
Project Acronym: Xperience
Project Type: IP
Project Title: Robots Bootstrapped through Learning from Experience
Contract Number: 270273
Starting Date: 01-01-2011
Ending Date: 31-12-2015

XXPERIENCEPERIENCE..ORGORG

Deliverable Number: D4.1.3
Deliverable Title: Transfer of cooperative tasks: Report or scientific publication

on implementation of cooperative task mechanisms within the
architecture and in the final demonstration

Type (Internal, Restricted, Public): PU
Authors: Tamim Asfour, Aleš Ude, Martin Do, Tadej Petrič, Andrej

Gams
Contributing Partners: KIT, JSI

Contractual Date of Delivery to the EC: 31-01-2015
Actual Date of Delivery to the EC: 31-01-2015

Contents

1 Summary 3

1.1 Objective of WP4.1: Cooperative Tasks . 3

1.2 Summary of the Results . 3

2 Transfer to the Demonstration Platform 4

2.1 Transfer report for tightly coupled interaction . 4

2.2 Transfer report for loosely coupled interaction . 7

3 Scientific Results 9

3.1 Altering Robot Behaviors Based on Human in the Loop Coaching Gestures 9

3.2 Synchronization of Dual-Arm Humanoid Robot Movement Primitives 10

2

Chapter 1

Summary

1.1 Objective of WP4.1: Cooperative Tasks

The objective of WP4.1 as stated in the Description of Work is to study tightly coupled physical inter-
action (excluding explicit language) for multiple agents to accomplish a cooperative task. The goal is to
study different types of cooperation, in which multiple robots are engaged in task execution to fulfill the
goal. We distinguish between:

• Tightly coupled cooperative manipulation tasks, in which a direct physical interaction between
multiple agents (two arms, two robots, human-robot) must take place to achieve the task goal.
Examples are cooperative table/box pushing, cooperative lifting, cooperative tool use, etc.

• Loosely coupled cooperative tasks, in which multiple robots are engaged in scene interpretation and
reasoning about the role of each agent involved in the execution of the task.

The main issues that will be addressed are: a) How do agents that participate in a tightly coupled
cooperation synchronize their actions? b) How can agents maximize the amount of mutual information
for scene interpretation, c) How do agents recognize tasks that require cooperation, and d) How will the
interpretation of the felt, seen and heard lead to the recognition of intention of “other” and finally to the
recognition of plans.

1.2 Summary of the Results

In the area of tightly coupled cooperative manipulation tasks, the coaching interface, which is needed
to implement some actions from the demonstration scenario, e. g. wiping, was transferred to the main
demonstration platform ARMAR-III. These methods are described in Chapter 2. In addition, methods
needed for synchronisation of robot-robot and robot-human collaborative manipulation actions were
transferred to ARMAR-III. To accomplish this task we had to modify the underlying action representation
based on DMPs, which were developed in WP 2.2. Therefore this work was reported in Deliverable D2.2.3
and is not repeated here.

The results and publications generated in WP4.1 in Year 4 of the Xperience project are described. These
works provide more information about the cooperative behaviors that were developed for the Xperience
demonstration platform ARMAR-III. Work in Year 4 includes 1. Altering robot behaviors based on
human in the loop coaching gestures, and 2. Synchronization of dual-arm humanoid robot movement
primitives. A lot of the important work in the area of tightly coupled cooperation was reported last year
in deliverable D4.1.2 and in references [5, 4, 3]. Work on loosely coupled cooperative task perception and
manipulation was also reported in this previous deliverable and in references [9, 10].

3

Chapter 2

Transfer to the Demonstration
Platform

2.1 Transfer report for tightly coupled interaction

Among the targeted scenarios in WP4.1 are cooperative table/box pushing, cooperative lifting, coopera-
tive tool use, etc. We addressed these issues by extending the framework of dynamic movement primitives
with coupling terms, which enables the synchronization of DMPs in multi-agent behaviors. Since motor
action representations including DMPs are also studied in WP2.2, we reported on the transfer of DMPs,
including cooperative DMPs, in D2.2.3. In this report we focus on the implementation of coaching
through tightly coupled visual and force-based interaction.

Coaching abilities to adapt dynamic motion primitives (DMPs) based on external feedback, which
were initially implemented at JSI, were transferred to the main Xperience demonstration platform, i. e.
ARMAR-III humanoid robot. The experimental setup is shown in Figure 2.1.

Transfer of the abilities to create and adapt motor behaviors based on human coaching gestures were
implemented on the ARMAR-III robot. The technical implementation includes the periodic motor prim-
itives with coaching abilities combined with the means to autonomously determine the basic frequency
of a periodic input signal, based on a single adaptive frequency oscillator and an adaptive Fourier series
[6].

The learning and coaching behavior is implemented in the ArmarX framework. This framework allows
the implementation of distributed robot software components and the control of complex robot systems in
a real-time manner. To support the development of novel robot programs ArmarX provides customizable
building blocks for high level robot control e.g. robot actions are implemented as states which enhances
the reusability and the integration in more complex scenarios. Following this methodology, novel actions
needed for the learning and coaching of DMPs are implemented as states as well. With existing states
the entire learning and coaching behavior is realized in the form of state chart.

The task for this scenario was wiping the table. It consists of three parts:

• Learning new behavior for wiping the table by using the movement imitation algorithm. Initially,
given the color of a wiping tool, the robot localizes and grasps the tool using a visual servoing
approach. The human coach demonstrates a wiping action using a similar wiping tool which is
tracked by the robot in task space. The initial human movement, i. e. swipe from lower left to the
upper right corner, which defines the working space is followed by periodic motion pattern. The
learning of this motor behavior starts immediately after, allowing the robot to learn new motor
behaviors. The underlying algorithms detected the basic frequency and learns the motion for the
representation in the periodic DMPs. Note that here the robot is moving in a free space, without
any contacts with the environment, i. e. table.

• Adapting robot motion behavior to the environmental constrains, for example to the table surface.
Here the measured external force signal is used to properly alter the motion behavior. The previously

4

Xperience 270273 PU

Figure 2.1: Experimental setup, where a human
coach is modifying the robot’s motion. The hu-
man coaching gesture is captured using either vi-
sual or hepatic feedback.

Figure 2.2: Different hand gestures were used for
coaching. Top left shows the fist, top right shows
the open hand and bottom plots shows the 1-finger
and 2-finger pointing gestures respectively.

learned wiping DMP is augmented with the movement towards the table surface needed in order
maintain constant force between the robot and the table.

• Altering robot motion based on human coaching using either hand gestures or force interaction.
To determine human intentions in terms of coaching visual as well as haptic information is used.
Embedded in a task transition control mechanism the robot is able to switch between force or vision-
based coaching depending on the forces applied on the robot’s TCP and the current configuration
of the human hand. To detect whether forces are applied on the robot’s TCP measurements from
the force torque sensor in the robots wrist are evaluated. The recognition of the hand gesture of the
human coach is based on the fingertip positions which are detected and tracked using a tracking
algorithm which has been introduced in [1]. Based on the fingertip configuration, the robot can
distinguish between varieties of different hand gestures. Four different hand gestures, as shown in
Figure 2.2, were used for coaching: fist, open hand, and 1-finger and 2-finger pointing. With the
1-finger pointing gesture the coach can move the complete motion behavior to a different position
in space. On the opposite, by using either fist or 2-finger pointing hand, the coach can alter only
parts of motion behavior. Here the fist is used for pushing the motion trajectory towards the hand,
and 2-finger pointing gesture is used to push trajectory away from the hand. The direction of
altering the behavior is determine based on the vector that connects the hand and the robots end
effector. The open hand denotes that the coach approaches the robot with the intention of force-
based coaching. To facilitate the coaching for the human the frequency of the reproduced wiping
movement decreases when the coaching hand approaches the robot’s TCP.

Note that this scenario includes the implementation of several tasks and skills in a single, complete
module. The user can thus re-run or adapt the scenario without explicitly knowing all the details of the
underlying programming code.

The implementation of the underlying code in C++ is in a class which runs in a loop in the background.
It is essentially integrating the equations of the periodic DMPs combined with the frequency and feedback
adaptation to the external signals or coaching gestures. The following list includes the implemented C++
classes and the skills they comprise

• pDMPstructure

Implementation of periodic DMPs with coaching algorithm for adaptation of the motion based on
human coaching gestures and to achieve desired forces of non-rigid contact with the environment.

• AFSstructure

Implementation of Adaptive Fourier series for extraction of the basic frequency of periodic signals.

• MotionControlGroup

5

Xperience 270273 PU

ArmarX states which implement skills for the velocity- and position-based control of the robot’s
TCP. These states are needed to control the humanoid’s arm for the imitation and reproduction of
the demonstrated wiping movement.

• ForceAdaptation

A state which implements the force-based mechanism needed for the adaptation of a learned wiping
movement towards the surface to be wiped. Once the robot constantly applies a desired force on
the surface, the robot’s trajectories are stored and used for the augmentation of the corresponding
DMP.

• GraspObjectGroup

A collection of states implemented in ArmarX which are needed for the grasping of objects.

• VisualServoTowardsTargetPose

Visual servoing skill which is needed for the robust grasping of the sponge. Based on visual infor-
mation the robot’s hand is accurately positioned at a desired object-specific grasping pose.

• ColorMarkerObjectTracking

This skill implements a thread which is used for the capturing of the demonstrated wiping movement.
It exploits that the wiping tool features a specific color and that the color is defined within the skill.
By means of color segmentation and a particle filter tracking algorithm, the movements of the tool
in task space are captured.

• FingerTipTracking

Implementation of the fingertip tracking method. The method uses a skin color segmentation
method for the segmenation of the human hand. Based on the segmented image, an edge map
is formed. Using a circular hough transformation fingertip candidates are extracted. For the
estimation of the actual fingertip positions, a particle filter framework is used. This estimation is
refined using a Mean Shift algorithm

• AdaptiveHoughTransform

Implementation of a Hough transformation needed for the calculation of fingertip features. It
exploits that fingertips are represented by circular edge image features. Based on the depth in-
formation of the fingertips the radius of the Hough transformation is adapted for an appropriate
scaling.

• ParticleFilterFingerTracking

Implementation of the particle filter algorithm for the fingertip tracking. It transform the tracking of
five fingertips into a contour tracking problem where the nodes of the contours denote the fingertips.

• FingerARModel

Using image sequences as training data an AR2 model is learned for the prediction of the fingertip
positions based on the movements of the fingertips in the past frames. This model is used to increase
the robustness of the tracking method.

• GestureRecognizer

Compares the determined fingertip configuration with manually defined patterns which are labeled
with a certain gesture.

• ForceCoaching

A state which implements the force-based mechanism needed for the coaching of a learned wiping
movement. Once the robot experiences forces at the its wrist, the wiping movement is modified
according to the forces exerted by the coach.

