——

SEVENTH FRAMEWORK

PROGRAMME
Project Acronym: Xperience
Project Type: 1P
Project Title: Robots Bootstrapped through Learning from Experience
Contract Number: 215821
Starting Date: 01-01-2011
Ending Date: 31-12-2015

N >

< >
XPERIENCE.ORG

Deliverable Number:
Deliverable Title :

D4.2.3
Learning Plans for Plan Recognition Using Structural Boot-
strapping With a Focus on Simple Plans

Type (Internal, Restricted, Public): PU

Authors:

Christopher Geib

Contributing Partners: UEDIN

Contractual Date of Delivery to the EC: 31-01-2014
Actual Date of Delivery to the EC: 01-04-2014

Contents

1 Summary 3
2 Content %!
2.1 Abstract 5]
2.2 Introduction e @A
2.3 Plans as Grammarso
2.4 Projecting Action Sequenceso £
2.5 Building Plans
2.6 Recognizing Plans Using CCGs ot 10
2.7 Learning CCG Plan Lexicons Through Bootstrapping 11
2.8 Conclusions 13l

Chapter 1

Summary

This deliverable does two things.

1. Tt lays out an algorithm in the same family as Hierarchical Task Network planning (HTN-Planning)
that uses Combinatory Categorial Grammar’s (CCG) to represent the plan libraries. This heavily
leverages our prior work on plan recognition. In fact, the new planner makes use of the exact same
representation. This means that we can use the same plan libraries to both recognize and build
plans based on the same knowledge.

2. It then sketches a simple method for learning the plan CCGs based on some significant simplifying
assumptions (principally that there is only a single unknown action in the plan). This method,
critically uses the fact that the same CCG representation is used for both recognition and for
building plans.

Thus, this deliverable sketches both a new planning algorithm and how domain specific knowledge nec-
essary for the use of the planner and the existing plan recognizer can be leaned from a single process.

Chapter 2

Content

2.1 Abstract

Prior work has formally identified the relationships between context free grammars and hierarchical
(HTN) planning. This paper presents a new hierarchical planning algorithm that formalizes the plans in
the plan library using a gramatical formalism taken from natural language processing research, specif-
ically combinatorial categorial grammars. This representation and new algorithm has three significant
advantages, first, the representation explicitly represents the order in which subgoal planning should be
performed allowing for a more fine grained control of the planning search. Second, it replaces searches
for subplans at multiple levels of abstraction with the building of a single grounded plan at the level of
basic actions while still being informed by the information in the hierarchical models. Third and finally,
the representation enables a bidirectional, divide and conquer algorithm for planning that can identify
early on if a particular abstract plan will fail.

2.2 Introduction

The AT planning problem stated simply is, given a model of the world, and set of actions or operators that
transform one state of the world model to another, find a sequence of operator applications that when
starting at a given initial state, reach a goal state. Within the Artificial Intelligence planning research
community, there are two major kinds of planners. First, there are traditional (sometimes called linear)
planners. This set would include the popular FF planneffHoffmann & Nebel| (2001) and its variants. Such
planners can be thought of as doing a brute force search through the space of possible operator sequences
(sometimes, as in the case of FF, informed by the structure of the operators themselves). Second there
are hierarchical planners, where in the search through the space of operator sequences is directed by
additional domain specific information usually contained in structures called methods that are intended
to capture abstractions about “usual” methods for achieving the goal.

There is a well known relationship between traditional planners and regular grammars and hierarchical
planners and context free grammars(CFGs) Erol, Hendler, & Nau| (1994). The operators can be seen
as terminal symbols, and the methods as productions within the grammar. In this view, the planner
can be seen as searching through the space of possible strings of operators produced by such a grammar
for one that achieves the goal from the initial state. However, researchers working on formal theories of
grammar have developed new formal grammars that are more expressive than CFGs while still having
low complexity of parsing. In this paper, we provide an alternative formulation of planning based on a
new formal grammar model and argue that it has a number of properties that make it attractive.

