cambridge, MA, Oct. 1992.
Morgan Kaufmann Publishers.

R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

R. P. A. Petrick and F. Bacchus. A knowledge-based approach to planning with in-
complete information and sensing. In M. Ghallab, J. Hertzberg, and P. Traverso,
editors, Proceedings of the Sixth International Conference on Artificial Intelligence
Planning and Scheduling (AIPS-2002), pages 212–221, Menlo Park, CA, Apr. 2002.
AAAI Press.

R. P. A. Petrick and F. Bacchus. Extending the knowledge-based approach to planning
with incomplete information and sensing. In S. Zilberstein, J. Koehler, and S. Koenig,
editors, Proceedings of the International Conference on Automated Planning and
Scheduling (ICAPS-04), pages 2–11, Menlo Park, CA, June 2004. AAAI Press.

An Application Programming Interface to High-Level Planning 10

Approximate Reasoning with Numeric Fluents for Contingent Planning

Ronald P. A. Petrick
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, Scotland, UK
rpetrick@inf.ed.ac.uk

Abstract
We investigate the problem of reasoning about numeric
fluents in the presence of incomplete information, sens-
ing, and contingent plans. An interval-based represen-
tation is used to compactly represent sets of possible
values for a numeric fluent, as an approximation of the
true value of the fluent. We demonstrate how such in-
formation can be used to model uncertain sensors and
effectors, and show how such fluents form a type of
noisy run-time variable in plans. A proof-of-concept
implementation using the PKS (Planning with Knowl-
edge and Sensing) planner is given, with examples taken
from a simple robot domain.

Introduction and Motivation
An agent operating in a real-world domain often needs to do
so with incomplete information about the state of the world.
An agent with the ability to sense the world can also gather
information to generate plans with contingencies, allowing
it to reason about the outcome of sensed data at plan time.

One useful type of sensed information is numerical in-
formation, which is often required to build plans that work
with numeric state properties (e.g., the robot is 10 metres
from the wall), limited resources (e.g., ensure the robot has
enough fuel), numeric constraints (e.g., only grasp an ob-
ject if its radius is less than 10 cm), or arithmetic operations
(e.g., advancing the robot one step reduces its distance from
the wall by 1 metre). The importance of numerical reason-
ing in planning has been recognised with the inclusion of
numeric state variables in PDDL (Fox and Long 2003), and
in planners like MetricFF (Hoffmann 2003).

Reasoning about numerical information under conditions
of incomplete information is often problematic, however,
especially when planners use possible-world or belief state
representations. In such representations, the set of possible
values for an incompletely known state property is often ex-
plicitly represented, e.g., by a set of states, each of which
denotes a possible configuration of the actual world state. If
the value of a numeric fluent is unknown, then the belief state
must contain a state representing every possible mapping of
the fluent, which could be a potentially large (or even infi-
nite) set. Even when the range of possible values is small, the

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

number of required states can quickly grow. E.g., if a fluent
f could map to any natural number between 1 and 100, then
we require 100 states to capture f ’s possible mappings. The
state explosion resulting from large sets of mappings can be
computationally difficult for planners that must reason with
individual states to construct plans.

The problem of reasoning about knowledge and action
without possible worlds has been studied in languages like
the situation calculus (Demolombe and Pozos Parra 2000;
Soutchanski 2001; Liu and Levesque 2005; Petrick 2006;
Vassos and Levesque 2007). Many of these accounts model
restricted types of knowledge directly, rather than indirectly
inferring knowledge from sets of worlds, trading representa-
tional expressiveness for tractable reasoning. One represen-
tation for modelling uncertain numerical information with-
out possible worlds uses the notion of interval-valued fluents
(Funge 1998). The idea is simple: instead of representing
each possible mapping by a separate state, a single interval
mapping is used, where the endpoints of the interval indi-
cate the fluent’s range of possible values. Thus, a fluent f
that could map to values between 1 and 100 can be denoted
in interval-valued form as f = 〈1, 100〉.

Interval-valued numeric models have been previously in-
vestigated in planning contexts, e.g., for modelling time
as a resource (Edelkamp 2002; Frank and Jónsson 2003;
Laborie 2003). A similar representation to ours for bound-
ing uncertain numeric properties has also been proposed by
Poggioni, Milani, and Baioletti (2003). This idea also has
parallels to work on register models (van Eijck 2013).

In this paper, we explore numerical reasoning in the
context of incomplete information, sensing, and contingent
planning, which to the best of our knowledge has not been
previously explored. Our proof-of-concept demonstration of
this approach is implemented as a set of extensions to the
PKS planner (Petrick and Bacchus 2002; 2004). In par-
ticular, building on PKS’s existing ability to work with
limited numerical information (e.g., function (in)equalities
and arithmetic operations), we use interval-valued fluents to
provide a compact means of modelling noisy actions and
incomplete knowledge, without possible worlds or belief
states. We also introduce a mechanism for progressing cer-
tain types of noisy sensed information through physical ac-
tions, by treating it as a type of interval-valued “run-time
variable” (Etzioni et al. 1992). For instance, if the (noisy)

position of a robot is sensed and the robot then moves 2
steps forward, we should still be able to bound the robot’s
current location, even if the location isn’t explicitly known.
We illustrate these extensions with a set of example prob-
lems (described below), taken from a simple robot domain.

Planning with Knowledge and Sensing (PKS)
PKS (Planning with Knowledge and Sensing) is a contin-
gent planner that builds plans in the presence of incomplete
information and sensing actions (Petrick and Bacchus 2002;
2004). PKS works at the knowledge-level by reasoning about
how the planner’s knowledge state, rather than the world
state, changes due to action. PKS works with a restricted
subset of a first-order language, and a limited amount of
inference, allowing it to support a rich representation with
features such as functions and variables. This approach dif-
fers from planners that work with possible worlds models or
belief states. By working at the knowledge level, PKS does
not have to reason in terms of individual worlds. However,
as a trade-off, its restricted representation means that certain
types of knowledge cannot be directly modelled.