• VisionCoaching

A state which implements the vision-based mechanism needed for the coaching based on the hand
gesture of the human coach. Based on the recognized gesture using the stereo vision system, the
human coach can modify the learned wiping movement by attracting or repelling the TCP or shifting
the entire movement towards a new target location.

6

Xperience 270273 PU

In addition to the above transferred and implemented capabilities on ARMAR-III, we integrated
the developed capabilities in the first years of the project in the new software framework ArmarX.
Among others, these are capabilities of force-based guiding of the robot and cooperative carrying
of big objects which were described in D4.1.1.

2.2 Transfer report for loosely coupled interaction

The work on the transfer of loosely coupled interaction concentrated on the integration of the methods
for cooperative perception and scene interpretation in the ArmarX framework to allow their use in the
final demonstration. In particular, we focused on implementation of a MemoryX architecture in ArmarX
which allow making the scene interpretation of one agent available to another agent for cooperative task
execution.

MemoryX comprises all memory related components of the ArmarX framework. These components
include basic building blocks for memory structures which can be either held in the system’s memory
or made persistent in a database. A memory architecture comprising a working memory (WM) and a
long-term memory (LTM) is realized using these building blocks (see Figure ??. Both memory types are
organized in individually addressable segments containing arbitrary types or classes which are accessible
within the distributed application. The WM is updated via an updater interface either by perceptual
processes or by prior knowledge. Prior knowledge is stored in a non-relational database and allows
enriching entities with known data (such as models or features). Besides directly addressing the WM,
the working memory observer allows generating events based on changes of the memory content. The
LTM offers an inference interface which allows attaching learning and inference processes.

Working Memory

Segment 1

Segment 2

…

Long-term Memory

Segment 1

Segment 2

…

Prior Knowledge

Segment 1

Segment 2

…

Memory Observer

Updater interface

Recall

Snapshot

Enrichment

In
fe

re
n

ce
 in

te
rf

ac
e

Events

Perception

Conditions

Common Storage Common Storage

Figure 2.3: ArmarX offers the MemoryX architecture consisting of working memory, long-term mem-
ory, and a prior knowledge component. All memories are accessible within the distributed application.
Appropriate interfaces allow attaching processes to the memory for updating and inference.

The perception components of the ArmarX provide facilities for including camera based image processing
in the distributed robot application. VisionX allows implementing image providers and image processors
as illustrated in Figure ??. The image provider abstracts from imaging hardware and provides a data
stream via shared memory or over Ethernet. Different image processors can be implemented that fall into
the classes of object perception, human perception, and scene perception. Processing results are written
to the working memory of MemoryX via the updater interface.

In cooperative tasks, each agent has its own environmental model represented in MemoryX, where spatial
segments of MemoryX contain the agents knowledge about the environment including environmental

7

Xperience 270273 PU

models, objects, grasping information, etc. Resulting object objects and their locations from perception
are stored and made available in the spatial memory segments of the working memory.

We implemented and tested several perceptual components in ArmarX and MemoryX, which needed for
loosely coupled interaction tasks. Among others, these are the following components:

• Gaze selection mechanism addresses three key problems of resource-aware visual perception: envi-
ronmental model fusion, saliency calculation, and gaze selection (see [9, 10]).

• Object segmentation by physical interaction [7] and visual collision detection during grasping [8];
see also D2.1.3.

• Visual Servoing for single and bimanual manipulation tasks.

Image provider

Firewire camera

Kinect

…

Videofile

H
ar

d
w

ar
e

in
te

rf
ac

e

Image processor

Objects

Human motion

…

Scenes

U
p

d
at

er
 in

te
rf

ac
e

Transport &
conversion

Figure 2.4: Image processing in VisionX. The image provider abstracts from hardware and streams data
via shared memory or Ethernet to an image processor. Processing results are written to the working
memory.

8

Chapter 3

Scientific Results

Here we describe the technical results of our research that were predominantly achieved in Year 4.
Earlier work on cooperative tasks, which was carried out in WP4.1 in the first three years of the project,
is described in Deliverable D4.1.1 and D4.1.2.

3.1 Altering Robot Behaviors Based on Human in the Loop
Coaching Gestures

The creation and adaptation of motor behaviors is an important capability for autonomous robots. We
developed a new approach for altering existing robot behaviors online, where a human coach interactively
changes the robot motion to achieve the desired outcome [PGv+14]. Using hand gestures, the human
coach can specify the desired modifications to the previously acquired behavior.

We were inspired by the efficiency of human-to-human skill transfer when developing a more effective
approach to modify the existing robot behaviors. Rather than learning how to program robots, people
can bring their own knowledge from interacting with each other directly into the robot domain. Our
coaching system is based on periodic Dynamic Movement Primitives (DMPs) combined with an adaptive
frequency oscillator, which can extract the phase and the frequency from an arbitrary periodic signal [6].
The primary goal of movement modeling with dynamical systems is to exploit the coupling phenomena to
generate more complex behaviors. To preserve a natural posture while performing the task, the movement
is encoded in the robots joint space.

Figure 3.1: Experimental setup, where a human coach
is modifying the robot’s motion. The human coaching
gesture is captured using Microsoft Kinect sensor.

To acquire the human coaching gestures in the coordinate
system of the robot, we calibrated the Microsoft Kinect
sensor to the robot base coordinate system. To obtain the
appropriate transformation matrix, we recorded at least four
pairs of points in both coordinate systems. For this purpose
the human coach placed his hand at the same location as the
robot’s end-effector and the position of the human hand and
the robot’s end-effector were measured in the Kinect’s and
robot base coordinate system, respectively. The transforma-
tion matrix was calculated using least-squares fitting of two
points set as described in [22].

Fig. 5. Experimental setup, where a human coach is modifying the robot’s
motion. The human coaching gesture is captured using Microsoft Kinect
sensor.

To make coaching as intuitive as possible, we developed an
interface where the human coach can modify the trajectory
by either pushing it away from him using his right hand or
attracting it towards him with his left hand. The coaching
direction was calculated using the wrist and the elbow
location. For the right hand, which pushes the trajectory away
form the coach, the direction is given by

dddR =
xxxw,R − xxxe,R

||xxxw,R − xxxe,R|| , (18)

where the xxxw,R and the xxxe,R are the Cartesian positions of the
right hand wrist and the right hand elbow in the robot’s base
coordinate system. For attracting the trajectory towards the
coach, the direction is given by

dddL =
xxxe,L − xxxw,L

||xxxe,L − xxxw,L|| . (19)

Here xxxw,L and the xxxe,L are respectively the Cartesian positions
of the left hand wrist and the left hand elbow in the robot’s
base coordinate system.

Since Microsoft Kinect sensor relies on depth information
and our humanoid robot has similar body proportions as a
human, the body tracker sometimes becomes confused if the
human approaches the robot very closely. For this reason
the human coach did not approach the robot too closely in
our experiments. Instead, the center of the potential field

generated by each hand was moved slightly away from the
respective hand. For the right hand, the origin of the potential
field defined by the coaching gesture was moved in the
direction of the coaching gesture

oooR = xxxR + ξRdddR, (20)

where ξR is the scalar that defines the distance between the
hand and the center of the coaching point in the direction
of dddR. Similar equation is used also for the left hand which
attracts the trajectory towards the hand.

oooL = xxxL − ξLdddL. (21)

Here, the effective coaching point is moved in the opposite
direction of perturbation dddL. With such modifications the
effective origins of potential fields are always in front of
the human hands in the direction of pointing at the distance
defined by ξR and ξL.

To determine which hand is active, we use the distance
between both wrist positions xxxw,L, xxxw,R and the robot’s end-
effector position xxx. The active hand is the one which is closer
to the robot’s hand position.

To show the applicability of the interface for online
modification of the initial rhythmic movement using human
in the loop coaching gestures, we first provide an example of
pulling-in the task space trajectory. The parameters were set
to γ = 10, η = 10, rm = 0.15 and β = −10/π . Fig. 6 shows
the task space motion of the robot’s end-effector in the x−y
plane. We can see a successful modification of the motion
based on the human coaching gestures. In Fig. 7 we show
the corresponding joint space trajectories as a function of
time. The teaching of the new motion pattern begins after 5
seconds, which is indicated with the first vertical line. We can
see that the joint space trajectory was modified successfully
to achieve the desired task space motion. In Fig. 7 we can see
that at approximately 50 seconds the human coach stopped

−0.55 −0.5 −0.45 −0.4 −0.35 −0.3
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x [m]

y
[m

]

Fig. 6. Task space motion of the robot’s end-effector, where human coach
was modifying the motion pattern. The initial trajectory is in red and the
final trajectory is in green. The time evolution of the trajectory modification
is indicated with grey line.

Figure 3.2: Task space motion of the robot’s
end-effector, where human coach was modi-
fying the motion pattern. The initial trajec-
tory is in red and the final trajectory is in
green. The time evolution of the trajectory
modification is indicated with grey line.

9

Xperience 270273 PU

To make coaching as intuitive as possible, we developed an interface where the human coach can modify
the trajectory by either pushing it away from him using pointing gestures with his right hand or attracting
it towards him with his left hand. The coaching gestures are mapped to the robot joint space via robot
Jacobian and used to create a virtual force field to affect the movement. The DMP modification method
is based on a recursive least-squares technique for updating the weights of periodic DMPs. A recursive
least squares technique was used to modify the existing movement with respect to the virtual force field.
It is similar to what occurs during standard DMP learning, with the updating term changed from the
difference between the desired human and the existing robot movement to the update term generated by
the virtual force field, which is defined by the coaching gesture.

The proposed approach was evaluated on a simulated three degrees of freedom planar robot and on a real
humanoid robot, where human coaching gestures were captured by an RGB-D sensor as shown in Fig.
3.1. Fig. 3.2 shows the task space motion of the robot’s end-effector in the x − y plane. We can see a
successful modification of the motion based on the human coaching gestures. Although our focus was on
rhythmic movements, the developed approach is also applicable to discrete (point-to-point) movements.

3.2 Synchronization of Dual-Arm Humanoid Robot Movement
Primitives

In previous years we extended the framework of dynamic movement primitives with force/torque feedback,
which is essential to enable the execution of bimanual and tightly coupled cooperative tasks. This work is
described in [4, 3] and deliverable D4.1.2. Here and in the attached paper [GUMed] we use this previously
developed mechanism to enable fast synchronization of dual-arm dynamic movement primitives (DMPs).
Our approach is based on ideas from iterative learning control (ILC) and feedback error learning and
integrates with a combined representation for discrete transient motion and periodic behavior in a single
system [2].

Before the onset of the periodic movement pattern, rhythmic movements are often started in a non-
periodic way. A practical example is walking, where the first step is different from the following steps.
Indeed, the initial motion could be treated as separate motion and a combining mechanism would merge
it with periodic motion, but treating the whole discrete-periodic process in a uniform system simplifies
the structure of the control system for such discrete-periodic tasks.