Beyond the intellectual exercise of building such a reformulation, one might reasonably ask why should
we do it? The simple answer is that traditional HTN planning has foundational issues that have yet to be
resolved, that can be addressed by reformulating it. The formost of these is the status of methods. Within
the literature on HTN planning while they have been provided with definitions their actual formal status
has not been well grounded. It is clear that they are not actions in the same way that basic operators
are, and they don’t represent single states of the world. They have been described as abstract actions,

Xperience 215821 PU

however it is far from clear what this would mean, and what the relationship is between abstract and
non-abstract actions.

From their earliest introduction in planning systems [Sacerdoti| (1974)) it is clear that methods are intended
to speed up the process of planning. Further the very popular use of HI'Ns in actual deployed systems
(specifically to control search) is more than reason enough for us to believe they are effective in this
regard. However it is clear that having the wrong methods may not only slow down the planning process
it may in fact prevent the system from finding a solution.

HTN methods introduce a new problem space in which the problem must first be solved, however the
formal relationship to the original problem domain is frequently left completely unspecified. Further, it is
not at all clear where methods come from and how they are to be learned. As a result, HTN methods are
frequently considered “domain knowledge”, as such researchers working in domain independent planning
argue that it should have to be learned, but its not at all clear how to learn HTN methods, and this is
an active area of learning research.

Thus, in the following paper, rather than using a Context Free Grammar, we are going to use the ideas
behind lexicalized grammars, specifically Combinatory Categorial Grammar (CCG) [Steedman! (2000)) as
the foundation of a new way to represent plans and then develop a new algorithm for building plans
based on this representation. The organization The rest of this paper is organized as follows. First
we will provide a more complete background on CCGs and how they can be used to represent action
grammars, then we will discuss how they must be extended and an algorithm for their use in planning.
The paper will then briefly outline a simple method for learning plan CCGs based on plan recognition
with simple plans.

2.3 Plans as Grammars

This work is motivated by embodied systems Brooks| (1999) theories about intelligent agents. As such, it
is critical that our formalism take seriously the constraints imposed by execution of actions in physically
embodied systems. Consider a robot or other physically realized agent. Such agents must have a contin-
uous control system that drives its end effectors. For such a system, what has been called an action in
the AI planning literature is nothing more than a motor program: a timed series of voltages to motors
that, in the absence of other obstacles, will cause the end effector to move through a particular trajectory.
For the rest of this document, we will use the word action only in this sense. For this paper the term
“action” will be use as a synonym for a motor program or a basic motion primitive that is available from
the embodied agentﬂ A plan then is nothing more than a ordered sequence of such actions, and the
objective of the planning process is to generate such a sequence that will result in a particular state.

With this understanding of actions, it is worth noting, that there are no conditions that must be true
(preconditions in the planning literature) before actions or plans can be run. There are also no conditions
that must be true after the actions execution (effects from the planing literature). An action or plan is
executed and a state of the world eventuates. Perhaps this is a desired state, but but our attitude toward
the state has no necessary relation to the definition of the action. In other situations other states result
from executing the program, but the program is the same. With this understanding, we make a strong
commitment that any knowledge of states of the world that eventuates from the execution of an action
is NOT part of the definition of the action but rather causal knowledge about how the world works.

With this in mind, we believe that a significant problem with prior work in HTN planning is a fundamental
confusion about what kind of domain specific knowledge should be stored. The use of abstraction [Sacer-
doti (1974) and decomposition Tate (1977)) in planning that were eventually formalized in HTN planning
was to accelerate the planning process. In this paper we renew this commitment and suggest that the
crucial piece of domain dependent information that should be maintained and learned is how to generate
plans.

In this work, we propose to represent knowledge about how to generate plans using a particular lezicalized
grammar called Combinatory Categorial Grammars (CCG) [Steedman| (2000). Unlike more traditional
grammars, like context free or regular grammars, where the domain specific constraints specific of the

INote this position does not preclude the set of actions changing over time. Imagine learning to ice-skate or play an
instrument. To do these things an agent must learn new motor primitives. That said the position taken in this document is
that high level reasoners do not have the ability to build or define new actions. As we will see it can only build abstractions
over the actions it already has. Learning new actions is the provenance of the agent’s lower level continuous controller.

