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Authors: Tamim Asfour, Mikro Wächter, David Schiebener, Ekaterina

Ovchinnikova, Simon Ottenhaus, Rüdiger Dillmann, Bojan Ne-
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Executive Summary

In D5.3.5 we now describe the final demonstration of the project which integrate methods and imple-
mentation from different workpackages and partners in the project. As such, the final demonstration
combines contributions from WP5.2 and WP5.3. The contributions of WP5.2 to the main demo are
described in more detail in D5.2.5.

The main demonstration is shown in the video Xperience-Final-Video.mp4, which emphasizes the
link between the sensorimotor level and symbolic high level through the ArmarX memory architecture
MemoryX.

We demonstrate the humanoid robot ARMAR-III performing complex tasks in interaction and collabora-
tion with humans and employing mechanisms of structural bootstrapping towards efficient task execution.
The robot is able to execute complex manipulation tasks, interact with humans, plan and reason about
the world and perform actions to achieve given plan goals.

Together with the human, the robot is setting up the table for dinner for two people. Situation assessment
and plan generation is performed on the fly based on previous experience. The demonstration highlights
the aspects of the realization of integrated complete robot systems, and emphasizes the concept of struc-
tural bootstrapping on the levels of human-robot communication and physical interaction, sensorimotor
learning, learning of object affordances, and planning in robotics.
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Chapter 1

Main Structural Bootstrapping
Demonstration

The scenario integrates several scientific methods developed in the project, which can be summarized as
follows.

• Execution of complex manipulation tasks and plans based on the developed architecture and its
implementation

• Automatic generation of domain descriptions for planning based on the robots experience

• Replanning on the fly in case of missing objects

• Replacing missing objects by employing different bootstrapping (replacement) strategies

• Replacing actions by adapting previously learnt actions to new context

• Human-robot communication in natural language including the robot’s understanding of spoken
commands, world descriptions, and feedback as well as the robot’s ability to ask the human for help
and information

• Handing over objects between the robot and the human

The demonstration elaborates on the dinner preparation scenario, which consists of the five main parts:

1. setting the table

2. preparing a salad

3. cleaning the sideboard

4. arranging chairs

5. bringing a drink

Figure 1.1 depicts different scenes from the demonstrations scenario showing the robot and the human
preparing dinner together.
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Figure 1.1: Snapshots of cooperative rearranging the room and preparing a dinner.
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In the following sections we describe the individual scientific contributions in relation to this demonstra-
tion scenario.

1.1 Task Execution Architecture (KIT, UEDIN, UGOE)

The updated underlying system architecture for the demonstration is shown in Figure1.2. Given a
spoken command, the Language Understanding component (KIT [OWWA15]) generates a goal for the
PKS planner (UEDIN [10]). The goal is passed to the Replacement Management (RM) component
(implemented at KIT using replacement strategies based on methods developed at KIT, SDU, UIBK)
that checks for each object in the goal if this object and its location are in domain description generated
from the robot’s memory MemoryX (KIT [14]). This process is shown in Figure 1.3. If any replacements
are required, then the goal is rewritten. The new goal is passed to the PKS planner together with the
domain description. The PKS planner generates a plan. The execution of the plan is monitored by the
Statechart framework of ArmarX (KIT [WOK+16]). If the plan execution fails because of the missing
object, the RM component is evoked to make a replacement and PKS replans to generate a new plan.
The LU component also directly interacts with MemoryX, when a world state description is processed.
LU provides a command directly to the Plan execution & Monitoring component if a command that does
not require planning has been uttered (e.g. Stop).System architecture

Robot’s 
Memory

(MemoryX)

Domain
generation NL understanding

Planning
(PKS)

Plan execution & 
monitoring 

(Statechart framework)

table

on

Replacement 
manager

Figure 1.2: Interaction between Language Understanding, Replacement Manager, PKS planner, domain
generation, and Statechart framework.

The setting the table part of the scenario corresponds to the demonstration in Y4 (UGOE [1]). This was
extended by Language Understanding (LU) and MemoryX and integrated in the final demonstration.
The human agent asks the robot to help him set the table for two people. The execution of the uttered
command requires generation of the multi-step plan. The robot generates a plan resulting in putting two
cups on the table, while the human agent puts forks, knifes, and plates on the table. The goal description
for the planner is provided by the Language Understanding component. The domain description is gen-
erated from the working memory of the robot (MemoryX). The goal and domain descriptions constitute
the input for the PKS symbolic planner, which generates a plan. The execution of the plan is monitored
by the Statechart framework of ArmarX. The grasping and placing skills depend on object models and
grasp definitions in MemoryX.

1.2 Gaze selection (KIT)

During manipulation action like grasping and placing, in particular when it is bimanual, the robot needs
to visually localize the object(s) as well as its hands to reach the necessary degree of accuracy for the
motion of the hands with relation to the object. Throughout the whole demonstration, the gaze direction
is chosen autonomously by the robot depending on its uncertainty about the pose of the currently relevant
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Figure 1.3: The Replacement Manager (RM) functions as a preliminary feasibility check of a given goal
for the planning component. It checks the existence and their location of the requested objects. If the
RM encounters a missing object or an unknown location it attempts to find a location for an object or
replaces the object altogether (KIT [OWWA15]).

objects (KIT [13]). Figure 1.4 shows ARMAR-III during a bimanual grasping process and depicts the
object position uncertainties.

Figure 1.4: The robot selects its gaze direction depending on the position uncertainties of the currently
relevant objects. In this example, two objects are grasped simultaneously, so both objects and the hands
need to be localized continuously during grasp execution. The ellipsoids on the right visualize their
respective position uncertainties.

The pose of the hands, while they are not in the current field of view, is updated based on forward
kinematics, but the uncertainty is increased the further they move. Objects are typically considered
to be static in the world, but their location relative to the robot, which is crucial for manipulation,
becomes increasingly uncertain when the robot moves. Depending on those uncertainties a gaze direction
is selected such that objects with a high uncertainty are brought into the field of view and can be localized.
Correspondingly, manipulation skills that rely on precise pose information will wait for the uncertainty
to be reduced by further localization results before continuing execution.

1.3 Shape-based affordance estimation for object replacement
(SDU, KIT)

In the salad preparation part, the human agent first asks the robot to put the salad bowl on the sideboard.
The command is processed by the LU component, the resulting goal and the domain description are
processed by the PKS planner, which generates a plan. According to the plan, the robot moves to the
location of the salad bowl, but does not find the required object at the location. The Plan Execution &
Monitoring component reports the failure in the plan execution.
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Figure 1.5: Object replacement based on visual shared affordances, which are deduced from shape simi-
larities.

The Replacement Manager (RM) component is invoked. It calls the component for visual object replace-
ment (see Figure 1.5) which detects another object that, comparing its shape to known objects with
known affordances, appears to afford similar actions ([7], [8]). The RM suggests the new container as a
replacement based on these shared visual features. The goal is rewritten accordingly and passed to the
PKS planner, which produces a new plan that can be executed successfully.

1.4 Bimanual grasping (KIT, JSI)

The bowl needs to be grasped and lifted bimanualy using strategies developed in the project (KIT,
JSI [4]). In this situation the gaze selection described above is particularly important, as for most of the
grasp execution the robot can not see the bowl and both hands at once. Grasp success is checked using
the force sensors in the wrist of the robot to ensure that the object is robustly fixed between the hands.
During bimanual lifting and later placing, the force sensor is used as a feedback source to keep the grasp
stable while moving.

1.5 Robot Skills: Opening and closing doors, grasping, pouring,
placing, handover (KIT)

When the bowl is on the table, the human agent asks the robot for help in preparing a salad with corn
and oil. The command is processed by LU and a goal is generated, which implies the corn and the
oil being in the bowl and the salad being stirred in the bowl. RM finds that the location of the corn is
unknown. Since other location replacement strategies fail, it generates a question for the human inquiring
for the corn location. The human tells the robot that the corn is located in the fridge. The utterance is
processed by LU and MemoryX is updated correspondingly. After obtaining the feedback from human,
RM evokes the PKS planner that generates a plan. The robot moves to the fridge, opens it, moves to
the sideboard, pours the corn into the bowl, puts the empty can into the sink, and returns to the fridge
to close it. The actions of putting the can into the sink and closing the fridge are planned by PKS, since
we introduce symbolic rules stating that dirty objects should go into the sink after being manipulated
and that the fridge door should be closed at the end of each plan execution. After adding the corn, the
robot moves to the oil location, grasps the oil, pours it into the bowl, and puts the oil bottle away. The
latter action is also planned by PKS, since we define a symbolic rule requiring robot’s hands to be empty
at the end of each plan execution. In the meanwhile, the human is cutting other salad ingredients and
pouring them into the bowl.

In order to stir the salad, the robot requires a stirrer. It moves to the assumed stirrer location, but it
cannot grasp the stirrer. Instead of grasping, the planner plans a speech help request from the human.
The human passes the stirrer to the robot. The robots returns to the bowl, stirs the salad based on the
previously learnt wiping action, and puts the stirrer into the sink. Finally, the human asks the robot to
put the bowl on the dining table, which is performed by the robot.

8
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1.6 Force-adapted Dynamic Movement Primitives(KIT, JSI)

In the cleaning part of the scenario, the human asks the robot to clean the sideboard. According to
the generated plan, the robot requires a sponge. It moves to the location of the sponge, but it cannot
grasp it. Similarly to the situation with the stirrer, a speech request is produced. The human passes the
sponge to the robot that returns to the sideboard and wipes it. The wiping skill trajectory was learned
from human demonstration and is executed by the robot by incorporating the force-torque to adjust the
pressure on the table (KIT [2], [3]). Since the wiping action labeled the sponge as dirty the robots puts
the sponge into the sink afterwards.

1.7 Part-based chair localization, bimanual grasping and push-
ing (UGOE, KIT, JSI)

The arranging chairs part of the scenario corresponds to the demonstration in Y4. his was extended by
Language Understanding (LU) and MemoryX and integrated in the final demonstration. The human
asks the robot for help in arranging chairs. The robot pushes one chair to the table, while the human is
arranging the second chair.

Chair recognition and localization is realized based on the segmentation of perceived point cloud data
into convex segments (UGOE [12, 11]). The constituent parts of the chair are detected based on their size
and geometric relation, in particular the backrest which is then grasped bimanually (KIT, see above).
The chair is moved to its designated target pose next to the table (JSI).

1.8 Common sense object replacement (KIT, UIBK)

In the final part of the scenario, the human is asking for a drink saying I’d like to drink something.
Could you please bring me a soda. This command is processed by the LU component and a goal of
the soda being in the hand of the human is generated. Apart from generating the goal, LU extracts
the affordance of drinking for the object ”soda”. The goal and the predicted affordances are passed to
Replacement Manager. RM finds that the object ”soda” is unknown and attempts a replacement by using
the affordance ”drink”. It uses a replacement strategy that uses an affordance database, which was filled
from text mining (KIT [5]) and post-processing by JointSVM (UIBK [6]). The process of this strategy is
depicted in 1.6. The object ”multivitamin juice” is proposed as a possible replacement. RM generates a
confirmation question Sorry, I have no soda. Would an orange juice be fine? After the human confirms
the replacement, RM rewrites the goal and passes it to the planner.

Figure 1.6: Object replacement based on shared affordances, which are deduced from text mining and
machine learning with JointSVM.

1.9 Common object locations based on experience (KIT)

According to the generated plan, the robot moves to the assumed location of the juice, but does not
find it there. This assumed location is always the location the robot has seen this object most often
(see Figure 1.7) (KIT [14]). The locations were learned during past trials and exploration runs and then
stored as density distributions. Due to the missing object the plan execution fails and RM is evoked
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again. The RM component derives another potential location of the juice from the database of common
locations. The robot finds the juice at the new location, grasps it, moves to the location of the human,
and hands the juice over to the human.

Figure 1.7: Object replacement based on the experience of the robot. The robot stores the locations
where it has seen objects and generates a heat map of the most probable places.
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Chapter 2

Further Contributions

2.1 Bimanual Programming by Demonstration and Cooperative
Adaptation

Learning of dual arm behaviours based on bimanual programming by demonstration (PbD) and iterative
learning control (ILC) framework is demonstrated in video BimanualPegInHole.mov. The first part
of the video shows PbD of bimanual Peg In Hole operation. During the demonstration, only the relative
motion of the two arms has been captured. During the execution, the robot optimizes its absolute
coordinates in order to minimize joint velocities and consequently the PiH is not executed at the same
absolute coordinates as demonstrated. After the initial demonstration, the right pole was displaced
by 5mm in local y coordinate, which caused increased forces during the pole insertion. The robot
successfully adapted to the new pole geometry in few repetitions using ILC framework. Adaptation to
the new pole geometry together with the resulting relative forces are shown in the second part of video
BimanualPegInHole.mov. This work is described in more detail in the attached paper [LNv+15].

Table 2.1: Demonstration and cooperative execution of table cloth placement

Bimanual adaptation scheme applied to human-robot cooperation is presented in TableCloth.mp4 and
Figure 2.1. First, the initial demonstration of the table cloth placing was performed by the kinesthetic
guidance of the bimanual system. Next, the learned motion was applied to place the table cloth in the
same workspace configuration. Using the ILC adaptation scheme in absolute coordinates, the robot can
effectively adapt to the new table orientation, as shown in the continuation of the video. Human-robot
cooperation requires compliant robot operation for safety issues, which degrades the tracking performance
in relative coordinates. The last part of the video shows, that this degradation can be effectively cancelled
out using ILC framework.
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Adaptation of Bimanual Assembly Tasks using
Iterative Learning Framework

Nejc Likar, Bojan Nemec, Leon Žlajpah, Shingo Ando and Aleš Ude

Abstract— The paper deals with the adaptation of bimanual
assembly tasks. First, the desired policy is shown by human
demonstration using kinesthetic guidance, where both trajec-
tories and interaction forces are captured. Captured entities
are portioned to absolute and relative coordinates. During the
execution, small discrepancies in object geometry as well as the
influence of an imperfect control can result in large contact
forces. Force control can diminish the above mentioned prob-
lems only to some extent. Therefore, we propose a framework
that iteratively modifies the original demonstrated trajectory
in order to increase the performance of the typical assembly
tasks. The approach is validated on bimanual peg in a hole
task using two KUKA LWR robots.

