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Chapter 1

Executive Summary

In the last year of the Xperience project, we have merged scenario 1 and 2 into one major demo on
ARMAR at KIT. This demonstration is described in D5.3.5. We describe the contributions of WP5.2 to
this main demo in chapter 2. Moreover, we demonstrate structural bootstrapping in the full Xperience
cycle on a robot platform at UIBK. This is described in chapter 3. In addition, we show a number of
demonstrations performed in individual labs in chapter 4.
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Chapter 2

Contributions to Main Demo

In this section, we describe the WP5.2 contributions to the main bootstrapping demo as outlined in the
PPR in WP5.3 and in D5.3.5.

2.1 Segmentation and reactive grasping of unknown objects

The video “Pushing-for-Segementation-and-Grasping-Armar-IIIb-final render 0-x4.mpg”
demonstrates the integration of several skills that were developed within the Xperience project: Segmen-
tation of unknown objects by physical interaction, their pre-grasp manipulation, and finally grasping
employing reactive correction strategies based on haptic and visual perception.

The humanoid robot ARMAR-IIIb observes a scene consisting of unknown objects, and creates initial
object hypotheses based on its visual perception. One of the object hypotheses is pushed, and the resulting
rigid body motion is used to verify and improve the hypothesis, leading to a reliable segmentation even in
cluttered scenes. The segmentation is used to estimate the objects’ extent. By target-oriented pushing,
it is brought to a position and orientation that facilitates grasping by orienting the shorter side of the
object towards the expected approach direction of the hand.

Grasping is realized in a reactive manner. The robot approaches the object with an opened hand. If
during the approach a collision with the fingers is detected by tactile, proprioceptive or visual feedback,
the hand position and orientation are corrected to avoid this collision. This is repeated until the object is
reached or contact is detected by tactile sensors in the palm of the hand. When this happens, the fingers
are closed to conclude the grasp and the object is lifted. Based on haptic and proprioceptive feedback,
the grasp success is verified, and in case of failure another attempt is initiated. See Figure 2.1 for an
overview of this approach.

Figure 2.1: Overview of the object segmentation and grasping approach: An unknown object is segmented
in clutter, using its motion that is caused by the robot’s pushes. It is pushed to a favorable position and
orientation, and then grasped in a reactive manner. Premature collisions of hand and object are detected
using haptic and visual cues, and the hand pose is reactively corrected until the grasp succeeds.
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2.2 The PKS planner

High-level plans in Scenario 1 are generated by PKS (Planning with Knowledge and Sensing), the
knowledge-level planner that UEDIN is developing as part of WP4. Details of the planner’s opera-
tion have previously been reported in deliverables D3.2.1, D3.2.2, D3.2.3, and D3.2.4. The same planner
is also being used as part of Scenario 2 on the ARMAR robot platform. Specific details about the PKS
planning domain in Scenario 1 were previously described in D5.2.4.

2.3 Action replacement using histograms and Joint SVM

Based on the relational histogram representation developed in Xperience, we apply a Joint SVM learning
algorithm to associate affordances to objects. The sub-module is used in the main Xperience demo for
object replacement in a complex planning problem, in which an object that is requested for executing
the plan is not available and an alternative objects is sought for. The joint SVM—besides giving an
actual affordance classification—also provides a confidence value that indicates the likelihood of a correct
classification—that can be exploited in the actual choice of objects. Extensive quantifications as well as
the integration on the ARMAR platform are described in [6].

The work presented here is part of a system that is capable of creating symbolic plans for a given task.
The system has the ability to search for replacements of missing objects based on several replacement-
strategies. Replacement based on affordance estimation is one of these strategies. Essentially, the robot
creates an assumed memory state from previous experience, which serves as a basis for the planner. If
the robot encounters that an object of a plan is missing, the replacement component is consulted for a
valid replacement (see Figure 2.2).

(a) ARMAR-III encounters a small bowl while ex-
pecting the object in (b).

(b) Point cloud visualization (snapshot) of the scene,
showing the predicted affordances of the unexpected
object.

Figure 2.2: Affordance estimation in ARMAR III.
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Chapter 3

Realization of the Xperience Cycle

The Xperience approach and cognitive architecture (see Figure 3.1) comprises a cycle of four processes:
(1) categorization of perception-action dependencies in the form of object-action-effect representations
that encode affordances, (2) generative modeling and forming symbolic representations, (3) mechanisms
that enable internal simulation over formed symbols, and finally (4) closing the loop by enactive ground-
ing. The key idea is to bootstrap generalized and transferable symbolic knowledge of perception-action
associations and dependencies from specific perception-action contingencies of objects, associated actions,
and consequent effects, and then to use these generative models in a process of internal simulation to
predict the outcome of actions or plan actions to achieve desired outcomes. The results of these internal
simulations are then enacted by grounding: validating them by observing the actual result and either
adapting the generative model through accommodating new categories or assimilating the new experience
to the previously learned model.

Figure 3.1: Xperience learning cycle.

The video “UIBK-Xperience-cycle-v3.mpg” describes our effort to realize and implement the concep-
tual learning cycle summarized above. This cycle defines learning as a process that goes all the way from
low-level sensorimotor exploration to symbolic planning. It generates progressively more complex and
higher-level skills, abstractions and reasoning capabilities that are validated through further interactions.
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The formed models also should influence the way the robot explores its environment in a more intelligent
way.

The video first shows how the real and simulated robot explores its environment with the actions that
involve single objects and pairs of objects, namely poke, grasp, release and stack actions.

• In the Categorization stage, the robot monitors the consequences of its actions, and forms
discrete effect and object categories from its continuous sensorimotor experience. Action effects such
as rolled, tumbled, stacked, and inserted are discovered through unsupervised clustering. Object
categories such as hollow, flat, round, and unstable are discovered by grouping objects that behavior
similar in response to different actions. Finally, the relations between visual properties of objects
and object categories are learned, providing affordance perception capability.

• The Update exploration stage shows how learned categorization changes the way the robot
explores its environment with two complementary active learning mechanisms. The first mechanism
exploits the idea of intrinsic motivation, and enables the robot to automatically focus on easy-to-
learn actions, and learn poking before the complex stacking action. The second mechanism enables
the robot to detect and explore maximally different object categories, providing significant speed-up
in learning [10].