PKS is based on a generalisation of STRIPS (Fikes and
Nilsson 1971). In STRIPS, the state of the world is mod-
elled by a single database. Actions update this database and,
by doing so, update the planner’s world model. In PKS, the
planner’s knowledge state, rather than the world state, is
represented by a set of five databases, each of which mod-
els a particular type of knowledge. The contents of these
databases have a fixed, formal interpretation in a modal logic
of knowledge. Actions can modify any of the databases,
which has the effect of updating the planner’s knowledge
state. To ensure efficient inference, PKS restricts the type of
knowledge (especially disjunctions) that it can represent:
Kf : This database is like a STRIPS database except that
both positive and negative facts are permitted and the closed
world assumption is not applied. Kf is used for modelling
action effects that change the world. Kf can include any
ground literal `, where ` ∈ Kf means “the planner knows `.”
Kf can also contain known function (in)equality mappings.
Kw: This database models the plan-time effects of “binary”
sensing actions. φ ∈ Kw means that at plan time the plan-
ner either “knows φ or knows ¬φ,” and that at execution
time this disjunction will be resolved. In such cases we will
also say that the planner “knows whether φ.” Know-whether
knowledge is important since PKS can use such information
to construct conditional plans with branches (see below).
Kv: This database stores information about function values
that will become known at execution time. In particular, Kv

can model the plan-time effects of sensing actions that re-
turn constants, such as numeric values. Kv can contain any
unnested function term f , where f ∈ Kv means that at plan
time the planner “knows the value of f .” At execution time
the planner will have definite information about f ’s value.
As a result, PKS is able to use Kv terms as “run-time vari-
ables” (Etzioni et al. 1992) or placeholders in its plans.
Kx: This database models the planner’s “exclusive-or”
knowledge of literals, namely that the planner knows “ex-
actly one of a set of literals is true.” Entries in Kx have the

form (`1|`2| . . . |`n), where each `i is a ground literal. Such
formulae represent a particular type of disjunctive knowl-
edge that is common in many planning scenarios, namely
that “exactly one of the `i is true.”

LCW: This database stores the planner’s “local closed
world” information (Etzioni, Golden, and Weld 1994), i.e.,
instances where the planner has complete information about
the state of the world. We will not use LCW in this paper.

PKS’s databases can be inspected through a set of prim-
itive queries that ask simple questions about the planner’s
knowledge state, namely whether facts are (not) known to be
true, whether function values are (not) known, or if the plan-
ner “knows whether” certain properties are true or not. An
inference algorithm evaluates primitive queries by checking
the contents of the databases, taking into consideration the
interaction between different knowledge in the databases.

An action in PKS is modelled by a set of preconditions
that query the agent’s knowledge state, and a set of ef-
fects that update the state. Action preconditions are sim-
ply a list of primitive queries. Action effects are described
by a collection of STRIPS-style “add” and “delete” opera-
tions that modify the contents of individual databases. E.g.,
add(Kf , φ) adds φ to Kf , and del(Kw, φ) removes φ from
Kw. Actions can also have ADL-style context-dependent ef-
fects (Pednault 1989), and can use a form of quantification.

PKS constructs plans by reasoning about actions in a sim-
ple forward-chaining manner: if the preconditions of an ac-
tion are satisfied by the planner’s knowledge state, then the
action’s effects are applied to the state to produce a new
knowledge state. Planning then continues from the resulting
state. PKS can also build plans with branches, by consid-
ering the possible outcomes of its Kw knowledge. Planning
continues along each branch until it satisfies the goal condi-
tions, also specified as a list of primitive queries.

Functional Fluents, Intervals, and Knowledge
In this paper, we will only focus on functional fluents (here-
after, a function) that map to numerical values, rather than
general constants or terms. An interval-valued fluent (IVF) is
a function whose denotation is an interval of the form 〈u, v〉.
The values u and v are called the endpoints of the interval,
and indicate the bounds on a range of possible mappings
for the fluent. Since we are primarily interested in reasoning
about an agent’s (incomplete) knowledge during planning, a
mapping of the form f = 〈u, v〉 will mean that the value of
f is known to be in the interval 〈u, v〉. For instance, the IVF
mapping robotLoc = 〈5, 10〉might indicate that the distance
to a wall is known to be between 5 and 10 metres. If a fluent
maps to a point interval of the form 〈u, u〉, for some u, then
the mapping is certain and known to be equal to u.

Each IVF is associated with a particular number system
X that restricts the range of permissible intervals for a flu-
ent. Typically, the number system will be one of the stan-
dard mathematical number systems (e.g., the reals R, the
natural numbers N, the integers Z, etc.), extended to include
the points at infinity, ∞ and −∞. Given a number system
X, a mapping f = 〈u, v〉 is permitted, provided u, v ∈ X
and u ≤ v. For every number system X, the special interval

〈⊥,>〉 represents the maximal interval for that number sys-
tem. For instance, 〈⊥,>〉 def

= 〈−∞,∞〉 in R, however in
B, the binary number system consisting of the two elements
0 and 1, 〈⊥,>〉 def

= 〈0, 1〉. In terms of knowledge, a map-
ping of the form f = 〈⊥,>〉 means that the agent considers
every element of X as a possible denotation for f . In other
words, the value of f is completely unknown to the agent.
(For simplicity, we will assume that all interval-valued flu-
ents in this paper range over N unless otherwise indicated.)

It is often useful to interpret an IVF in terms of a pos-
sible worlds representation. For instance, if W ∗ is a set of
worlds modelling an agent’s knowledge state, and W ∗ |=
f = 〈u, v〉 (i.e., all values between u and v are considered
as possible mappings for f), then for each x, u ≤ x ≤ v,
it must be the case that there exists a world w ∈ W ∗ such
that w |= (f = x). In other words, a world must exist for
each possible mapping of f . In this view (abuse of notation
aside), IVFs can be seen as a compact means of represent-
ing a set of possible worlds, at least relative to a particular
fluent mapping. It is this observation that we will use as the
basis for our planning representation, to replace the possible
worlds model and instead work directly at the IVF level.