Index Terms— bimanual manipulation, iterative learning con-
trol, task adaptation, real time control

I. INTRODUCTION

Bimanual arm architecture enables the performance of a
variety of assembly tasks, is essential for carrying heavy and
spacious objects and enables the transfer of many human
skills to robots. However, additional flexibility requires more
complex control algorithms. Dual arm manipulation has
been extensively investigated in the nineties. Earlier con-
trol architectures exploited master-slave approach, hybrid-
force-torque and impedance control approach to synchronize
motion of both arms [1], [2]. Today, most of the bimanual
control architectures are based on the concept of symmetric
control [3], which enables portioning of the task to so called
absolute coordinates and relative coordinates and underlying
internal and external forces, which are orthogonal [4]. This
formalism allows the learning, demonstration and adaptation
of bimanual tasks in above mentioned orthogonal subspaces.
Adaptation, being the one of the key features of new gener-
ation of service and humanoid robots, can be accomplished
in several ways. In most cases the adaptation is required to
refine the previously demonstrated motion to different robot

*This research was partially supported by EU Seventh Framework Pro-
gramme grant 270273, Xperience.

Nejc Likar, Bojan Nemec, Leon Žlajpah, and Aleš Ude are
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ales.ude@ijs.si) Shingo Ando is with Robotics Technology
Group, Yaskawa Electric Corporation, Kitakyushu, Japan, (e-mail:
shingo.ando@yaskawa.co.jp)

embodiment. Additionally, adaptation is necessary to cope
with non-modelled environment constraints. Often applied
paradigm for motion adaptation is reinforcement learning
(RL) applying probabilistic algorithms [5], which can deal
with high dimensionality spaces induced by parameterised
policies [6]. Despite of these advances, learning capabilities
of modern robots are still far from the learning capabili-
ties of humans. While humans can quickly adapt to new
situations, robots often have to relearn the whole policy
in a lengthy exploration process, even when a good initial
policy approximation is provided. Therefore, researchers are
trying to find effective solutions to speed up learning. One
of promising paradigms is also Iterative Learning Control
(ILC). The main objective of ILC is to improve the behavior
of the control system that operates repeatedly by iterative
refinement of the feed-forward control input [7]. Due to its
simplicity, effectiveness and robustness when dealing with
repetitive operations, ILC is often applied in robotics [8]. As
many tasks in industry as well as in home environments need
to be executed repeatedly, it represents a natural choice for
adaptation of such tasks.

In this paper we propose a new learning controller that
applies to bimanual task adaptation. Bimanual adaptation was
studied also in [9], where both robot arms were independent
agents coupled only at the force level. In this work, robot
arms are coupled both on kinematical and force level and
treated as a single agent. The structure of the proposed
algorithm allows easy integration into the Dynamic Motion
Primitives (DMP) framework [10]. The proposed algorithm is
general and can be used with both types of bimanual move-
ments that can be represented by DMPs, i. e. discrete and
periodic movements. Our experimental setup was composed
of two KUKA LWR arms equipped with Barret hands. The
performance of the proposed algorithm was evaluated on
long poles insertion task, which is related to the classical
peg-in-hole problem [11], [12], [13], [14], [15]. The paper
is organized as follow. In Section II we outline kinematics
and dynamics of a bimanual system. In Section III, the main
contribution of the paper, we extend our previously presented
trajectory adaptation scheme based on demonstrated position
and force profiles to a bimanual system. We discuss also the
stability of the proposed adaptation scheme. In Section IV
the experimental results and the effectiveness of the proposed
algorithm are given. Discussion and future work regarding
bimanual adaptation are summarized in conslusion.
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Fig. 1. Dual arm manipulator and the corresponding notation used in the
paper.

II. BIMANUAL TASK KINEMATIC CONTROL

In this section we present a task-space control scheme
for a bimanual system. This scheme is an extension of the
previously proposed approach[16]. It fully characterizes a
cooperative operational space and allows the user to spec-
ify the task in terms of geometrically meaningful motion
variables defined at the position/orientation level [17], [16].
The resulting definition of the task variables in terms of the
relative and absolute task motion of the cooperative system
are mathematically well defined and have a clear physical
meaning. Within this framework, both subspaces are orthog-
onal and thus decoupled - motion in relative coordinates does
not affect absolute coordinates and vice versa. Consequently
the control can be applied to both subsystems, relative and
absolute, independently.

The key of our approach is in the definition of the common
base coordinate systems for both subspaces, as illustrated in
Fig. 1. According to this, the common base for the absolute
coordinates is suitably chosen base Tb which applies to both
robots, whereby the base for relative coordinates is placed
in one of the robot’s end effector, e.g. of the first robot.
From now on we will use the notation where superscript
j, j ∈ {1, 2, b} denotes that the given quantity is specified
relative to the coordinate system Tj , while the subscript i,
i ∈ {1, 2} denotes the arm of a bimanual system and i,
i ∈ {a, r} denotes relative and absolute coordinates

According to this notation, absolute and relative task
coordinates can be specified as

pr = p1
2 = Rb

1

T
(pb

2 − pb
1), (1)

Rr = R1
2 = Rb

1

T
Rb

2, (2)

pa =
1

2
(pb

1 + pb
2), (3)

Ra = Rb
1R

b
kb
21

(ϑ21/2), (4)

where p ∈ R3 applies to positions vector and R ∈ R3×3

to rotational matrices. k and ϑ21 are the axis and angle that
realize the rotation Rb

1 to Rb
2. In quaternion notation, (2) and

(4) are in the form

qr = q1
2 = q̄b

1 ∗ qb
2, (5)

qa = qb
1 ∗ qb

kb
21
, (6)

where the quaternion qb
1 ∈ R4 and qb

2 ∈ R4 expresses the
rotation of the TCP of the first and second robot in the
common base coordinate frame Tb, respectively. q̄ denotes
conjugate quaternion and operator ∗ denotes quaternion
product. qb

kb
21

denotes the unit quaternion corresponding to
Rb

kb
21

(ϑ21/2), which can be calculated from

qb
kb
21

=

(
cos

(
ϑ21
4

)
,kb

21 sin

(
ϑ21
4

))
(7)

.
The corresponding relative and absolute forces and toques

are

fr =
1

2
(f11 −Rrf

2
2 ) (8)

mr =
1

2
(m1

1 −Rrm
2
2), (9)

fa = Rb
1f

1
1 + Rb

2f
2
2 (10)

ma = Rb
1m

1
1 + Rb

2m
2
2, (11)

where f ii ∈ R3 and mi
i ∈ R3 denote the forces and torques

measured at the i-th manipulator tool center point (TCP).
In order to control the robot, we have to map the desired

relative and absolute task coordinates to the corresponding
joint coordinates of both robots, denoted with θθθ ∈ R(N1+N2),
where N1 and N2 is the number of joints of the first and the
second robot, respectively. This transformation is obtained
through relative and absolute geometrical Jacobian, which
maps the corresponding translational and angular velocities
to the joint velocities[

ṗr

ωωωr

]
= Jrθ̇θθ ,

[
ṗa

ωωωa

]
= Jaθ̇θθ. (12)

Relative and absolute Jacobian matrices are obtained with
the time derivation of the set of equations (1–4),

Jr =

[
−Rb

1
T

(J1,p + ST (p2 − p1)J1,ω) Rb
1
T
J2,p

−Rb
1
T
J1,ω Rb

1
T
J2,ω

]
(13)

and
Ja =

[
1
2J1

1
2J2

]
. (14)

Subscript (.)p and (.)ω denotes positional and rotational part
of the Jacobian and S is anti-symmetric matrix [4].

If the task requires control only of the relative coordinates,
the corresponding joint velocities are obtained from

θ̇θθ = J+
r (vr,d + Krer) + (I− J+

r Jr)θ̇θθ0, (15)

where J+
r is the Moore-Penrose pseudo-inverse of the rel-

ative Jacobian Jr, vr,d ∈ R6 are the desired relative
translational and rotational velocities, I is identity matrix,
Kr ∈ R6×6 is a diagonal matrix with the kinematic gains
and er ∈ R6 is the error between the desired and actual
relative task coordinates, calculated as

er =

[
pr,d − pr

log(qr,d ∗ q̄r)

]
. (16)
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The rotational part of the error is calculated using logarithmic
map log, which maps the quaternion describing the rotation
between the desired and current pose to the rotation error
vector. This mapping is defined as

log(q) = log(v,u) =

 arccos(v)
u

‖u‖
, u 6= 0

[0, 0, 0]T, otherwise

. (17)

Vector θ̇θθ0 ∈ R(N1+N2) is an arbitrary vector of joint
velocities that is projected in the null-space of the primary
task, selected in such a way that it optimizes an additional
secondary task, i.e. obstacle avoidance, joint limit avoidance,
singularity avoidance, etc.

If we would like to control both relative and absolute
task coordinates, this can be accomplished by solving the
equation

θ̇θθ = J+
e (ve,d + Keee) + (I− J+

e Je)θ̇θθ0, (18)

where extended Jacobian is defined as

Je =

[
Jr

Ja

]
(19)

and ve,d is the desired extended task space velocity com-
posed of the desired relative and absolute task velocities.
The ee ∈ R6 is the error between the desired and actual
absolute task coordinates, calculated similar as in (16).
Diagonal matrix Ke ∈ R12×12 contains suitably chosen
positive kinematic control gains. Note that the dimension
of the extended task defined with (19) can be ≤ 12, which
allows to exploit the additional degrees of redundancy for
secondary task(s).

III. BIMANUAL TASK ADAPTATION

Assembly tasks performed by humans are usually ac-
complished with both hands. Humans are very good at
performing bimanual assembly tasks that require compliance
and force control and can quickly adapt to specific tools and
environments. Therefore, we use human demonstration of
the bimanual task as a starting point. Initial task is obtained
with learning by demonstration (LbD) exploiting kinesthetic
guidance. Unlike standard LbD approaches [18], we capture
besides trajectories also forces and torques arising during the
task execution as training data [19]. During the execution
of learned skills, additional adaptation is often needed to
cope with small differences induced by the environment,
the inaccuracies in geometry of the manipulated objects,
grasping tolerances, etc. It has been previously proved that
on-line control alone can not in general provide successful
adaptation in assembly tasks [20]. Therefore, various learn-
ing techniques were applied [21]. In our previous works we
demonstrated that Iterative Learning Control (ILC) frame-
work can efficiently adapt the previously demonstrated task
to a new situation [9], [22], [19]. Therefore, ILC framework
was applied also for bimanual task adaptation.

To learn the optimal control input, which is in our case
the reference trajectory composed of position part vector p

Fig. 2. Block diagram of force based adaptation scheme.

and rotation part quaternion q, we applied ILC in the form

pl(k) = pd(k) +ϕϕϕp,l(k) + Cp(γ)ef,l(k) (20)
ql(k) = exp(Cq(γ)em,l(k)) ∗

exp(ϕϕϕq,l(k)) ∗ qd(k), (21)

where l denotes the learning cycle, k is the time sample
index, Cp(γ) ∈ R3×3 and Cq(γ) ∈ R3×3 are diagonal
matrices composed of transfer function polynomials, γ is
the backward shift operator, which delays a signal for one
time sample and ef,l(k) and em,l(k) are the force and torque
tracking errors, respectively. Terms pd(k) and qd(k) denote
the initially demonstrated trajectory in the form of the de-
sired positions vector and rotations quaternion. Term ϕϕϕp,l(k)
and ϕϕϕq,l(k) denotes position and rotation displacements,
which will be learned by means of ILC. Remaining terms
Cp(γ)ef,l(k) and Cq(γ)em,l(k) belong to the admittance
force controller, which minimizes force and torque tracking
errors in the current iteration cycle. Therefore, the ILC
scheme given by (20) and (21) is often refereed as ”current
iteration” ILC. Force and torque tracking errors are defined
as ef,l(k) = fd(k) − fl(k) and em,l(k) = md(k) −ml(k),
where fd(k) and md(k) are initially demonstrated forces and
torques profiles, respectively. exp denotes the exponential
map exp : R3 7→ S, defined as

exp(r) =

 cos (‖r‖) + sin (‖r‖) r

‖r‖
, r 6= 0

0, otherwise

(22)

The compensation terms are learned with

ϕϕϕp,l(k) = Qp(γ)(ϕϕϕp,l−1(k) + Cp(γ)ef,l−1(k)), (23)
ϕϕϕq,l(k) = Qq(γ)(ϕϕϕq,l−1(k) + Cq(γ)em,l−1(k)), (24)

where Qp(γ) ∈ R3×3 and Qq(γ) ∈ R3×3 are ILC transfer
functions. Initial values of ϕϕϕp,0(k) and ϕϕϕq,0(k) are set to
0 ∀ k. The same adaptation algorithm can be used for
adaptation of both relative and absolute coordinates. In
the above formulation we omitted indexes r and a, which
define weather relative or absolute coordinates are subject of
adaptation.

The stability of the proposed admittance force control law
which iteratively updates the position compensation term
will be analysed in the frequency domain of a time discrete
system. For sake of simplicity, stability will be shown only
for adaptation of the positional part of the trajectory. The
overall ILC scheme for positional trajectories is outlined in
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Fig. 2. Let uppercase letters denote one sided Z transform
of the corresponding time-discrete signal denoted with low
letter. Again, for the sake of simplicity, we will omit explicit
dependence on z in transfer functions and Z transform of the
signals. We define as a system output the force at the TCP of
the robot, which is modelled assuming known environment
stiffness Ks,

Fl = Ks(GPl −Po), (25)

where Ks ∈ R3×3 is a diagonal positive definite environment
stiffness matrix, G ∈ R3×3 is diagonal matrix containing
transfer functions which map the desired position vector Pl

into the actual position and Po denotes the environment
contact positions. In stability analyses we will consider the
case where the robot dynamics is previously decoupled and
linearized within the robot controller [23]. Therefore, G can
be modelled as a diagonal matrix with transfer functions of
second order. According to (20) and (23), Z transform of the
error function El, position update function Pl and learned
offset function ΦΦΦ are

El = Fd − Fl, (26)
Pl = Pd + ΦΦΦl + CEl, (27)
ΦΦΦl = Q(ΦΦΦl−1 + CEl−1). (28)

Now, let express the the error El as a function of the error
in the previous learning cycle El−1,

El = Fd − Fl (29)
= Fd −Ks(GPl −Po)

= Fd −Ks(G(Pd + ΦΦΦl + CEl)−Po)

= Q(Fd −Ks(G(Pd + ΦΦΦl−1 + CEl−1)−Po))−
KsGCEl + (I−Q)(Fd −Ks(GPd −Po))

= Q(Fd − Fl−1)−KsGCEl +

(I−Q)(Fd −Ks(GPd −Po))

= QEl-1 −KsGCEl + (I−Q)(Fd−Ks(GPd−Po)).