• The Generative modeling stage shows the hierarchical affordance learning structure that is
autonomously constructed by the system. For this, the system discovers that re-using simple
affordances (such as rollability) in learning complex affordances (such as stackability) speeds up
learning. Because the experienced sensorimotor data is encoded with discovered symbols, the
relations between this data, i.e. object and effect categories, can also be represented in logical form.
For this, in the same stage, the system trains decision trees and learns logical rules that encode
consequences of actions. This enables the system to reason on the symbolic level in the next stage.

• In the internal simulation stage, these rules are automatically transferred to the STRIPS style
Problem and Domain Definition Language (PDDL) format. Domain description includes a separate
action for each learned rule along with the corresponding preconditions and effects. The initial state
of the world, i.e. object categories and discrete relations between the objects, and the goal is defined
in the problem description, in STRIPS notation as well. Given domain and problem descriptions,
off-the-shelf symbolic planners are used to achieve the tasks [11].

• In the Enacted grounding stage, the validity of the learned symbols and operators are tested by
executing the sequence of actions planned to achieve a real task such as building towers of different
heights with different objects. While executing the plan, the robot encounters completely novel
situations that cannot be perceived or reasoned about with the knowledge that the robot acquired
in previous learning. Therefore, based on the observations from multi-sequence action executions,
the robot either updates the previously learned rules or discovers new categories that appear in
plan execution, and by that closing the loop [UP15].
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Chapter 4

Individual Contributions

4.1 Accelerated motor learning in constrained domains

The three videos mentioned in this section demonstrate the application of bootstrapping for accelerated
motor learning, developed within the Xperience project. The key components of the proposed bootstrap-
ping mechanisms are demonstrated in the videos: autonomous learning of compliant movement primitives,
their generalization, and finally learning in the space spanned by the previously acquired examples. Three
distinct tasks are presented: learning of joint torques for reaching at different targets, learning of joint
torques for accelerated whole-body squatting (both on the CoMan humanoid robot), and learning of joint
torques for the execution of peg-in-hole tasks at different locations on KUKA LWR-4 robot. Note that
the underlying parametric representation called compliant movement primitives (CMP), which was ap-
plied in these experiments, was developed within the EU FP-7 project Learning and Execution of Action
Categories (ACAT) [1].

In the first video “Coman reaching.mp4”, the humanoid robot CoMan was commanded to reach a
desired point in space. Since the robot is compliant, using low gains for trajectory tracking, it could
not reach the desired goal configuration without knowing its dynamic model for the generation of the
required feedforward torques. These were learnt using recursive regression. The learning of feedforward
torques was repeated for a number of different reaching positions until the desired accuracy at the final
configuration was achieved for all of them. The experiment of learning feedforward torques for reaching
movements was then repeated, but this time using bootstrapping to speed up learning [2, 7]. In this
experiment, once the desired accuracy of motion has been reached, the learned compliant movement
primitive is added to the database of motion and used to bootstrap learning in the next step using
statistical learning methods. As evident in the video, less and less executions are needed to add new
samples into the database because the initial approximations become more and more accurate.

In the second video “Coman squating.mp4”, the same humanoid robot (CoMan) was commanded to
perform squatting motions, but in simulation. The reflexive stability framework for the humanoid robot
[3] was integrated into the learning of compliant movement primitives. Again, feedforward torques must
be available to implement successful compliant squatting behavior. The video shows learning with and
without bootstrapping for initial approximation until the desired accuracy of motion is reached. This
video also demonstrates that learning with bootstrapping is much faster because in this case the learned
compliant movement primitives are added to the database of motion, contributing to the improvement
of initial approximation for the required squatting behavior.

In the last video “LWR PiH.mp4” (see also Figure 4.1), a Kuka LWR-4 robot was commanded to
perform a peg-in-hole (PiH) task at different locations. The difference to the learning of simple reaching
movements is that in this case, interaction with the environment takes place, which makes the learning
problem much more difficult. As in the previous two cases, the video shows learning with and without
bootstrapping for initial CMP approximation. Again, adding the learned CMPs to the database and the
application of statistical learning methods results in better initial approximations for subsequent PiH
actions, which accelerates the learning of the desired behavior.
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Figure 4.1: Image frame from the video depicting the peg-in-hole learning using bootstrapping mecha-
nisms. The plots on the right-hand side show the number of learning epochs for a given position, defined
by the red-green-empty circles in the bottom right. The red circles have finished learning, while the green
one depicts learning in progress. In the top plot we can see that fewer learning epochs are needed when
the initial estimate is bootstrapped with previous knowledge.

4.2 Self-supervised learning of grasp dependent tool affordances
on the iCub humanoid robot

The video “IIT affordance self.mp4” demonstrates affordance learning and tool use. The main inten-
tion is to understand ways in which a robot can learn the correlation between the geometric characteristics
of tools and the effect they can achieve upon the execution of certain actions. Such learning can allow
the robot to select the best action to perform a desired task with a given tool, or eventually, to select
the best tool to use for achieving a goal, even among tools previously unseen. Additionally, the way in
which the grasp modulates the required action and the achievable effects has also been tackled.

This experiment, work published in [5], represents the geometric characteristics of tools as a set of 75
features extracted from their observed 2D contour after being grasped. These included features based on
the contour’s shape, moments, convex hull, skeleton, signatures and domain transform. The goal task
was to pull an object closer to the robot, for which the appropriate action for each tool-pose had to be
predicted. The experiment involved seven tools in simulation (Figure 4.2left) and four on the real robot
(Figure 4.2right), each grasped in three possible ways, (left, front, right, as shown in Figure 4.3). In order
to observe the pulling affordance of each of these tools, and the effect of the grasp, the pulling action was
performed targeting points located from a few centimeters to the right of the object to a few centimeters
to is left (Figure 4.4). The observed effects were clustered using K-means, which returned an index for
each interaction trial. Finally, this index was then used as the target signal to train a classifier whose
input was the 75 features of the tool used in each corresponding trial. Learning was tested by comparing
the predicted effect class for each tool-pose to the actual recorded one, as well as by using the prototype
effect vector of the predicted class to select the best action to pull the object. A full diagram of the
performed experiment can be observed in Figure 4.5. Results showed that although there is still a lot of
room for improvement, this or similar approaches are quite promising.

9



Xperience 270273 PU

Figure 4.2: Illustration of virtual and real tools used for the affordance experiment.

Figure 4.3: Considered tool grasps/ orientations.

Figure 4.4: Approaches to target object for pull action. Each red mark represents 1 cm.

