
Project Acronym: Xperience
Project Type: IP
Project Title: Robots Bootstrapped through Learning from Experience
Contract Number: 270273
Starting Date: 01-01-2011
Ending Date: 31-12-2015

XXPERIENCEPERIENCE..ORGORG

Deliverable Number: D1.1.1
Deliverable Title: Initial definition of Xperience benchmarks
Type (Internal, Restricted, Public): PU
Authors: G. Metta, T. Asfour, A. Ude, N. Krüger, Ch.

Geib, J. Piater, F. Wörgötter, M. Steedman, G.
Sandini, R. Dillmann

Contributing Partners: ALL

Contractual Date of Delivery to the EC: 31-07-2011
Actual Date of Delivery to the EC: 06-02-2012

Contents

1 Executive Summary 3

2 Cognitive architecture 5

2.1 Definition . 5

2.2 Requirements . 7

2.3 Object-Action Complexes - OACs . 12

2.4 Structural bootstrapping . 15

2.5 Components . 17

3 Benchmarking 21

3.1 General considerations . 21

3.2 Benchmarks for learning . 22

3.2.1 Key performance indicators . 22

3.2.2 Scenarios . 23

3.3 Benchmarks . 24

4 Software poll 28

2

Chapter 1

Executive Summary

This deliverable has several goals in the context of Xperience. It first tries to provide the
foundations of a model of cognition that incorporates development, sensori-motor coor-
dination, affordances and high-level prediction, interaction and communication in terms
of “structural bootstrapping”. Secondly, it proposes a set of benchmarks to formalize the
question of how to measure cognitive systems performance in the context of the definition
of cognition set above. Finally, it tries to provide a “paper” cognitive and software archi-
tecture to implement cognitive skills based on development, affordances and “structural
bootstrapping”.

In the following, we will analyze first our stance on cognition, followed by a sketch of a
cognitive architecture which tries to merge different views on the development of affor-
dances and their use to reason about using structural bootstrapping. The rationale of this
approach to cognition stems from the following consideration [from the Xperience Annex
I]:

Current research in enactive, embodied cognition is built on two central
ideas: 1) Physical interaction with and exploration of the world allows an agent
to acquire and extend intrinsically grounded, cognitive representations and, 2)
representations built from such interactions are much better adapted to guiding
behavior than human crafted rules or control logic. Exploration and discrimi-
native learning, however are relatively slow processes. Humans, on the other
hand, are able to rapidly create new concepts and react to unanticipated situ-
ations using their experience. “Imagining” and “internal simulation”, hence
generative mechanisms which rely on prior knowledge are employed to pre-
dict the immediate future and are key in increasing bandwidth and speed of
cognitive development. Current artificial cognitive systems are limited in this
respect as they do not yet make efficient use of such generative mechanisms
for the extension of their cognitive properties. [page 5 - Summary]

As mentioned in the Annex I, this is only version 1.0 of the cognitive architecture design,
which will be refined and augmented with technical details throughout the continuation of
the Xperience project. Especially, results from actual implementation and consequently
experiments will be used to improve the initial design. The evolved cognitive architecture
will be described finally in D1.2.1 (due at month 31). We plan to re-run the exercise of
improving the architecture description approximately every 12 months in order to keep
the structure up to date with the development of the corresponding software modules.

3

Xperience 270273 PU

In summary, this deliverable (and our modus operandi) plans for a set of operational (read
practical) steps as follows:

• definition of a developmental cognitive architecture;

• use the cognitive architecture to constrain the software architecture (also described
here);

• definition of a set of benchmark to validate the implementation;

• detailed definition of the implementation (in software) and of the scenario (e.g.
kitchen scenario, etc.).

These steps are described in the following and shown diagrammatically in figure 1.1. We
start by defining a generic cognitive architecture and proceed to the implementation of
some of its salient features which are then validated through the benchmarks. The result
of the testing and validation phase can both signal revisions in the implementation and in
the structure of the cognitive architecture itself. This deliverable describes the Cognitive
Architecture and the Benchmark blocks of the diagram. The Software Architecture consists
of the work developed in several WPs and will be the result of the integration effort of
WP5.