To treat the discrete-periodic motion in a uniform system, represented by a dynamic movement primitive,
a common canonical system is required. For the basis of the canonical system we augmented the system
initially proposed by [2], to fully incorporate the modulation capabilities in speed and frequency of
separate discrete or periodic motion, respectively. The canonical system is based on the location in the
phase plane for the initial discrete behavior, and the location on the limit cycle for the subsequent periodic
behavior.

Figure 3.3: Dual arm box manipulation after the adaptation of the motion of the arms. The movement
consists of initial point-to-point movement (first three images), followed by periodic box shaking.

10

Xperience 270273 PU

Just as the motion itself, the adaptation of motion also has to account for the different nature of the
transient and periodic parts. To adapt the transient (discrete) part, ILC can be used just as in [4,
3]. Repetitive control (RC) is a method similar to iterative learning control, but for periodic motions.
However, even though ILC and RC have distinct differences, their essential features are nearly equivalent,
and ILC has been applied to processes with periodic inputs as no-reset ILC. We therefore applied ILC
for both parts of the discrete-periodic-DMP. One attempt at a trajectory, i. e. one epoch, now consists
of one instance of the discrete part, and of ν periods of the periodic part.

To improve on the adaptation we modified the error of adaptation with elements of feedback error learning.
By including the difference in the velocity terms, we accelerated the adaptation, leading to the reduction
of forces between two agents that apply this approach and thereby reduced the already low number of
iterations needed to achieve satisfactory results.

The application in our research was to synchronize the motion of two robot arms in the context of dual
arm manipulation. We considered the task of lifting an unknown object with two arms in such a way
that the relative object position and orientation between the two arms remain constant. Even though
the task was set in the task space, we have shown that the adaptation can be applied in the joint space.
Figure 3.3 shows the implementation on a full-sized Sarcos CBi humanoid robot.

11

References

[1] M. Do, T. Asfour, and R. Dillmann. Particle filter-based fingertip tracking with circular Hough
transform features. In IAPR International Conference on Machine Vision Applications (MVA),
Nara, Japan, 2011.

[2] J. Ernesti, L. Righetti, M. Do, T. Asfour, and S. Schaal. Encoding of periodic and their transient
motions by a single dynamic movement primitive. In 2012 12th IEEE-RAS International Conference
on Humanoid Robots (Humanoids), pages 57–64, Osaka, Japan, 2012.

[3] A. Gams, B. Nemec, A. Ijspeert, and A. Ude. Coupling movement primitives: Interaction with the
environment and bimanual tasks. IEEE Transactions on Robotics, 30(4):816–830, 2014.

[4] A. Gams, B. Nemec, L. Žlajpah, A. Ijspeert, T. Asfour, and A. Ude. Modulation of motor prim-
itives using force feedback: Interaction with the environment and bimanual tasks. In IEEE/RSJ
International Conference on Intelligent Systems and Robots, pages 5629–5635, Tokyo, Japan, 2013.

[5] T. Kulvicius, M. Biehl, M. J. Aein, M. Tamosiunaite, and F. Wörgötter. Interaction learning for
dynamic movement primitives used in cooperative robotic tasks. Robotics and Autonomous Systems,
61(12):1450–1459, 2013.

[6] T. Petrič, A. Gams, A. J. Ijspeert, and L. Žlajpah. On-line frequency adaptation and movement
imitation for rhythmic robotic tasks. The International Journal of Robotics Research, 30(14):1775–
1788, 2011.

[7] D. Schiebener, A. Ude, and T. Asfour. Physical interaction for segmentation of unknown textured
and non-textured rigid objects. In IEEE International Conference on Robotics and Automation
(ICRA), Hong Kong, 2014.

[8] D. Schiebener, N. Vahrenkamp, and T. Asfour. Visual collision detection for corrective movements
during grasping on a humanoid robot. In IEEE/RAS International Conference on Humanoid Robots
(Humanoids), Madrid, 2014.

[9] K. Welke, P. Kaiser, A. Kozlov, N. Adermann, T. Asfour, and M. Steedman. Grounded spatial
symbols for task planning based on experience. In IEEE-RAS International Conference on Humanoid
Robots (Humanoids), pages 484–491, Atlanta, Georgia, 2013.

[10] K. Welke, D. Schiebener, T. Asfour, and R. Dillmann. Gaze selection during manipulation tasks.
In IEEE International Conference on Robotics and Automation (ICRA), pages 652–659, Karlsruhe,
Germany, May 2013.

12

Attached Papers

[GUMed] A. Gams, A. Ude, and J. Morimoto. Efficient synchronization of dual-arm humanoid robot
movement primitives. In IEEE/RSJ International Conference on Intelligent Systems and
Robots (IROS), Hamburg, Germany, 2015 (submitted).

[PGv+14] T. Petrič, A. Gams, L. Žlajpah, A. Ude, and J. Morimoto. Online approach for altering robot
behaviors based on human in the loop coaching gestures. In IEEE International Conference
on Robotics and Automation (ICRA), pages 1790–1795, Hong Kong, 2014.

13

Efficient Synchronization of Dual-Arm Humanoid Robot Movement
Primitives

Andrej Gams1, Aleš Ude2 and Jun Morimoto3

Abstract— Direct replication of human-demonstrated motion
on a robotic platform usually does not achieve the same result
as the demonstrated motion due to different kinematic and
dynamic properties of the human and the robot. Nevertheless,
it can serve as a first approximation for learning of new
motor skills. In this paper we propose a new approach for
the synchronization of dual-arm dynamic movement primitives
(DMPs), which is based on ideas from iterative learning control
(ILC) and feedback error learning. To simultaneously repre-
sent discrete and periodic movements, the proposed approach
utilizes a DMP formulation, which encodes an initial discrete
motion, followed by a periodic behavior, all in a single system.
We successfully applied the developed method to an example
dual arm manipulation task, which was implemented on a
real humanoid robot. Our results show that by incorporating
the elements of feedback error learning into current-iteration
ILC, efficient synchronization of dual-arm humanoid robot
movements can be achieved.

I. INTRODUCTION
Robot programming by demonstration has been exten-

sively used for the generation of robotic motion [1] including
full body motion [?]. Neurobiological findings motivated
also the use of action primitives [2]. Amongst the various
methods of encoding demonstrated motion using primitives,
dynamic movement primitives (DMP) have emerged for
both discrete point-to-point motion as well as for periodic
motion [3]. Our study is based on a computational model
that combines discrete and rhythmic movement primitives
in a unified representation, where discrete movement can
smoothly transition to a rhythmic behavior. We showed how
the initially trained behaviour can be modified to account for
external feedback generated by the constraints of the task.

Combining discrete and periodic motion has been studied
from the perspective of common neural control systems
in humans [4], [5]. In robotics, motor primitives and cen-
tral pattern generators were used for combined rhythmic-
discrete motion represntation by Degallier et al. [6], who
applied their framework to infant crawling and drumming

*This work was supported by EU Seventh Framework Programme grant
270273, Xperience. It was also supported by MEXT KAKENHI Grant
Number 23120004; by MIC-SCOPE; by JSPS and MIZS: Japan-Slovenia
research Cooperative Program; by JST-SICP; and by SRPBS, MEXT. A.
Ude would like to thank NICT for its support within the JAPAN TRUST
International Research Cooperation Program.

1Andrej Gams is with Humanoid and Cognitive Robotics Lab, Dept. of
Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana,
Slovenia andrej.gams@ijs.si

2Aleš Ude is with Humanoid and Cognitive Robotics Lab, Dept. of
Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana,
Slovenia and with Department of Brain Robot Interface (BRI), ATR Com-
putational Neuroscience Labs, Kyoto, Japan ales.ude@ijs.si

3Jun Morimoto is with Department of Brain Robot Interface (BRI) ATR
Computational Neuroscience Labs, Kyoto, Japan xmorimo@atr.jp

on a humanoid robot. As un underlying structure they used
nonlinear oscillators, which allowed the transition between
different types of behaviors. Oscillators were also used in a
control structure by Ajallooeian et al. [7], who showed how
nonlinear phase oscillators can be morphed to an arbitrary
limit cycle, including an initial transient motion. A combined
representation for discrete transient motion and periodic
behavior in a single system was developed by Ernesti et
al. [8], who applied DMPs. These authors modified the
standard DMP representation so that the canonical system
starts in the phase plane away from the limit cycle and
later converges to the limit cycle. The location in the phase
plane provides the canonical system for the initial discrete
behavior, while location on the limit cycle for the subsequent
periodic behavior. In this paper we name this kind of a DMP
a discrete-periodic dynamic motion primitive (DP-DMP).

Despite the rich and favorable properties of DMPs for
robotic control, direct replication of the demonstrated move-
ment on the robot usually does not produce the desired task
behavior. However, direct demonstration using DMPs can
be modified by external feedback [9], [10], or can serve as
an initial approximation for learning of the correct signal,
e. g. using reinforcement learning [11], [12]. As DMPs can
also be coupled to external signals, e.g., Gams et al. [13]
proposed using iterative learning control (ILC) to learn task-
appropriate coupling signals. The nature of ILC makes it
applicable to discrete processes [14] and repetitive control
(RC) was proposed for periodic DMPs [15]. Periodic DMPs
were also modified using feedback error learning [16]. The
authors learned the feed-forward accelerations provided to an
inverse dynamics model in order to minimize the feedback
control effort of an additional stabilizing control law. DMPs
have also been extended to Interaction Primitives [17], incor-
porating tools for synchronizing, adapting, and correlating
motor primitives between cooperating agents. Interaction
forces were learned from human demonstrations in [18].

In this paper we build on DP-DMP formulation and
include the means to adapt to external feedback and learn
coupling terms which exclude feedback errors. The main
contributions of the paper are

• A modification of a unified representation based on
dynamic systems to simultaneously encode rhythmic
and periodic components of the movement.

• The application of current-iteration iterative learning
control to modify the initially trained discrete and
periodic movements that smoothly transition from one
to another.

• Improving the convergence and performance of the

iterative learning control algorithm by incorporating
the principles of feedback-error-learning method, where
the transformed feedback signal is used to train the
underlying motor representation.

• The modification of the trajectories in joint space as
opposite to the previous applications of modifications
in task space.

• Application of the developed approach for the synchro-
nization of dual arm movements.

This paper is organized as follows. In Section II we
first provide the structure of the periodic DMP with a
transient part, including the modifications of the original
contribution of Ernesti et al. [8]. The introduction of both
iterative learning control and elements of feedback learning is
explained in Section III. Application of the DMP modulation
in joint space is provided in Section IV. Section V discusses
simulated and real-world results, including an assessment of
the learning when more complex feedback error is added.
Discussion and conclusions follow.

II. UNIFIED REPRESENTATION FOR DISCRETE AND
PERIODIC MOVEMENTS

This section provides a recap of the DMP formulation that
allows encoding a periodic motion and its initial discrete
transient part, i. e. a DP-DMP, and explains our extensions.