Figure 4.5: Full diagram of the experiment in [5]. Black lines correspond to training flow, while red
corresponds to testing.

4.3 Multi-model approach based on 3D functional features for
tool affordance learning in robotics

The video “affordances.mp4” presents a follow up experiment, published in [4], aimed at improving
the approach described in the previous section by, on the one hand, applying features based on the 3D
geometry of the tools rather than its contour, and on the other hand, employing actions which render
possible the discrimination between more kinds of tools. Action, thus, instead of just pull, consisted in
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sliding the tool from a position on top of the object to each of the 8 main cardinal directions (i.e. in
angles from 0 to 315 degrees on intervals of 45 degrees, as shown in (Figure 4.6).

Figure 4.6: Possible slide actions to perform on the target object.

The feature set used to represent tools in this scenario was a concatenation of voxel-based normal spherical
histograms, named Oriented Multi-scale Extended Gaussian Images (OMS-EGI for short). In order to
represent not only the 3D geometry of the tool, but also the way in which it was grasped, voxels were
obtained as octree divisions of the tool’s bounding box aligned to the axis of the robot’s hand reference
frame. A visual representation of the feature extraction process can be seen in Figure 4.7.

Figure 4.7: Visual representation of the OMS-EGI feature extraction process. Normal XYZ directions
are color-mapped to RGB for visualization.

This set of features was obtained for 44 virtual tool 3D models, again in three different orientations
each. The resulting dataset was clustered using a Self-Organizing Map K-Means, in order to discover
the available tool-pose categories, based on their 3D geometry similarity as measured by the OMS-EGI.
For each discovered category, a regressor was trained, linking the actions and effects corresponding to all
tool-poses belonging to that category. A diagram showing this process can be observed in Figure 4.8.
Testing was performed by comparing, for each tool-pose, the predicted effect in each possible direction
to the recorded one. The predictive performance obtained was similar to that obtained in the previous
experiment.

Figure 4.8: Diagram of experiment published in [4].

This experiment [4] was performed solely in simulation, mainly because of the availability of the full
3D models of the tools for feature extraction, once they were built for the simulator. However, proper
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evaluation of the method requires testing on the real robot too. Therefore, during the last months we
have carried out work (not published yet) in order to adapt the Humanoids 2015 experiment so that it can
be carried out on the real robot. This required some modifications in the action execution, so that they
are safer for the robot as well as reimplementation of the object localization for reaching and measuring
effect, which was not needed in simulation, with a template tracker. Also, the clustering procedure was
improved by steering it based on the predictive performance of the models based on each possible cluster
scheme, rather than by cluster quality heuristic measures as before. Moreover, action selection based on
the predicted effect of each possible action was also implemented, [5].

4.4 Learning peripersonal space representation through artifi-
cial skin for avoidance and reaching with whole body surface

This live demonstration (video also available here “IIT peripersonal-space.mp4”) will showcase a
robot that learns a distributed representation of space around its body by exploiting a whole-body
artificial skin and through physical contact with the environment. More specifically, every taxel has a
spatial receptive field extending 20 cm along the normal to the skin surface. In this space, ‘visual events’
triggered by objects coming close to the robot are recorded. If they eventually result in physical contact
with the skin, the activated taxels update their representation tracing back the oncoming object and
increasing the stored probability that such an event is likely to contact the particular taxel. Other taxels
on the body part that were not physically contacted also update their representations with negative
examples. The spatial RF around every taxel is mediated by an initial kinematic model of the robot;
however, it is adapted from experience, thus automatically compensating for errors in the model as
well as incorporating the statistical properties of the oncoming objects. This representation naturally
serves the purpose of predicting contacts with the whole body of the robot, which is of clear behavioral
relevance. Furthermore, we will demonstrate a simple avoidance controller (Figure 4.10) that is triggered
by this representation, thus endowing a robot with a ‘margin of safety’ around its body. Finally, simply
reversing the sign in the controller we used gives rise to simple ‘reaching’ for objects in the robot’s vicinity
(Figure 4.9), which automatically proceeds with the most activated (closest) body part. An important
asset of the proposed architecture is that learning is fast, proceeds in parallel for the whole body, and is
incremental. That is, minutes of experience with objects coming toward a body part give already rise to
a reasonable representation in the corresponding taxels that is manifested in the predictive activations
prior to contact as well as avoidance behavior. The smoothing approach used (Parzen windows applied
to the discrete representation) specifically contributes to this effect in the case of under-sampled spaces.
The demonstrators avoidance and reaching are simply exploiting the Cartesian Controller to generate
movements of a virtual point that is a result of voting of taxels activated by an object near the robot.

Figure 4.9: Reaching pps behaviour.

The direction of the movement is also a weighted average of the normals of the activated taxels. Avoidance
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Figure 4.10: Avoidance pps behaviour.

differs from ‘reaching’ in the direction of this movement vector only. The response is thus local in a sense
that there is only one averaged locus for the response. At the same time, the response is executed
globally, since the Cartesian controller is employed, recruiting multiple joints in a coordinated fashion.
However, this approach will not automatically scale to multiple skin parts activated at the same time (the
averaging may produce counterintuitive locus and movement vectors in some configurations) or to the
presence of multiple objects near the robot. The ‘reaching’ behavior is in fact rather a local ‘magnet-like’
response that will pull the skin parts close to an object toward it. No response will be elicited if the
object leaves the 20 cm zone surrounding the body. Therefore, integrating the proposed representation
with proper reaching in the robot’s workspace in the presence of clutter, while utilizing the safety margin
or the ‘magnetizing margin’ on the way, remains the topic of future work. In addition, the proposed
representation could also be expanded by incorporating an additional variable next to the distance,
namely the velocity or time to contact of the oncoming objects. Finally, the framework proposed is
applicable also to other robots that are equipped with the key sensory modalities: vision (could be easily
replaced by other sensors such as Microsoft Kinect or laser range finders), proprioception, and touch.

4.5 Demo on object and part segmentation using LCCP and
CPC algorithms

The video “UGOE ObjSegmLCCP PartSegmCPC.mp4” shows a demo of objects, and parts of
objects segmentation methods for the identification of functional parts of objects that are used to guide
robotic actions. The demo presents how the system is able to identify handles of objects such as knives,
cups, axes, and heat-guns. These handles are afterwards grasped using a KUKA arm platform. The object
segmentation is basically used for object recognition while the part segmentation is used to identify the
functional parts of the recognized objects. Object and part of object segmentations were implemented
using the Local Concave Connected Patches (LCCP) and the Constrained Planar Cuts (CPC) methods,
respectively.