In the above equation we added and subtracted the term
Q(Fd−Ks(GPd−Po)) and used (25) – (28). Rearranging
(29) we obtain

El

El−1
=

Q

I + KsGC
+

I−Q

I + KsGC

Fd −Ks(GPd −Po)

El−1
(30)

Asymptotic stability is assured iff El

El−1
< 1 ∀l. Inserting

again the z dependence into transfer functions and signals
and substituting z = ejω in (30), the condition for asymptotic
stability becomes [24]

Q(ejω)

I + KsG(ejω)C(ejω)
+

I−Q(ejω)

I + KsG(ejω)C(ejω)
ε < 1,∀ ω,

(31)
where

ε =
Fd(ejω)−Ks(G(ejω)Pd(ejω)−Po(ejω))

El−1(ejω)
(32)

and ω = [−π, π] is the frequency normalised with the
sampling time of our time-discrete system.

Fig. 3. Experimental platform.

Given the known transfer function G(z) and estimated
environment stiffness Ks we have to design such admittance
control law transfer function C(z) and learning function
Q(z), that the learning error E(z) asymptotically decays
to 0 when l → ∞, Note that the nominator of the term
ε (32) is 0, since Ks(GPd − Po) = Fd, assuming ideal
model for Ks, G and Po. In practice, this is never true and
the denominator of ε is small and bounded value, which
depends only on the desired force Fd, desired trajectory
Pd and environment Po. Therefore, ε increases when the
error E decreases. Consequently, zero learning error can be
guaranteed only with the choice Q(z) = I. On the other
hand, it is generally very hard to fulfill condition (31) with
Q(z) = I. In most cases Q in the form of a low pass
filter will assure the stability, but increase learning error
[25]. Therefore, the design of Q(z) is a tradeoff between
the robustness and stability and performance of the learning
algorithm. The design of the learning algorithm can be thus
summarised in the following steps:

1) calculate the upper bound of ‖ε‖ upon the admissible
error E(ejω),

2) check if (31) is fulfilled, by e.g. Bode or Nyquist plot,
3) tune the parameters of the transfer function C, L and

Q until (31) is fulfilled.

IV. EXPERIMENTAL EVALUATION

We evaluated the performance of the proposed learning on
bimanual peg in a hole tasks, where the robot has to insert
one round pole into another, as show in Fig. 3. The outer
diameter of one pole tightly fitted the inner diameter of the
other pole. The experimental platform was composed of two
KUKA LWR robot arms equipped with three finger Barret
hands. The two arms were controlled with an external PC
computer via FRI interface at sampling rate of 500 Hz. The
Cartesian compliance of both robot arms was set to 1000
N/m for positions and to 300 Nm/rd for rotations. For this
experiment, we have applied P type admittance control law
with equal gains for Cp = 0.0002 I. The KUKA built in
controller decouples and linearizes the LWR robot dynamics,
which can be approximated with discrete transfer function
G = 0.011z+0.01

z2−1.7z+0.7289 . For the learning, we have chosen
matrix Q as a diagonal matrices containing 2nd order low
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Fig. 4. Bode plot of the learning transfer functions for two choices of Q.

pass filter with zero at −0.9 and double poles at 0.85 in
the Z plane. First, we verified the stability of the learning
algorithm by drawing the Bode plot for the transfer function

Q(z)
I+KsG(z)C(z) , where Ks was set to 500 N/m, which is
exactly the mutual programmed stiffness of both robot arms.
Fig. 4 shows Bode plot for two cases: in the first case Q is the
2nd order filter, and in the second case Q is unity matrix.
According to (31), magnitude of the Bode plot should be
below (1−ε) for all frequencies. It can be seen, that the Bode
magnitude crosses the stability margin at high frequencies
(above 20s−1) for Q = I, while it stays safe within the
stability region when Q is in the form of a low pass filter.
Note also that the magnitude plot uses logarithmic scale
(dB) . The same result was verified also by the simulation,
where scheme without the filtering starts to oscillate after it
diminishes the tracking error in few initial learning cycles.
The explanation of this phenomena is that at the beginning
of the learning, low frequencies are dominant, whereas the
Bode plot shows that both schemes are stable. When the
algorithm diminishes tracking error, high frequencies become
dominant and we have to use filtering to assure the stability
of the learning.

As explained previously, small tolerances in position tra-
jectory can result in high contact forces during assembly
tasks. Force controller tries to diminish these forces instantly,
while the learning minimizes them gradually during learning
iterations. Force control might become inefficient or even
unstable at rapid changes of the measured force and torque
errors. Therefore, it is good idea to slow down the execution
of the demonstrated policy when large deviation between the
desired and actual forces and torques occurs. This flexibility
to modulate the execution speed of the trajectory is provided
by DMPs using phase stopping technique [10]. Therefore,
time dependent trajectories pd(k) and qd(k) are replaced
with the phase dependent DMP trajectories pDMP (x) and
qDMP (x), where x is the phase variable [10]. Similarly,
also the time dependent learned term ϕϕϕp(k) and ϕϕϕq(k) has
to be replaced with phase dependent signals ϕϕϕp,RBF (x) and

Fig. 5. Demonstration of the relative task with kinesthetic guiding of the
right robot. The left robot does not move during the demonstration.

ϕϕϕq,RBF (x). Subscript RBF denotes, that the corresponding
signal was encoded with radial basis functions (RBF), as
explained in [19]. Accordingly, also force and torque tracking
errors has to be encoded with RBF.

With the real experiment, we had to provide initial tra-
jectories and force profiles in relative coordinates. As only
the relative coordinates matter for this kind of the task
execution, we can demonstrate the task by keeping one of
the robots fixed, while the other was used for demonstra-
tion. This was accomplished with LbD, where we manually
guided one of the robot arms using kinesthetic guidance and
captured resulting relative coordinates calculation of relative
coordinates from both robot poses using (1) and (5). One
instance of the trajectory demonstration is show in Fig. 5.
TCP forces and torques were captured from joint torque
measurement, provided by the KUKA LWR. Within this
setup, forces and torques can not be captured together with
the position/orientation trajectories applying the kinesthetic
guidance [19]. Therefore, we had to rerun the captured
position/orientation trajectory in order to obtain non-distorted
forces and torques. After that, we displaced one long peg in
Barret hands in the local y direction for 5 mm and run 4
adaptation cycles. The results are shown in Fig. 6. Dotted
line in graphs shows the insertion phase. As we can observe
from plots, we have non-zero forces and torques even before
contact. Part of this artefact is due to imprecise dynamics
calculation when estimating TCP forces and torques from
the joint torques. Another part is due to non-neglige inertia
of long poles. However, the proposed adaptation algorithm
effectively diminishes the force and torque tracking errors in
just few learning cycles. For that reason, also the adaptation
scheme with Q = I in practice performs almost equally
good as the scheme with Q in the form of the 2nd order
filter, providing that the adaptation mechanism is switched
off after few adaptation cycles.

V. CONCLUSIONS

In the paper we proposed a new force adaptation scheme
for bimanual systems. The main advantage of the proposed
algorithms is that adaptation act directly in relative and
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Fig. 6. Forces and torques during the long peg insertion tasks. Labels 1–4
show the adaptation cycle. We can observe extremely quick convergence of
the ILC adaptation algorithm.

absolute coordinates. Subdivision of the motion of both
arms to relative and absolute tasks is based on a modified
definition of relative Jacobian, which assures also proper
mapping to the Jacobian null-space, when additional tasks
which exploit kinematic redundancy of the overall system
are defined. The admittance based force adaptation is based
on the ILC framework. The proposed controller belongs to
a class of causal ILC controller, for which it was proved
that the same steady state error can be obtained with stan-
dard feedback controller applying high gains [26]. However,
high gain controllers are not suitable for robots interacting
with humans [27], therefore we consider that ILC is still
favourable. Stability of the proposed learning algorithm was
discussed and proved together with practical notes how to
choose the parameters of the learning algorithm and how
to verify the stability. Theoretical results were verified with
practical implementation of a dual arm peg-in-a-hole task. In
our future work, we will extend the proposed algorithm to
the impedance control law, which will modify control torques
directly in contrast to the proposed algorithm, which adapts
the position and orientation trajectory.
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Multi-Purpose Natural Language Understanding Linked to
Sensorimotor Experience in Humanoid Robots

Ekaterina Ovchinnikova, Mirko Wächter, Valerij Wittenbeck, Tamim Asfour1

Abstract— Humans have an amazing ability to bootstrap
new knowledge. The concept of structural bootstrapping refers
to mechanisms relying on prior knowledge, sensorimotor ex-
perience, and inference that can be implemented in robotic
systems and employed to speed up learning and problem
solving in new environments. In this context, the interplay
between the symbolic encoding of the sensorimotor information,
prior knowledge, planning, and natural language understanding
plays a significant role. In this paper, we show how the
symbolic descriptions of the world can be generated on the
fly from the continuous robot’s memory. We also introduce a
multi-purpose natural language understanding framework that
processes human spoken utterances and generates planner goals
as well as symbolic descriptions of the world and human actions.
Both components were tested on the humanoid robot ARMAR-
III in a scenario requiring planning and plan recognition based
on human-robot communication.

I. INTRODUCTION

Significant research efforts in humanoid robotics have
been focused on mimicking human cognition. This especially
concerns the autonomous acquisition of knowledge and ap-
plication of this knowledge in previously unseen situations.
The concept of structural bootstrapping was introduced in
the context of the Xperience project [1]. It addresses mecha-
nisms relying on prior knowledge, sensorimotor experience,
and inference that can be implemented in robotic systems
and employed to speed up learning and problem solving
in new environments. Earlier experiments demonstrate how
structural bootstrapping can be applied at different levels of a
robotic architecture including a sensorimotor level, a symbol-
to-signal mediator level, and a planning level [2], [3].

In the context of structural bootstrapping, the interplay
between the symbolic encoding of the sensorimotor infor-
mation, prior knowledge, planning, and natural language
understanding plays a significant role. Available robot skills
and the world state have to be represented in a symbolic
form for a planner to be able to operate with it. In the
previous experiments, the symbolic representations of the
objects in the world and their initial locations were created
manually and hard-coded in the scenario settings, cf. [3]. In
this paper, we show how the comprehensive descriptions of
the world (domain descriptions) can be generated on the fly
from the continuous robot’s memory. Sensor data are mapped

*The research leading to these results has received funding from the
European Union Seventh Framework Programme under grant agreement
No 270273 (Xperience).

1The authors are with the Institute for Anthropomatics and
Robotics, High Performance Humanoid Technologies Lab (H2T), at
the Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
{ovchinnikova,waechter,asfour}@kit.edu
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to symbolic representations required for linking the senso-
rimotor experience of the robot to language understanding
and planning.

We also introduce a natural language understanding (NLU)
framework that allows us to generate goals for the planner
as well as symbolic descriptions of the world and human
actions given human spoken utterances. The framework is
intended for a flexible multi-purpose human-robot commu-
nication. For example, if a robot’s plan execution is failing
because a required object is missing, we want to be able
to communicate the location of this or an alternative object
through natural language. In addition to the vision-based
action recognition, we want to be able to comment on human
actions using speech.

Natural language (NL) provides an effective tool for
untrained users to interact with robots in an intuitive way,
which is especially important for robots intended to perform
collaborative tasks with people. One of the major challenges
in application of NLU to robotics concerns grounding am-
biguous NL constructions into actions, states, relations, and
objects known to the robot. For example, the commands
Bring the milk from the fridge, Bring the milk. It’s in
the fridge, Take the milk out of the fridge all imply that
the milk is located in the fridge. Similarly, embedding the
sensorimotor experience of the robot is crucial for under-
standing NL utterances. For example, if the robot is holding
a cup, then it should interpret the command Put the cup
down as probably referring to the cup it is holding rather
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than any other cup. Another important issue concerns the
functionality of NL. Most of the literature on NLU for
robotics focuses on instruction interpretation. At the same
time, NL in human-robot interaction can also be used for
describing the world, commenting on human actions, giving
feedback, etc. These types of communication are especially
important when performing collaborative tasks and in the
situations when the robot cannot access the world state
by using sensors. The proposed framework treats multiple
types of NL input (commands, descriptions of the world and
human actions) and interacts with related components such
as the robot’s memory, a planner, and a plan recognizer. It
performs grounding of the symbolic representations into the
sensorimotor experience of the robot and supports complex
linguistic phenomena, such as ambiguity, negation, anaphora,
and quantification without requiring training data.

We test the domain description generation and NLU on
the humanoid robot ARMAR-III [4] in a scenario requiring
planning and plan recognition based on human-robot com-
munication.

The paper is structured as follows. After presenting the
general system architecture in Sec. II, we describe the
domain description generation from the robot’s memory
(Sec. III). Sec. IV introduces the natural language under-
standing pipeline. Sec. V briefly presents the planner and the
plan recognizer employed in this study. Sec. VI discusses
how plan execution and monitoring are organized in our
framework. Experiments on the humanoid robot ARMAR-
III are presented in Sec. VII. Related work is discussed in
Sec. VIII. Section IX concludes the paper.

II. SYSTEM ARCHITECTURE

Fig. 1 shows the system architecture realized within the
robot development environment ArmarX [5]. The system
consists of six major building blocks: robot’s memory, do-
main generation, NL understanding, plan recognition, plan-
ning, as well as plan execution and monitoring.

Domain descriptions are generated from the robot’s mem-
ory (Sec. III). The robot’s memory is represented within
MemoryX, one of the main components of ArmarX. The
domain description is used by the NL understanding com-
ponent for grounding and generating the domain knowledge
base (Sec. IV) as well as by the planner (Sec. V). The devel-
oped multi-purpose NLU framework can distinguish between
a) direct commands that can be executed without planning
(Move to the table), b) plan requiring commands that are
converted into planner goals, which are processed by a
planner (Set the table), c) descriptions of human actions that
are used by a plan recognizer that recognizes human plans
and generates corresponding robot goals further processed
by the planner (I’m grasping the knife), d) descriptions of
the world that are added to the robot’s memory and used by
both the plan recognizer and the planner (The cup is on the
table), see Sec. IV. Plan execution is performed by the plan
execution and monitoring component, which also verifies if
the plan is executed correctly (Sec. VI). Each time an NL
utterance is registered and processed by the NLU pipeline,

the planner, and the plan recognizer, the robot’s memory is
updated and the required actions are added to the task stack
to be processed by the plan execution component. Human
comments can thus be used to update the world state in the
robot’s memory before or during action execution and are
considered by the robot to adjust its plan accordingly.