In this work, we are particularly indebted with the view on cognition provided and de-
veloped by the RobotCub and PACO+ projects from which we have absorbed ideas con-
siderably and founded our recent work. We would like also to thank David Vernon, much
of this work has been taken (inspired in parts and sometimes verbatim) from his book on
the development of cognition which is in turn derived from RobotCub [VvHF10].

Figure 1.1: A block diagram showing our modus operandi in Xperience. The cognitive
architecture and benchmarks are described in this deliverable, while the implementation
is the result of the work developed in the other WPs.

4

Chapter 2

Cognitive architecture

2.1 Definition

Our work is founded on the premise that (a) cognition is the process by which an au-
tonomous self-governing agent acts effectively in the world in which it is embedded, that
(b) the dual purpose of cognition is to increase the agents repertoire of effective actions
and its power to anticipate the need for and outcome of future actions, and that (c)
development plays an essential role in the realization of these cognitive capabilities.

Cognitive agents act in their world, typically with incomplete, uncertain, and time-varying
sensory data. The chief purpose of cognition is to enable the selection of actions that are
appropriate to the circumstances. However, the latencies inherent in the neural processing
of sense data are often too great to allow effective action.

Consequently, a cognitive agent must anticipate future events so that it can prepare the
actions it may need to take. Furthermore, the world in which the agent is embedded is
unconstrained so that it is not possible to predict all the circumstances it will experience
and, hence, it is not possible to encapsulate a priori all the knowledge required to deal
successfully with them. A cognitive agent then must not only be able to anticipate but it
must also be able to learn and adapt, progressively increasing its space of possible actions
as well as the time horizon of its prospective capabilities. In other words, a cognitive
agent must develop.

There are many implications of this stance. First, there must be some starting point for
development – some phylogeny – both in terms of the initial capabilities and in terms
of the mechanisms which support the developmental process. Second, there must be a
developmental path – an ontogeny – which the agent follows in its attempts to develop
an increased degree of prospection and a larger space of action. This involves several
stages, from coordination of eye-gaze, head attitude, and hand placement when reaching,
through to more complex exploratory use of action. This is typically achieved by dexterous
manipulation of the environment to learn the affordances of objects in the context of ones
own developing capabilities. Third, since cognitive agents rarely operate in isolation and
since the world with which they interact typically includes other cognitive agents, there
is the question of how a cognitive agent can share with other agents the knowledge it has
learned. Since what an agent knows is based on its history of experiences in the world, the
meaning of any shared knowledge depends on a common mode of experiencing the world.
In turn, this implies that the shared knowledge is predicated upon the agents having a

5

Xperience 270273 PU

common morphology and, in the case of human-robot interaction, a common humanoid
form.

While this view is fairly broad in scope, we argue that it is not enough to build artificial
cognitive systems that show fast acquisition of new skills from a small number of examples
(possibly one). That is, the definition is complete but in practice, we need mechanisms
that enable fast learning. To this end we would like to augment the generic enactive
view of cognition sketched above with the so-called “structural bootstrapping”. Struc-
tural bootstrapping is an idea taken from child language acquisition research. Structural
bootstrapping is a method of building generative models, leveraging existing experience
to predict unexplored action effects and to focus the hypothesis space for learning novel
concepts. This approach enables rapid generalization and acquisition of new knowledge
and skills from little additional training data. Moreover, thanks to shared concepts, struc-
tural bootstrapping enables enactive agents to communicate effectively with each other
and with humans. Structural bootstrapping can be employed at all levels of cognitive
development (e.g. sensorimotor, planning, communication). In a sense, together with the
standard view of discriminative learning methods whose inference is typically supported
by generic basis functions, here we advocate the use of a new inference model which sup-
ports the use of complex patterns that are simultaneously more specific and more powerful
in providing generalization from small training sets and transport of concepts across do-
mains. Therefore, even if both ways of making inference from data eventually amount to
what basis function is employed, in practice we need to consider different methods because
the implementation can vary considerably. It can be the case that structural bootstrap-
ping patterns are engineered in rather than learned. Effectively, joining different methods
in a layered architecture, enables the type of powerful learning advocated recently by the
“deep learning” community.