4.6 Demo on learning how to grasp unknown objects

The video “GraspAffordances.mp4” demonstrates the execution of grasps of unknown objects with the
approach described in ([9, 8], see also WP2.1 and WP2.3), where visual features and their combination are
learned by a K-means clustering approach. By that discrete sets of prototypes of circular neighborhoods
of local surface patches are found first by unsupervised learning techniques and are then combined with
grasping actions, evaluated in simulation, to learn grasping affordances in a probabilistic way. By utilising
a voting scheme that allows for multiple visual features to vote for a single grasp, the learned affordances
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Figure 4.11: Grasping of unknown objects at the SDU platform.

are applied to grasping of novel objects. Grasps and a visual feature representation are learned in a
simulated environment using RGB-D sensors for visual feature extraction and object dynamics for grasp
simulation and are then applied on the robot set-up at SDU, see Figure 4.11.
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[7] T. Petrič, L. Colasanto, A. Gams, A. Ude, and A. J. Ijspeert. Bio-inspired learning and database
expansion of compliant movement primitives. In 2015 15th IEEE-RAS International Conference on
Humanoid Robots (Humanoids), pages 346–351, Seoul, Korea, 2015.

[8] Mikkel Tang Thomsen, Dirk Kraft, and Norbert Krüger. Identifying relevant feature-action asso-
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Refining discovered symbols with multi-step interaction experience

Emre Ugur and Justus Piater

Abstract— In our previous work, we showed how symbolic
planning operators can be formed in the continuous perceptual
space of a manipulator robot that explored the world with
its single-step actions. In this paper, we extend our previous
framework by enabling the robot to progressively update the
previously learned concepts and rules in order to better deal
with novel situations that appear during multi-step action
executions. Our proposed system can infer categories of the
novel objects based on previously learned rules, and form new
object categories for these novel objects if their interaction
characteristics and appearance do not match with the existing
categories. Our system further learns probabilistic rules that
predict the action effects and the next object states. There rules
are automatically encoded in Planning Domain and Definition
Language (PDDL), enabling use of powerful symbolic AI
planners. Using this framework, our manipulator robot updated
its reasoning skills from multi-step stack action executions.
After learning, the robot was able to build stable towers in real
world, exhibiting some interesting reasoning capabilities such
as stacking larger objects before smaller ones, and predicting
that cups remain insertable even with other objects inside.

I. INTRODUCTION

Autonomous robots require high-level grounded cognitive

capabilities to achieve general-purpose complicated tasks. In

our previous research [1], a manipulator robot built symbolic

planning concepts and operators from it’s own continuous in-

teraction experience with the world. Starting from low-level

object percepts, the robot organized its sensorimotor space

forming object and effect categories; and learned logical rules

that encode the relations between these categories in a form

suitable for direct utilization of off-the-shelf AI planners.

With this, we argue that we closed the loop by going all the

way from continuous sensorimotor experience to symbolic

level, finally executing the plans in a real robot.

In the system described above, the symbols and rules were

learned from robot’s isolated action executions. However,

when the robot executes the sequence of actions planned

towards a goal, it would encounter with completely novel

situations that cannot be perceived or reasoned about with

the knowledge that the robot acquired in previous learning.

Therefore, the previously learned perceptual and prediction

mechanisms should be updated based on robot’s further

experience obtained from different sequences of actions.

In our case, the robot previously learned operators from

isolated stacking actions, where individual objects were

stacked on top of other individual objects. After learning,

This research was supported by European Community’s Seventh Frame-
work Programme FP7/2007-2013 (Specific Programme Cooperation, Theme
3, Information and Communication Technologies) under grant agreements
no. 270273, Xperience, and no. 610532, Squirrel.

University of Innsbruck, Institute of Computer Science, IIS Innsbruck,
Austria firstname.lastname@uibk.ac.at

Fig. 1. The learning cycle. Adapted from the conceptual cycle defined
in Xperience project: http://www.xperience.org/. The contributions in this
paper are marked with underlined text.

we showed that the robot was able plan sequence of stack

actions in order to build towers of arbitrary heights based

on self-discovered object categories. However, the previously

acquired knowledge would fail to capture the characteristics

of a tower building task as the system cannot do reasoning

over the compound objects formed during this task. There-

fore, the robot is required to learn new concepts and rules

related to the towers from its observation of sequential stack

execution.

Fig. 1 provides an overview of our approach to progressive

cognitive skill development. As we described above, our pre-

vious work went all the way from object category discovery

to the execution of the symbolic plans, however it did not

acquire further knowledge from the sequence of interactions.

The contributions of this paper, which are marked in the

figure, are as follows:

1) The categories of the novel complex objects, which are

generated during interactions, are extracted from the

learned rules, based on what kind of effects the objects

generate in the following interactions. The previously

learned rules are updated based on new information.

2) The novel objects are assimilated into the existing

categories or new categories are accommodated for the

novel objects depending on the visual properties of the

novel objects. New object categories are formed if the

visual appearance of components of this novel objects

are not predicted to belong to the inferred category.

3) Probabilistic rules are learned from real-world inter-

actions of objects, and symbolic planning is achieved

using these learned operators.

Very few recent studies have addressed bottom-up con-
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struction of symbolic or sub-symbolic structures for planning

in robotics. Ugur et al. and Pisoka and Nehmzow clustered

the continuous sensory space of the robot and generated

multi-step plans in continuous perceptual space with learned

effect predictions [2], [3]. Mugan and Kuipers proposed a

system that learns qualitative representations of states and

predictive models in a bottom-up manner by discretizing the

continuous variables of the environment [4]. Konidaris et

al. studied construction of symbols that are directly used

as preconditions and effects of actions for generation of

deterministic [5] and probabilistic [6] plans in simulated

environments. Pasula et al. [7] and Lang et al. [8] studied

learning of symbolic operators using pre-defined predicates

in simulated blocks world domains. Our framework, on the

other hand, learns non-linear relations between the discov-

ered discrete symbols and the continuous percept of a real

manipulation robot.

II. METHODS

In this section, we first give the manually designed per-

ceptual and motor capabilities of the robot. In Section II-

B, we summarize what kind of structures and rules were

autonomously learned in and transferred from our previous

study [1]. Finally, in Section II-C, we provide the main

contribution of this paper, where the robot detects categories

of novel objects, forms new categories, develops new pre-

diction capabilities and probabilistic rules from observations

of object interactions generated by sequence of actions.