Interval-Valued Knowledge in PKS
The addition of IVFs potentially affects a planner’s repre-
sentation, reasoning, and planning components. In PKS, we
consider changes to the planner’s databases, query language,
and action representation arising from IVFs.
Representing definite and indefinite interval knowledge
The first question that we must address is where to rep-
resent IVF information in PKS. The most commonly used
PKS database is Kf which stores the planner’s knowledge
of facts, including functional equalities (e.g., f = 10) and
inequalities (e.g., g 6= 12). In this view, Kf is responsible
for modelling definite knowledge about the world. However,
IVFs are designed to model indefinite information, namely
a disjunctive set of epistemic alternatives for an underlying
function mapping. Thus,Kf is not a perfect fit for IVFs since
it requires a change of semantics to properly interpret IVFs.

Instead, we use the Kx database to store the planner’s
knowledge of (general) IVFs.Kx is normally responsible for
modelling the planner’s “exclusive-or” information, where a
discrete number of alternatives are presented and only one
can be true. (E.g., if (`1|`2|`3) ∈ Kx then the planner knows
that one, and only one, of `1, `2, or `3 can hold.) IVFs pro-
vide a generalisation of this concept for numerical functions
and so we extend Kx to permit IVFs of the form f = 〈u, v〉.
We note that only IVFs that contain numeric constants are
allowed, and point intervals are not permitted. That is, a flu-
ent like f = 〈5, 10〉 is allowed in Kx, but g = 〈5, 5〉 and
h = 〈5, x〉 are not, where x is a variable. Intuitively, a fluent
of the form f = 〈u, v〉 ∈ Kx means that f is known to map
to a single value between u and v.

An IVF can also be part of an ordinary Kx formula
(`1|`2| . . . |`n), where each `i can be a ground literal or an
interval mapping. In general, such formulae are treated as
standard Kx formulae and are subject to PKS’s conservative
update rules. (We refer the reader to (Petrick and Bacchus

2004) for more details.) In particular, physical actions that
change any function or relation mentioned in a Kx formula
cause that formula to be completely removed from Kx since
it’s “exclusive-or” property may no longer hold.

One interesting consequence of such formulae is the case
where all the `i are IVFs with the same underlying function.
In this case, such a formula can be used to model disjunc-
tive intervals, i.e., sets of disjoint interval mappings. For
instance, if a fluent f could possibly map to any value be-
tween 5 and 10 or, additionally, map to values between 15
and 18, we can represent such information by the Kx for-
mula (f = 〈5, 10〉 |f = 〈15, 18〉). We could not represent
such knowledge using a single IVF alone since the “holes”
in the interval would also be included. (I.e., f = 〈5, 18〉
would cover the necessary interval but also admit values in
the range 10–18.) Such formulae are updated in a different
way than ordinary Kx formulae, where we attempt to track
the possible values of the IVF through action (see below).

We also permit certain IVFs references in Kf , in keeping
with Kf ’s standard use of functional equality and inequality
mappings. In particular, function mappings involving point
intervals are allowed. Thus, g = 〈5, 5〉 (equivalent to g = 5
in usual function notation) is permitted, meaning the planner
knows that g is equal to 5. An assertion like h 6= 〈10, 10〉 is
also allowed, meaning h is known to be unequal to 10.

Finally, the exclusion of an IVF from all PKS databases
means that the planner has no information about that IVF.
In other words, it is treated as if it has a maximal interval
mapping in which all denotations are considered possible.
Interval-based sensors The Kv database is primarily used
to represent the results of sensing actions that return func-
tions. For an ordinary function f , a formula f ∈ Kv means
that the value of f will become known to the planner at ex-
ecution time. At plan time, f can be used as a “run-time
variable” (Etzioni et al. 1992) that acts as a placeholder to
the actual sensed valued of the function. We extend this rep-
resentation to include IVFs in Kv . Thus, an IVF f ∈ Kv

means that the point value of f will become known at exe-
cution time, and f can be used as a run-time variable denot-
ing the sensed point mapping of f . In other words, IVFs are
treated the same as ordinary functions.

However, we also extend our notion of Kv knowledge to
allow noisy sensed information to be modelled. In this case,
we specify an interval schema for the associated IVF, using
a variable (x in our examples) to denote the actual value of
the fluent. For instance, a fluent of the form:

f : 〈x− 1, x+ 1〉 ∈ Kv

means that the value of the fluent f is known, and f is in the
range x±1, for some x. The value of f in this case is “noisy”
as it admits a range of possible values. In practice, we allow
formulae of the form f : 〈x− u, x+ v〉 in Kv , where u and
v are numeric constants. This type of information is partic-
ularly useful for tracking changes to sensed numeric values
through the effects of certain physical actions, as we will see
in one of the examples below.
Comparing numeric intervals The Kw database is used
to model sensing actions with binary outcomes, i.e., those

that return one of two possible values. With numeric fluents
(interval or not), certain types of numeric relations become
useful in a planning context. In particular, the relational op-
erators =, 6=, >, <, ≥, and ≤ often arise in many planning
scenarios. In our extended version of PKS, we allow simple
formulae using such operators to be explicitly represented
in Kw, provided such formulae have the form f op c, where
op ∈ {=, 6=, >,<,≥,≤} and c is a numeric constant. Thus,
f > 5 ∈ Kw can be used to model a sensing action that
determines whether f is greater than 5 or not.
Kw is also important since information in this database

can be used to build contingent branches into a plan: one
branch is added for each possible outcome of the sensed
information. In our extended version of PKS, we allow
branches that reason about the range of an IVF, using the
numeric relations described above. The process by which
branches are added to a plan is given below.
Querying interval knowledge The primitive query lan-
guage used by PKS allows the planner to answer certain
questions about the planner’s databases. In particular, prim-
itive queries have the following form: (i) Kp, is p known
to be true?, (ii) Kvt, is the value of t known?, (iii) Kwp, is p
known to be true or known to be false? (i.e., does the planner
know-whether p?), or (iv) the negation of queries (i)–(iii).
With the addition of IVFs, we extend the query language to
interval-valued numerical relations and functions.