III. GENERATION OF DOMAIN DESCRIPTIONS
FROM ROBOT’S MEMORY

The challenge of mapping sensor data to symbolic repre-
sentations lies in the diversity of each specific mappings, i.e.
each symbol depends on a different combination of sensor
data. We approach this challenge by designing the mapping
procedure in a modular way. First, sensorimotor experi-
ence is processed and turned into continuous sub-symbolic
representations (e.g., coordinates of objects, the robot, and
robot’s hands) that are added to the robot’s memory. These
continuous representations are mapped to object and location
names or predicates. Finally, representations describing the
world state are generated.

A. Memory Structure

The robot development environment employed in the
described study contains a biologically inspired framework
for storing and representing robot’s knowledge [5]. In the
described framework, the memory architecture MemoryX
consists of the prior knowledge, the long-term memory,
and the working memory that provide symbolic entities like
actions, objects, states, and locations. The basic elements
of the memory called memory entities are represented by
name-value maps. The prior knowledge contains persistent
data inserted by the developer that the robot could not
learn by itself like accurate object 3D models [6]. The
long-term memory consists of knowledge that has been
stored persistently, e.g., common object locations that are
learned from the robot’s experience during task execution and
persistently stored as heat maps [7]. The working memory
contains volatile knowledge about the current world state,
e.g., object existence and position or relations between
entities. The working memory is updated by external com-
ponents like the robot self-localization, object localization,
or natural language understanding, whenever they receive
new information. To account for uncertainties in sensor-data,
each memory entity value is accompanied by a probability
distribution. In case of object locations, new data is fused
with the data stored in the memory using a Kalman-filter.

B. Mapping sensorimotor data to symbols

In this work, self-localization, visual object recognition,
and kinematics of the robot where used for mapping senso-
rimotor experience to symbols. For the self-localization, we
use laser-scanners and a representation of the world as a 2D
map. The self-localization is used to navigate on a labelled
2D graph, in which location labels are associated with center
coordinates and a radius. For visual object recognition, we
use RGB stereo vision with texture-based [8] or color-based
[6] algorithms.
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Fig. 2. Components involved in the domain description generation.

The conversion of continuous sensor data into discrete
symbolic data is done by predicate providers. Each world
state predicate is defined in its own predicate provider
component, which outputs a predicate state (unknown, true,
or false) by evaluating the content of the working mem-
ory or low-level sensorimotor data. In the experiment de-
scribed below, we use the following predicate providers:
grasped represents an object being held by an agent using
a hand; objectAt and agentAt represent object and
robot locations, correspondingly; leftgraspable and
rightgraspable represent the fact that an object at a cer-
tain location can be grasped by the corresponding hand of the
robot. Predicate providers can access other components (e.g.,
the working memory, robot kinematics, long-term memory)
to assess the predicate state. For example, the objectAt
predicate provider uses the distance between the detected
object coordinates and the center coordinates of the location
label.

Only those objects that are required for fulfilling a par-
ticular task are recognized during action execution. High-
level components operating on a symbolic level generate
requests for a particular object to be recognized at a particular
locations. Other objects are not tracked to avoid false positive
object recognition.

C. Domain Description Generation

The information contained in the robot’s memory is used
to generate a symbolic domain description consisting of
static symbol definitions and problem specific definitions,
see Fig. 2. The symbol definitions consist of types, con-
stants, predicate definitions, and action descriptions, while
the problem definitions consist of the symbolic representation
of the current world state defined by predicates. Types
enumerate available agents, hands, locations, and object
classes contained in the prior knowledge. Constants represent
actual instances, on which actions can be performed, and are
therefore generated by using entities in the working memory.
Each constant can have multiple types, such that one is
the actual class of the corresponding entity, and others are
parents of that particular class including transitive parentship.
For example, instances of the type cup are also instances of
graspable and object.

For some objects, the robot might not know yet where
they are located, but their locations need to be defined

for the planner to plan actions on them. In such cases,
the domain generator uses the long-term memory to make
assumptions about possible object locations. The domain
generator derives action representations from the long-term
memory, where they are associated with specific robot skills
represented by statecharts [5].

The generated domain description is used by the NLU
component as well as by the planning component. The NLU
component uses domain descriptions to create a knowledge
base and to ground NL references. The planning component
uses it as the knowledge base for finding plans.

IV. MULTI-PURPOSE NL UNDERSTANDING

We intend to a) ground NL utterances to actions, objects,
and locations stored in the robot’s memory, b) distinguish
between commands, descriptions of the world, and descrip-
tions of human actions, c) generate representations of each
type of the NL input suitable for the downstream compo-
nents (planner, plan recognizer, action execution component).
Our approach is based on the abductive inference, which
can be used for interpreting NL utterances as observations
by linking them to known or assumed facts, cf. [9]. The
NL understanding pipeline shown in Fig. 3 consists of
the following processing modules. The text produced by a
speech recognition component1 is processed by a semantic
parser that outputs a logical representation of the text.
This representation together with observations stored in the
robot’s memory and the lexical and domain knowledge base
constitute an input for an abductive reasoning engine that
produces a mapping to the domain. The mapping is further
classified and post-processed. The pipeline is flexible in the
sense that each component can be replaced by an alternative.
We use the implementation of the abduction-based NLU that
was developed in the context of knowledge-intensive large-
scale text interpretation [11].

Text
blabla 
blabla

a(x) ^ c(x,y) goal#a(x) ^ 
world#b(y)

goal:a(x)
world:b(y)
human:c(z)
command:d(x)

Fig. 3. Natural language understanding pipeline.

A. Logical form

We use logical representations of NL utterances as de-
scribed in [12]. In this framework, a logical form (LF) is a
conjunction of propositions and variable inequalities, which
have argument links showing relationships among phrase
constituents. For example, the following LF corresponds to
the command Bring me the cup from the table:

1In the experiments described in this paper, we used the speech recogni-
tion system presented in [10].
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∃e1, x1, x2, x3, x4 (bring-v(e1, x1, x2, x3) ∧ thing(x1) ∧ per-
son(x2) ∧ cup-n(x3) ∧ table-n(x4) ∧ from-p(x3, x4)),

where variables xi refer to the entities thing, person, cup,
and table, whereas variable e1 refers to the eventuality of
x1 bringing x2 to x3; see [12] for more details. In the
experiments described below, we used the Boxer parser [13].
Alternatively, any dependency parser can be used if it is
accompanied by an LF converter as described in [14].

B. Abductive inference

Abduction is inference to the best explanation. Formally,
logical abduction is defined as follows:

Given: Background knowledge B, observations O, where
both B and O are sets of first-order logical formulas,
Find: A hypothesis H such that H ∪ B |= O,H ∪ B 6|=⊥,
where H is a set of first-order logical formulas.

Abduction can be applied to discourse interpretation [9].
In terms of abduction, logical forms of the NL fragments
represent observations, which need to be explained by the
background knowledge. Where the reasoner is able to prove
parts of the LF, it is anchoring it in what is already known
from the overall context or from the background knowledge.
Where assumptions are necessary, it is gaining new infor-
mation. Suppose the command Bring me the cup from the
table is turned into an observation oc. If the robot’s memory
contains an observation of a particular instance of cup being
located on the table, this observation will be concatenated
with oc and the noun phrase the cup will be grounded to
this instance by the abductive reasoner.

We use a tractable implementation of abduction based
on Integer Linear Programming (ILP) [11]. The reasoning
system converts a problem of abduction into an ILP prob-
lem, and solves the problem by using efficient techniques
developed by the ILP research community. Typically, there
exist several hypotheses explaining an observation. In the
experiments described below, we use the framework of
weighted abduction [9] to rank hypotheses according to
plausibility and select the best hypothesis. This framework
allows us to define assumption costs and axiom weights
that are used to estimate the overall cost of the hypotheses
and rank them. As the result, the framework favors most
economical (shortest) hypotheses as well as hypotheses that
link parts of observations together and support discourse
coherence, which is crucial for language understanding, cf.
[15]. However, any other abductive framework and reasoning
engine can be integrated into the pipeline.

C. Lexical and domain knowledge base

In our framework, the background knowledge B is a set
of first-order logic formulas of the form

Pw1
1 ∧ ... ∧ Pwn

n → Q1 ∧ ... ∧Qm,

where Pi, Qj are predicate-argument structures or variable
inequalities and wi are axiom weights.2

2See [14] for a discussion of the weights.

Lexical knowledge used in the experiments described
below was generated automatically from the lexical-semantic
resources WordNet [16] and FrameNet [17]. First, verbs and
nouns were mapped to the synonym classes. For example, the
following axiom maps the verb bring to the class of giving:

action#give(e1, agent, recipient, theme) →
bring-v(e1, agent, theme) ∧ to-p(e1, recipient)

Prepositional phrases were mapped to source, location,
instrument, etc., predicates. Different syntactic realizations
of each predicate for each verb (e.g., from X, in X, out of X)
were derived from syntactic patterns specified in FrameNet
that were linked to the corresponding FrameNet roles. See
[18] for more details on the generation of lexical axioms. A
simple spatial axiom was added to reason about locations,
which states that if an object is located at a part of a location
(corner, top, side, etc.), then it is located at the location.

The synonym classes were further manually axiomatized
in terms of domain types, predicates, constants, and actions.
For example, the axiom below is used to process construc-
tions like bring me X from Y:

goal#inHandOf (theme,Human) ∧
world#objectAt(theme, loc) →
action#give(e1, Robot, recipient, theme) ∧
location#source(e1, loc),

which represents the fact that the command evokes the goal
of the given object being in the hand of the human and
the indicated source is used to describe the location of the
object in the world. The prefixes goal# and world# indicate
the type of information conveyed by the corresponding lin-
guistic structures. The framework can also handle numerals,
negation, quantifiers represented by separate predicates in the
axioms (e.g., not, repeat). The repetition, negation, and quan-
tification predicates are further treated by the post-processing
component. The hierarchy axioms (red cup→cup) and
inconsistency axioms (red cup xor green cup) were
generated automatically from the domain descriptions.

D. Object grounding

If objects are described uniquely, then they can be directly
mapped to the constants in the domain. For example, the
red cup in the utterance Give me the red cup can be
mapped to the constant red cup if there is only one red
cup in the domain. However, redundant information that
can be recovered from the context is often omitted in the
NL communication, cf. [19]. In our approach, grounding
of underspecified references is naturally performed by the
abductive reasoner interpreting observations by linking their
parts together, cf. Sec. IV-B. For example, given the text
fragment The red cup is on the table. Give it to me, the
pronoun it in the second sentence will be linked to red
cup in the first sentence and grounded to red cup. To
link underspecified references to earlier object mentions in a
robot-human interaction session, we keep all mentions and
concatenate them with each new input LF to be interpreted.
Predicates describing the world from the robot’s memory
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are also concatenated with LFs to enable grounding. Given
Bring me the cup from the table, the reference the cup from
the table will be grounded to an instance of cup observed
as being located on an instance of table.

If some arguments of an action remain underspecified or
not specified, then the first instance or the corresponding type
will be derived from the domain description. For example,
the execution of the action of putting things down requires a
hand to be specified. In the NL commands this argument
is often omitted (Put the cup on the table), because for
humans it does not matter, which hand the robot will use.
The structure putdown(cup,table,hand) is generated
by the NLU pipeline for the first command above. The
grounding function then selects the first available instance
of the underspecified predicate. In future, we consider using
a clarification dialogue, as proposed, for example, in [20].

E. Classifier

The classifier takes into account prefixes assigned to the
inferred predicates. For example, the abductive reasoner
returned the following mapping for the command Bring me
the cup from the table:

action#give(e1, x1, x2, x3) ∧ location#source(e1, x4) ∧ x1 =
Robot ∧ x2 = Human ∧ goal#inHandOf (x3, Human) ∧
world#objectAt(x3, x4)

The classifier extracts predicates with prefixes and predi-
cates related to the corresponding arguments. The following
structures will be produced for the mapping above:

[goal: inHandOf(cup,Human),

world: objectAt(cup,table)]

Actions that do not evoke goals or world descriptions
are interpreted by the classifier as direct commands or
human action descriptions depending on the agent. For
example, action#grasp(Human,cup) (I’m grasping the cup)
will be interpreted as a human action description, while ac-
tion#grasp(Robot,cup) (Grasp the cup) is a direct command.

The classifier can also handle nested predicates. For exam-
ple, the utterances 1) Help me to move the table, 2) I will help
you to move the table, 3) I will help you by moving the table
will be assigned the following structures, correspondingly:

1) [direct command: helpRequest:[requester:
Human, action: move(Robot,table)]

2) [human action: help:[helpInAction:
move(Robot,table)]

3) [human action: help:[helpByAction:
move(Human,table)]

F. Post-processing

The post-processing component converts the extracted
data into the format required by the downstream modules.
The direct commands are immediately processed by the
Plan Execution Monitor. Goals extracted from utterances are
converted into a planner goal format, so that not predicate
is turned into the corresponding negation symbol, predicates
that need multiplication (indicated by the repeat predicate)
are multiplied, and quantification predicates are turned into

Plan Execution Monitor

Fig. 4. Plan generation, execution, and monitoring.

quantifiers. For example, the commands 1) Put two cups on
the table and 2) Put all cups on the table can be converted
into the following goal representations in the PKS syntax
[21], correspondingly:

1) (existsK(?x1: cup, ?x2: table)
K(objectAt(?x1,?x2)) & (existsK(?x3:
cup) K(objectAt(?x3,?x2)) & K(?x1 !=
?x3)))

2) (forallK(?x1: cup) (existsK(?x2: table)
K(objectAt(?x1,?x2))))

Similarly, human action descriptions are converted into the
format required by the plan recognizer.

V. PLANNING AND PLAN RECOGNITION

We define a plan as a sequence of actions P = 〈a1, .., an〉
with respect to the initial state s0 and the goal G such that
〈s0, P 〉 |= G. In the experiments described in Sec. VII, we
used the PKS planner [21], which takes a domain description
(Sec. III) and a goal (Sec. IV) represented in the PKS syntax
as input and returns sequences of grounded actions with their
pre- and post-conditions.