Xperience 215821 PU

language are spread between the rules of the grammar and the lexicon, lexicalized grammars move all
language-specific information into rich data-structures called categories. Such categories are associated,
by a lexicon, with individual actions that an agent can execute and crucially the system can recognize as
being run.

In CCGs we define the categories recursively as:

Atomic categories : A finite set of basic categories. C = {A, B, ...}.

Complex categories : VZ € C, and non empty set {W,X,...} C C then Z\{W,X,...} € C and
Z/{W,X,..} €C.

The intuition behind these categories is that, like the actions they represent, categories are functions.
They are functions that capture knowledge about how to build a plan to achieve a given single domain
predicate that is associated with a category. Basic categories are simple functions that have no argu-
ments. As such, associating them with an action in the lexicon suggests that executing the action can
unconditionally result in the predicate being made true in the world.

Complex categories in contrast represent functions that take a set of arguments ({W, X, ...}) and produce
a result (Z). The direction of the slash indicates where the function looks for its arguments and the order
of the construction of the plan. We require the argument(s) to a complex category be constructed in the
order they are presented in the category and executed in the ordered defined by the slashes and their
specification in the category.

To provide some intuitions, the semantics of the “\” is roughly that of a sub-plan that must precedes the
present category’s action and the semantics of “/” is sub-plan that must succeed the current category’s
action to produce the result. Therefore, associating with an action, « the category A\{B} tells us that
executing « can as part of constructing a plan for achieving A. However, to do so requires building and
executing a plan to achieve B before executing «. Likewise, A/{B} tells us that the action associated
with this category can be executed as part of a plan to achieve A, but only if the execution of « is followed
by a plan for achieving B.

Note this is at odds with traditional ideas about basic actions taken from the planning literature. The
traditional definition of actions in terms of preconditions and effects, where preconditions define “when
an action can be taken”, and effects define “what results from the action” |Russell & Norvigf (2010). The
formulation of knowledge about actions advocated here is divorced from these ideas. Categories as we
have defined them here have no preconditions or effects. Rather they are statements about the effective
uses of an action and the steps that must be taken to use the action to achieve that end. As such it is
much more in line with thinking about actions within embodied systems.

As an example, consider a simple lexicon for two different plans for cellphone use, one for calling a friend
and one for reporting a fire. Both of these plans call for getting the phone, opening it, placing a call, and
talking. Therefore one lexicon for these plans is:

CCG: 1.

dial — cellphone :=((REPORT /[{TH\{G})\{O} |

(CHAT/AT}H\{GH\{O}.
talk — cellphone :=T.

get — cellphone :=G.
open — cellphone :=0.

Where G,0,T, REPORT, and CHAT are basic categories, and the observation of the action dial has
two complex categories assigned to it by the lexicon: one for reporting a fire and one for chatting to a
friend. To help in or future discussion we will define two pieces of terminology. First, define the root
result of a category as the left most, inmost, basic category. For example, REPORT and CHAT are
the root results of the two categories assigned to the action dial — cellphone. Second, define an action «
as an anchor for a plan to achieve C' just in the case that the lexicon assigns to a at least one category,
who’s root result is C [

2For the purposes of this discussion we have used a propositional representation. This is not actually necessary. We
could have used a first order representation, however the action arguments would be largely a distraction. Where necessary
we will mention their addition.

Xperience 215821 PU

Keeping in line with the thesis that what should be represented is knowledge about how to construct
plans, we add one more requirement on complex categories. The plans for each of its arguments must
be built in the order they are provided by the category. Thus using our example lexicon. If we want to
use dial as the anchor for a plan to CHAT, the category requires not only that we build subplans for
getting the cellphone, opening it, and talking, but these plans must be built in the order of: 1) opening
the cellphone, 2) getting the cellphone, and then 3) talking. Thus, unlike other hierarchical planners, the
category specifically enumerates not only the subplans that have to be built but the order in which they
should be built.