Standard PKS permits queries in (i) and (iii) (and their
negations) with numeric relations of the kind we considered
in the extended Kw database (e.g., f op c, where c is a con-
stant). However, evaluating such queries in the presence of
IVFs involves reasoning about the endpoints of known in-
tervals, and possibly the underlying number systems. For
instance, a query K(f > 3) only evaluates as true given
an interval f = 〈u, v〉 ∈ Kx provided u > 3. Similarly, a
query K(g 6= 5) is true if both 5 < u and 5 > v. Evaluat-
ing queries for the other allowable numeric relations is also
straightforward, given the restricted form of those relations.

Queries of the kind in (ii) involving functions are also per-
mitted for IVFs. In this case, they are evaluated in the same
way as ordinary functions. In other words, a queryKv(f) (is
the value of the IVF f known?) evaluates as true provided
f ∈ Kv or a point interval is known, i.e., f = 〈c, c〉 ∈ Kf .
Actions and database progression Actions provide the pri-
mary means of progressing a set of databases and are defined
in a similar way to ordinary PKS actions, with precondi-
tions and effects. Preconditions are simply sets of primitive
queries, as defined above. Effects permit updates to individ-
ual databases, with references to IVFs limited to a set of sim-
ple arithmetic operations. (We only consider the arithmetic
addition and subtraction operators here.) In particular, we al-
low updates of the form add(Kf , f := f ±d), where f is an
IVF and d is either a numeric constant or constant interval
(i.e., no variables). This gives rise to a simple procedure for
updating IVFs across the set of databases:

1. If f is in Kf with a point interval and d is a numeric con-
stant, update f by adding or subtracting d as appropriate.

2. If f has an interval mapping 〈u, v〉 in Kx and d is a nu-
meric constant, update f so that f = 〈u± d, v ± d〉.

PlanPKS+(DB, P,G):
if goalsSatisfied(DB, G) then return P
else

pick(a ∈ A) : precondsSatisfied(a,DB)
applyEffects(a,DB,DB′) and resolve intervals
return PlanPKS+(DB′, (P, a), G).

or
pick(α) : α is a ground instance of an entry in Kw

form new branch roots and resolve intervals
branch(DB, α,DB1,DB2)
C := {PlanPKS+(DB1, ∅, G), PlanPKS+(DB2, ∅, G)}
return P,C.

Table 1: Extended PKS planning algorithm

3. If f is in Kf or Kx and d is an interval constant 〈a, b〉,
update f so that f = 〈u± a, v ± b〉. If f was initially in
Kf , remove it and put the updated mapping in Kx.

4. If f is a disjunctive interval (`1|`2| . . . |`n) ∈ Kx, update
each `i as in step 3, above.

5. If f is mentioned in an ordinary Kx formula φ, then re-
move φ from Kx.

6. If f is an interval schema 〈x− u, x+ v〉 in Kv , update f
to map to 〈x− u± d, x+ v ± d〉 if d is a numeric con-
stant, or 〈x− u± a, x+ v ± b〉 if d is an interval 〈a, b〉.

We note that even though the above updates are triggered by
an add rule that references theKf database, its actual effects
may update Kv or Kw, in addition to Kf . We also note that
the updated interval calculation in steps 3 and 6 assumes
an initially well-formed interval and a well-behaved number
system like N or R. In other number systems, the process
of updating an interval might be more complicated. In such
cases, a new range must be calculated for the updated IVF,
ensuring a well-formed interval as a result. In step 5 we note
the conservative behaviour of ordinary Kx updates, which is
similar to standard PKS: a change to an IVF in an ordinary
Kx formula potentially invalidates that formula so that its
exclusive-or property may no longer hold.

Finally, in addition to the above numeric updates, actions
can include simple database assertions (i.e., add and del)
that include IVFs, provided the form of those assertions sat-
isfies the restrictions on the knowledge that can stored in
a given database. Thus, we can specify “noisy” knowledge
through an update such as add(Kx, f = 〈3, 5〉) that adds
f = 〈3, 5〉 to Kx, or del(Kf , f = 3) that removes a point
interval from Kf (possibly making its value unknown).

Contingent planning and plan correctness Given the
above changes to PKS’s databases, primitive queries, and
update mechanism, the extended planning algorithm (see Ta-
ble 1) operates with very little change from the standard PKS
algorithm, taking as input a set of initial databases DB, a set
of actions A, and a goal G. The plan generation process is
treated as a search through the set of database states, start-
ing from the initial DB. Plans are built in a forward-chaining
manner by choosing an action to add to a plan whose precon-
ditions are satisfied in the current state (precondsSatisfied),
or by introducing branches into the plan.

Conditional plans are formed as usual in PKS, by reason-
ing about the possible outcomes ofKw formulae. For a given
Kw formula φ, which may now include IVFs, two branches

Action Effects
moveForward add(Kf , robotLoc := robotLoc− 1)
moveBackward add(Kf , robotLoc := robotLoc + 1)
atTarget add(Kw, robotLoc = targetLoc)
noisyForward add(Kf , robotLoc := robotLoc− 〈1, 2〉)
withinTarget add(Kw, robotLoc ≤ targetLoc)
noisyLocation add(Kv, robotLoc : 〈x, x+ 1〉)

Table 2: Action specifications for the example domains.

are added to a plan: along the positive K+ branch φ is as-
sumed to be true, while along the negative K− branch ¬φ is
assumed to be true. For instance, if a formula f > 5 ∈ Kw

is used as the basis for a new branch point then f > 5 is
assumed to be true along the K+ branch, and f ≤ 5 is as-
sumed to be true along the K− branch. An important part
of the branching process is resolving IVF knowledge result-
ing from Kw assumptions, by combining it with knowledge
in other databases, and possibly refining it further. Space
prohibits us from describing this process completely; for in-
stance, the following are a subset of the rules for (in)equality
updates, which differ from those of ordinary action updates:

1. If f = c is assumed to be true along a branch, where c is a
numeric constant, then add f = c to Kf and remove any
IVFs or disjunctive intervals from Kx.