Standard dynamic movement primitives (DMPs) are based
on a damped spring model [3]

ż = Ω (αz (βz (g − y)− z) + f) , (1)
ẏ = Ωz, (2)

where Ω is a constant governing the speed of execution (the
frequency) and αz = 4βz are positive constants that make
the system critically damped. The parameter y is one of the
degrees of freedom used to control the robot and z is an
auxiliary variable. The goal parameter g defines the unique
attractor point, i. e. the point to which y converges if the
forcing term f tends to zero as a function of time. The robot
is controlled by integrating system (1) – (2) with the given
initial parameters y = y0, z = ẏ0/Ω. The choice of the
forcing function f determines whether the movement encoded
by a DMP is periodic or discrete.

In this work we make use of the forcing term proposed
in [8], which results in a representation that simultaneously
encodes discrete and periodic movements. For this purpose,
the forcing term f is defined as a function of two phase
variables φ and r, i. e. f(φ, r). The evolution of the two-
dimensional phase variable (r, φ) is governed by the follow-
ing canonical system

φ̇ = Ω, (3)
ṙ = Ωη (µα − rα) rβ . (4)

In contrast to [8], we added parameter Ω also to Eq. (4),
which is important to enable one of the basic properties of
DMPs, i. e. temporal scaling. Ω is defined as Ω = 2π/p,
where p is equal to the period of rhythmic movement in
seconds. The parameters α, β, and η are positive constants

with which the speed of convergence of r to µ can be
adjusted. We used η = 6, α = 1/6, β = 0.001 and µ = 1 as
constants. To determine the initial phase (rinit, φinit) from
where the integration of (3) – (4) is started, we first define
the phase at which the discrete movement transitions into
the periodic movement. In our experiments this transition
was defined to occur at the phase (µ1, 0). The initial phase
was then calculated by back-integrating Eq. (3) – (4) for
the duration T of the discrete part of the movement. This
duration can be obtained from the training data.

Note that both the transformation system (1) – (2) and
the canonical system (3) – (4) are only indirectly depen-
dent on time, which is essential to ensure many favourable
properties of DMPs, e. g. scale and temporal invariance and
easy modulation of control parameters for online trajectory
modification.

Using the above phase, f can be defined as [8]

f(φ, r) =

∑N
j=1 vjψj(r, φ) +

∑M
i=1 wiξi(r, φ)∑N

j=1 ψj(r, φ) +
∑M
i=1 ξi(r, φ)

, (5)

where ψj and ξj are the forcing terms specifying the discrete
and periodic parts of movement, respectively:

ψj(r, φ) = b(r) exp (lj(cos(φ− cj)− 1)) , (6)

ξj(r, φ) = a(r) exp

(
−hj

∥∥∥∥[r cos(φ)
r sin(φ)

]
− qj

∥∥∥∥2
)
.

(7)

The centres of periodic forcing terms cj = (j − 1)2π/N +
π/N are uniformly distributed with constant widths lj =
1.25N, j = 1, . . . , N . The centers of discrete forcing terms
are taken at qj = [rj cos(φj), rj sin(φj)]

T, where the phase
centers (rj , φj) are determined so that approximately the
same number of integration steps is needed to integrate (3)
– (4) from (rj−1, φj−1) to (rj , φj), for all j. The first
center point (r1, φ1) is equal to the initial phase of the
movement, (r1, φ1) = (rinit, φinit), while (rM , φM) is equal
to the phase where discrete movement transitions into the
periodic movement, (rM , φM) = (µ1, 0). The widths of the
kernels are determined as hj = 0.5/(‖qj+1 − qj‖2), j =
1, . . . ,M − 1, hM = hM−1.

Kernel functions a and b implement the transition from
discrete to period movement. We defined them using a
tricube kernel

b(r) =

1, r < µ1(

1−
(
r − µ1
µ2 − µ1

)3)3

, µ1 ≤ r ≤ µ2

0, r > µ2

(8)

a(r) =

0, r < µ1(

1−
(
µ2 − r
µ2 − µ1

)3)3

, µ1 ≤ r ≤ µ2

1, r > µ2

(9)

Note that in [8] Gaussian kernels were used to define a and
b. The advantage of our definition is that the above kernel
functions really become equal to zero and not just tend to

zero as Gaussian kernels do. In our experiments we used
µ1 = 1.2µ and µ2 = 1.4µ as constants.

III. INTRODUCING FEEDBACK ERROR LEARNING INTO
ITERATIVE LEARNING CONTROL

The application we had in mind in our research was to
synchronize the motion of two robot arms in the context of
dual arm manipulation. We considered the task of lifting an
unknown object with two arms in such a way that the relative
object position and orientation between the two arms remain
constant. This happens if the robot holds the object so that
the force acting on the arms is constant. If the movement of
the two arms is specified by two DMPs given by Eq. (1) –
(4), synchronous arm behavior can be achieved by modifying
one of the two DMPs so that the forces and torques acting
on both arms are constant, i. e. F(t) = Fd and M(t) = Md.

Lets consider now dual arm manipulation, where the
initial arm movements are specified in task coordinates.
The application to joint coordinates is presented in the next
section. The sensory feedback is provided by measuring
gravity-compensated forces and torques acting on both arms.
If the task is to modify the movement of the second arm so
that it lifts the object together with the first arm, then the
feedback signal can be defined as

e(t) =

[
Fd − F2(t)
Md −M2(t)

]
, (10)

where Fd, Md are the desired forces and torques and F2(t)
and M2(t) the actual forces and torques acting on the second
arm. The basic idea for adaptation is taken from the feedback
error learning approach [19], where the robot motion is
modified in such a way that the feedback signal tends to
zero as the learning proceeds.

Iterative learning control (ILC) provides an effective way
to minimize feedback error. In iterative learning control
information about feedback error can be used to improve
the performance in the next repetition of the same behavior.
We propose to apply the current-iteration ILC, which is given
by the formula [14]

uj+1(k) = Q(uj(k) + Lej(k + 1))︸ ︷︷ ︸
feedforward term

+ Cej+1(k)︸ ︷︷ ︸
feedback term

, (11)

where u is the control signal, k denotes the k-th time
sample, j denotes the learning iteration, and Q and L are
the learning parameters. ILC is distinguished from simple
feedback control by the prediction of the error e(k + 1, j),
which serves to anticipate the error caused by the action
taken at the k-th time step. ILC modifies the control input
in the next iteration based on the control input and feedback
error in the previous iteration.

In the case of DP-DMP, the learning needs to apply both
to the discrete and the periodic parts. However, ILC was
originally developed for discrete processes only. Repetitive
control (RC) was proposed instead of ILC to modify periodic
DMPs [15], but this method cannot be applied to the initial
discrete part. However, as stated in [20], ILC and RC have
distinct differences, but their essential features are nearly

equivalent, and ILC has been applied to processes with
periodic inputs as no-reset ILC [21]. We therefore apply ILC
for both parts of the DP-DMP. One attempt at a trajectory,
i. e. one epoch, now consists of one instance of the discrete
part, and of ν periods of the periodic part.

In the context of DP-DMPs, we add the control signal u
to Eq. (2)

ẏ = Ωz + u, (12)

where u is written as

u(φ, r) =

∑N
j=1 ṽjψj(r, φ) +

∑M
i=1 w̃jξj(r, φ)∑N

j=1 ψj(r, φ) +
∑M
i=1 ξj(r, φ)

. (13)

u, defined using the same kernel functions (6) and (7) as the
forcing term (5), is thus encoded by kernel function param-
eters [ṽ, w̃]T, ṽ = [ṽ1, . . . , ṽN], w̃ = [w̃1, . . . , w̃M], which
are mapped to the control signal uj = [uj(1), . . . , uj(T)]
during the execution. Similarly, mapping from the phase
dependent control signal u to [ṽ, w̃]T is accomplished with
regression [3], [22]. Thus learning the feedforward signal
u involves its adaptation using formula (11), followed by
regression to calculate the parameters [ṽ, w̃]T.

IV. DP-DMP COUPLING AT THE JOINT LEVEL

While demonstrations may be in task space, transfer of
motion to the robot can also include joint space trajectories,
acquired by kinesthetic guiding. By maintaining the move-
ment representation in the joint space, we preserve the infor-
mation about the robot configuration, which is specifically
important for a redundant robot. Previous publications for
modulating the DMP trajectory using external force feedback
considered task space trajectories [13]. In the following we
show how it can be applied to joint trajectories.

Ideally, one would use the full inverse dynamic model
to calculate the motor command error given the task space
error. Since accurate inverse dynamics models are difficult
to obtain, feedback error learning approach [19] uses the
output of a simple controller consisting of proportional, dif-
ferentiation, and acceleration feedback to iteratively improve
the motor command. In our work, the proportional part is
provided by (10), but the performance can be improved by
adding a differentiation term. If the Cartesian space velocities
of both arms are available, the force feedback signal (10) can
be enhanced by the velocity feedback and mapped into the
joint space

e(t) = K1J
T
2

[
Fd − F2(t)
Md −M2(t)

]
+

K2J
+
2

[
ẋ1(t)− ẋ2(t)
ω1(t)− ω2(t)

]
. (14)

Here J+
2 denotes the pseudoinverse of the task Jacobian of

the second arm. The second term in the above equation is
based on the fact that the relative motion of the two arms
holding an object should be equal to zero. Feedback signal
(14) ensures faster convergence to the desired behavior than
the simpler feedback signal (10) multiplied by the transpose
of the task Jacobian. Since the control signal u is given at

the velocity level, it does not make sense to add also the
acceleration feedback term.

V. RESULTS

A. Experimental setup

In our experiments we considered dual arm manipulation,
where the trajectories of the arms were encoded as DP-DMPs
in joint space. The task was to synchronize the movement
of both arms in 3D space so that the robot could perform
the pre-defined object manipulation motion. The trajectory of
the right arm was predefined, while the joint trajectories of
the left arm had to adapt using our approach so that the two
arms moved in synchrony, keeping the box held by both arms
at constant relative position between the two arms. In the
experiments we used a full-size humanoid robot Sarcos CB-
i [23]. The setup and the resulting motion after learning is
presented in the image sequence of Fig. 4. The accompanying
video shows that the robot was able to hold the box between
the two arms.

B. Dual arm manipulation

As described above, the joint trajectories of the arms are
synchronized to minimize the feedback received in the task
space. The final goal was that the arms move with constant
distance for the complete discrete-periodic trajectory. One
epoch of motion consists of a discrete part, followed by 3
periods of the periodic part. The robot then returns to the
original position, which is also depicted in the plots.

Figure 1 shows the results of the trajectories in z (up-
down) direction of the task space. The other two task-
directions were already synchronized so that the robot could
manipulate the object. We can see in the top plot the discrete-
periodic nature of the motion, where three periods of periodic
motion were executed in every epoch. The periodic part is,
due to 3 periods per repetition, adapted within 10 epochs.
The discrete motion, which is quite fast, takes slightly longer.
The bottom plot shows the error of learning over time.
Exponential convergence can be observed.