By equipping embodied artificial agents with the means to exploit prior experience via
generative inner models, the methods to be developed in Xperience are expected to enable
efficient learning through exploration, predictive reasoning and external guidance.

The concept of structural bootstrapping is derived from early language acquisition pro-
cesses described for example by Trueswell and Gleitman [TG07], who point out that a
crucial component of children’s post two word stage language acquisition is what Gleit-
man [Gle90] called syntactic bootstrapping, whereby, once basic syntax is learned, the
syntactic type of a novel world can be worked out generatively (often on one trial), from
the type that would complete a parse, while the meaning can be established from the
context that supports it. For example, an unknown word may be assigned the role of
the acted on entity, if being recognized from its position in the sentence as the object. If
subject and verb are known to the agent, the actual effect of the execution of the action
encoded by the verb (the effect of the action) can be inferred, too, leading to an infer-
ence about the changes (of the attributes/adjectives of) the object. Thus, the recognition
of the underlying grammatical structure together with partial knowledge of some words
leads to a powerful predictive process by which in a single shot the correct meaning of
the missing parts can be inferred.

In Xperience we generalize this notion to structural bootstrapping and employ it at all
levels of the cognitive domain. Solutions found for one problem, can be transferred to
similar domains. For example, different grippers, pliers, pincers, and tongs all share
structural and action similarities that allow an agent that knows how to use one of them
to plan for the use of the others (possibly with some fine tuning of motor skills).

6

Xperience 270273 PU

Effectively, the Xperience cognitive architecture can be characterized as hybrid: i.e. us-
ing simultaneously features of cognitivism and of the so-called emergent view of cogni-
tion [VvHF10].

2.2 Requirements

The proposed cognitive architecture aims at integrating the concept of “structural boot-
strapping” with the autonomous development of affordances. Several keywords that dis-
tinguish the two components are shown in the table below:

Xperience previous projects

cognitive model cognitivist emergent
learning type generative discriminative

data flow inside-out outside-in
representation punctuated distributed

symbols sub-symbolic
discrete continuous

training set size ≈ 1 large

The generic a priori requirements of this architecture are summarized below in part derived
from the Annex I of Xperience and in part from our previous work in the RobotCub and
PACO+ projects:

• the proposed architecture has to incorporate the autonomous learning (development)
of the basic symbolic representations of the cognitive architecture, which are in the
following called OACs (object-action-complexes [KGP+11]): a precise definition is
reported later;

• by virtue of the previous remark, the architecture need to define a phylogenetic
configuration of the system and its developmental rules;

• the proposed architecture has to define mechanisms to learn the “structures” needed
to apply generative methods;

• as a consequence, motivations play a fundamental role both in promoting the de-
velopment of representations in outside-in processes and in the learning of the gen-
erative models;

• the proposed architecture has to define the interaction of the outside-in and inside-
out processes;

• the architecture can (and should) reuse its components (development and structural
bootstrapping) also in the interaction with other cognitive agents;

• the previous remark enables a definition of cooperation, interaction and commu-
nication in terms of the generative methods, that is, in terms of the possibility of
reusing knowledge across domains thanks to improved generalization;

7

Xperience 270273 PU

The cognitive architecture has to address the technical and scientific goals of the project
and it is in fact the foundation of our work in the following periods. In particular, it has
to:

1. employ a stimulus driven developmental approach (outside-in) to generate se-
mantic sensorimotor categories constituting the basic experience of the system.
These categories can be seen as the elemental token of exchange with higher
level cognition [Cla01]. Fundamentally, these developmental processes rely on
explorative learning and adaptation;

2. augment the above mechanism for the acquisition of a shared epistemol-
ogy with structural bootstrapping for the generative extension of knowledge
(inside-out). These generative models are subsequently validated and further
extended through experience;

3. combine these two processes into a dynamic loop for behavior-based model
updating;

4. use the developed sensorimotor categories as a foundation for natural lan-
guage understanding and communication between humans and robots. In this
respect, we will prove the transferability of sensorimotor categories between
cognitive agents using multiple robotic platforms and human experimenters in
order to build complete systems of interacting agents;

A fifth goal of the project, that is to

...transfer the above aspects to technology and create a complete system
by fundamentally focusing this effort on merging outside-in techniques with
inside-out model-building, which represents the scientific core concept of Xpe-
rience. This will be done by implementing and validating the theory on robots
of humanoid shapes and letting them interact with each other or with humans.
Finally, we will develop validation tools and procedures to assess progress.

is clearly an overarching goal of our work (providing a set of constraints) that forces
us to make plans for a cognitive architecture that can be implemented into physical
instantiations of cognitive systems and, in particular, instantiations shaped as humanoid
robots.