Using such a grammar we can imagine a simple algorithm to generate sequences of actions that meet
the specifications of the grammar. For any category, GG, that we want to achieve we can search the
space of expansions of categories that have G as their root result. Such an algorithm is captured in the
pseudo-code shown as Algorithm 1. The function buildPlan has two inputs: a desired goal category (g),
and a lexicon (1), and a single output: an ordered list of actions (p) to achieve g.

Algorithm 1 Simple Planning Algorithm
1: procedure BUILDPLAN(g,)
2 (@, c) < choose(rootResult(g, [))
3 p « [d]

4 while (isComplex(c¢)) do

5: left « isLeftward(¢)

6

7

8

9

¢ < popFirstArg(¢)
p' < buildPlan(¢, 1)
if (left)thenp< p+p
: elsep < p' +p
10: end if
11: end while
12: return p
13: end procedure

This pseudo code makes use of the following functions:
e rootResult(g, |): Returns the set of all lexical assignments that have category “g” as their root
result.

e isComplex: Returns true when given a complex category and false otherwise.

e isLeftward: Returns true if given a complex category whose first argument is to the left and false
otherwise.

e popFirstArgument: Destructively modifies its complex argument category by removing and return-
ing its first argument category.

e +: Is the traditional append function for lists, and finally

e choose: Returns pair made of an action (a) and a category(c) from the filtered set of lexical items
that are are given to it.

The simple algorithm given here will produce a plan that should achieve the input category and meet
the requirements of the grammar. However, note that simply generating such a sequence of actions is
insufficient. The choose function could return any of the possible lexical entries and all such possible
parses would meet the requirements of the grammar. But this doesn’t mean they will be effective plans
to achieve the goal.

The grammatical categories defined here are not intended as a specification of causal knowledge, but
rather as a specification of a way to build a plan that can result in the desired root category being
achieved. We need to consider the state in which the plan will be executed.

As is well known in HTN planning, unless the world state is modeled and method use is modeled in a
particular world state, having a plan that meets the requirements of the grammar does not guarantee
that the desired effects will actually be achieved. The grammar provides a specification for how to go
about building a plan, it does not guarantee that the plan will be effective. In order to determine if the

7

Xperience 215821 PU

plan will be effective. We need to add knowledge about the effects of actions and to be able to project
the effects of sequences of actions in order to predict the state of the world that will result from executing
a series of actions. In the following section we add this knowledge to the action grammar.

2.4 Projecting Action Sequences

In addition to the gramatical categories, we will associate with each action a set of projection rules. Each
such rule defines a condition and a set of effects that occur if the action is executed in a world state
that meets the condition. For our system this rule set is assumed to be exclusive and exhaustive so that
only a single rule is applicable in any given state of the world. This eliminates the need for multiple rule
invocations. If no rule is found that is applicable then the action is assumed to have no effect on the state
of the world. Note that this may not be accurate. Executing the action in such a domain may provide
evidence for the learning of a new projection rule or the generalization of an existing rule.

Such a set of rules is most closely related to the idea of secondary preconditions |Pednault| (1989) from the
planning literature. Notice that they define a causal model for the action, but they are not traditional
preconditions. They don’t define when an action can be used. Instead they define what the agent believes
will happen if the action is executed in a particular state of the world. Thus, this approach separates the
knowledge of how to build plans to achieve a given predicate and the knowledge about how to project an
initial state of the world given a sequence of actions.

We note that, preconditions have also been suggested as a method for constraining the search space for
a given plan. In addition to secondary preconditions, multiple kinds of preconditions have been defined.
For example early work in planning |Sussman, Winograd, & Charniak| (1971) distinguishes preconditions
that can and should be achieved by backchaining planning, those that cannot or should not be achieved in
this way. Preconditions have also been used to indicate when a given action is likely to be effective as part
of a plan and therefore should be used. However, this not what we advocate here. The rules advocated
here simple define the causal model of the action, what is made true by its execution in differing contexts.

To summarize then, our proposal distinguishes and advocates three separate kinds of information about
actions.

1. action execution procedure: The procedural linkage to lower level execution. This is the foundation
of any action and is represented by a control program that is to be run on the system’s execution
platform.