Figure 2 shows the adaptation of the joint space trajecto-
ries for the same experiment. The blue line shows the original
trajectories of the first 4 joints of the robot’s left arm – the
top three approximating the shoulder joint and the last one
the elbow. The red lines show the adapted trajectories of
motion for the same joints. Wrist joints were not modulated.

It is important to note that even though the feedback is
in task space and the task space trajectories match in two
dimensions, the adaptation of the DMP occurs in joint space
and joint-space trajectories do not match in all dimensions.
This is clearly seen in Fig. 3, where the trajectories of the
left and the right arm joints are shown. Since we used 4
DOFs for the robot’s arm and only 3 are needed to control
the task space position trajectory, the robot arm is redundant
for the task and the joint trajectories of the left arm are
not symmetrical to the joint trajectories of the right arm,
which is clearly visible when comparing shoulder abduction-
adduction (SAA) and elbow joints (EB).

C. Effect of Feedback Error Learning

Changing the feedback to include the velocities as in
(14), as an element of feedback error learning, increases the
speed of learning. Faster adaptation is specifically clearly
observable in the first few epochs. Figure 5 shows the task
space end-effector velocities for the same experiment. The
green line shows the right arm velocities, the blue line the
velocities when using (10) and the red line when using (14).
While some overshoot appears when using the velocity as in
feedback term (14), overshoot occurs also when velocity is
not used, where it also takes longer to fade-out.

The difference in positions is shown in Fig. 6. The
difference is clearly visible in the first epoch, while both
approaches converge to the final trajectories roughly at the
same time.

D. Modulation of execution frequency

We improved the original formulation of the canonical sys-
tem to allow for the modulation of the execution frequency
of the periodic part by modifying (4). Without this change
DP-DMPs do not include one of the basic DMP properties
– modulation of execution (playback) speed with only one
parameter. Fig. 7 shows the results of reducing the parameter
Ω from 4π to 2π. In the top plot we can see that when using
the original canonical system the execution is not stable,
given in red. The blue trajectory shows the behavior of the
system with Ω = 4π. The bottom plot shows the behavior of
the system when using the modified canonical system. Note
that the adaptation of the trajectories is not affected.

VI. DISCUSSION AND CONCLUSION

Before the onset of the periodic movement pattern, rhyth-
mic movements are often started in a non-periodic way. A
practical example is walking, where the first step is different
from the following steps. In running, this condition is even
more prominent because the initial motion acceleration might
take a few steps. Treating the whole discrete-periodic process

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

z
[m

]

desired actual

0 10 20 30 40 50 60 70 80 90 100

−0.1

−0.05

0

0.05

0.1

t [s]

e
r
r
o
r
[m

]

Fig. 1. Results of adaptation of one robotic arm to the other. The top plot
shows the trajectories of both robots in z direction of the task. Only one
robot adapted the trajectories. In the bottom plot we can see the error of
adaptation over time. We can see that the error is reduced very fast and
eventually also completely fades away.

Fig. 4. Dual arm box manipulation. The movement consists of initial point-to-point movement (first three images), followed by periodic box shaking.

0 10 20 30 40 50 60 70
0

0.2

0.4

L
S
F
E

0 10 20 30 40 50 60 70
−0.4

−0.2

0

L
S
A
A

0 10 20 30 40 50 60 70
−0.4

−0.2

0

L
H
R

0 10 20 30 40 50 60 70
1.2

1.4

1.6

1.8

2

L
E
B

t [s]

Fig. 2. Adaptation of the robotic arm in the joint space, where the
modulation actually takes place. The blue lines show the original joint
trajectories and the red lines the modulated trajectories for left shoulder
flexion extension (LSFE), abduction-adduction (LSAA), left humerus rota-
tion (LHR) and left elbow (LEB).

in a uniform system simplifies the structure of the control
system for such tasks.

As stated in [5], rhythmic and discrete movements are
not the same from the neural point of view. This difference
comes into play also when adapting trajectories as proposed
in our paper. For example, the convergence of coupling term
learning by ILC is different for each part. Furthermore, the
iterative nature of the algorithm has led to the notion of

0 10 20 30 40 50 60 70

0

0.2

0.4

S
F
E

0 10 20 30 40 50 60 70
−0.4

−0.2

0

S
A
A

0 10 20 30 40 50 60 70
−0.4

−0.2

0

H
R

0 10 20 30 40 50 60 70
1

1.5

2

E
B

t [s]

Fig. 3. Adaptation of the left arm joint trajectories in red and of the right
arm trajectories in blue in all four plots.

repetitive control and no-reset ILC [21].
The blending terms a and b, which are used to encode

the initial movements by DP-DMPs, are later also used to
separate the discrete and periodic part of modulation terms
u. The encoding of the modulation term as a combination of
kernel functions for both parts completely accounts for the
phase evolution, but also ensures smooth transition between
the discrete and periodic part. With the introduction of
tricube kernel instead of the Gaussian kernel for the blending
terms, we improved on the previous implementation by

0 10 20 30 40 50 60 70
−1.5

−1

−0.5

0

0.5

1

1.5

t [s]

ż
[m

/
s]

right arm velocity pos+vel fb pos fb

Fig. 5. The effect of using velocity-modified feedback for the ILC on the
velocities. The green line shows the right arm end effector velocities. The
red line shows the task space velocity adaptation when using the velocity
modifed feedback as in (14), while the blue when using only position
feedback (10).

0 10 20 30 40 50 60 70
0.05

0.1

0.15

0.2

0.25

0.3

t [s]

z
[m

]

right arm position pos+vel fb pos fb

Fig. 6. The effect of using velocity-modified feedback for the ILC on the
positions. The green line shows the right arm end effector velocities. The
red line shows the task space velocity adaptation when using the velocity
modifed feedback as in (14), while the blue when using only position
feedback (10).

achieving a complete separation at the given transition point
so that the effect of one part did not linger into the other.

In the paper we proposed a modified feedback within the
current-iteration iterative learning control framework, taking
into account the ideas developed in feedback error learning
[19]. As evident from our results, this allows for faster
adaptation, even though the final outcome is very similar.
Something would be wrong with one of the methods if this
wasn’t the case. The introduction of elements of feedback er-
ror learning thus expands the realm of possible applications,
but also more closely account for the actual conditions of
the experiment. For the arms to move in synchrony, both
position and velocity should be synchronized.

The developed approach maintains a small set of tuning
parameters, as effectively K1, K2 in the feedback term and
Q, L and C have to be specified. While the former are
task-specific, the latter follow a well established ILC theory
[14], where decreasing the Q (from 1) value will increase
robustness but also the steady-state error. Therefore, L needs
to be calculated in order to maintain the stability [14], while
C is again a task-specific feedback gain.

Implementation of the algorithm in joint space – as pro-
posed in the paper – allows for maintaining the demonstrated
joint space posture, which comes specifically practical for
redundant robots such as humanoids.

In summary, we have developed a modified approach
for encoding combined discrete-periodic dynamic movement
primitives. Current-iteration iterative learning control has

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

z
[m

]

orig. can. sys
mod. can. sys

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

t [s]

z
[m

]

R L

Fig. 7. Top: The results of changing the frequency of the execution to
from Ω = 4π to Ω = 2π when using the original canonical system from
[8], shown in red. The blue trajectory shows the behavior of the system at
Ω = 4π. Bottom: Results of changing Ω = 4π to Ω = 2π when using
our proposed canonical system. We can also see that trajectory adaptation
is not affected.

been applied to modulate DP-DMPs at the velocity level.
By introducing the elements of feedback error learning in the
learning framework, we have accelerated the convergence of
the approach, thereby reducing the low number of iterations
needed to achieve satisfactory results even further. In our
experiments we demonstrated that the proposed approach is
applicable to real-world problems such as dual arm manip-
ulation.

In the future we intend to expand the proposed method-
ology to take into account variations in the frequency of
motion during learning. In addition, we will focus on how to
include the learning of varying coupling terms. In the context
of dual-arm manipulation, the learning of varying coupling
terms will enable the manipulation of boxes of varying size.

REFERENCES

[1] R. Dillmann, “Teaching and learning of robot tasks via observation of
human performance,” Robotics and Autonomous Systems, vol. 47, no.
2-3, pp. 109–116, 2004.

[2] D. Kulić, D. Kragic, and V. Krüger, “Learning action primitives,” in
Visual Analysis of Humans - Looking at People., 2011, pp. 333–353.

[3] A. Ijspeert, J. Nakanishi, P. Pastor, H. Hoffmann, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, 2013.

[4] A. d. Rugy and D. Sternad, “Interaction Between Discrete and Rhyth-
mic Movements: Reaction Time and Phase of Discrete Movement
Initiation During Oscillatory Movements,” Brain Research, vol. 994,
no. 2, pp. 160–174, 2003.

[5] S. Schaal, D. Sternad, R. Osu, and M. Kawato, “Rhythmic Movement
Is Not Discrete,” Nature Neuroscience, vol. 7, no. 10, pp. 1137–1144,
2004.

[6] S. Degallier, L. Righetti, S. Gay, and A. Ijspeert, “Toward simple
control for complex, autonomous robotic applications: Combining
discrete and rhythmic motor primitives,” Autonomous Robots, vol. 31,
no. 2-3, pp. 155–181, 2011.

[7] M. Ajallooeian, J. van den Kieboom, A. Mukovskiy, M. A. Giese, and
A. J. Ijspeert, “A general family of morphed nonlinear phase oscillators
with arbitrary limit cycle shape,” Physica D: Nonlinear Phenomena,
vol. 263, pp. 41–56, 2013.

[8] J. Ernesti, L. Righetti, M. Do, T. Asfour, and S. Schaal, “Encoding of
periodic and their transient motions by a single dynamic movement
primitive,” in 2012 IEEE-RAS International Conference on Humanoid
Robots (Humanoids), Osaka, Japan, 2012, pp. 57–64.

[9] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal, “Online
movement adaptation based on previous sensor experiences,” in 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), San Francisco, CA, 2011, pp. 365–371.

[10] T. Kulvicius, M. Biehl, M. J. Aein, M. Tamosiunaite, and F. Wörgöt-
ter, “Interaction learning for dynamic movement primitives used in
cooperative robotic tasks,” Robotics and Autonomous Systems, vol. 61,
no. 12, pp. 1450–1459, 2013.

[11] J. Kober, D. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[12] F. Stulp and O. Sigaud, “Robot skill learning: From reinforcement
learning to evolution strategies,” Paladyn. Journal of Behavioral
Robotics, vol. 4, no. 1, pp. 49–61, September 2013.