A. Built-in knowledge

The robot is equipped with a number of manually-coded

actions (aj) that enable single- and multi-object manipula-

tion. It can push a single object from different sides, pick-

up, and release it; and also stack one object onto another.

The single-object actions were used to find action-grounded

object categories in previous stages, and not further explored

in this paper.

The robot has the built-in functionality of detecting objects

and extracting a number of visual features from them. The

list of these features represent the objects in continuous

sensory space and is denoted as fo throughout the text.

The continuous effect created in object features during action

executions are also observed by the robot to find the discrete

effect categories, as detailed in the next section.

B. Capabilities transferred from previous learning stages

In previous learning stages [1], the robot executed actions

that involve single objects and pairs of objects, and pro-

gressively learned the following information. Effect space

was discretized. For this, effect categories (εao) were formed

by applying unsupervised clustering methods to the set of

observed continuous effects for each action. The formed

effect categories for different actions were as follows:

εpick-up
∈ {GRASPED}

εrelease
∈ {STABLE, TUMBLED}

εfront-poke
∈ {ROLLED, PUSHED}

εside-poke
∈ {ROLLED, PUSHED}

εtop-poke
∈ {INSERTED, OBSTRUCTED}

εstack
∈ {STACKED, INSERTED, TUMBLED}

(1)

Action-grounded object categories ({co}) were formed. For

this, objects that were affected similarly from the robot

actions were grouped together. Therefore, object categories

were encoded as the collection of effect categories generated

by the five single-object actions (co = (εa1 , εa2 , ..εa5)o). The

formed object categories were as follows:

co ∈ {HOLLOW, SOLID, ROLLABLE, UNSTABLE} (2)

where

HOLLOW = (GRASPED, STABLE, PUSHED, PUSHED, INSERTED)

SOLID = (GRASPED, STABLE, PUSHED, PUSHED, OBSTRUCTED)

ROLLABLE = (GRASPED, STABLE, ROLLED, ROLLED, OBSTRUCTED)

UNSTABLE = (-, TUMBLED, -, -, -)

Prediction of object categories from their visual appearance

was acquired. For this, the mapping from object features to

the corresponding object categories was learned by training

non-linear classifiers (SVMs):

co = C(fo) (3)

Finally, predicting more complex action effects, i.e. effects

of stack action, was learned. For this purpose, decision tree

learners were trained to find logical rules that return the stack

effect category given categories of the involved objects and

their relations :

εstack = R(cb, cr, rel(ob, or)) (4)

Table I gives the results of decision tree learning along

with the corresponding rules. Given categories of objects

and discrete relations between them, the effect category is

predicted according to this table [1].

TABLE I

THE DETERMINISTIC RULES LEARNED FROM THE ROBOT SIMULATOR.

Below = HOLLOW Below = SOLID

.. Rel-Width = below-smaller 10 .. Above = HOLLOW: STACKED

01 .. .. Above = HOLLOW: STACKED 11 .. Above = SOLID: STACKED

02 .. .. Above = SOLID: STACKED 12 .. Above = ROLLABLE: STACKED

03 .. .. Above = ROLLABLE: INSERTED 13 .. Above = UNSTABLE: TUMBLED

04 .. .. Above = UNSTABLE: INSERTED 14 Below = ROLLABLE: TUMBLED

.. Rel-Width = same-width
05 .. .. Above = HOLLOW: STACKED

06 .. .. Above = SOLID: STACKED

07 .. .. Above = ROLLABLE: INSERTED

08 .. .. Above = UNSTABLE: INSERTED

09 .. Rel-Width = below-bigger: INSERTED

C. Learning from sequence of actions

After learning logical rules on how to stack pairs of

objects, the robot could build towers of arbitrary size using

the available objects in the environment by planning and

executing sequence of stacking actions. However, as the rules

were learned from isolated single stacking interactions, the
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Fig. 2. One hypothetical episode used in learning from action execution
sequence. This episode is composed of three interactions.

sequential effects of the successive action executions are not

represented in these rules. In this section, we detail the meth-

ods that aim to enhance the learned rules by directly learning

from the experience of sequence of stacking interactions.

The learning is achieved in episodes that are composed

of successive stacking interactions. Each episode starts with

stacking two objects on top of each other, continues with

putting new objects on top of the stack, and finishes when

the object tower collapses. Fig. 2 shows one hypothetical

episode, which lasts three interactions, where er and eb
correspond to the released and base entities, respectively.

Note that the perception system cannot distinguish between

touching objects, therefore the concept ‘entity’ will be used

to refer to both individual and composite objects. If the entity

e corresponds to an individual object o, than e = o, otherwise

the entity is encoded as the list of the objects included:

e = {o0, o1, ..}.

The robot observes, computes, and stores the following

information in each interaction i:

• Visual features of the detected entities before and after

the interaction. The point clouds in beginning and at the

end of the interaction are processed to compute visual

features of the entities (fei
r

,fei
b

).

• Object category of the released entity, i.e. cei
r
. The

classifier introduced in (3) is used to find the object

category based on visual features of the object.

• Object category of the base entity, i.e. cei
b

. If this is the

first interaction of the episode, cei
b

= coi
b

= C(foi
b

)
(recall the classifier in (3)). If this is not the first

interaction, i.e. the base entity is a composite object, the

category of this entity is assigned to be unknown.One

major aim of this paper is to reveal the categories of

these composite objects by observing how they affect

the subsequent stack interactions.

• The list of the objects that compose the base entity:

eib = {oi−1

r , . . . o1r, o
0

r, o
0

b} (5)

• The result of the stack interaction (εi). It is assigned

to one of the three effect categories ({STACKED, IN-

SERTED, or TUMBLED}), which were provided in (1).

From above, one can notice that the interaction instances

lack the information regarding the category of the entity on

the ground (eb), if this entity is a composite object. As shown

in Fig. 2, entities on the ground are composed of several

objects with different categories, and which category this

composite object belongs to is ambiguous. As the objects

might be inserted in others or remain on the top of the

stack, the resulting category might be one of the categories

that constitute the composite object. If the orientation of

the released object change or the top surface is combination

of several objects, the resulting category of the base object

might be something completely different.