In the described experiments, we employed the probabilis-
tic plan recognizer ELEXIR [22] that takes grounded human
actions and domain descriptions in the ELEXIR syntax as
input and computes the conditional probability of a particular
human goal given the set of the human actions Pr(g|obs).

We use the plan recognizer for recognizing human plans
given observed human actions obtained by employing visual
action recognition or NL understanding (when actions are
commented). The recognized human plan triggers a scenario
such that it is mapped to the tasks that the robot can perform
to help the human to achieve their goal. Thus, the recognized
human plan is mapped to a possible robot goal that is further
transferred to the planner for generating a robot plan.

VI. PLAN EXECUTION AND MONITORING

The components described in the previous sections are
employed by the Plan Execution Monitor component. The
Plan Execution Monitor (PEM) is the central coordination
unit for the execution of commands. A simplified control
flow for execution of a planning task is shown in Fig. 4. To
trigger PEM, a new task is sent from an external component
(e.g., NLU component). Different types of tasks are accepted.
For each type of task, PEM has an implementation of an
ControlMode interface, which knows how to execute this task
type. Currently, a task can be a single command or a list of
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Fig. 5. Visualization of the robot’s working memory during action
execution and the current camera image.

goals that should be achieved. Here, we are focusing on the
goal task type, which requires the planner to achieve the goal.
After a new task was received, PEM calls DomainGenerator
to generate a new domain description based on the current
world state (Sec. III). This domain together with the received
goal are then passed to the planner. If a plan could not be
found, PEM synthesizes a feedback indicating the failure. A
successful plan consists of a sequence of actions with bound
variables passed back to PEM. These actions are executed
one by one. Each action is associated with an ArmarX
statechart [5], which controls the action execution. Action
execution might fail because of uncertainties in perception
and execution or changes in the environment. To account for
the changes, preconditions of an action before the execution
and its effects after the execution are verified by PEM.
The world state is continuously updated. Fig. 5 shows the
visualization of the robot working memory and the current
camera image as seen by the robot. The world state observer
component is queried for the current world state after each
action. If any mismatches between a planned world state and
a perceived world state are detected, the plan execution is
considered to have failed and re-planning is triggered based
on the current world state. Additionally, the statecharts report
if they succeeded or failed; failing leads to re-planning. If an
action was successfully executed, the next action is selected
and executed. After the task completion the robot goes idle
and waits for the next task.

VII. EXPERIMENTS

We tested our approach on the humanoid robot ARMAR-
III [4] in a kitchen environment. In these experiments, robot
skills were restricted to three primitive actions: moving,
grasping, and placing. As shown in the accompanying video3,
the human agent asks the robot to help him to set the table for
two people. The execution of the uttered command requires
generation of a multi-step plan. The robot is supposed to
generate a plan resulting in putting two cups on the table,
while the human agent puts forks, knifes, and plates on
the table. The task description is provided by the NLU
component. The domain description is generated from the

3http://youtu.be/87cbivmjfe8

Output type Baseline NLU pipeline
C P I A C P I A

Planner goal 48 18 44 .66 56 25 19 .81
Human actions 43 24 33 .67 57 29 14 .86

World state 61 1 38 .62 88 1 11 .89
Total 152 43 115 .65 201 55 44 .85

TABLE I
NLU EVALUATION RESULTS.

robot’s memory. The task and domain descriptions constitute
the input for the PKS planner, which generates a plan. The
execution of the plan is monitored by the Plan Execution
Monitor. The same set of actions can be triggered using plan
recognition. The human agent starts setting the table and
comments his actions (I’m putting a fork on the table). The
robot recognizes the plan of the human agent and generates
its own plan to help set the table, which involves putting the
cups on the table. Finally, the human agent asks the robot
to put a juice on the table. Given its memory, the robot has
an assumption about the location of the juice. The planner
generates a corresponding plan. The plan execution fails,
because the juice cannot be found at the assumed location.
The human agent suggests another location by saying: The
juice is at the dishwasher. The robot updates its memory,
re-plans, and executes the new plan. The video demonstrates
a human-robot collaboration scenario. The robot not only
generates and executes a plan given a human command, but
adjusts it’s plan during execution given new descriptions of
the world and human actions.

In order to check, if our NLU framework can successfully
handle the variability of natural language, we ran three
experiments using the Amazon Mechanical Turk platform.4

In the first experiment, subjects were presented with an
image of a table set for two people and the following
task description: Imagine you want to have a dinner with
a friend. Write a short command you would say to the
robot to obtain the result shown in the image. In the second
experiment, subjects were presented with a video showing a
person putting a fork and a knife on the table and the task
description: Imagine it’s you performing the actions shown
in the video. Describe the actions using the personal pronoun
”I”. In the third experiment, subjects were presented with a
video showing a robot not finding a cup, which was located
on the table, and the task description: The robot in the video
cannot find the green cup. Tell the robot where the cup is
located. 100 subjects were employed for each task.

Each of the 300 obtained utterances was processed by
our NLU pipeline. We aimed at evaluating the correctness
of the extracted goals, human action descriptions, and state
of the world descriptions. We estimated the accuracy as
the percentage of the correct and partially correct outputs.
The results presented in Table I show the number of cor-
rect (C), partially correct (P), or incorrect outputs (I) as
well as the accuracy (A) of a baseline method and the
presented approach. As a baseline method, we extracted

4https://www.mturk.com
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tuples 〈verb, agent, object, location, number〉 from parsed
utterances, such that agent is the subject of verb, object is
its direct object, location is the noun related to verb by a
location preposition, and number is a numeral modifying
object or related to verb by the preposition for. The tuples
were mapped to goals, human action, and world state repre-
sentations using a lookup table.

The overall baseline accuracy is .65, while the accuracy
of the proposed approach is .85. The baseline method was
unable to ground underspecified references, e.g., it in Get
the green cup! It is on the table, which the abduction-
based method was able to do, cf. Sec. IV-D. The domain
and spatial axioms lacking in the baseline method also gave
advantages to the abduction-based approach. Most of the
errors of the abduction-based method resulted from a wrong
parse. Processing of some of the utterances required deeper
knowledge to make a correct inference. For example, our
system did not recognize that the utterance Robot, tonight I
will dine with a friend, please set the table implies that the
table should be set for two. For human action descriptions,
the errors were related to spatial inference. For example,
given I place the knife on the table. I place the fork to
the left of the knife, our system did not recognize that the
knife is being placed on the table. For world descriptions,
the errors were related to deictic expressions, e.g. The cup
is very straight to you, come forward.

VIII. RELATED WORK

a) Grounding NL: Approaches to grounding NL into
actions, relations, and objects known to the robot can be
roughly subdivided into symbolic and statistical. Symbolic
approaches rely on sets of rules to map linguistic construc-
tions into pre-specified action spaces and sets of environ-
mental features. In [23], simple rules are used to map NL
instructions having a pre-defined structure to robot skills and
task hierarchies. In [24], NL instructions are processed with
a dependency parser and background axioms are used to
make assumptions and fill the gaps in the NL input. In [25],
background knowledge about robot actions is axiomatized
using Markov Logic Networks. In [26], a knowledge base of
known actions, objects, and locations is used for a Bayes-
based grounding model. Symbolic approaches work well
for small pre-defined domains, but most of them employ
manually written rules, which limits their coverage and
scalability. In order to increase the linguistic coverage, some
of the systems use lexical-semantic resources like WordNet,
FrameNet, and VerbNet [27], [25]. In this study, we follow
this approach and generate our lexical axioms from Wordnet
and FrameNet.

Statistical approaches rely on annotated corpora to learn
mappings between linguistic structures and grounded predi-
cates representing the external world. In [28], reinforcement
learning is applied to interpret NL directions in terms of
landmarks on a map. In [29], machine translation is used
to translate from NL route instructions to a map of an
environment built by a robot. In [30], Generalized Grounding
Graphs are presented that define a probabilistic graphical

model dynamically according to linguistic parse structures.
In [19], a verb-environment-instruction library is used to
learn the relations between the language, environment states,
and robotic instructions in a machine learning framework.
Statistical approaches are generally better at handling NL
variability. An obvious drawback of these approaches is
that they generate noise and require a significant amount of
annotated training data, which can be difficult to obtain for
each new application domain and set of action primitives.

Some recent work focuses on building joint models ex-
plicitly considering perception at the same time as parsing
[31], [32]. The framework presented in this paper is in line
with this approach, because abductive inference considers
both the linguistic and perceptual input as an observation to
be interpreted given the background knowledge.

b) Planning: With respect to the action execution, the
existing approaches can be classified into those directly
mapping NL instructions into action sequences [33], [34],
[25] and those employing a planner [35], [27], [24], [36].
We employ a planner, because it allows us to account for
the dynamically changing environment, which is essential for
the human-robot collaboration. Similar to [36], we translate
a NL command into a goal description.

c) Type of NL input: Although most of the NLU
systems in robotics focus direct on instruction interpreta-
tions, there are a few systems detecting world descriptions
implicitly contained in human commands [24], [37], [26].
These descriptions are further used in the planning context,
as it is done in our approach. In addition, we detect world
descriptions not embedded into the context of an instruction
and process human action descriptions.

d) Linking planning, NL, and sensorimotor experience:
Interaction between NL instructions, resulting symbolic
plans, and sensorimotor experience during plan execution has
been previously explored in the literature. In [33], symbolic
representations of objects, object locations, and robot actions,
are mapped on the fly to the sensorimotor information.
During the execution of the predefined plans, the plan
execution monitoring component evaluates the outcome of
each robot’s action as success or failure. In [24], the planner
knowledge base is updated each time a NL instruction related
to the current world state is provided and the planner re-
plans taking into consideration the new information. In [35],
symbolic planning is employed to plan a sequence of motion
primitives for executing a predefined baking primitive given
the current world state. In line with these studies, plan
execution monitoring is a part of our system.

IX. CONCLUSIONS AND FUTURE WORK

We presented a symbolic framework for integrating sen-
sorimotor experience, natural language understanding, and
planning in a robotic architecture. We showed how domain
descriptions can be generated from the robot memory and
introduced an abduction-based NLU pipeline processing dif-
ferent types of linguistic input and interacting with related
components such as the robot’s memory, a planner, and a
plan recognizer. The experimental results suggest that the
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developed framework is flexible enough to process the input
of untrained users and that the interaction with the human in
the scenario setting allows the robot to successfully perform
the task.

The main limitation of the proposed NLU framework
concerns the need to define the domain mapping rules
manually (Sec. IV-C). We plan to approach this limitation by
employing bootstrapping from unannotated corpora to learn
command-goal relations that are represented by the causation
relations in texts, e.g. setting the table causes cups being on
the table, cf. [38].

Concerning the domain description generation, the future
work includes incorporating more information into predicate
providers like, for example, object shapes or tactile sensor
feedback. Another future improvement concerns switching
from static predicate providers to dynamic ones that could
access action outcomes and learn from successful and failed
actions. Both these extensions can potentially to improve
robustness and precision of the sensor-to-symbol mapping.
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ABSTRACT

Programming sophisticated robots such as service robots or humanoids is still a complex endea-
vor. Although programming robotic applications requires specialist knowledge, a robot software
environment should support convenient development while maintaining full flexibility needed
when realizing challenging robotics tasks. In addition, several desirable properties should be
fulfilled, such as robustness, reusability of existing programs, and skill transfer between robots.
In this work, we introduce the ArmarX statechart concept, which is used for describing control-
and data-flow of robot programs. The event-driven statechart approach of ArmarX helps realizing
important features such as increased robustness through distributed program execution, conve-
nient programming through graphical user interfaces, and versatility by interweaving dynamic
statechart structure with custom user-code. We show that using hierarchical and distributed
statecharts increases reusability, allows skill transfer between robots, and hides complexity in
robot programming by splitting robot behavior into control-flow and functionality.

Keywords: Robot Software Framework, Robot Programming, Statecharts, Graphical User Interfaces, Distributed Processing

1 INTRODUCTION

Programming complex robots like humanoids is challenging and is often divided into at least two domains.
One being low-level control which is essential for smooth execution, system stabilization, safety, and
consideration of dynamic effects. High-level robot programming on the other hand copes with perception,
task and motion planning, user interaction, memory concepts, and reusability of robot skills. Well-designed
robot software frameworks should support the development of complex robot programs on all system levels.
Therefore, a framework needs to provide well-defined interfaces for all available robot components and the
flexibility to additionally implement application- or task-specific behaviors. In addition, a basic set of robot
skills (i.e. robot programs for a special behavior) should be available which can be used to assemble more
complex robot programs. One challenge in building a robot framework is to provide means for doing this
in a robust and convenient way.
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In this work, we focus on high-level robot programming and discuss how using hierarchical, distributed
statecharts for encoding robot skills aids in achieving convenient programming and reusable, transferable
robot behaviours. Possible candidates of statechart implementations must meet the following requirements
to be considered eligible: full control over data-flow and control-flow, local scoping of data similar to
encapsulation in programming, runtime-reconfigurability as well as runtime introspection. It should also
not be necessary to recompile programs upon structural or control-flow changes. Furthermore, a graphical
user interface is desirable in order to reduce the unavoidable complexity of describing robot behavior and
to minimize development and comprehension efforts. This convenience feature should provide means for
defining and parametrizing both control- and data-flow, online visualization of active states and transitions
in running programs, and a convenient way to incorporate custom user code. Additionally, a code generator
should be provided for enforcing type-safety and catching errors in user code as early as possible as well as
allowing source code auto-completion in development environments of statechart related datatypes and
functions.

We will discuss the statechart concept of the robot development environment ArmarX Vahrenkamp et al.
(2015) in detail and show how it provides both reusability of high-level robot skills realized as distributed,
hierarchical statecharts and the possibility to add user code with access to the external robot components.

Robot / Simulation

Sensor-Actor Units

Unit 
Observers

Robot 
Components Mid Level

Robot Capabilities

High Level
Robot Program

Low Level
Control

Figure 1. Basic structure of ArmarX. The low level part is abstracted through the Sensor-Actor Unit
concept. These framework components realize hardware access and simulation and hide the low level
communication from higher level layers of the robot software. On the mid level, robot capabilities such as
perception, planning and motion generation, are implemented in a network transparent way. The high level
layer comprises a set of robot skills, realized as statecharts, which are used for assembling complex robot
programs.
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2 RELATED WORK

Robot Development Environments (RDEs) have co-evolved with the increasing complexity and capabilities
of modern robots. Taking a closer look at recent RDEs, there has been an agreement on the necessity
of distributed processing for complex robotic systems (e.g. Metta et al. (2006); Quigley et al. (2009);
Bruyninckx et al. (2003); Scholl et al. (2001); Ando et al. (2008)). Communication in such distributed
systems is often performed via middlewares such as CORBA (2006) or Ice Henning (2004). In other
cases, specialized middleware systems or messaging protocols have been developed based on task specific
requirements.