2. action projection rules: The causal models for an action just described, as condition effect pairs.
This information defines at an abstract level those facts about the world that will change as a result
of an actions execution given the initial state of the world.

3. action/plan lexicon: The information about how plans are constructed that we have captured in
CCG categories. Keep in mind this information does not define causal knowledge about the world
(ie. how the world works) but rather captures knowledge about how successful plans have been
built in the past.

Note that only the second two of these kinds of knowledge are used in the building of plans. Having the
first kind of knowledge is critical to understanding how such a system learns but is not strictly necessary
for building plans.

Much of the prior work on domain independent planning systems have taken such causal knowledge or
transition functions as definitions of actions and searched through he state space defined by the specified
transitions to find a plan using no other information. In contrast, HTN planning is largely seen as a form
of domain dependent planning. The methods that drive HTN planning are seen as domain dependent
knowledge because their effectiveness in speeding up search often depend crucially on the domain they
are applied in.

However given the difficulty of applying domain independent planners to real world problems, and the
effectiveness of HTN methods in actual deployed systems, we would argue that uninformed searching of
the kind done in domain independent planning is misguided. For any real world embodied system this
space produced is far to large for uninformed search. Even if the number of actions the agent can perform
is small, the variability of the world will make the space of states that might reasonably result from the

8

Xperience 215821 PU

action’s execution very large. This means that further information about how to search for an effective
plan will be necessary if planning is to proceed efficiently.

In the next section we will provide an algorithm for using a plan lexicon and a set of projection rules for
a given set of actions that we have just talked about for building plans.

2.5 Building Plans

We will make three significant changes to the previous buildPlan algorithm. First the algorithm will itself
now take a third argument (i) representing the initial state that the plan is to be built from.

Second after plan construction we test that the plan that is produced will actually result in the desired
category being achieved. This is captured in line of Algorithm Here the function project which
takes a plan and an initial state is assumed to return the state that will result from the execution of the
plan staring in the initial state. In line [[2) we see a test to see if the goal state is entailed by the state
that results from executing the plan in the initial state.

A short digression: We could imagine adding to the complexity of the algorithm by making the projection
process probabilistic. Rather than the exclusive and exhaustive set of deterministic rules that we have
outlined above, the model for each of the actions could be a probability distribution over the set of
possible states that could result from its execution in a given state. We could then reformulate project
to produce a probability distribution over the set of possible resulting states that would result from
executing the plan. We can then compute the likelihood of the final state satisfying the goal category by
simply summing the probability mass associated with those possible states that did satisfy the goal. We
might then want to search through the set of all plans to make sure that the one we executed maximized
the probability of success. While such an extension is relatively straight forward, it is computationally
much more costly, and to simplify this discussion we will assume a deterministic model of actions and
method of determining if the plan satisfies the goal category.

The third and final change to the code actually is just a redefinition of the role of the choose function.
In Algorithm [I] the role of the choose function was to select any of the action category pairs from the
set passed to it. In the case of Algorithm [2] we will redefine choose as an oracle that will always choose
the correct pair that will lead to a viable plan starting in the initial state. This makes Algorithm [2] non-
deterministic and allows us to avoid explicitly coding the search though the space of possible expansions
in the pseudocode. In our actual implementation of this algorithm we have built the choose function as

Algorithm 2 Planning Algorithm
1: procedure BUILDPLAN(?, g,1)
2 (a, ¢) < choose(rootResult(g, [))
3 p + [a]

4: while (isComplex(c)) do

5: left « isLeftward(¢)

6

7

8

9

¢ < popFirstArg(¢)
p' + buildPlan(7, ¢/, 1)
if (left) thenp<+p+yp
: elsep < p' +p
10: end if
11: end while
12: if (project(p,i)Fg) then returnp
13: else return ||
14: end if
15: end procedure

a search and multiple possible search strategies are possible in this space. This completes our high level
discussion of the planning algorithm. However there are a number of properties that this algorithm has
that are worth noting.