At the general level, the Annex I of Xperience is considerably precise at identifying some
elements of the architecture. More in details:

• exploration based knowledge acquisition – Xperience will continue to use a
stimulus driven developmental approach to provide the system with a mechanism
for creating experiences and for the formation of semantic sensorimotor categories
by grouping (generalization). This outside-in process is explorative and data-driven
and relies on development and sensorimotor coordination. At its highest level,
through exploration based learning the outside-in process delivers affordances cre-
ating a grounded symbolic layer. Following the developmental roadmap defined
in [VvHF10], we require the architecture to include the following skills:

8

Xperience 270273 PU

– posture and locomotion

– gaze

– reaching

– manipulation

– social abilities

complemented by vision (and in general perception) of space and objects. We will
see that each mode of action needs to be supported by specialized visual primitives
(and core systems [VvHF10]). In order to develop these skills autonomously (data-
driven, outside-in), we require the architecture to define the system’s phylogeny and
ontogeny. That is, we have to define the system’s initial state and its developmental
rules. Furthermore, such architecture has to enable the following possibilities (at
least at the level of sensorimotor control):

– perception and action: clearly, the architecture has to provide means for
controlling action via perception, detect mistakes and correct them through
learning or local adaptation (i.e. in closed-loop);

– anticipation: since feedback control (closed-loop) is not always well adaptive
because of delays, a form of prospection is required, this is implemented by
learning internal models and relying on them for open loop control;

– adaptation: internal models are not perfect and modification to the controller
might be needed continuously to an ever changing system’s or interaction dy-
namics. This is true both for low-level motor control as well as to high-level
interaction dynamics and therefore, learning is required at all levels;

– motivations: exploratory as well as social motives keep the system in a contin-
uous state of “excitation” and acquisition of new knowledge. They are required
to guarantee that the cognitive system can develop in autonomy;

– autonomy: this is the ability of the system of maintaining its structural consis-
tency (homeostasis) while interacting with the environment and simply stated
it is a requirement to forbid fiddling with its structure and internal state once
it’s been deployed. Clearly, this is a very high level property of a cognitive
system which we might only see realized if we are completely successful.

To summarize, we need to be able to deploy a set of functionalities on our platforms
and for each of them define both the phylogeny and ontogeny (that is, the initial
state and the learning rules). For each motor control skill, we will implement both
closed-loop control (servoing) and anticipation (open loop model based control)
together with machine learning methods that starting from data improve the internal
models of the system’s interaction with the environment. Examples of the machine
learning methods are supervised function approximation techniques (e.g. Gaussian
processes) and reinforcement learning. The architecture will include motivations
and also in this case, we will consider both an initial state (core motives) and
development (intrinsic system’s goals).

A further element of development has to do with the OACs, the Object-Action Com-
plexes, which are the link between continuous sub-symbolic representations of the
motor acts and the punctuated representations needed for structural bootstrapping

9

Xperience 270273 PU

(and for applying structural bootstrapping in prediction, interaction and communi-
cation). OACs have been defined in the PACO+ project and will be considered in
a later section.

• building of generative models must rest on a solid methodological basis. Here
Xperience transfers methods developed from research on human language acquisi-
tion, by which humans generalize knowledge across domains. We use structural
bootstrapping for the generative extension of knowledge. Driven by motivation, us-
ing the current system’s goal, the agent will internally simulate and reuse experience
to generate potential (novel) solutions to satisfy the goal. This way the system is
endowed with the ability to imagine new solutions via generalization beyond the
observed examples, to predict future events from past experiences, and to explain
observed events (imagining a causal chain leading to that event).