2.1 Robot Development Environments

Apart from distribution and communication, RDEs differ depending on which part of robot programming
they target. MiRPA Finkemeyer et al. (2007) for example provides a low-level message oriented realtime
communication middleware. OpenRTM Ando et al. (2008) is situated on the lower control level and
provides a component model with input, output, and configuration interfaces as well as basic execution
statemachines (inactive, active, error states). MOOS Newman (2008) is located on a similar level than
OpenRTM and provides a publish-subscribe based communication and data exchange between MOOS
applications via a central database. OpenRDK Calisi et al. (2008) is also a low-level framework and
uses agents as main abstraction which dynamically instantiate modules containing functionality. Modules
communicate through a blackboard type mechanism and can access input, output, and parameter data of
any other module. YARP Metta et al. (2006), being used for the iCub robots Metta et al. (2008), provides
low level communication as a basis for higher level robot capabilities implemented in the iCub software.
Last, ROS Quigley et al. (2009) and Orocos Bruyninckx et al. (2003) lean towards the implementation of
higher level system capabilities. In ROS, software modules called nodes span a peer to peer network and
send messages, whereas Orocos provides an explicit component model and separates the structure of the
control system from its functionality.

2.2 Statecharts

Besides the original paper of Harel (1987) there are countless other publications Samek (2002); Coleman
et al. (1992); Von der Beeck (1994) and software projects Angermann et al. (2014); Yakindu (2015);
EasyCODE (2015) on statecharts for a variety of different use cases. Here, we focus on software realizations
of statecharts and statecharts in the context of robotics. There are several projects offering frameworks for
developing your own statecharts. The well-known de-facto extension of C++ Boost Huber (2007) contains a
subproject called the Boost Statechart Library, which offers a statechart implementation close to the original
formalism of Harel. It has the unique feature of specifying the statecharts with C++ templates and achieving
compile-time statechart validation. While this is a valuable feature to ensure valid statecharts, it does not fit
our requirements. For our purposes, we require runtime-reconfigurability and no recompilation on layout
changes as well as runtime introspection, which is difficult to achieve if the structure is specified implicitly
with C++ templates. On the side of graphical tools, the statechart graphical modeling tool QM Quantum
Leaps (2015) provides means for designing and implementing event-driven low-level statecharts for
embedded systems with a strong focus on traceability at the code level. The complete statecharts are
generated into C++ code, meaning that for statechart structure changes recompilation is necessary. In
our statecharts, we aim to generate code only to catch errors in the user-code as early as possible and for
IDE auto-completion purposes. In Yakindu (2015) another graphical statechart modeling tool is presented,
aiming at usability and assistance inside the editor during typing. Though, it seems to target low-level
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statecharts like QM with limited data-flow control, which is of high importance in the ArmarX statecharts
as described later.

Statecharts are widely used in robotics to control behavior on a high level Klotzbücher and Bruyninckx
(2012); Merz et al. (2006); Billington et al. (2010); Bohren and Cousins (2010); Nilsson and Center (1973)
since they address several of the problems of robotics like state-based control and event-triggered execution.
In the well-known RDE ROS Quigley et al. (2009), an approach called SMACH Bohren and Cousins
(2010) is employed that focuses on data-flow in statecharts. However, scope of data-flow in ROS SMACH
is handled differently. In ROS SMACH, a child state can access all data used by its parent state. This
eases programming because it is easy to operate with data on several levels, but also violates the principle
of modularity of states and creates implicit data dependencies between states. A state using datafields
of a parent state cannot easily be reused in another state since it depends on the availability of specific
datafields in a parent state. Due to this, we do not allow data scopes over several state levels in ArmarX
and require explicit mapping of data between state levels. Also, ROS SMACH only supports graphical
online visualization of states, but does not provide any tools for graphical programming. In many aspects,
the statecharts of ArmarX are similar to the restricted Finite State Machine (rFSM) Klotzbücher and
Bruyninckx (2012) from Orocos Bruyninckx et al. (2003). However, the statecharts in Orocos focus on
coordination of components but offer only very limited data-flow control.

2.3 Graphical Robot Programming

When developing high level software on a robotic platform, it is desirable to configure and connect
existing components using a graphical user interface to prevent writing repetitive and therefore error prone
source code. This allows new as well as experienced users to intuitively and efficiently combine mid and
high level components in order to create a functional system structure. Since writing software is one of the
main challenges in robotics for beginners, such as students, Graphical Robot Programming offers a great
entry point. It removes the obstacle presented by syntax and control flow of a conventional programming
language Rahul et al. (2014). Graphical software development often combines complexity hiding by
connecting modular components on a macroscopic scale with the option to write low level software
facilitating control tasks on joint level or performing motions in Cartesian space Pot et al. (2009). Graphical
and tabular representations are an accessible way to model system behavior in the context of simulation,
validation and consistency checking of a system design before final implementation MathWorks (2015c).
Hirzinger and Bauml (2006) are using Simulink MathWorks (2015b) in conjunction with MATLAB
MathWorks (2015a) to graphically model subsystems to later generate executables running on a realtime
target. The Microsoft Visual Programming Language Microsoft (2012b), as part of Microsoft Robotics
Developer Studio Microsoft (2012a), proposes developing the complete logic and program flow in a visual
development environment as it lowers the bar for beginner programmers. However, we decided to limit the
visual development in ArmarX to the definition of structure, used data types and data-flow in our statecharts
for the benefit that the user can write unrestricted C++ code. The RDE YARP Metta et al. (2006) also
offers means of graphical programming with the gyarpbuilder Paikan (2014), yet on another level. With
gyarpbuilder it is possible to connect continuous input and output data of components graphically and
to insert arbitrators in these connections to manipulate data-flow easily. RtcLink AIST (2015) from the
OpenRTM project offers a GUI to operate on RT-Components existing in a network. It can activate and
deactivate components as well as connect their ports. It leverages the capabilities of an established IDE by
providing the GUI as an Eclipse plugin.

This is a provisional file, not the final typeset article 4
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3 ARMARX STATECHARTS

The complexity of multi-component systems can be challenging in terms of program and data flow. Hence,
only skilled experts are capable of designing and realizing highly connected software systems as they are
needed on humanoid robots. With the hierarchical statechart paradigm one can easily visualize the whole
application by hiding the complexity through hierarchical views on the application. In the following, we
will introduce the basic concepts of hierarchical statecharts and the extensions in the robotics context,
and we will discuss the realization of distributed hierarchical statecharts in the robotics programming
environment ArmarX. Therefore, we discuss the original statechart formalism by Harel (1987). Following
this, we present the statechart principles in ArmarX and the differences to Harel’s formalism, and we
explain the technical details of the ArmarX statecharts.

3.1 Statechart Concept

Harel (1987) proposed in his work a new formalism to represent and describe complex systems. The
limitations of finite state machines (FSM, Gill et al. (1962)) motivated him to develop the more powerful
statecharts representation. Like FSMs, statecharts consist of states and transitions between these states,
but Harel introduced several new notation features compared to FSMs. The main aspect of statecharts
is to reduce the complexity for the human developer. First of all, Harel introduced a hierarchy of states,
meaning states can contain a full statechart themselves. However, these state levels are not completely
separated from upper or lower levels, since he proposed inter-level-transitions to directly jump into
sub-states. Further, orthogonality is used to parallelize the execution of different states on one statechart
level. Each orthogonality level of one state is executed in parallel, independently of the other levels. A
history-connector was added to give states a memory, controlling which sub-state is entered when a state is
re-entered. Based on the fulfillment of conditions, Condition-connectors control which state a transition
leads to. At last, each state can be connected to actions, being triggered during different phases of the state:
entering, leaving and an action that is executed repeatedly as long as the state is active.

3.2 Statecharts in ArmarX

With ArmarX, we provide a generic robotics software programming environment which combines event-
driven programming with distributed component-based robot applications. A robot framework in ArmarX
consists of several distributed components providing access to sensors and actors (i.e. the hardware),
offering computation functionality, and realizing a robot memory system as a common data source for the
robot software. On top of these robot components, the ArmarX statechart mechanism can be employed to
define the structure of the mid- to high-level robot behavior (i.e. the program flow). In order to gain full
flexibility within the robot applications, the programmer can use well-defined entry points to implement
user-specific source code. By separating structure from behavior, the task of building new robot software
applications can be supported through graphical user interfaces while maintaining full flexibility on source
code level.
ArmarX provides means of designing such statecharts textually and graphically with the possibility to link
them with user-code to perform custom operations. The graphical way is presented in section 4.1 in detail.

3.2.1 Differences to Harel’s formalism

The statecharts in ArmarX differ in several points from Harel’s original formalism. We omitted some of
Harel’s features to comply with our design principles (explained in the next paragraph) and to simplify the
statechart design process for the developer. We added one important aspect to our statechart, which is not
covered in Harel’s formalism: data-flow specification and control. The hierarchy and condition-connectors
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are available like in the original statecharts. We do not directly allow inter-level-transitions to not violate
the principle of modularity. The history-connector is not available since it conflicts with the data-flow
specifications, and to reduce side-effects during execution as well as to simplify the comprehension of the
current state of the system during introspection. Each entering of a state must provide the same internal state.
Orthogonality is currently only available in a smaller scope. Each active state can have an asynchronous
user-code function executed in a separate thread. Thus, the different hierarchy levels can run in parallel.

3.2.2 Design Principles

Key principles of the ArmarX statecharts are: modularity, re-usability, runtime-reconfigurability,
decentralization and state-disclosure.

• Modularity in our statecharts comes naturally through the individual states and explicitely specified
input and output. There is no direct interaction allowed between sub-states of different parent states.

• Re-usability is ensured, since every state can be used as a sub-state in any other state and has a specific
interface for interaction. The interface is specified with the state parameters like the parameters of a
function.

• Runtime-reconfigurability means that a statechart can be defined in configuration files and that the
statechart structure can be changed completely at runtime.

• Decentralization means that a statechart does not need to be resided in one process, but can be spread
over several processes and hosts. This enables load balancing and robustness. A crashed distributed
state component would not crash the whole statechart, but would just create an event for higher layers
that this specific state has failed (see 5.1 for an example of crash recovery).

• State-disclosure means that the current state and all its parameters can be inspected at runtime and
logged for future behavior adaptation via a network interface (see section 4.5).

3.3 Conceptual Details

Statechart Group 

State 2

State 1 
Instance

Success

Failure

Remote State 
Instance 

State 1

No Substates

Event triggered 
transitions State classes

State Instances

Figure 2. Statecharts in ArmarX are organized in groups. States are defined as state classes (State 1 & 2)
and instances thereof can be used in other states. States are changed through transitions triggered by
(conditional) events. Statecharts end with end-states (Failure, Success) or external events. State instances
can also point to remotely located state classes (green state) for distributed processing. A statechart is a
state itself and can be used again in other states.
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In the following, we are describing the main technical aspects of the ArmarX statecharts: sub-states,
transitions, state phases, data-flow, interfacing with external components, distributed statecharts, and the
dynamic statechart structure.
Following the composite pattern, a statechart in ArmarX is a state itself (see Figure 2). A state can contain
sub-states and transitions between these sub-states. Every sub-state is a state, so that all states can be used
as sub-states on a higher hierarchy level. States and sub-states can be compared to classes and instances in
object-oriented programming. When the states are defined they are not yet used anywhere, like classes.
After instantiation, states are always sub-states of another state. Transitions between sub-states are triggered
by events. Transitions do not only specify control-flow but also data-flow by attaching a parameter mapping
to each transition. This mapping contains instructions on how to fill the input-parameters of the next state
(explained in detail in paragraph 3.3.4).

3.3.1 State Instance Types

States are always of the same type. But there are a few different types of state instances, i.e. sub-states:

• LocalState
Local states are normal state instances with no special features.

• End-state
End-states trigger leaving the parent state immediately. They cannot contain sub-states or execute any
user code. End-states are one way to specify outgoing transitions of the parent state. The name of an
end-state specifies the name of the transition.

• RemoteState
Remote states behave like local states but point internally to a specific state in another process.

• DynamicRemoteState
Dynamic remote states are similar to remote states, but are like generic pointers. On entering, a
dynamic remote state morphs into a specific remote state based on parameters mapped during the
transition.

3.3.2 Transitions

Transitions describe connections between states. The developer specifies start- and end-state for each
transition and which on event the transition is triggered. The associated event to a transition can be fired
immediately when the state is entered or when a specified condition is fulfilled. It is possible to construct
arbitrary complex conditions with a boolean algebra and pre-defined or custom literals. Boolean terms
are installed in sensor-observers and evaluated on each associated sensor update. For example, one could
specify a smaller-condition on the distance between the hand and an object. This condition is installed in
the ObjectMemoryObserver since object relations stored in the object memory are observed here. Then, an
event would be sent to the state that installed the condition when the distance goes below a threshold.
Additionally, there is the initial transition, which does not have a start-state. The initial transition is triggered
immediately when the parent state is entered and leads to entering the initial sub-state of a state. Thus,
when the top-level state of a state hierarchy is entered all initial sub-states of each level are subsequently
entered.
End-States have the special ability to specify outgoing transitions in the parent state where they are used.
These transitions are triggered immediately when an end-state is entered. Thus, when an end-state is
entered, this end-state and the parent state are left.

Frontiers 7
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Data flow is realized through a parameter mapping definition which is attached to transitions (see
paragraph 3.3.4). One important detail to mention is that transitions can only created between sub-states
of the same parent state, unlike in Harel statecharts. We decided to create this restriction to keep the
modularity principle of states. If states would have transitions to other hierarchy levels or other parent
states, the parent state could not be reused without destroying that transition.