First, as with other state of the art planning algorithms, this algorithm produces a totally plan. That
is, the plan output by the process will be a totally ordered set of actions. We have claimed that the
CCG categories only define information about how to go about building the plan. However, because

9

Xperience 215821 PU

CCGs have a nested structure and provide ordering information, in the form of the directionality of the
arguments, they also enable the production of totally ordered plans.

Second, and more interestingly, at each iteration of this planning algorithm an action is added to the plan.
This is in contrast to some HTN planners that must first build a complete abstract plan before further
refining the plan using more methods. To see this, consider that each CCG category can be thought of as
a tree spine |Aho & Ullman| (1992)). The action the lexicon associates with the category is its leaf and the
root result is the tree’s root with nested category arguments being non-terminals at higher levels of the
tree either to the left or the right of the spine. With this view, the process of planning can be intuitively
thought of as a form of tree adjunction [Joshi| (1985) or composition. A root tree is chosen adding the first
action to the plan (possibly somewhere in the middle of the plan) and later trees that are added to the
plan both add actions to the plan and are spines that resolve the argument categories (non-terminals) of
the original plan tree.

Third and finally, to the best of our knowledge, this is the only planning algorithm that is able to build
plans “from the inside out”, that is building the plan from the middle of its execution outward. After a
category is chosen, the action associated with it is added to the plan. Future actions, that are designed
to address the category’s arguments, can be added either before or after that action. Effectively this
means that depending on the structure of the category the middle of the plan can be built first in a sort
of “divide and conquer” approach to plan construction.

This plan construction is directed by structure of the CCG categories. CCG categories can be built
that are all rightward looking and therefore result in a forward search of the plan space. They can also
be build with all leftward looking categories resulting in constructing the plan backwards from the goal
state. Or as we have already discussed, categories can direct the building of the plan to alternate sides
and effectively build the plan from the middle outward.

It is also worth noting that at any given moment the plan is executable. Categories are not part of the
plan but rather direct its construction. Therefore at any time the current plan is a meaningful, possibly
only partial, plan to achieve the goal. There are no “abstract actions” in the plan. This is very important
for being able to test the plan for executability and success at achieving its result categories.

We have implemented a propositional version of this planning algorithm to prove its viability for simple
problems. However for acceptance within the planning community, a propositional version is insufficient.
It is necessary for the planer to support at least a limited form of first order representations of both
states and actions. We are in the process of completing the extension of the implementation to include
this more expressive representation. While this does not represent a great theoretical leap forward for
the system, it does greatly complicated the book keeping necessary for the search among possible plans
since not only multiple categories need to be considered by multiple instantiations of the categories and
related actions must be considered both in the search and in the projection of actions to verify successof
the resulting plans.

2.6 Recognizing Plans Using CCGs

With such a representation of actions and planning system in hand, the natural question to be asked is
can such plan grammars be learned automatically rather than being built by hand. We believe that they
can, and that this ability depends on the fact that the identical representation of actions, here used for
planning, can be used for plan recognition.

Briefly, plan recognition is the identification of an agents high level plans and goal based on observations of
their actions and a library of plans to be recognized. In fact, we have already documented the effectiveness
of CCG lexicons for plan recognition in prior work |Geib & Steedman! (2007)); |Geib| (2007, [2009); |Geib
& Goldman| (2011)). This work viewed plan recognition as probabilistic parsing of a plan CCG. We will
refer the interested reader to the prior work for a detailed understanding of this process, however some
intuitions about how this process is done will help in understanding our proposed learning process.

Given a CCG lexicon for a set of actions, and a sequence of observed actions, we can parse the action
sequence based on the lexicon to produce a (possibly singleton) sequence of categories that capture the
plans that the agent was executing. For example, consider the example lexicon shown in Figure In
this case, we have five observable actions a, b, ¢,d, e, and a lexicon that has categories for each of them.