Algorithm 1 Inferring category of complex base entities

1: for all episodes do
2: for all interactions i do
3: for all objects o′ ∈ eib do
4: if εi = R(co′ , cei

r
, rel(o′, eir)) then

5: eib ← o′

6: assimilate fei
b

into cir
7: go to 2
8: for all possible categories cj do
9: if εi = R(cj , cei

r
, rel(∗, eir)) then

10: cei
b

← cj
11: if C(fei

b

) = cj then

12: assimilate fei
b

into cj
13: else
14: accommodate fei

b

into cnew
j

15: go to 2

1) Inferring categories of complex entities: Categories of

base entities are inferred using Algorithm 1. This algorithm

finds the category of the base entity in each interaction (i),

given the category of the released object (cir), the effect

observed in that interaction (εi), and the set of previously

learned rules that predict the effect category given the

categories of the objects and their relations (See (4) and

Table I). The algorithm first checks if any possible interaction

with one of the objects that is included in the base entity

is represented in the set of rules (lines 3-7). These objects

are checked starting from the last one as the latter added

objects have higher probability to influence the category of

the composite base entity. If no object satisfies the conditions

expressed in rules, then the system checks all possible object

categories, even if they were not used previously in the

current episode (lines 8-15). If the conditions of any rule is

satisfied with this possible category, i.e. if the observed effect

can be generated based on the rules with this category, then

the base category is assumed to be this one. Please note that

there is an important distinction between assigning a previous

object to the base entity (line 5), and assigning a possible

category (line 10). In the first case, the other features of the

entity (such as width and height) are also known and stored,

whereas in the latter one, the features of the base entity are

left unknown.

2) Assimilation/accommodation mechanism: In Algo-

rithm 1, we also described our assimilation and accommoda-

tion mechanism. The novel complex entity is assimilated into

an existing category either if an object of the same category

is a part of the complex entity (line 6) or the objects in the

inferred category are visually similar to the complex entity

(line 12). If these conditions are not satisfied, a new category

is forked from the inferred category, and novel similar objects

that are assigned to this new category.
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Fig. 3. The robot arm and gripper are used for manipulation, and Kinect
is used to compute object features.

3) Rule learning: After categories of base entities are

inferred, the system learns to predict the effect and the

category of the formed entity given the categories of the

released and base entities, and their relations:

(cer , ceb , rel(er, eb)) → (ε, ce′
b
) (6)

4) Symbolic planning: The robot builds symbolic domain

and problem descriptions based on the object categories and

the learned rules. The predicates correspond to the auto-

matically discovered object categories and relations. Actions

correspond to the learned rules with following fields:

• Preconditions: The list of the predicates that should be

valid in order to apply the action. This corresponds to

the object categories and their discrete relations (left

part of (6)) for each learned rule.

• Effects: The list of the predicates that change if the

preconditions are satisfied, and the action is executed.

The predicted effect categories (right part of (6)) are

provided in this field.

The initial state of the world, i.e. object categories and

discrete relations between the objects, and the goal is de-

fined in the problem description, in STRIPS notation as

well. Given domain and problem descriptions, off-the-shelf

symbolic planners are used to acquire the desired tasks.

The learned rules are represented probabilistically, how-

ever planning directly in probabilistic domain is inherently

more complex compared to deterministic domain because of

the high computation complexity [9]. In this paper, we take

a path in between, compute deterministic plans using rules

with highest probabilities, and re-plan with other rules if no

plan is formed. Depending on the joint probability of the

actions, the plan might or might not be executed - however

we did not further analyze this verification step.

III. EXPERIMENTS

A. Robot Platform and Interactions

Our experimental setup is composed of a KUKA Light

Weight Robot arm and a Schunk gripper for manipulation, a

Kinect sensor for environment perception, and a number of

objects that are placed on the table for exploration (Fig. 3).

The workspace consists of several objects and a table. First,

the point cloud is segmented in order to detect the existing

Fig. 4. Sample snapshots from stack interactions. The objects on the left
are always stacked on top of the objects on the right.

(a) Assimilate (b) Accommodate

Fig. 5. (a) Assimilate the entities into ROLLABLE category. (b) Accom-
modate a new category ROLLABLE-NEW for the entities.

objects. Next, continuous object state is found by computing

the following features:

fo = (viso, poso, shapeo, dimo, disto)

where vis feature encodes the knowledge regarding the

existence of the object, shape encodes the distribution of

local surface normal vectors from the object surface. pos

and dim correspond to the center and size of the object,

respectively. Finally, dist features encode the distribution of

the local distance of all pixels to the neighboring pixels [1].

The robot is equipped with a manually-coded stack action,

where the vertically-aligned gripper grasps an object using

built-in spherical grip first, carries it on top of the another

object, and releases it.

B. Interactions

In order to collect the interaction dataset, a human imitated

stack action of the robot. The initial and final point clouds of

each interaction are stored for later processing. The dataset

contains 26 episodes and 66 interactions in total. A number

of sample interactions are provided in Fig. 41

C. Learned categories and category predictions

In this section, we analyze the learned rules that predict the

next category of the base entity given the current categories

of the base and released entities, and their relations.

First of all, the system formed a new object category,

which has similar dynamics with ROLLABLE objects under

stacking interactions, but different visual appearance. As

shown in Fig. 5b, the entities represented by this new

category generally correspond to towers of objects which

1In order to imitate the noise in perception and the crude stacking skill of
the robot, we introduced small offsets while dropping objects; and instead
of carefully and gently placing the objects, we dropped the objects from
the air similar to the release behavior of the robot. While ideally learning
should be achieved through robot’s own exploration, we discuss that it
might be acceptable to make such simplifications in exploring object-object
interactions as long as the learning results are verified with the real robot.
In future, we will use robot’s own interaction experience in order to better
capture uncertainty in robot actions.
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TABLE II

THE PROBABILITIES OF GENERATING THE NEXT BASE ENTITY

CATEGORY GIVEN INTERACTING ENTITIES.