2. If f 6= c is assumed to be true along a branch, where c
is a numeric constant, and f = 〈u, v〉 is an IVF in Kx

where u < c < v, then add f 6= c to Kf and update f
to be a disjunctive interval (f = 〈u, c−〉 |f = 〈c+, v〉) in
Kx where c− (c+) is the smallest value permitted by the
number system less than (greater than) c.1

3. Repeat the calculation in step 2 for any disjunctive inter-
vals in Kx where f = 〈u, v〉 is a subinterval, extending
the number of disjunctive subintervals.

Other interval assertions lead to useful updates. E.g., if f >
5 is assumed to be true and f = 〈3, 10〉 ∈ Kx, then Kx is
updated so that f = 〈6, 10〉. Similarly, if f ≤ 5 is assumed
to be true thenKx is updated so that f = 〈3, 5〉. This process
gives rise to a technique for splitting intervals into smaller
components that acts as a form of reasoning by cases.

Planning continues until the goal conditions are achieved
along every branch of a plan (goalsSatisfied), or no plan is
found. As a result, this process enforces a correctness crite-
ria on the plans it generates: actions and branches are only
introduced if the planner has sufficient knowledge at each
step of the plan. (In particular, it is this condition that allows
branches to be based on Kw information, but not Kx.)

Examples
We now illustrate our proof-of-concept PKS implementation
on three examples taken from a simple robot domain.
Example 1 Consider a robot whose location, robotLoc, is
measured by its distance to a wall. The robot has two physi-
cal actions available to it: moveForward moves the robot one
unit towards the wall, and moveBackward moves the robot
one unit away from the wall. The robot also has a sensing ac-
tion, atTarget, which senses whether the robot is at a target

1In practice, we may have to use open or partially open intervals
here. The process is also similar for updating upper/lower bounds.

location specified by the fluent targetLoc. The definition of
these actions is shown in Table 1. The robot’s initial location
is specified by the IVF mapping robotLoc = 〈3, 5〉 ∈ Kx.
The goal is to move the robot to a target location, i.e.,
K(robotLoc = targetLoc), where targetLoc = 2 ∈ Kf .

One solution generated by PKS is the conditional plan:
Plan step robotLoc

0. 〈3, 5〉
1. moveForward ; 〈2, 4〉
2. atTarget ;
3. branch(robotLoc = targetLoc)
4. K+ : nop. 2
5. K− : 〈3, 4〉
6. moveForward ; 〈2, 3〉
7. atTarget ;
8. branch(robotLoc = targetLoc)
9. K+ : nop. 2

10. K− : 3
11. moveForward. 2

In step 1, moveForward decreases the value of robotLoc in
Kf by one unit so that robotLoc = 〈2, 4〉. In step 2, atTar-
get senses whether robotLoc = targetLoc, which has the ef-
fect of adding robotLoc = 2 to Kw (i.e., the planner knows
whether robotLoc is 2). In step 3, a branch point is added to
the plan based on thisKw formula, allowing the plan to con-
sider its two possible outcomes. Along one branch (step 4),
robotLoc = 2 is assumed to be true (i.e., robotLoc = 2
is added to Kf) and the goal is achieved. Along the other
branch (step 5), robotLoc 6= 2 is assumed to be true (i.e.,
robotLoc 6= 2 is added to Kf). As a result, the interval map-
ping for robotLoc in Kx is refined to remove 2 as a possible
mapping, so that robotLoc = 〈3, 4〉. The moveForward ac-
tion then updates robotLoc so that robotLoc = 〈2, 3〉. The
sensing action in step 7 again adds robotLoc = 2 to Kw. In
step 8, another branch point is added to the plan. Along one
branch (step 9), robotLoc = 2 is assumed to true, satisfying
the goal. Along the other branch (step 10), robotLoc 6= 2
is assumed to be true. In this case, refining robotLoc results
in robotLoc = 〈3, 3〉 = 3, which is added to Kf . A final
moveForward results in robotLoc = 2, satisfying the goal.

We note that if the initial location of the robot included
a “wider” interval, e.g., robotLoc = 〈0, 10〉, we could still
possibly achieve the goal by reasoning with disjunctive in-
tervals. For instance, if the atTarget action was added given
the wider interval for robotLoc, then after branching we
would have a K+ branch where robotLoc = 2 and a K−

branch where (robotLoc = 〈0, 1〉 |robotLoc = 〈3, 10〉) ∈
Kx. In this case, further movement actions would be needed
before subsequent atTarget actions could resolve the Kx

knowledge appropriately to satisfy the goal.
Example 2 We next consider a robot with the move-
Backward and atTarget actions, but with moveForward re-
placed by a “noisy” action, noisyForward, which moves the
robot forward either 1 or 2 units. Additionally, the robot
also has a second sensing action, withinTarget, that deter-
mines whether or not the robot is within the target distance
(targetLoc = 2 ∈ Kf). The specification of these new ac-
tions is given in Table 1. The robot’s initial location is spec-
ified by the IVF robotLoc = 〈3, 4〉 ∈ Kx. The goal is to

move the robot to the target, i.e., K(robotLoc = targetLoc).
One solution generated by PKS is the conditional plan:

Plan step robotLoc
0. 〈3, 4〉
1. noisyForward ; 〈1, 3〉
2. withinTarget ;
3. branch(robotLoc ≤ targetLoc)
4. K+ : 〈1, 2〉
5. atTarget ;
6. branch(robotLoc = targetLoc)
7. K+ : nop. 2
8. K− : 1
9. moveBackward. 2

10. K− : 3
11. noisyForward ; 〈1, 2〉
12. atTarget ;
13. branch(robotLoc = targetLoc)
14. K+ : nop. 2
15. K− : 1
16. moveBackward. 2

Since forward movements may change the robot’s position
by either 1 unit or 2 units, noisyForward in step 1 re-
sults in an even less certain position for the robot, namely
robotLoc = 〈1, 3〉 ∈ Kx. However, the sensing action in
step 2, together with the branch point in step 3, lets us
split this interval into two parts. In step 4, we assume that
robotLoc ≤ 2 and consider the case where robotLoc =
〈1, 2〉. atTarget, together with the branch in step 6, lets us
divide this interval even further: in step 7, robotLoc = 2
and the goal is satisfied, while in step 8, robotLoc = 1
and a moveBackward action achieves the goal. In step 10
we consider the other sub-interval of the first branch, i.e.,
robotLoc = 3 ∈ Kf . In this case we have definite
knowledge, however, a subsequent noisyForward results in
robotLoc = 〈1, 2〉. The remainder of the plan in steps 12–16
is the same as in steps 5–9: the robot conditionally moves
backwards in the case that robotLoc is determined to be 1,
while the plan trivially achieves the goal if robotLoc = 2.