3.3.3 State Phases

During the visit of a state different phases are passed through: OnEnter, running, onBreak, and onExit.
To enable developers to execute own code in a state, each phase is linked to a user code function, i.e. C++
code. The functions onEnter, onBreak, and onExit are designated for setup and clean up. The running
phase is meant for complex, long running computations. The order of execution of the phases is as follows:
onEnter, running and then onBreak or onExit. Before entering a state (i.e. phase onEnter), the parameters
(explained in next paragraph) are mapped or set to default values. In the onEnter phase local variables
can be set to be mapped into sub-states or prepared for later phases. When a transition is triggered, the
onExit or onBreak phase is entered. Which phase is executed depends on the level where the transition was
triggered: as aforementioned, statecharts are hierarchical. Thus, it is possible for a higher state to receive
an event, although its sub-states are not finished yet. In this case, the sub-statecharts cannot finish in an
expected manner. To give the developer an option to deal with this unexpected behavior, each state provides
the onBreak phase. If no extra behavior is specified for the onBreak phase, the user-code function of the
onExit phase is executed.
Whenever a state is entered, its initial sub-state is entered as well. This means that after executing the
onEnter phase of a state, the onEnter phase of the initial sub-state is also executed immediately.
During each of these phases, the developer can access different parameter dictionaries in the user-code
functions, which are explained in the next paragraph.

3.3.4 Data-flow

All states are equipped with input- and output-parameter dictionaries to decouple states from external
global data storage. Input-parameters are read-only in user-code functions and specify all parametrization
the state needs for its computations. Output-parameters must be set in the user-code functions, contain the
results of a state, and can be used as source for input-parameters of the next state.
Additionally, so called local-parameters are provided and accessible by the user code. Local-parameters
are intended to be used for temporal local storage of parameters that are passed down to sub-states’ input,
passed up from sub-states’ output, or passed between different state phases. Once a state is left, all
parameters are reset in order to avoid side effects of previous visits.
Each parameter dictionary field consists of a string identifier and a variant data-type that can manifest itself
into arbitrary types. ArmarX already provides the basic types boolean, integer, float, double and string as
well as several types associated with robotics like vectors, matrices, 3D poses or probability distributions.
If needed, developers can implement new types easily.
These parameter dictionaries are defined by the developer and specify the interface of each state, i.e.
which data it needs for execution. Each parameter can be optional, can have a default value1, and/or can
be filled from several sources. We call this parameter mapping. When a state is used, its non-optional
input-parameters without default values need to be connected with other parameters of the same type.
Thus, a parameter mapping for each of these input-parameters needs to be created for each state instance.
The developer can choose between mapping from the output of a previous state from the same hierarchy

1 Consequently, if parameters have a default value, the optional flag does not make much sense any more, thus these two boolean flags basically form a tri-state.
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level, the input- or local-parameters of the parent state, or from a parameter attached to the transition-event.
Additionally, developers can map values from the output of a state to the local- or output-parameters of
the parent state. Later, when another substate needs the calculated value as an input parameter, the local
parameter is mapped to that input parameter. For example, generic counter states can be implemented
following this pattern, so that counting loop sequences of states can be defined without writing any
additional specialized custom code. With this, it is possibly to pass data from a sub-state to another state
later in the chain more easily. Otherwise the parameters would need to be mapped from state to state.
Figure 3 shows the different types of mappings during transitions.

Parent State

Previous State

Next State

Input Parameters
key1: value1
key2: value2
key3: value3

⁞

Local Parameters
key1: value1
key2: value2
key3: value3

⁞

Output Parameters
key1: value1
key2: value2
key3: value3

⁞

Output

Input

Event 
Parameters

Figure 3. Available types of parameter mapping during transitions. The green arrows show possible
mappings to the input parameters of the next state. The blue arrows show possible mappings from the
output of the previous state to the local and output parameters of the parent state. These mappings happen
after leaving the previous state and before entering the next state.

3.3.5 Interfacing with External Components

Statecharts that can only access functionality and data of themselves are not particularly useful for
robotics. Therefore, they must be able to access all available components. Since ArmarX is a heavily
distributed system, it cannot be assumed that required components are running in the same process or on
the same host. Hence, states require network proxies to these components and it should be ensured that
a state is only started if all required components are available. Dependencies for a group of states can
therefore be defined in a so called StatechartContext, which manages dependencies and enables states to
communicate with external components.

3.3.6 Distributed Statecharts

To our knowledge, one unique feature of ArmarX is the possibility to distribute statecharts over several
processes or hosts. To this end, states in ArmarX are organized in groups containing states that are
semantically similar (e.g. states needed for direct motion control) and share the same dependencies
to external components. Each group is executed as one component in a so called RemoteStateOfferer.
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These RemoteStateOfferers offer states to be used by others states as RemoteStates over the network.
For robustness, each RemoteStateOfferer is located in its own process. Thus, a RemoteState is inserted
whenever a state uses a state of another group as a sub-state. This process is completely transparent for the
developer. The only difference to a local state is that the RemoteStateOfferers name needs to be specified in
addition to the state name. Theoretically, each state could have its own group for maximized robustness.
Since distributed statecharts are slower than local statecharts, developers need to decide carefully when to
split statecharts in more than one group. Another advantage of distributed statecharts is the possibility to
deploy them close to their components. A statechart that makes heavy use of the robot’s memory should
ideally be located on the same host as the database servers, whereas a visual servoing statechart should be
close to the vision system and the host where joint-level control takes place. Figure 4 depicts the linkage
between different statechart groups and RemoteStates.

Statechart Group 1 on Host X

State 2

State 1 
Instance

Success Failure

Remote State 3 
Instance 

State 1

Statechart Group 2 on Host Y

State 3

State 4 
Instance

Success

Failure

State 4

No Substates No Substates

Figure 4. Statecharts in ArmarX are organized in groups which can be distributed over several processes
and hosts. Each statechart group resides by default in one process. By creating RemoteState instances it is
possible to incorporate states of another group transparently into a statechart.

3.3.7 Dynamic Structure

Most statechart frameworks fix the statechart structure to the structure designed by the developer. For
a learning robot or a robot with a planning component it is desirable to have a dynamically changeable
statechart structure. A planning component might want to interchange one state in a statechart with the
currently planned skill. To this end, it is possible to specify so called DynamicRemoteStates which behave
like generic pointers in the C programming language. As the name suggests, a DynamicRemoteState
connects to a state in another (or its own) process. It decides upon entering, which state it loads into itself
based on specific parameters passed by the transition. Additionally, it can specify more parameters that are
mapped into the loaded state. The correctness and completeness of the parameters is checked at runtime,
when the state is loaded.
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Wächter et al. The ArmarX Statechart Concept

3.4 Textual Statechart Specification

While the advised method to create statecharts is to use the Statechart Editor (see section 4.1) it is also
possible to specify statecharts textually:

void defineSubstates()
{

//add sub-states
setInitState(addState<InitialState>("Initial"));

StateBasePtr finalSuccess = addState<SuccessState>("Success");
StateBasePtr finalFailure = addState<FailureState>("Failure");

// add transitions
addTransition<Next>(getInitState(),

getInitState());
addTransition<TimerExpired>(getInitState(),

finalFailure);
addTransition<Success>(getInitState(),

finalSuccess);

}

First, each state needs to be added with its state class (TemplateParameter) and the instance name (parameter
of addState()). Afterwards, transitions between these sub-states can be created by specifying the start and
end-state and on which event this transitions should be triggered.

4 THE STATECHART CONCEPT EMBEDDED INTO ARMARX

Statecharts can be implemented in various ways by using a lookup table for transitions, by implementing
transition tables via switch-case statements, by implementing an object oriented state pattern, etc. Since
all these approaches are based on writing code to perform the state transitions, a lot of repetitive textual
description is usually necessary to define large statecharts. This textual description becomes rapidly
incomprehensible for other developers. To overcome this tedious and error prone work, a graphical
statechart editor was developed for ArmarX statecharts.

4.1 Statechart Editor: Defining Control Flow and Data Types

The goal of the statechart editor is to enable all users to create new statecharts with sub-states, to define
input and output parameters, and to connect states with transitions. The editor covers all major use cases
related to editing a statechart: creation of structure, definition of control flow and definition of data-flow
during transitions. The user is not required to write any custom code to create a functional statechart. We
decided to store the statechart definition in a custom xml-based format.

Figure 5a shows the main window of the statechart editor. Statecharts are organized in statechart groups.
A statechart group can contain multiple statecharts and sub-states. For further organization of statecharts,
folders and sub-folders are available. All statechart groups are listed on the left side of the main window.
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The user can open any statechart from the state library for graphical editing or reuse a statechart by
including it as a sub-state within another statechart.

When a statechart is opened for graphical editing, it is displayed on the right side of the editor. The editor
offers a variety of options to edit a statechart including specialized dialogs and context menus.

• Sub-states
By dragging a statechart from the statechart library into the right editing area a sub-state is created. A
state can be reused multiple times as a sub-state within a statechart. The editor displays sub-states in
two different colors: states from within the same statechart group are colored blue; states from different
statechart groups are displayed in turquoise (RemoteState). DynamicRemoteStates are violet.

• End-states
End-states are special sub-states, which are colored yellow. Each end-state implicitly creates an
outgoing event/transition. When the statechart transitions to an end-state, the execution within the
statechart is terminated. Additionally, the corresponding event/transition is triggered so that control
flow moves back to the parenting statechart where execution is continued. When transitioning to an
end-state, a statechart completes by terminating its execution entirely if no parenting statechart is
present, i.e. the statechart in question is the top-level statechart.

• Events & Transitions
As mentioned before, an end-state implicitly creates an event, which in turn implicitly creates an
outgoing transition. When a statechart is initially added as a sub-state, all outgoing transitions of this
sub-state are displayed as detached transitions. Transitions can be connected to other sub-states by
dragging them onto the target sub-state. To create a valid statechart, all transitions have to be connected
from a source state to a target state. The target state can be another sub-state, end-state or the source
state itself in case of a reflexive transition. When no detached transitions remain, the transitioning
behavior of the statechart is fully defined, which implies that no event is left unhandled. Additional
events can be specified in the state properties, which are fired from the code directly or on fulfilled
conditions.

• State Parameters
Each state has a list of input, output and local parameters. A parameter is defined by its name, data
type and an optional default value. Figure 5b displays the input parameters of the PlaceObjectSkill as
it is used in ArmarX. Role and usage of the three parameter types is similar to those of parameters,
return values and local variables of functions in imperative programming languages.

• Data-Flow
A transition can be accompanied by several data mappings that define the data-flow within the statechart
during this transition. The statechart editor does not support global data storage since global data
storage breaks the concept of data encapsulation. Data is only passed between states during a transition.
Data can be passed in 6 different ways as depicted in Figure 3. The editor ensures that only parameters
of the same type are mapped, while parameter mappings are edited in the transition dialog. An example
is given in Figure 5c .

For many use cases it is possible to compose a complete statechart by combining the capabilities listed
above and by using existing states from the state library. Writing any additional source code in C++ is not
required in these cases.
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(a) Statechart Editor (b) Input Parameters

(c) Transition Dialog

Figure 5: Dialogs of the Statechart Editor

More complex applications may require implementing custom behavior of states using source code. For
these cases the editor offers the option to jump directly into the source code of any state. Additionally, the
source code of a state can be viewed in the bottom panel below the graphical editing area (see Figure 5a).

4.2 Linking Implementation and Control Flow

Using a graphical definition for statecharts implies that all parameters, parameter types, parameters
mappings, events and transitions are identified via names. Since states are reusable and do not store
any information about previous or following states, all states have to share the same basic interface for
passing input and output data. We decided to define this interface using string-Variant maps as describe in
paragraph 3.3.4. Additionally, the state functions OnEnter, Run, OnBreak and OnExit can be implemented
in C++. Since C++ is a statically typed language without reflection, accessing an input parameter would
look similar to this:

float myInput = ((FloatContainer*)getInput("MyValue"))->get();
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The resulting code overhead to access input parameters and to write output parameters is substantial, if
one takes into consideration that not only basic types, but also lists and maps of any data type are supported.
Furthermore, the identification of parameters by strings and run time casts can lead to run time errors that
could have been detected during compile time. Instead, accessing an input without self written overhead
code should look like this:

float myInput = getMyValue();

To achieve this type safe and auto-completion friendly interface we employ a code generator that
generates custom wrapper functions to access inputs and outputs. Inside a generated function the parameter
is referenced by name and necessary casts are applied. Since these functions are generated automatically,
access by name and the casts will never lead to run time errors. Instead, all possible errors related to
parameter accessing occur at compile time. Detecting this kind of errors before executing the statechart
saves a lot of time during development.

4.3 Connecting Statecharts and ArmarX Components

One of the main aspects of statecharts in ArmarX is to interact with components. Since different
statecharts for different tasks often require different sets of components, each statechart depends on a set
of components. The statechart editor generates a complete list of all available ArmarX components from
component meta information. The user can pick any number of components from this list and add them to
the dependencies of the statechart as shown in Figure 6a. Every selected component can then be accessed
inside the states via a proxy object. Also, additional code is automatically generated so that the statechart
registers these dependencies within the ArmarX framework before start-up. Then, the dependency resolver
in ArmarX ensures that all necessary components are running before the statechart starts execution.

The list of component proxies for a state can be interpreted as the interface of this state to the ArmarX
framework. Similar to object oriented development our goal is to keep these interfaces small. For example,
a pick and place statechart requires components to operate the robotic platform, the arms, the hands, do
visual servoing, etc. Without encapsulation of proxies this would lead to a very wide interface for high
level tasks.

To approach this challenge, we offer a wrapping statechart group for each important component. Each state
within a group encapsulates a common task of the encapsulated component. For example, the HandGroup
offers states to open or close the hands. A high level statechart can then use these wrapper states to
indirectly interact with components without the need of a direct dependency on all components. E.g., the
PlaceObjectGroup needs to control the arms and hands as well as to perform visual servoing to increase
accuracy. This demands interaction with the KinematicUnit, HandUnit and MemoryX amongst others.
Each of these units is encapsulated by a statechart group, namely the MotionControlGroup, HandGroup
and VisualServoGroup. The PlaceObjectGroup uses these statechart groups to indirectly interact with the
encapsulated components as shown in Figure 6b.