# Base Released Rel-Width H
O

L
L

O
W

S
O

L
ID

R
O

L
L

A
B

L
E

U
N

S
T

A
B

L
E

R
O

L
L

-N
E

W

U
N

D
E

F
IN

E
D

01 HOLLOW * Base-small 0.3 0.0 0.3 0.00 0.0 0.3

02 HOLLOW HOLLOW Base-big 0.7 0.0 0.2 0.0 0.2 0.0

03 HOLLOW SOLID Base-big 0.0 1.0 0.0 0.0 0.0 0.0

04 HOLLOW ROLLABLE Base-big 0.6 0.0 0.4 0.0 0.0 0.0

05 HOLLOW UNSTABLE Base-big 0.5 0.0 0.2 0.0 0.2 0.0

06 SOLID HOLLOW Base-small 0.0 0.0 0.0 0.0 0.7 0.3

07 SOLID HOLLOW Base-big 0.7 0.0 0.3 0.0 0.0 0.0

08 SOLID SOLID Base-small 0.0 0.2 0.0 0.0 0.2 0.6

09 SOLID SOLID Base-big 0.0 0.7 0.1 0.0 0.1 0.0

10 SOLID ROLLABLE * 0.0 0.0 0.0 0.0 0.0 1.0

11 SOLID UNSTABLE * 0.0 0.0 0.0 0.0 0.0 1.0

12 ROLLABLE * * 0.0 0.0 0.0 0.0 0.0 1.0

13 ROLL-NEW * * 0.0 0.0 0.0 0.0 0.0 1.0

are not stable or which do not allow further stacking. Not

allowing further stacking is a similar characteristic with

ROLLABLE objects, but as shown, the visual appearances of

these entities are very different from ROLLABLE objects.

Table II provides the rules that are obtained from de-

cision tree learning. The system revealed several different

important underlying characteristic of the sequential stacking

operations. In a number of cases, the next category of base

entity is UNDEFINED, which corresponds to TUMBLED effect.

In some situations, the category of the released entity is

transferred to the formed base entity (rules 03, 07, 09). For

example, if a HOLLOW entity is stacked on top of a bigger

SOLID entity (rule 08), the new formed base entity becomes

HOLLOW with higher probability. In some other situations,

the category of the base entity is preserved. For example,

when a small ROLLABLE object or an UNSTABLE object

is stacked on top of a HOLLOW entity (rules 04 and 05),

then base entity remains HOLLOW. Finally, a new category

is formed from different categories. For example, when a

HOLLOW object is stacked on top of a smaller SOLID object

(rule 06), the category of the generated base entity becomes

NEW-ROLLABLE.

We argue that these rules reveal some interesting under-

lying characteristics of sequential stacking actions such as

HOLLOW objects filled with small objects remain HOLLOW.

However, these rules are neither inclusive nor all correct. For

example, we can argue that rule 06 is not really intuitive:

a HOLLOW object that is stacked on top of smaller SOLID

object should generate a HOLLOW or UNDEFINED entity, but

it generates ROLLABLE-NEW or UNDEFINED instead. When

investigated in detail, this rule was extracted from instances,

where these two objects are stacked on other HOLLOW

objects, whose walls prevent the objects from falling, but

also creating a structure which is not stackable anymore. We

still believe that even the learned information is not perfect,

it will enable construction of more safe and conservative

plans. Rule 07, for example, will try to avoid stacking of

large HOLLOW object on smaller SOLID objects, which would

create unstable towers.

TABLE III

THE PROBABILITIES OF GENERATING AN EFFECT GIVEN OBJECT

CATEGORIES AND THEIR RELATIONS.

# Base Released Rel-Width STACKED INSERTED TUMBLED

01 HOLLOW * Base-small 0.22 0.44 0.33

02 HOLLOW * Below-big 0.00 1.00 0.00

03 SOLID HOLLOW * 0.83 0.00 0.16

04 SOLID SOLID Base-small 0.40 0.00 0.60

05 SOLID SOLID Below-big 1.00 0.00 0.00

06 SOLID ROLLABLE * 0.00 0.00 1.00

07 SOLID UNSTABLE * 0.00 0.00 1.00

08 ROLLABLE * * 0.00 0.00 1.00

09 ROLL-NEW * * 0.00 0.00 1.00

D. Learned effect prediction

We used C4.5 decision tree learning algorithm to find

the set of rules with the corresponding probabilities from

real interactions. Table III provides the results of decision

learning. The results can be interpreted as follows:

• (01-02): If the base entity is HOLLOW and has a larger

width, then always an insertion occurs. However, if the

base entity is smaller, then STACKED and TUMBLED

also become possible. TUMBLED was not learned in the

original rules that had been trained in the simulator.

• (04-05): If both entities are SOLID, then they would

be STACKED unless the released object is bigger. If the

released object is bigger, the objects might be STACKED

or TUMBLED with similar probabilities.

• (03): HOLLOW objects released over base objects would

be probably STACKED, but there is small probably of

observing TUMBLED effect.

• (06-07): The ROLLABLE or UNSTABLE entities that are

released on SOLID objects generate TUMBLED effect.

In the rules learned from the robot simulator, the

ROLLABLE objects was creating STACKED effect when

released on the SOLID objects, however in reality we

observed that they roll off the objects after released.

• (08-09): If the entity on the base belongs to ROLLABLE

or ROLLABLE-NEW category, then the effect is always

TUMBLED.

The set of rules above (Table III) make more realistic

predictions in the real world compared to the set of rules

learned from the robot simulator (Table I).

E. Generated STRIPS rules

We used C4.5 decision tree learners to predict both the

effect of the action and the category of the formed base

object. The set of rules (in Table IV) are then automatically

transferred to PDDL. An explanatory sample action that

corresponds to rule 04 is provided in Fig. 6. Lines 2-3 state

preconditions and 4-6 state effects of the action. Predicate

‘U’, which is ‘U0’ for all objects in the beginning, encodes

the order of the object in stacking. ‘N’ and ‘H’ predicates

correspond to the number of objects in the stack and height

of the stack, and they change based on the predicted effect.

F. Real World Experiments

Given objects, the robot first finds the object categories

from visual features of objects using the trained non-linear
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TABLE IV

THE PREDICTED (EFFECT, ENTITY) GIVEN STACKED ENTITIES.