If we instead consider a wider initial robotLoc interval,
as at the end of Example 1 where robotLoc = 〈0, 10〉, then
an action like withinTarget can possibly be used to further
refine a disjunctive interval. For instance, after atTarget pro-
duces a disjunctive interval (robotLoc = 〈0, 1〉 |robotLoc =
〈3, 10〉) ∈ Kx in Example 1, then including withinTarget in
the plan introduces a pair of branches that splits the Kx for-
mula: along one branch robotLoc = 〈0, 1〉 ∈ Kx and along
the other branch robotLoc = 〈3, 10〉 ∈ Kx. At this point the
planner can focus on the individual reduced intervals in an
attempt to achieve the goal along each branch.

Example 3 Finally, we consider a robot with the moveBack-
ward and noisyLocation actions in Table 1. Here, noisyLo-
cation is a noisy sensing action that either senses the ac-
tual value of the robot’s location, or 1 unit more than the
actual location. This is denoted by the interval 〈x, x+ 1〉,
where x acts as a placeholder for the actual location. Ini-
tially, the location of the robot is unknown, i.e., robotLoc
is not listed in the planner’s databases. The goal is to en-
sure the robot has moved to or past the target location, i.e.,
K(robotLoc ≥ targetLoc), where targetLoc = 2 ∈ Kf .

Here, PKS generate a simple 3-step plan: noisyLocation,
moveBackward, moveBackward. The first action adds
robotLoc = 〈x, x+ 1〉 toKv , indicating that the planner has
(noisy) knowledge of the robot’s location. The second ac-
tion, moveBackward, updates the planner’s parametrizedKv

knowledge to robotLoc = 〈x+ 1, x+ 2〉, which has the ef-
fect of tracking the (ungrounded) location across the move-
ment action. Finally, the second moveBackward action re-
sults in robotLoc = 〈x+ 2, x+ 3〉. The planner can then
reason robotLoc ≥ 2 holds since robotLoc ranges over N:
since x ≥ 0, it must be the case that x+ 2 ≥ 2.

Although the above examples are simple, they demon-
strate interesting plan-time reasoning. In Example 1, the
planner tracks the robot’s uncertain location with IVFs as
physical actions change this information and sensing pro-
duces definite knowledge. We note that PKS could also rep-
resent the disjunctive nature of robotLoc (for N at least)
using the Kx database (e.g., (robotLoc = 3 | robotLoc =
4 | robotLoc = 5) ∈ Kx), however, an action like move-
Forward would invalidate this information, causing it to be
removed, since it changes robotLoc. In Example 2, we again
show how sensing together with conditional branching al-
lows us to perform a type of reasoning by cases that subdi-
vides intervals into more manageable components. Finally,
Example 3 illustrates the ability to track sensed information
through physical actions using a placeholder variable.

Example 3 also demonstrates one of the inherent draw-
backs of plan-time sensing: for such values to be useful we
often need to “ground” them. Here we use the underlying
number system and the interval offset to make an asser-
tion about a lower bound. However, PKS also has the abil-
ity to work with functions in an “unground” form, allowing
them to be composed with other functions, or included in
parametrized plans. One of the goals of this work is to ex-
tend our model of IVFs so they can also be used in this way.

Conclusions and Future Work
IVFs provide an interesting middle ground between those
representations that do not model uncertainty of numeric flu-
ents and those that reason with full possible-world models,
or models based on probabilistic distributions. IVFs make
a good fit for planners like PKS, but we also believe of-
fer a useful tool that goes beyond knowledge-level planning.
For instance, the underlying implementation of IVFs in PKS
uses the notion of semantic attachments (Dornhege et al.
2009), allowing most of the interval-specific reasoning to
be executed through an external library. As a result, similar
ideas could be extended to existing PDDL-based planners.
We are also currently exploring how IVFs can be encoded
directly in PDDL (with minimal extensions).

Finally, although we have not focused on PKS’s effi-
ciency, we note that the above examples are all generated
in 0.1 seconds using PKS on a single CPU running at 1.86
GHz with 2Gb of RAM. To address the problem of scala-
bility with IVFs, we are exploring compilation techniques
in the spirit of (Palacios and Geffner 2007), to treat IVFs
as ordinary functions. However, we believe that translation
methods will only solve part of the problem and enhance-
ments at the planner level are needed to fully utilise IVFs.

References
Demolombe, R., and Pozos Parra, M. P. 2000. A simple and
tractable extension of situation calculus to epistemic logic.
In Proceedings of the International Symposium on Method-
ologies for Intelligent Systems (ISMIS-2000), 515–524.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.;
and Nebel, B. 2009. Semantic attachments for domain-
independent planning systems. In Proceedings of ICAPS
2009.
Edelkamp, S. 2002. Taming numbers and durations in the
model checking integrated planning system. Journal of Ar-
tificial Intelligence Research 20:195–238.
Etzioni, O.; Hanks, S.; Weld, D.; Draper, D.; Lesh, N.; and
Williamson, M. 1992. An approach to planning with in-
complete information. In Proceedings of the International
Conference on Principles of Knowledge Representation and
Reasoning (KR-92), 115–125.
Etzioni, O.; Golden, K.; and Weld, D. 1994. Tractable closed
world reasoning with updates. In Proceedings of the Inter-
national Conference on Principles of Knowledge Represen-
tation and Reasoning (KR-94), 178–189.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.
Frank, J., and Jónsson, A. 2003. Constraint-based attribute
and interval planning. Journal of Constraints, Special Issue
on Constraints and Planning 8:339–364.
Funge, J. 1998. Interval-valued epistemic fluents. In AAAI
Fall Symposium on Cognitive Robotics, 23–25.
Hoffmann, J., and Brafman, R. 2005. Contingent planning
via heuristic forward search with implicit belief states. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS-2005), 71–80.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research 20:291–341.
Laborie, P. 2003. Algorithms for propagating resource con-
straints in AI planning and scheduling: Existing approaches
and new results. Artificial Intelligence 143:151–188.
Levesque, H. J. 2005. Planning with loops. In Proceed-
ings of the International Joint Conference on Artificial In-
telligence (IJCAI-05), 509–515.
Liu, Y., and Levesque, H. J. 2005. Tractable reasoning with
incomplete first-order knowledge in dynamic systems with
context-dependent actions. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-05),
522–527.
Palacios, H., and Geffner, H. 2007. From Conforman into
Classical Planning: Efficient Translations that may be Com-
plete Too. In Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS-07), 264–
271.