4.4 Statechart Profiles and State Cloning: Reusing Statecharts for different Robots

When developing a new skill for a robot we usually start in simulation. During the transfer of the
statechart to the real robot, a lot of parameters usually need to be adapted. For example, when picking
up objects from a table, the height of the table might be different in simulation and in reality or the force
torque sensor thresholds differ. But these are just differences in parameterization and not on source code
level. Thus, our goal is to have the same sourcecode working in simulation as well as on the real robot.
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(a) Dialog for selecting components

Place Object Group

Visual Servo Group

Motion Control Group

Hand Group

use

MemoryX

TCP Control Unit

Kinematic Unit

Hand Unit

Statechart Groups Components

(b) Statechart groups encapsulating components to
reduce interface width on high level statecharts

Figure 6: Interaction of Statecharts and Components in ArmarX

To meet this requirement, we introduce the concept of profiles. When working with the statechart editor,
the user first selects which profile he or she wants to work with. Every parameter of every state can have
specialized values in different profiles, but it is also possible to define default values that apply to multiple
profiles if no specialized value is set.

Figure 7 displays the parameter edit dialog for the place object example mentioned above. The parameter
ObjectName is set to ‘GreenCup’ and is applied in simulation as well as on the real robot. The parameter
TableHeight is set to 900mm for simulation and to 800mm for the real robot. The statechart will be executed
with the appropriate parameters depending on the selected profile.

(a) Parameters for Simulation

(b) Parameters for the real Robot ARMAR-III B

Figure 7: Statechart Profiles

When reusing statecharts for new robots, simple parameter adjustment is often not sufficient. The underl-
ying behavior implementation of states might require adaptation or the statecharts need to communicate
with different components altogether. To cover these cases, the statechart editor offers the option of cloning
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complete statecharts, including all sub-states as well as cloning all state-dependencies of the statechart in
question. Dependencies are determined by finding all external statecharts that are used in the statechart
to be cloned. This process is applied recursively until the list of dependencies is complete. In addition,
the statechart editor checks if some of the dependencies have already been cloned for the target robot and
omits these states while cloning accordingly. When cloning states, it is possible to apply a prefix to all
new states to avoid later confusion. Additionally, all necessary C++ source code files are copied, renamed
and modified to match the new names. Statecharts yielded by the cloning process can be compiled and
executed without any manual adaptations or amending of source code.

Figure 8 shows an exemplary usecase, in which the statechart group for placing objects (PlaceObject-
Group) is cloned to be adapted for the iCub robot. In this example the HandGroup has already been cloned
previously and has been adapted for the iCub under the name ICubHandGroup. The editor recognizes that
the ICubHandGroup already exists inside the ArmarX iCub package. All newly cloned states that have a
dependency to the HandGroup will use the adapted ICubHandGroup instead of the original.

Figure 8. Cloning the PlaceObjectGroup for the iCub

4.5 System State Disclosure

Disclosing the state of a robotic system is one of the key features of ArmarX for diagnosing problems
at runtime and inspecting the internal state during development. Programmers are able to access data
of many parts of the system required for debugging, monitoring and profiling purposes. Different built-
in framework mechanisms provide this information, which includes sensor data, conditions, statechart
related events, as well as component dependencies and the execution state of statecharts and components.
Specialized visualizations are available for presenting and inspecting these different aspects. Textual output
is presented as a timestamped log, memory contents is displayed in a 3D view, and a plotter is provided
for one dimensional sensor data. Statecharts, their control-flow, and active states are visualized in the
StatechartViewer (see Figure 10). Within statecharts, conditions are used to generate events based on sensor
data and can be viewed as boolean expression trees as shown in Figure 9.
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Figure 9. Plugin for visualizing active and already expired conditions. Each subterm of the expression
tree is colored green upon fulfillment and red otherwise.

Figure 10. The current state of an executed statechart can be inspected live in the StatechartViewer. The
statecharts are layouted on the fly. The red state border signals that this state is active. On the right, current
state parameters of the selected state can be examined.

Additionally, ArmarX discloses the system state on a very low level for determining bottlenecks or
providing hints for partitioning the distributed application. On the component level, CPU-, memory-, and
network utilization data is accessible via the observer mechanism (see Vahrenkamp et al. (2015)) for easy
visualization with the graphical plotter. On the statechart level, state transitions and timing information
about state durations are available. To enable later processing and evaluation, this low level data can be
stored persistently in the memory structure provided by ArmarX.
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5 APPLICATIONS AND USE CASES

In this section, several applications and use cases realized with ArmarX will be presented which show how
distributed statecharts support robustness and provide both convenient usage and flexibility.

5.1 Robustness and Fault Recovery

In this use case, we show how fault recovery concepts are realized within ArmarX. This is important,
since most robotics software is written in C++, which allows writing program crashing implementations
easily. Hence, a robust robot framework must be able to deal with crashing applications in a way that other
components are informed but not affected by a component fault. Further, fault recovery mechanisms should
be provided for high and low level robot control.

Several concepts support robustness in ArmarX:

• Dependency Management: Due to the distributed nature of ArmarX, crashing components do not
affect other components in a non-deterministic way. If component A depends on another component B,
the dependency manager of ArmarX only sets A to the state connected after B is fully initialized and
connected. If component B stops working (i.e. crashes), A is informed and reset to its prior initialized
state. If the system is capable of restarting B, A will be set to connected again.

• Automatic Restart: The deployment mechanisms of the distributed Ice middleware can be used to
automatically check for running applications. In case an application (an ArmarX component) stopped
working, it can be automatically started again.

• High-Level Fault Recovery: If an implementation of a robot statechart is erroneous and causes the
statechart to crash, the encapsulating statechart is automatically informed that the execution of its
sub-state resulted in a failure. Hence, the high-level robot program can consistently handle defective
parts in the robot program which could result in a non deterministic behavior of the robot otherwise.

Figure 11. Left: The CrashTestMain state encapsulates a remote sub-state which faults from time to time
due to a segmentation fault. Right: The C++ code of the enter method of the state CrashingRemoteState
which causes a segmentation fault error in a non deterministic way. The error results in an immediate
termination of the application that executes the sub-state.

In the following we will show how a crashing sub-statechart can be handled by the robot program. In
Figure 11 a statechart is depicted on the left. The execution of the statechart starts with the MainState
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which emits the event EvProceed (1 in Figure 11) causing the execution to pass to the CrashingRemoteState
statechart (2 in Figure 11). A normal execution would result in a success event (3 in Figure 11), but as shown
in Figure 11 on the right, the statechart crashes in a non-deterministic way due to a segmentation fault. Such
a segmentation fault results in an immediate termination of the application executing CrashingRemoteState.
The encapsulating statechart CrashTestMain automatically gets informed by the ArmarX runtime system
via the Failure event (4 in Figure 11) and can recover from this faulty behavior in a deterministic manner
(5 in Figure 11).

5.2 Generic Robot Skills

ArmarX provides a library of generic skills, implemented as statecharts, which can be configured and
used for a wide variety of robots. The skills cover most basic capabilities needed to setup a robot skill
library. In addition to these skills, robot-specific statecharts can be implemented to account for specific
features of the platform. The set of generic skills currently provided by the ArmarX framework is listed in
Table 1.

Generic skills can be applied to a specific robot by configuring their parameters and by providing robot-
specific components on the mid-level of the ArmarX architecture (see Figure 1). Hence, statecharts provide
a dependency list of components which must be running before execution is possible. For example, the
ShapeHand skill needs a HandUnit to be running and the skill parameters must specify which shapes are
available for execution.

5.2.1 Usecase: Generic skills on different Robots

To show how skills can be applied to different robots, we present a usecase for YouBot Kuka (2015) and
ARMAR-4 Asfour et al. (2013), showing the required steps to use the skills MoveTCP and MoveJoints on
different robots.

In general, two steps are needed to program a robot platform with ArmarX. First, a basic set of (robot)
components must be configured in order to realize the mid-level structure of the robot software as shown
in Figure 1. Second, the initial set of skills has to be configured, defining the basic capabilities the robot
programmer can use to build robot applications.

Table 1. Generic set of skills available for use with different robots.

Skill Description
MoveJoints Moves joints either in position or velocity control mode
MoveTCP Moves the tool center point to a Cartesian target

VisualServo Implements a position-based visual servo approach
MovePlatform Moves a platform-based robot along a graph or to a specific point

LookTo Centers a Cartesian position with the head
GraspObject Picks up an object with an end effector
BringObject Picks up an object and delivers it to a specified location
ZeroForce Enables zero force control for an end effector
StopRobot Stops all movements

PlaceObject Puts down a grasped object
ScanForObject Applies a scanning strategy to search for an object

TrackObject Tries to track an object
ViewSelection Changes view direction, according to an automatic attention mechanism

Open/Close/Shape Hand Move hand to specific shapes
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a) Robot Components
Initially, several components must be realized for the different robots. Beforehand, the robot’s visualization,
kinematics and dynamics properties must be defined. In ArmarX, these properties are specified with
the Simox Vahrenkamp et al. (2012) robot file format. The minimal set of components needed for the
MoveJoints and MoveTCP skills is listed below:

• KinematicUnit: Encapsulates access on joint level. In the following examples, the robots are simulated
with kinematic simulation units provided by ArmarX. On a real robot, this component is connected to
the robot’s hardware layer. In case of ARMAR-4, the KinematicUnit connects to the ArmarX-RT layer
to communicate with the motors and sensors Vahrenkamp et al. (2014).

• KinematicUnitObserver: Observes the raw joint data in order to trigger events.
• RobotStateComponent: A network transparent representation of the robot used for forward and inverse

kinematics.
• TCPControlUnit: Allows control of the tool center point (TCP) in cartesian space.

Access to the real robot (i.e. to the drivers) needs to be implemented via the KinematicUnit component,
while all these components are already available in simulation and can be configured for use with a new
robot. Hence, a basic framework can be quickly realized by configuring provided ready-to-use components
of ArmarX.

b) Robot Skills
Once all components are set up for the specific robot, high-level robot program can be implemented. As
a starting point, several skills can be taken from the ArmarX skill template library and configured to be
used on the robot. In this example, the MoveTCP and MoveJoints skills are used and a waving statechart is
programmed via the Statechart Editor tool. As shown in Figure 12 and Figure 13, the realization can take
advantage of the ready-to-use skill library of ArmarX on such different robots as ARMAR-4 and YouBot.
In addition, the waving statechart that is used in Figure 13 at the top can be directly executed on the real
ARMAR-4 as shown in Figure 13 at the bottom. Such a skill transfer for the complex reactive grasping
skills (similar to 5.3) is also shown in the work presented by Paikan et al. (2015).

Figure 12. The waving statechart executed on YouBot, while running a kinematic simulation.

5.3 Reactive Grasping of Unknown Objects

In the context of the Xperience (2011) Project, we developed a statechart and extended accompanying
components to perform Reactive Grasping based on vision and haptics on the humanoid robot ARMAR-
III Asfour et al. (2006). This use case demonstrates reusability of ArmarX statecharts through extension

This is a provisional file, not the final typeset article 20
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Figure 13. ARMAR-4 executing a waving motion with the same statechart in simulation and on the real
robot.

of the programmed behavior and the incorporation of sensor feedback on different hierarchy levels. The
approach presented in Schiebener et al. (2011) was used to initially learn an object hypothesis and pose.
The pose as well as the forward kinematics are not perfectly exact. Therefore, correcting actions during
grasping are necessary. Guidance of the hand during the grasping approach phase is based on visual
servo. To accommodate for inaccuracies, we need an extended visual servoing that reacts on collisions of
the hand with the object. Instead of implementing a specialized version of visual servoing we created a
wrapping statechart called Visual Servo with Collision Detection, which is used in our Reactive Grasping
(see Figure 14).

In parallel to the statechart execution, three different collision detection components are running to detect
visual collisions, tactile collisions and collisions inferred from proprioceptive data. These components run
independently, monitor different sensors of the robot, and offer event notifications usable in statecharts. The
wrapping statechart Visual Servo with Collision Detection monitors the output of the collision detection
components by installing conditions with given thresholds on the output data. Then, the visual servoing
statechart is started as a sub-state. If any of the conditions is met during servoing the appropriate event is
fired. The wrapping state Visual Servo with Collision Detection is exited and the execution of all sub-states
is stopped. Hereby, the visual servoing is interrupted and the collision can be handled appropriately by
correcting the grasp pose. After correcting the pose, the statechart transitions back to the extended visual
servoing.

By wrapping the visual servoing skill in a statechart, we can reuse and extend the visual servoing without
modifying it. The used visual servoing skill is the standard visual servoing from the ArmarX statechart
library.
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Visual Collision
Detection Component

Tactile Collision
Detection Component

Proprioceptive Collision
Detection Component

Figure 14. Simplified statechart for Reactive Grasping in the Xperience project

5.4 Dynamic State Replacement

One use case for the dynamic state replacement feature of ArmarX is the combination of a symbolic task
planning system with ArmarX statecharts for execution. To connect the planning system to statecharts, a
control statechart, as shown in Figure 15, was build around one DynamicRemoteState (depicted in violet).
Since statecharts do not offer an interface for remote procedure calls, it is not possible to communicate
with states directly. States react on external changes by observing changes in datafields. Thus, we inserted
an additional component, the plan step observer, on which the statechart can install conditions to receive an
event (EvNextStepPlanned) on changes related to the current planning step. The planning system manages
this datafield, containing the current action and its parameters. After the event was received, the desired skill
statechart is loaded into the DynamicRemoteState and is directly executed. With this powerful mechanism
it is possible to implement interactive and dynamic robotic applications in a consistent and robust way.

6 CONCLUSION

We presented the statechart concept of the robot development environment ArmarX and showed how high
level robot programming can be realized in a robust and convenient way. The event-driven statechart appro-
ach of ArmarX helps realizing important features such as increased robustness through distributed program
execution, convenient programming through graphical user interfaces, and versatility by interweaving
dynamic statechart structure with custom user-code. These features build a solid base for higher-level robot
program implementations which is accompanied by advanced framework capabilities such as reusable
robot programs and the presented ability to transfer skills to different robots.

In future work, we will improve the framework in terms of high-level robot program development,
validation and debugging. Therefore we will introduce orthogonality into the statechart concept to enable
parallel statechart structures. Currently, parallel execution is only supported between hierarchy levels, but
there are applications in which orthogonal skill execution eases the design of the high level robot program.
In addition, we will work on automatic parameter and statechart validation in order to reduce potential
faults in robot programming and to speed up the development process. Furthermore, we plan to offer
debugging features on statechart level such as break points in statecharts, which will reduce the time spent
for development and debugging.
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Symbolic Planning System Plan Step Observer

Sets plan step

Observes for 
new skill result

Observes for 
new plan step

Set skill results

Figure 15. Planning statechart with a DynamicRemoteState (violet) that can be changed at runtime.
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