[13] A. Gams, B. Nemec, A. Ijspeert, and A. Ude, “Coupling movement
primitives: Interaction with the environment and bimanual tasks,”
IEEE Transactions on Robotics, vol. 30, no. 4, pp. 816–830, 2014.

[14] D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative
learning control,” IEEE Control Systems Magazine, vol. 26, no. 3,
pp. 96–114, 2006.

[15] A. Gams, J. van den Kieboom, M. Vespignani, L. Guyot, A. Ude, and
A. Ijspeert, “Rich periodic motor skills on humanoid robots: Riding
the pedal racer,” in 2014 IEEE International Conference on Robotics
and Automation (ICRA), Hong Kong, 2014, pp. 2326–2332.

[16] N. Gopalan, M. Deisenroth, and J. Peters, “Feedback error learning for
rhythmic motor primitives,” in 2013 IEEE International Conference
on Robotics and Automation (ICRA), Karlsruhe, Germany, 2013, pp.
1317–1322.

[17] H. Ben Amor, G. Neumann, S. Kamthe, O. Kroemer, and J. Peters,
“Interaction primitives for human-robot cooperation tasks,” in 2014
IEEE International Conference on Robotics and Automation (ICRA),
May 2014, pp. 2831–2837.

[18] V. Koropouli, D. Lee, and S. Hirche, “Learning interaction control
policies by demonstration,” in 2011 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2011, pp. 344–349.

[19] M. Kawato, “Feedback-errror-learning neural network for supervised
motor learning,” in Advanced Neural Computers, R. Eckmiller, Ed.
North-Holland: Elsevier, 1990, pp. 365–372.

[20] Y. Wang, F. Gao, and F. J. Doyle III, “Survey on iterative learning
control, repetitive control, and run-to-run control,” Journal of Process
Control, vol. 19, no. 10, pp. 1589–1600, 2009.

[21] L. Sison and E. Chong, “No-reset iterative learning control,” in 35th
IEEE Conference on Decision and Control, Kobe, Japan, 1996, pp.
3062–3063.

[22] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific general-
ization of discrete and periodic dynamic movement primitives,” IEEE
Transactions on Robotics, vol. 26, no. 5, pp. 800–815, 2010.

[23] G. Cheng, S.-H. Hyon, J. Morimoto, A. Ude, J. G. Hale, G. Colvin,
W. Scroggin, and S. C. Jacobsen, “CB: A humanoid research platform
for exploring neuroscience,” Advanced Robotics, vol. 21, no. 10, pp.
1097–1114, 2007.

Online approach for altering robot behaviors based on human in the

loop coaching gestures

Tadej Petrič1,2, Andrej Gams1,3, Leon Žlajpah1, Aleš Ude1,2, and Jun Morimoto2

Abstract— The creation and adaptation of motor behaviors
is an important capability for autonomous robots. In this
paper we propose an approach for altering existing robot
behaviors online, where a human coach interactively changes
the robot motion to achieve the desired outcome. Using hand
gestures, the human coach can specify the desired modifications
to the previously acquired behavior. To preserve a natural
posture while performing the task, the movement is encoded
in the robot’s joint space using periodic dynamic movement
primitives. The coaching gestures are mapped to the robot
joint space via robot Jacobian and used to create a virtual
force field affecting the movement. A recursive least squares
technique is used to modify the existing movement with respect
to the virtual force field. The proposed approach was evaluated
on a simulated three degrees of freedom planar robot and on
a real humanoid robot, where human coaching gestures were
captured by an RGB-D sensor. Although our focus was on
rhythmic movements, the developed approach is also applicable
to discrete (point-to-point) movements.

I. INTRODUCTION

The interaction between a pupil and a teacher when

learning or improving existing skills usually involves natural

communication such as speech or gestures. Based on the

instructions of a coach, humans can quickly learn and modify

their motion patterns to achieve the desired behavior. The

development of an effecting coaching system for humanoid

robots is, however, a difficult task. In practice, modifying

robot behaviors remains the task of experts in robotics.

Robotics researchers developed various robot coaching

methods in the past decade. For example, Nakatani et al.

[1] used the coach’s qualitative evaluations of the robot

performance to improve balancing and walking. In [2],

supervised learning was combined with voice commands of

a human coach, where the voice commands were used as a

reward function in the learning algorithm. In [3], coaching

was used on a mobile platform with the emphasis on learning

high level task representations rather than motor skills. An

approach that uses qualitative, verbal instructions to modify

movements obtained by human demonstration was proposed

in [4]. The developed system was suitable also for non-expert

users. Kinesthetic teaching with iterative updates to modify

a humanoid behavior was proposed in [5]. An area closely

related to robot coaching is learning by demonstration, where

a variety of different methods were proposed [6], [7], [8], [9],

1Humanoid and Cognitive Robotics Lab & Dept. of Automatics, Bio-
cybernetics, and Robotics, Jožef Stefan Institute (JSI), Ljubljana, Slovenia.
tadej.petric@ijs.si

2Dept. of Brain Robot Interface (BRI), ATR Computational Neuroscience
Laboratories, Kyoto, Japan

3Biorobotics Laboratory, Institute of Bioengineering, Ecole Polytechnique
Federale de Lausanne (EPFL), Lausanne, Switzerland

[10], [11]. However, most of the learning by demonstration

methods do not address the problem of easily modifying an

existing behavior to acquire a new desired outcome.

We were inspired by the efficiency of human-to-human

skill transfer when developing a more effective approach to

modify the existing robot behaviors. Rather than learning

how to program robots, people can bring their own knowl-

edge from interacting with each other directly into the robot

domain [4]. Ideally, the human-robot interaction should focus

on approaches that are intuitive for a human coach. In this

paper we propose an approach for modifying existing robot

behaviors based on online guidance provided by the human

coach. The guidance is provided in the form of pointing

gestures, i. e. the coach indicates to the robot where and how

it should modify its motion. Such an interface is intuitive for

humans as movement shaping through physical guidance and

other means of communication is common in human motor

learning [12]. It allows also non-experts to teach and alter the

existing robot skills in order to obtain new desired outcomes.

A motor representation used to encode robot movements in

an online coaching system must have the ability to generate

smooth movements even when its parameters change online.

This is important to supply an immediate feedback to the

coach. Such a capability is provided by dynamic movement

primitives (DMPs) [13], [14], which are defined by a set of

critically damped second order linear differential equations,

supplemented with a nonlinear forcing term. In this paper we

focus on periodic movements [15], but the approach is fully

applicable to discrete (point-to-point) movements as well.

Periodic DMPs are often combined with adaptive oscillators

[16]. Adaptive oscillators generate a stable limit cycle and

provide the phase signal to the DMP. We assume that the

initial motion pattern has been defined somehow, e. g. by

kinesthetic guiding. To avoid losing postural information

when using redundant robots like humanoids, the demon-

strated motion pattern is encoded in the joint-space.

We developed a new DMP adaptation algorithm that can

be used to modify existing motor behaviors encoded by

DMPs based on human coaching gestures. The coaching

gestures are specified by pointing towards the part of the

movement that needs to be changed. The pointing gesture

defines the direction and magnitude of change. To demon-

strate the applicability of the proposed coaching approach,

we implemented it both in simulation and on a real humanoid

robot, where coaching gestures were obtained by Microsoft

Kinect RBG-D sensor and a body tracker. The paper is

organized as follows. In Section II we provide a short review

of periodic DMPs. We then describe the newly developed

2014 IEEE International Conference on Robotics & Automation (ICRA)
Hong Kong Convention and Exhibition Center
May 31 - June 7, 2014. Hong Kong, China

978-1-4799-3684-7/14/$31.00 ©2014 IEEE 4770

coaching algorithm. In Section III we analyze the properties

of the proposed algorithm in simulation and in Section IV we

evaluate it on a real humanoid robot. Conclusions, summary

and prospective future work are explained in Section V.

II. COACHING SYSTEM

The basic framework of our coaching system consists of

periodic Dynamic Movement Primitives (DMPs) combined

with an adaptive frequency oscillator [16], which can extract

the phase and the frequency from an arbitrary periodic signal.

This framework is also called a two-layered system for

movement imitation [15]. In our previous work [15], [16], we

proposed a learning algorithm that can be used to extract the

basic frequency from the demonstrated periodic movement,

learn the waveform of one period, and reconstruct the desired

waveform at an arbitrary frequency. To learn a new control

policy based on the human coaching gestures, this two-

layered imitation system is embedded into the proposed

control framework for coaching.

A. Dynamic movement primitives combined with adaptive

frequency oscillators

The first layer of the imitation system is based on adaptive

frequency oscillators combined with the adaptive Fourier

series. The details and the properties of the learning approach

are given in [16]. In summary, an adaptive frequency oscilla-

tor is defined by a set of second order differential equations

φ̇ = Ω−K · e · sin(φ), (1)

Ω̇ =−K · e · sin(φ), (2)

where Ω is the extracted frequency, φ is the phase, K is the

coupling constant and e is the difference between the actual

and the estimated input signal. Here we denote the input

signal by v and the estimated signal by v̂. The input signal

v is the signal on which the motion pattern is synchronized.

Note that once the error signal e becomes zero we obtain

Ω̇= 0 and φ̇ =Ω. The estimated input signal v̂ is represented

as

v̂ =

m

∑
c=0

(αc cos(cφ)+βc sin(cφ)). (3)

Here m is the size of the Fourier series. Our learning

algorithm simultaneously estimates the frequency Ω and the

input signal v̂, i e. the weights αc and βc. See [16] for details.

We augment this first layer by anchoring the dynamic

movement primitives to the phase signal φ of the adap-

tive oscillator as in [15], [16]. This makes it possible to

synchronize an arbitrary trajectory to an arbitrary periodic

signal congruent with the desired behavior. The basic equa-

tions of dynamic movement primitives are summarized from

[14], [13], [15]. For a single degree of freedom denoted

by y, which can either be one of the internal joint-space

coordinates or one of the external task-space coordinates,

the following system of linear differential equations with

constant coefficients, augmented by a nonlinear forceing term

f , has been applied to derive DMPs

ż = Ω(αz (βz(g− y)− z)+ f) , (4)

ẏ = Ωz, (5)

where αz and βz are the positive constants, which guarantee

that the system monotonically converges to the desired

trajectory, g is the center of oscillation, and f is the nonlinear

part that determines the shape of the trajectory. It is given

by

f (φ) =

N

∑
i=1

wiψi(φ)

N

∑
i=1

ψi(φ)

r, (6)

where r is the parameter that can be used to modulate the

amplitude of the movement and ψ are the Gaussian like

kernel functions given by

ψi(φ) = exp(h(cos(φ − ci)−1)) . (7)

Here, h is the width and ci is the distribution on one period.

If not stated otherwise, in the following we used ci, i =
1, . . . ,25, and they were equally spread between 0 and 2π .