Pednault, E. P. D. 1989. ADL: Exploring the middle ground
between STRIPS and the situation calculus. In Proceedings
of the International Conference on Principles of Knowledge
Representation and Reasoning (KR-89), 324–332.
Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-based
approach to planning with incomplete information and sens-
ing. In Proceedings of the International Conference on Ar-
tificial Intelligence Planning and Scheduling (AIPS-2002),
212–221.
Petrick, R. P. A., and Bacchus, F. 2004. Extending the
knowledge-based approach to planning with incomplete in-
formation and sensing. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-04), 2–11.
Petrick, R. P. A. 2006. A Knowledge-level approach for ef-
fective acting, sensing, and planning. Ph.D. Thesis, Depart-
ment of Computer Science, University of Toronto, Toronto,
Ontario, Canada.
Poggioni, V.; Milani, A.; and Baioletti, M. 2003. Managing
interval resources in automated planning. Journal of Infor-
mation Theories and Applications 10:211–218.
Soutchanski, M. 2001. A correspondence be-
tween two different solutions to the projection task
with sensing. In Symposium on Logical Formaliza-
tions of Commonsense Reasoning (Commonsense 2001).
http://www.cs.nyu.edu/faculty/davise/commonsense01/.
van Eijck, J. 2013. Elements of Epistemic Crypto Logic.
Slides from a talk at the LogiCIC Workshop, Amsterdam.
Vassos, S., and Levesque, H. 2007. Progression of situ-
ation calculus action theories with incomplete information.
In Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI-07), 2029–2034.

Reward-Adaptive Planning with Unknown Teammates from Limited Observations

Aris Valtazanos
School of Informatics

University of Edinburgh
a.valtazanos@ed.ac.uk

Overview
Autonomous agents are increasingly being deployed in tasks
requiring interaction with other agents, where collaborative
actions and plans are needed to achieve a goal. In these set-
tings, agents must not only deal with uncertainty in how they
perceive and act on their environment, but also with not hav-
ing explicit control over the actions of others. Thus, if differ-
ent agents have incompatible views of the optimal joint plan
of actions, it is highly possible that they will fail to reach
their overall goal.

When a task involves collaboration with a priori unknown
teammates such as humans (or human-controlled agents),
there is also a lack of a clear model that reliably predicts the
behaviour of interacting agents, making joint plan selection
even harder. Furthermore, when communication resources
are scarce or unavailable, agents must rely solely on their
own observations of the environment (and of others), in or-
der to select appropriate actions. Additionally, tasks and/or
goals within a specific task may vary over time, or team-
mates may be replaced by other agents, so plans need to be
generated anew. When all the above challenges combine,
fast adaptation to changing specifications becomes essen-
tial. This highlights the need for fast planning methods that
can efficiently generate robust action sequences, without re-
course to exhaustive, time-consuming exact optimisation.

Motivated by the above constraints, in this paper we
introduce Reward-Adaptive Planning, an online algorithm
for single-agent plan generation in partially observable
multi-agent systems with unknown teammates. Our method
builds on the Partially Observable Markov Decision Pro-
cess formulation, which selects actions with respect to a
given reward function and goal. However, unlike many
approaches to decentralised coordination, reward-adaptive
planning does not assume that other agents in the environ-
ment use the same reward function (even if they do work
towards the same goal). Instead, we interleave traditional
Monte-Carlo Tree Search with Bayesian Inverse Reinforce-
ment Learning, in order to simultaneously plan and learn an
approximation of the interacting agents’ reward processes.
The learning step of the algorithm is model-free, so we
do not characterise others with respect to pre-defined be-
havioural classes, but we instead use the search process as an
implicit generative mechanism for teammate actions. More-
over, reward-adaptive agents do not model the observations

and beliefs of others, and only update reward values over
their own action space (as opposed to the entire joint action
space, which is typically much larger). This keeps our algo-
rithm tractable and scalable to larger problems.

In order to demonstrate the efficacy of reward-adaptive
planning, we consider (and claim that our approach is suit-
able for) multi-agent domains with the following features:
• Agents do not know the behavioural model of others, who

could be executing the same or a different autonomous
algorithm, or some human-specified decision tree.

• All agents have the same capabilities (actions and obser-
vations), but they cannot observe each other’s actions and
observations at each time step.

• There is no communication between agents either before
or during the interaction, so there is no prior agreement
on plans; each agent operates in a self-centric manner (but
the desired goal is common and known to everyone).

• Each domain has a mixture of individual and joint actions,
the latter of which succeed only if they are simultaneously
executed by multiple agents. The domain goals also re-
quire agents to collaborate (through joint action execu-
tion) in order to maximise their reward.

Related Work and Motivation
Planning in partially observable single-agent domains is of-
ten posed in terms of a Partially Observable Markov Deci-
sion Process (POMDP) (Kaelbling, Littman, and Cassandra
1998). A Decentralised POMDP (Dec-POMDP) (Bernstein
et al. 2002) is a generalisation of a POMDP to multi-agent
systems, which incorporates joint actions and observations.
Despite their representational power, both POMDPs and
Dec-POMDPs are hard to solve exactly. This has prompted
researchers to study approximate POMDP planning meth-
ods. Partially Observable Monte Carlo Planning (POMCP)
(Silver and Veness 2010) uses Monte-Carlo Tree Search
(MCTS) to sample the belief space efficiently. This method
has been applied successfully to problems with large branch-
ing factors, such as the computer game Go, while also used
as part of the winning entry of the 2011 International Prob-
abilistic Planning Competition (Coles et al. 2012).