Below = HOLLOW

01 — Rel-Width = below-smaller: TUMBLED (0.3), UNDEFINED (0.3)

— Rel-Width = below-bigger
02 — — Above = HOLLOW: INSERTED (1.0), HOLLOW (0.6)

03 — — Above = SOLID: INSERTED (1.0), SOLID (1.0)

04 — — Above = ROLLABLE: INSERTED (1.0), HOLLOW (0.6)

05 — — Above = UNSTABLE: INSERTED (1.0), HOLLOW (0.5)

Below = SOLID

— Above = HOLLOW:
06 — — Rel-Width = below-smaller: STACKED (0.6), ROLLABLE-NEW (0.6)

07 — — Rel-Width = below-bigger: STACKED (1.0), HOLLOW (0.6)

— Above = SOLID:
08 — — Rel-Width = below-smaller: TUMBLED (0.6), UNDEFINED (0.6)

09 — — Rel-Width = below-bigger: STACKED (1.0), SOLID (0.7)

10 — Above = ROLLABLE: TUMBLED (1.0), UNDEFINED (1.0)

11 — Above = UNSTABLE: TUMBLED (1.0), UNDEFINED (1.0)

12 Below = ROLLABLE : TUMBLED (1.0) , UNDEFINED (1.0)

13 Below = ROLLABLE -new: TUMBLED (1.0) , UNDEFINED (1.0)

1 (:action stack :parameters (?Below ?Above) ;;; rule no: 04

2 :precondition (and (Hollow ?Below) (Rollable ?Above)

3 (Below-bigger ?Below ?Above) (U0 ?Above)(U2 ?Below) (N2) (H0)

4 :effect (not (U0 ?Above)) (U3 ?Above) (U2 ?Below)

5 (N3) (not (N2)) (not (Hollow ?Below)) (not (Rollable ?Above))

6 (Hollow ?Above))

Fig. 6. Automatically generated sample action in PDDL that corresponds
to rule 04 in Table IV. ?Above variable takes the role of formed base entity
in the effect field.

classifiers, and generates the domain description based on

object categories. Next, it runs the Blackbox off-the-shelf

planning software [10], setting the ‘S’ predicate to the num-

ber of objects, and the ‘H’ predicate to the minimum number

initially. If no plan is generated, the goal ‘H’ predicate is

increased by one in a loop. For plan generation, we use the

Fig. 7 provides snapshots from a representative plan gener-

ated and (blindly) executed for the goal of building tower

that include all the objects independent of any constraint

on compactness or height. As seen, given various objects

with different affordances, the robot planned the sequence of

actions that generate a stable tower. Due to the the learned

probabilistic rules that favor stacking small objects on larger

objects (e.g. rules 04 and 05 in Table III), the robot implicitly

learned building stable towers from objects of different sizes.

Note that this knowledge was not encoded in the rules that

were transferred from previous stages (Table I), which shows

the advantages of further learning from real interactions. One

can also observe that the robot correctly reasoned about the

properties of the containers by planning to insert several

board-markers (detected as UNSTABLE objects) into the cup.

During the experiments, we observed that the robot some-

times suffered from incorrect categorization of objects based

on visual features obtained from Kinect. The second reason

for the failures was the inaccuracies in perception of the

release location and execution of the stack action. Finally,

there were some new categories that do not conform to any

extracted rules, therefore not learned by the system.

We argue that the problems addressed above can be

avoided by better perception, more training, and more ad-

vanced action representations. However, there are other more

major limitations which are not straightforward to address

with our current approach. For example, while our system

Fig. 7. Stack of objects with mixed categories. Snapshots show that the
robot builds the stacks starting from larger objects, and can reason about
inserting several small objects into the containers. The robot execution
videos are available at http://emreugur.net/humanoids2015/.

provides the capability to detect whether the objects remain

HOLLOW or not from their visual perception during action

executions; it does not have the capability to reason about

how many objects can fit into a HOLLOW objects. This

kind of reasoning probably requires other concepts (such as

volume of the hole instead of width and height of the object)

and learning of more complex capabilities such as arithmetic

processing over learned concepts.

IV. CONCLUSION

In this paper, we showed how the robot can further develop

previously learned concepts and reasoning skills in order to

better represent multi-step interaction characteristics and to

make better plans. As we partially discussed at the end of the

previous section, our system is currently limited to predicting

the next state based on small number of object categories of

only the current state with simple object relation information.

In future, we plan to investigate how the robot can discover

other task dependent and potentially hidden concepts and

variables such as stability and height of the towers, and how

it can learn more challenging rules that can make reasoning

with higher-level knowledge.

REFERENCES

[1] E. Ugur and J. Piater, “Bottom-up learning of object categories, action
effects and logical rules: From continuous manipulative exploration to
symbolic planning,” in ICRA, 2015, pp. 2627–2633.

[2] E. Ugur, E. Oztop, and E. Sahin, “Goal emulation and planning in
perceptual space using learned affordances,” Robotics and Autonomous

Systems, vol. 59, no. 7–8, pp. 580–595, 2011.
[3] J. Pisokas and U. Nehmzow, “Experiments in subsymbolic action

planning with mobile robots,” in Adaptive Agents and Multi-Agent

Systems II, Lecture Notes in AI. Springer, 2005, pp. 80–87.
[4] J. Mugan and B. Kuipers, “Autonomous learning of high-level states

and actions in continuous environments,” Autonomous Mental Devel-

opment, IEEE Transactions on, vol. 4, no. 1, pp. 70–86, 2012.
[5] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “Constructing

symbolic representations for high-level planning,” in 28th AAAI Conf.

on AI, 2014.
[6] G. Konidaris, L. Kaelbling, and T. Lozano-Perez, “Symbol acquisition

for probabilistic high-level planning,” in International Joint Confer-

ence on Artificial Intelligence, 2015.
[7] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning sym-

bolic models of stochastic domains,” Journal of Artificial Intelligence

Research, pp. 309–352, 2007.
[8] T. Lang and M. Toussaint, “Planning with noisy probabilistic relational

rules,” Journal of Artificial Intelligence Research, vol. 39, no. 1, pp.
1–49, 2010.

[9] A. L. Blum and J. C. Langford, “Probabilistic planning in the
graphplan framework,” in Recent Advances in AI Planning. Springer,
2000, pp. 319–332.

[10] H. Kautz and B. Selman, “Unifying sat-based and graph-based plan-
ning,” in IJCAI, vol. 99, 1999, pp. 318–325.

1012


	Executive Summary
	Contributions to Main Demo
	Segmentation and reactive grasping of unknown objects
	The PKS planner
	Action replacement using histograms and Joint SVM

	Realization of the Xperience Cycle
	Individual Contributions
	Accelerated motor learning in constrained domains
	Self-supervised learning of grasp dependent tool affordances on the iCub humanoid robot
	Multi-model approach based on 3D functional features for tool affordance learning in robotics
	Learning peripersonal space representation through artificial skin for avoidance and reaching with whole body surface
	Demo on object and part segmentation using LCCP and CPC algorithms
	Demo on learning how to grasp unknown objects