By applying the locally weighted regression the system

can learn the shape of the trajectory on-line. The equations

for incremental learning are summarized from [15], where

the equations (4) and (5) were rewritten as one second order

differential equation

fd =
ÿd

Ω2
−αz

(

βz(g− yd)−
ẏd

Ω

)

. (8)

Here the triplet of yd , ẏd and ÿd denotes the desired position,

the velocity and the acceleration. To update the weights wi

of the kernel function ψi, we use the recursive least-squares

method with the forgetting factor λ . In our experiments, the

forgetting factor was set to λ = 0.9995. With the given target

(8), the recursive algorithm updates the weights wi using the

following rule

Pi(t +1) =
1

λ

(

Pi(t)−
Pi(t)

2r2

λ
ψi(φ(t))

+Pi(t)r2

)

, (9)

wi(t +1) = wi(t)+ψi(φ(t))Pi(t +1)rer(t), (10)

er(t) = fd(t)−wi(t)r. (11)

If not stated otherwise, we use wi(0) = 0 and Pi(0) = 1,

where i = 1, ...,25.

In general DMPs provide a comprehensive framework

for generating smooth kinematic control policies. Other

important properties are: time invariance, online modulations

including using a repulsive force to influence the course

of the trajectory, framework for the trajectory learning, and

smooth behavior in case of sudden change in the trajectory.

Even though the DMP framework already posseses meth-

ods for amplitude, phase and frequency modulation, these

modulations are insufficient to modify the behavior within a

general coaching system. To modify the behavior online with

a human in the loop, we propose an algorithm that can update

4771

the weights of the DMP based on the coaching gestures. The

goal is to provide means to generate arbitrary modifications

to the available movement patterns and successfully perform

the desired task. The coaching system can also be used for

building a library of motion patterns, which can later be used

by movement generalization methods [17].

B. Coaching with Potential Fields

The primary goal of movement modeling with dynamical

systems is to exploit the coupling phenomena to generate

more complex behaviors [14]. We showed in the previous

section how two dynamical systems can be connected to-

gether for imitation learning of periodic movements. In this

section we discuss how to modify a robot trajectory online

based on the input of a human coach. An ability to modulate

movement trajectories online based on the human input is a

very important capability for robots that interact with humans

in natural environments. The proposed algorithm can modify

the robot’s motion online based on the human in the loop

coaching gestures and is therefore an important step towards

providing such a capability.

There are different ways for adding a coupling term to

modify motion patterns. For example, it can be added to the

transformation system or to the canonical system, or even to

both [14]. For 3-D Cartesian space movements, Hoffmann et

al. [18] showed that obstacle avoidance can be achieved by

adding a coupling term CCCy to Eq. (4)

ż = Ω(αz (βz(ggg−y)− z)+CCCy + fff) , (12)

where yyy, zzz, ggg, CCCy, and fff are in this case three dimensional

values. In [18] this equation was used to drive the robot’s

behavior and ensure obstacle avoidance. In our case we

intend to modify the behavior permanently, therefore we use

this term as input to the recursive least-squares method for

updating the weights of the canonical system. Since in this

case the reference trajectory is simply the output of the DMP

(there is no training signal yd , ẏd and ÿd), er(t) as defined

in Eq. (11) would be equal to zero if the DMP equations

had not changed. However, since the differential equation (4)

was changed to (12), there is an additional coupling term CCCy,

which was not accounted for during training. Thus Eq. (11)

transforms into

er(t) =Cy, j(t), (13)

where Cy, j(t) is the coupling term for the degree of freedom

denoted by j.

A proper definition of the coupling term CCCy is crucial

and of course task dependent. To enable coaching by human

gestures, we modified the obstacle avoidance coupling term

CCCy from [18] as follows

CCCy = γ s(||ooo− xxx||) exp(−βφ) ddd, (14)

Here xxx is the Cartesian position of the end-effector, ooo is the

center position of the perturbation potential field (defined by

hand position), ddd is the perturbation direction (defined by

the pointing gesture), γ and β are the scaling factors, φ is

given by

φ = arccos

(

(ooo− xxx)T ẋxx

||(ooo− xxx)|| ||ẋxx||

)

. (15)

s(r) is defined as

s(r) =
1

1+ eη(r−rm)
, (16)

where η is the scaling factor and rm the distance at which the

perturbation field should start affecting the robot’s motion.

A one degree of freedom example for the coupling term is

shown in Fig. 1.

0

0.1

0.2

0.3

0.4

0.5

0

0.5

1

1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

| |(o − x) | |
φ

C
t

Fig. 1. One degree of freedom example coupling term Cy with parameters
η = 30, rm = 0.2, γ = 1, and β =−20/π .

To update the trajectories in joint-space while they are

perturbed in task space, where the coupling term is denoted

by CCCy, a pseudo inverse of the task Jacobian is used. This

essentially maps the task space velocities into the joint space

velocities with q̇qq = Jẋxx. By applying a similar transformation

to CCCy we obtain

CCCq = J†CCCy. (17)

where CCCq = [Cq,1 Cq,2 ... Cq,k]
T and k is the number of

the robot’s degrees of freedom. The components of (17) are

now inserted into (13), which is used for updating the DMP

weights wi using (9) and (10). In this way we ensure that the

joint space trajectories encoded by the DMPs are properly

modified according to the coach’s instructions.

Keeping the movement representation in the joint space is

beneficial because our initial movement trajectories, which

are encoded by DMPs, are usually acquired by kinesthetic

guiding. By using joint space trajectories we avoid losing

information about the selected robot configuration during

human guiding on a redundant robot. Hence the DMP repre-

sentation should remain in the joint space and the behavior

should be modified there.

4772

III. SIMULATION RESULTS

To show the properties of the proposed approach, we first

applied it to a simulated 3 degrees of freedom planar robot.

The robot was simulated using Planar Manipulator Toolbox

[19]. The initial joint space trajectory was defined such that it

produced a circular motion in the task space. The frequency

of motion was constant and it was set to 0.5 Hz. If not stated

otherwise, the coaching parameters were γ = 100, η = 20,

rm = 0.35, and β =−8/π .

Fig. 2 shows simulation results where the coaching point

was defined with the parameters ooo = [1.8,−0.6] ddd = [0,1]T .

The coaching command was inserted at the selected position

after 5 seconds. On the right plot we can see the evolution

of the task space trajectory. Here the red line shows the

initial task space motion and the green line the task space

motion after coaching. The grey lines show the evolution

of DMP modification in time. It can be seen that the

coaching command was only acting at the desired location

and therefore it did not affect the rest of the initial trajectory.

This can also be seen in the bottom plot left where the scale

of the coupling term used in recursive least squares is shown.

Here we can see that the coupling term only acts when the

end-effector is close to the perturbation point. In addition,

we can see that the coupling term is iteratively converging

towards zero. The first three plots on the left show the joint

trajectories in time. We can see that they are modified only

when the end-effector is near to the perturbation point and

that they remain smooth.

−2.5

−0.5

−0.2

1

0.2

1.2

0 20 40 60
0

5

10

1 1.5 2 2.5
−1

1.5

q
1

q
2

q
3

C
x
,

C
y

x [m]

y
[m

]

t [s]

Fig. 2. Simulation results where the circular motion in task space was
pushed in. Coaching command parameters were ooo = [1.8,−0.6] and ddd =
[0,1]T . The coaching point was activated after 5 seconds.

Similar results can also be observed in Fig. 3, where the

initial task space trajectory was pushed out. In this case the

coaching point parameters were ooo = [1.8,0.8] ddd = [0,1]T .

Again the coaching point was inserted after 5 seconds. We

can see the same basic performance as in the case of Fig. 2.

This two study cases clearly show that we can easily modify

the task space behavior at the desired point to achieve the

desired course of movement, even though the trajectories are

encoded in the joint space. These two case studies show

that we can smoothly and iteratively modify the task space

behavior in an arbitrary direction.

−2.5

−0.5

−0.2

1

0.2

1.2

0 20 40 60
0

5

1 1.5 2 2.5
−1

1.5

q
1

q
2

q
3

C
x
,

C
y

x [m]

y
[m

]

t [s]

Fig. 3. Simulation results where the circular motion in task space was
pushed out. Coaching command parameters were ooo = [1.8,0.8] and ddd =
[0,1]T . The coaching command was activated after 5 seconds.

To further support the last statement we show in Fig. 4

an experiment where the coaching command is kept at

the constant distance to the end-effector. In other word,

the perturbation point moves along the trajectory and the

perturbation direction ddd is in this case focused towards the

centre of the circle. The coaching begins after 5 seconds.

Here we can see in the right plot that the motion is constantly

modified and directed towards the center of the circle. The

final task space trajectory is indicated with the green line

and the initial trajectory with the red line. In the first three

plots left we can also see that as expected, the amplitude of

motion is decreasing for all three joints.

−2.5

−0.5

−0.2

1

0.2

1.2

0 20 40 60
−0.5

0

0.5

1 1.5 2 2.5
−1

1.5

q
1

q
2

q
3

C
x
,

C
y

x [m]

y
[m

]

t [s]

Fig. 4. Simulation results where the circular motion in task space was
pushed in all the time, i. e. the direction of coaching command was towards
the center of the circle all the time. The coaching began after 5 seconds.

IV. ROBOT EXPERIMENTS

To show the applicability of the proposed approach in

real world, we implemented it on the JST-ICORP/SARCOS

humanoid robot CBi [20]. We used the Microsoft Kinect

sensor and the associated body tracker to capture human

coaching gestures [21]. Fig. 5 shows the experimental setup,

where the body tracking results can be seen on the display

in the background.

4773

To acquire the human coaching gestures in the coordinate

system of the robot, we calibrated the Microsoft Kinect

sensor to the robot base coordinate system. To obtain the

appropriate transformation matrix, we recorded at least four

pairs of points in both coordinate systems. For this purpose

the human coach placed his hand at the same location as the

robot’s end-effector and the position of the human hand and

the robot’s end-effector were measured in the Kinect’s and

robot base coordinate system, respectively. The transforma-

tion matrix was calculated using least-squares fitting of two

points set as described in [22].

Fig. 5. Experimental setup, where a human coach is modifying the robot’s
motion. The human coaching gesture is captured using Microsoft Kinect
sensor.

To make coaching as intuitive as possible, we developed an

interface where the human coach can modify the trajectory

by either pushing it away from him using his right hand or

attracting it towards him with his left hand. The coaching

direction was calculated using the wrist and the elbow

location. For the right hand, which pushes the trajectory away

form the coach, the direction is given by

dddR =
xxxw,R − xxxe,R

||xxxw,R − xxxe,R||
, (18)

where the xxxw,R and the xxxe,R are the Cartesian positions of the

right hand wrist and the right hand elbow in the robot’s base

coordinate system. For attracting the trajectory towards the

coach, the direction is given by

dddL =
xxxe,L − xxxw,L

||xxxe,L − xxxw,L||
. (19)

Here xxxw,L and the xxxe,L are respectively the Cartesian positions

of the left hand wrist and the left hand elbow in the robot’s

base coordinate system.