With respect to the systems considered in this paper,
POMCP planning offers a fast and robust solution to sin-
gle agent design, but does not directly account for multiple

agents. One important problem is that Dec-POMDPs assume
that all agents are using the same reward process, which
would be limiting in systems with heterogeneous agents. To
address this issue, the problem of ad-hoc teamwork (Stone et
al. 2010) considers collaboration without pre-coordination
in multi-agent domains. In this context, Monte-Carlo plan-
ning has been used in conjunction with transfer learning to
generate team-level strategies (Barrett et al. 2013). This ap-
proach uses teammate models that have been learned offline,
and updates their likelihood online based on acquired ex-
perience. In our work, we choose not to incorporate prior
teammate models for two reasons. First, we want our plan-
ner to be easily adaptible to varying tasks, for which prior
data may not always be available. Second, even when such
data exists, there may still be agents not consistent with ob-
servations made in past interactions.

In response to the above issues, the main contribution of
reward-adaptive planning is the incorporation of inverse re-
inforcement learning (IRL) within the Monte-Carlo plan-
ning procedure, in order to approximate the reward process
of interacting agents. IRL (Ng and Russell 2000) is the prob-
lem of inferring the reward process of an agent from sup-
plied trajectories, and is usually applied in the context of
learning from expert demonstrations. In its general form, the
problem is ill-posed, as there could be several reward func-
tions with respect to which a set of trajectories is optimal.

Nevertheless, in the systems we consider, we do not as-
sume that teammates are acting optimally, so it is sufficient
to compute a reward function approximation that can serve
as a generative model for teammate actions in Monte-Carlo
simulations. To this end, we use the Bayesian IRL algo-
rithm (Ramachandran and Amir 2007), which is based on
a Markov Chain Monte-Carlo (MCMC) sampling procedure
and is thus compatible with the POMCP planner. Our algo-
rithm alternates between regular POMCP simulations and
reward-adaptive iterations that generate rewards for the in-
teracting teammates based on a Beta distribution prior. At
each reward-adaptive iteration, the MCMC process is used
to determine whether the planner should continue sampling
in this mode or revert to regular POMCP updates. Moreover,
the action selection procedure accounts not only for the plan-
ning agent’s values (as in the original single-agent POMCP
algorithm), but also for the learned teammate rewards. Thus,
we progressively build a teammate action model directly
from the samples obtained over the course of the interaction.

Preliminary Results
We have conducted preliminary tests on a cooperative
box pushing domain (Seuken and Zilberstein 2007), where
agents get a high reward for jointly pushing a large box to a
target position, and a smaller reward for individually push-
ing smaller boxes. Our results show that reward-adaptive
planning outperforms a decentralised POMCP algorithm
(with no reward-adaptive iterations) when both agents run
the same algorithm, while also performing more robustly
in the presence of heterogeneous teammates. We are cur-
rently testing our method in a more complex robot kitchen
domain involving multiple joint actions and tighter collabo-
ration constraints.

Mean Return Time(s)
Rand v Rand -15.25 � 0.64 0.001
MAOP-0 v MAOP-0 7.50 0.14
D-POMCP v D-POMCP 10.08 � 0.51 0.099
RewAd v RewAd 15.61 � 0.53 0.131
HumDes v HumDes 17.71 � 0.90 0.239
RewAd v D-POMCP 13.41 � 0.58 0.111
D-POMCP v HumDes 12.35 � 0.54 0.172
RewAd v HumDes 13.99 � 0.58 0.189

Table 1: Results from the Cooperative Box Pushing Domain.
Results are averaged over 1000 runs with 512 action se-
quence samples at each decision step and a horizon of 20
steps. Mean return: average discounted reward obtained in
each experiment. Time: mean total computation time per
agent per run (on a standard desktop 2.93GHz dual-core ma-
chine). The top part of the table corresponds to experiments
with identical agents, whereas the bottom part gives results
for coordination with heterogeneous teammates. Rand: ran-
dom action selection. RewAd: reward-adaptive planning. D-
POMCP: decentralised POMCP implementation. HumDes:
human-designed agent running a fixed behaviour. MAOP-0:
Multi-agent Online Planning with no communication from
(Wu, Zilberstein, and Chen 2011).

Acknowledgments This work has been funded by the Eu-
ropean Commission through the EU Cognitive Systems and
Robotics project Xperience (FP7-ICT-270273).

References
Barrett, S.; Stone, P.; Kraus, S.; and Rosenfeld, A. 2013.
Teamwork with limited knowledge of teammates. In AAAI.
Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The complexity of decentralized control of Markov
Decision Processes. Math. Oper. Res. 27(4):819–840.
Coles, A. J.; Coles, A.; Olaya, A. G.; Celorrio, S. J.; López,
C. L.; Sanner, S.; and Yoon, S. 2012. A survey of the seventh
International Planning Competition. AI Magazine 33(1).
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101(1-2):99–134.
Ng, A. Y., and Russell, S. 2000. Algorithms for Inverse
Reinforcement Learning. In ICML, 663–670.
Ramachandran, D., and Amir, E. 2007. Bayesian inverse
reinforcement learning. In IJCAI.
Seuken, S., and Zilberstein, S. 2007. Memory-Bounded
Dynamic Programming for DEC-POMDPs. In IJCAI.
Silver, D., and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. In NIPS, 2164–2172.
Stone, P.; Kaminka, G. A.; Kraus, S.; and Rosenschein, J. S.
2010. Ad Hoc Autonomous Agent Teams: Collaboration
without Pre-Coordination. In AAAI.
Wu, F.; Zilberstein, S.; and Chen, X. 2011. Online plan-
ning for multi-agent systems with bounded communication.
Artificial Intelligence 175(2):487–511.

	Executive Summary
	References
	Attached Papers