10

Xperience 215821 PU

Lexicon: a=Ab=B
¢ = ((G/E)/D\A)\B,
d=D,e=F

Observed action time = 1: | a

Parse (initial): [A]

Observed action time = 2: | b

Parse (initial): (A, B]

Observed action time = 3: | ¢

Parse (initial): (A4, B, (((G/E)/D)\A)\B]

Parse (left apply B): [A, ((G/E)/D)\A]

Parse (left apply A): ((G/E)/D]

Observed action time = 4: | d

Parse (initial): ((G/E)/D, D]

Parse (right apply D): [G/E]

Figure 2.1: Example of plan recognition based on parsing a set of observations using a CCG lexicon.

One category (the one assigned to ¢) describes a plan to achieve the goal category G. We can identify
this because G is ¢’s categories root result.

Assume as in Figure that we observe the actions [a, b, ¢, d] in that order. When we observe the a it can
be assigned its lexical category of A, likewise b is assigned B, and c¢ is assigned ¢ = (((G/E)/D)\A)\B.
However with this category we can combine ¢ with b and then with a using nothing more than function
application. Because c¢’s category is a complex category and both A and B are leftward arguments to
it, and they are in the correct order with respect to each other and ¢, they can be removed by leftward
function application, resulting in ((G/E)/D. When the next action that is observed is d and is assigned
the basic category D, it too can be combined. This time the algorithm would use rightward function
application producing the category G/E.

Thus as each action is observed, it is assigned a category and where possible these categories are combined
into simpler categories to represent the component actions taking part in a single plan. In the case of
Figure [2:1] to achieve goal G. The state of the inferred plan at the end of that example also suggests that
the the plan is incomplete. It is still awaiting the execution of an e.

2.7 Learning CCG Plan Lexicons Through Bootstrapping

In order to leverage this kind of plan recognition to learning new categories for actions, we will view this
as a case of high level learning by demonstration. As such, we will assume there is a teacher that presents
the execution of a plan for a known goal that makes use of a single previously unknown action. This
means that in our examples we will be learning one action at at time and that it is a wholly unknown
action (ie. it has never had a category assigned to it before.)

Since there is only one action that is unknown, it means that all of the other actions have at least one
categories assigned to them by a plan lexicon and using the plan recognition algorithm we can determine
the most likely category for all of the other actions. Further we can also assume that we know the root
result of the plan since a teacher is present and can label the training instance. We also know if any of
the categories for the known actions have the goal of the demonstration as their root result.

Under these assumptions, our job is to assign to the new action a category that will allow us to recognize
another instance of this plan if it is presented again. We break this process down into two cases.

In the first case, once plan recognition has been performed on the observed action sequence, the goal
category for the demonstrated plan is already the root result of the category assigned to one of the known
actions in the demonstration example. Effectively what this tells us is that the unknown action (possibly
in conjunction with other actions in the plan) is playing the same part as a known category within the
plan. Consider the case shown in Figure

In this case, after plan recognition, the complex category in the explanation for the observed actions

11

Xperience 215821 PU

Teaching goal category: | G

Lexicon: a=Ab=((G/E)/D)/C)\A,
d=D,e=F

Observed actions: [a,b,z,d,e]

Results of parsing: [((G/E)/D)/C),UNKNz, D, E|

Inferred category: x=C

Figure 2.2: Example of inferring a category for a previously unseen action when the the most likely parse
of the observed actions results in a category with the goal root result as a category.

Teaching goal category: | G

Lexicon: a=Ab=B,d=De=F
Observed actions: [a, b, x,d, €]

Results of parsing: [A,B_,UNKNz,D, F]
Rightward arguments: [E, D]

Leftward arguments: [A, B|

Inferred category: x = (((a/E)/D)\A)\B

Figure 2.3: Example of inferring a category for a previously unseen action when the the most likely parse
of the observed actions does not result in a category with the goal root result as a category.

does account for the actions a and b and the previously unseen action x is given a placeholder category
(UNKN<z). However, the D and F categories are being prevented from being combined with the complex
category by the absence of a C category in the plan. If only the lexicon assigned to action x had the
category C, the entire parse would have gone through and the plan been recognized. In the simplest
such cases the only categories that have to be considered are the current next argument for the complex
category since their removal is what is standing in the way of the other actions automatically becoming
part of the plan.