Since Microsoft Kinect sensor relies on depth information

and our humanoid robot has similar body proportions as a

human, the body tracker sometimes becomes confused if the

human approaches the robot very closely. For this reason

the human coach did not approach the robot too closely in

our experiments. Instead, the center of the potential field

generated by each hand was moved slightly away from the

respective hand. For the right hand, the origin of the potential

field defined by the coaching gesture was moved in the

direction of the coaching gesture

oooR = xxxR +ξRdddR, (20)

where ξR is the scalar that defines the distance between the

hand and the center of the coaching point in the direction

of dddR. Similar equation is used also for the left hand which

attracts the trajectory towards the hand.

oooL = xxxL −ξLdddL. (21)

Here, the effective coaching point is moved in the opposite

direction of perturbation dddL. With such modifications the

effective origins of potential fields are always in front of

the human hands in the direction of pointing at the distance

defined by ξR and ξL.

To determine which hand is active, we use the distance

between both wrist positions xxxw,L, xxxw,R and the robot’s end-

effector position xxx. The active hand is the one which is closer

to the robot’s hand position.

To show the applicability of the interface for online

modification of the initial rhythmic movement using human

in the loop coaching gestures, we first provide an example of

pulling-in the task space trajectory. The parameters were set

to γ = 10, η = 10, rm = 0.15 and β =−10/π . Fig. 6 shows

the task space motion of the robot’s end-effector in the x−y

plane. We can see a successful modification of the motion

based on the human coaching gestures. In Fig. 7 we show

the corresponding joint space trajectories as a function of

time. The teaching of the new motion pattern begins after 5

seconds, which is indicated with the first vertical line. We can

see that the joint space trajectory was modified successfully

to achieve the desired task space motion. In Fig. 7 we can see

that at approximately 50 seconds the human coach stopped

−0.55 −0.5 −0.45 −0.4 −0.35 −0.3
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x [m]

y
[m

]

Fig. 6. Task space motion of the robot’s end-effector, where human coach
was modifying the motion pattern. The initial trajectory is in red and the
final trajectory is in green. The time evolution of the trajectory modification
is indicated with grey line.

4774

−0.2

0

0.2

0.4

−0.4

−0.2

0

−1

0

1

0 10 20 30 40 50 60 70
1

1.5

2

t [s]

q
S

F
E

[r
ad

]
q

S
A

A
[r

ad
]

q
H

R
[r

ad
]

q
E

B
[r

ad
]

Fig. 7. Joint space motion in time of the robot’s right hand, while coaching.
Vertical lines indicate the important events described in text.

modifying the behavior and at approximately 55 seconds the

new motion pattern was switched back to the original motion

pattern. At this point the difference between original motion

trajectory and the modified motion trajectory is even more

evident. The snapshots showing the original and the modified

trajectory of the humanoid arm movement are shown in

Fig. 8. This experiment is also shown in the supplementary

video.

Fig. 9 shows four different modifications of the original

motion. In the top row we can see the horizontal pushing and

pulling of the motion in the x-y plane and in the bottom row

the vertical pushing and pulling in y-z plane. As we can see,

the human coach was successful at modifying the movement

of the robot in the desired direction using either the pushing

or pulling technique, i. e. using either the right or the left

hand to define the coaching gesture.

V. CONCLUSION AND FUTURE WORK

In this paper we developed a new coaching methodol-

ogy that makes use of coaching gestures to modify an

existing movement encoded by a periodic DMP. The DMP

modification method is based on a recursive least-squares

technique for updating the weights of periodic DMPs. With

the developed system a human teacher can iteratively modify

the previously acquired trajectories. It operates online and

can therefore provide an immediate feedback to the coach.

We presented simulation case studies where we successfully

modified the joint space trajectories to obtain the new desired

task space motions. The same method was also applied to

the JST-ICORP/SARCOS humanoid robot CBi, where the

human coach modified the humanoid robot’s behavior to

obtain the desired outcome. The proposed approach can

easily be extended to discrete DMPs.

0 0.05 0.1 0.15 0.2
−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

0.1 0.15 0.2 0.25 0.3
−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

0 0.1 0.2 0.3 0.4
0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4
0.1

0.15

0.2

0.25

0.3

0.35

x
[m

]

y [m]y [m]

y [m]y [m]

z
[m

]

Fig. 9. Four different modifications of the original motion, which are also
shown in the supplemental video. The top left graph corresponds to example
1, the top right graph to example 2, the bottom left graph to example 4 and
the bottom right graph to example 5 in the supplemental video.

The main limitation of the coaching interface was the

inability of the body tracker to distinguish between the robot

and the human arm when a human teacher was close to

the robot. Although the use of Microsoft Kinect sensor is

beneficial because it can be used without much preparations,

i. e. no markers or other special equipment is necessary,

we believe that marker-based systems with more accurate

tracking would provide a better and more accurate interface

to modify the humanoid robot’s movements. With a more

reliable tracking of human coaching gestures, we could

achieve similar results on the real robot as showed in Fig. 4,

which is based on simulated data. The implementation and

evaluation of the proposed algorithm with a more accurate

body tracking system is an important goal of our future work.

On the other hand, it is important that the human interface

stays as intuitive as possible.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the European Community’s Seventh Framework Pro-

gramme FP7/2007-2013 (Specific Programme Cooperation,

Theme 3, Information and Communication Technologies)

under grant agreements no. 270273, Xperience and no.

600716, CoDyCo. It was also supported by MEXT KAK-

ENHI Grant Number 23120004; by JSPS and SRA: Japan-

Slovenia research Cooperative Program; by MIC-SCOPE; by

JST-SICP; by SRPBS, MEXT; by contract with the Ministry

of Internal Affairs and Communications entitled ’Novel and

innovative R&D making use of brain structures’.

REFERENCES

[1] M. Nakatani, K. Suzuki, and S. Hashimoto, “Subjective-evaluation
oriented teaching scheme for a biped humanoid robot,” in IEEE-

4775

Fig. 8. A sequence of still photos showing the original motion in the top row and the final modified motion in the bottom row. The photos frame rate is
0.4 per second.

RAS International Conference on Humanoid Robots (Humanoids),
Karlsuhe, Germany, 2003.

[2] A. Gruebler, V. Berenz, and K. Suzuki, “Coaching robot behavior us-
ing continuous physiological affective feedback,” in 2011 11th IEEE-

RAS International Conference on Humanoid Robots (Humanoids),
Bled, Slovenia, 2011, pp. 466–471.

[3] M. N. Nicolescu and M. J. Mataric, “Natural methods for robot
task learning: Instructive demonstrations, generalization and practice,”
in Proceedings of the second international joint conference on Au-

tonomous agents and multiagent systems, 2003, pp. 241–248.

[4] M. Riley, A. Ude, C. Atkeson, and G. Cheng, “Coaching: An approach
to efficiently and intuitively create humanoid robot behaviors,” in
2006 6th IEEE-RAS International Conference on Humanoid Robots

(Humanoids), Genoa, Italy, 2006, pp. 567–574.

[5] D. Lee and C. Ott, “Incremental kinesthetic teaching of motion
primitives using the motion refinement tube,” Autonomous Robots,
vol. 31, no. 2-3, pp. 115–131, 2011.

[6] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends

in Cognitive Sciences, vol. 3, no. 6, pp. 233–242, 1999.

[7] A. Billard and K. Dautenhahn, “Experiments in learning by imitation
– grounding and use of communication in robotic agents,” Adaptive

Behavior, vol. 7, no. 3-4, pp. 415–438, 1999.

[8] A. Ude, C. G. Atkeson, and M. Riley, “Programming full-body move-
ments for humanoid robots by observation,” Robotics and Autonomous

Systems, vol. 47, no. 2-3, pp. 93–108, 2004.

[9] T. Asfour, P. Azad, F. Gyarfas, and R. Dillmann, “Imitation learning
of dual-arm manipulation tasks in humanoid robots,” International

Journal of Humanoid Robotics, vol. 5, no. 02, pp. 183–202, 2008.

[10] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot pro-
gramming by demonstration,” in Springer Handbook of Robotics,
B. Siciliano and O. Khatib, Eds. Berlin, Heidelberg: Springer Verlag,
2008.

[11] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G.
Billard, “Learning and reproduction of gestures by imitation,” IEEE

Robotics & Automation Magazine, vol. 17, no. 2, pp. 44–54, 2010.

[12] R. Schmidt and T. Lee, Motor Control and Learning: A Behavioral

Emphasis. Champaign, IL: Human Kinetics Publishers Ltd., 2011.
[13] S. Schaal, P. Mohajerian, and A. Ijspeert, “Dynamics systems vs.

optimal control – a unifying view,” Progress in Brain Research, vol.
165, pp. 425–445, 2007.

[14] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, 2013.

[15] A. Gams, A. J. Ijspeert, S. Schaal, and J. Lenarčič, “On-line learning
and modulation of periodic movements with nonlinear dynamical
systems,” Autonomous robots, vol. 27, no. 1, pp. 3–23, 2009.

[16] T. Petrič, A. Gams, A. J. Ijspeert, and L. Žlajpah, “On-line frequency
adaptation and movement imitation for rhythmic robotic tasks,” The

International Journal of Robotics Research, vol. 30, no. 14, pp. 1775–
1788, 2011.

[17] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific general-
ization of discrete and periodic dynamic movement primitives,” IEEE

Transactions on Robotics, vol. 26, no. 5, pp. 800–815, 2010.
[18] H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal, “Biologically-

inspired dynamical systems for movement generation: automatic real-
time goal adaptation and obstacle avoidance,” in IEEE International

Conference on Robotics and Automation (ICRA), Kobe, Japan, 2009,
pp. 2587–2592.

[19] L. Žlajpah, “Simulation in robotics,” Mathematics and Computers in

Simulation, vol. 79, no. 4, pp. 879–897, 2008.
[20] G. Cheng, S.-H. Hyon, J. Morimoto, A. Ude, J. G. Hale, G. Colvin,

W. Scroggin, and S. C. Jacobsen, “CB: A humanoid research platform
for exploring neuroscience,” Advanced Robotics, vol. 21, no. 10, pp.
1097–1114, 2007.

[21] Z. Zhang, “Microsoft Kinect sensor and its effect,” IEEE MultiMedia,
vol. 19, no. 2, pp. 4–10, 2012.

[22] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting
of two 3-D point sets,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 9, no. 5, pp. 698–700, 1987.

4776

	Summary
	Objective of WP4.1: Cooperative Tasks
	Summary of the Results

	Transfer to the Demonstration Platform
	Transfer report for tightly coupled interaction
	Transfer report for loosely coupled interaction

	Scientific Results
	Altering Robot Behaviors Based on Human in the Loop Coaching Gestures
	Synchronization of Dual-Arm Humanoid Robot Movement Primitives