Thus, all that is required in this case is for us to:

1. Recognize that one of the categories in the most likely parse of the plan has as its root result the
goal category.

2. Recognize that some subset of the actions that follow the unknown action would be applicable to
the recognized plan fragment.

3. Assign to the unknown action the category that will enable the rest of the plan to be completed.

In the second case, the goal category for the demonstrated plan is not the root result of one of the other
actions that has been observed. This is in fact easier to handle that then previous case. All we need
do is create a new category for the action that has two sequences of arguments. The first captures the
ordered list of categories found to the unknown actions left, and the second the categories for the actions
found to its right. The root result for the category is the category the teacher has already told us they
are demonstrating. The elements of the two lists are then added to the category working from left to
right (fist executed to last) in the case of the leftward arguments, and working from right to to left (last
executed to first) in the case of the rightward arguments. Note if desired the the left and right arguments
can be interleaved, but to make plan recognition easiest (and to recognize when earlier substeps of a plan
will fail) it is generally best for the leftward arguments to be on the “outside” of the category (added to
the category after the rightward arguments). Figure shows an example.

If this process is successful and the new category is learned, not only can future instances of this plan
be recognized the planner we have described isn now in a position to build plans that make use of the
action in order to learn the projection rules for the action and complete the building of the action model
and plan lexicon.

12

Xperience 215821 PU

2.8 Conclusions

This paper has sketched how planning can be accomplished based on Combinatory Categorial Grammars
(CCGs) and how learning of these same grammars can be driven by plan recognition based on this same
type of grammar. We have already demonstrated the viability of creating new categories for previously
unseen actions

13

Bibliography

Aho, A. V., and Ullman, J. D. 1992. Foundations of Computer Science. New York, NY: W.H. Freeman/-
Computer Science Press.

Brooks, R. 1999. Cambrian Intelligence: The Early History of the New AI. Cambridge, MA: MIT Press
Inc.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. Semantics for hierarchical task-network planning. Technical
Report CS-TR-3239 and UMIACS-TR-94-31, Computer Science Department, University of Maryland,
College Park, MD.

Geib, C., and Goldman, R. 2011. Recognizing plans with loops represented in a lexicalized grammar. In
Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI-11), 958-963.

Geib, C., and Steedman, M. 2007. On natural language processing and plan recognition. In Proceedings
of IJCAI 2007.

Geib, C. W. 2007. Using lexicalized grammars and headedness for approximate plan recognition. In
AAAI Workshop on Plan Activity and Intent Recognition (PAIR-2007).

Geib, C. 2009. Delaying commitment in probabilistic plan recognition using combinatory categorial
grammars. In Proceedings IJCAI 1702-1707.

Hoffmann, J., and Nebel, B. 2001. The ff planning system: Fast plan generation through heuristic search.
J. Artif. Intell. Res. (JAIR) 14:253-302.

Joshi, A. 1985. How much context-sensativity is necessary for characterizing structural descriptions - tree
adjoining grammars. In Natural Language Processing - Theoretical, Computational, and Psychological
Perspective, 206-250. Cambridge University Press.

Pednault, E. P. D. 1989. Adl: Exploring the middle ground between strips and the situation calculus.
In Brachman, R. J.; Levesque, H. J.; and Reiter, R., eds., KR, 324-332. Morgan Kaufmann.

Russell, S. J., and Norvig, P. 2010. Artificial Intelligence - A Modern Approach (3. internat. ed.). Pearson
Education.

Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction spaces. Artif. Intell. 5(2):115-135.
Steedman, M. 2000. The Syntactic Process. MIT Press.

Sussman, G. J.; Winograd, T.; and Charniak, E. 1971. Micro-planner reference manual. Technical report,
MIT Artificial Intelligence Laboratory.

Tate, A. 1977. Generating project networks. In Reddy, R., ed., IJCAI 888-893. William Kaufmann.

14

	Summary
	Content
	Abstract
	Introduction
	Plans as Grammars
	Projecting Action Sequences
	Building Plans
	Recognizing Plans Using CCGs
	Learning CCG Plan Lexicons Through Bootstrapping
	Conclusions