Cognitive agents which have a memory and some model of their world – hence,
which have already stored some sensorimotor categories – can perform one-trial
identification, hence cognition in its original sense. Learning of this kind requires a
generative theory that covers more instances than have hitherto been encountered,
so that novel actions and objects can be recognized either as instances of known
concepts or by augmenting the theory with a new concept of a known type. The
latter process crucially involves inference from the state of the world under the cur-
rent internal knowledge representation, to a compound concept of the known type.
In the limit, this process becomes the full scientific hypothetico-deductive method
including the collection of further knowledge that is not currently internally repre-
sented at all. We assume that the intermediate process of structural bootstrapping
is a crucial component of cognitive development. For example, an agent who knows
how to peel potatoes with a knife, and who encounters a potato peeler, may well
not understand its function on the basis of appearance alone. However, a single
demonstration of its use will be understandable in terms of an existing theory of
peeling potatoes, so that its syntactic type and role in existing plans is immediately
available. The main remaining problems are those of motor learning, and possi-
bly some hypothetico-deductive exploration of other predicted affordances (such as
peeling other things).

These methods will be applied in the Xperience cognitive architecture not only to
language but in the wider context of the syntax of actions (represented as OACs in
the general case).

In summary, we see structural bootstrapping as the following process:

– The robot learns patterns of recurring combinations of symbols (OACs);

– These patterns are general enough to be transferred across domains (they act
as templates for combinations of OACs);

– Therefore, the same patters can be used to “try” inference in domains which
are different from those where the patterns were initially acquired (the process
of structural bootstrapping).

• integration of outside-in and inside-out processes – a generative dynamic
loop for model updating is created in a natural way. This is done by the interac-
tion between outside-in and inside-out, which will be employed in Xperience as one
major drive for the generation of knowledge. Note, multiple processes and inner

10

Xperience 270273 PU

loops are not excluded in this dynamic architecture, by which internal processing
can take place. This question is essentially concerned with the stable interaction
of the outside-in processes with the inside-out processes. Stimulus driven processes
are responsible for learning through sensorimotor exploration while the generative
processes are responsible for the instantiation and validation of the internally con-
structed models. Their interaction must be modulated to ensure stable and improv-
ing operation of the system (autonomy preservation). Like in natural systems, this
is accomplished by a motivational system (sometimes referred to as the affective
system) which is ultimately concerned with improvement of the predictive capacity
of the cognitive system and the expansion of its possible modes of interaction with
the world around it.

This is a property of the architecture as a whole rather than anything specific to
a module or subsystem. That is, we need to modulate the interaction of outside-
in vs. inside-out processes and make sure they give rise to meaningful and stable
overall dynamics which in practice enables the acquisition of new “symbols” (new
OACs) and their use for new “patterns” (syntax) in the overall aim of managing
the system’s behavior.

• cooperation, interaction and communication – we expose the same develop-
mental processes (the same cognitive architecture) of exploration based and gener-
ative learning not just to a world of objects but also to a world with other cognitive
agents. These cognitive agents present much higher number of degrees of freedom
in their behaviors and possible reactions to the robot. Other cognitive agents can
be seen as more complicated “objects” in a sense possessing a complex dynamical
behavior.

However, the same generative principles can be employed. If structural bootstrap-
ping discovers a model which is shared by two agents, e.g. let’s imagine the robot
and a person, then effectively for the robot the number of degrees of freedom of
the responses of the other agent (the person) will be effectively lower since his/her
behavior becomes more predictable. The robot and the person share a common
experience of the world. In this way, the consensual understanding of the world
that the robot inhabits will be consolidated and expanded in its updated generative
model.

The core elements of cooperation, interaction and communication and their devel-
opment are described in the Annex I and they are reported here for completeness.

The earliest symbolic communications of a child, including its earliest use of its first
language, are necessarily attached to a previously established conceptual system
for representing the world, including other individuals. Much of the apparently
explosive increase in the child’s cognitive abilities that follows the onset of language
can be argued to stem from the ability to recognize the semantic type of a concept
that is in established use in adult utterance, and whose content could in principle be
inferred from the context under the child’s existing theory, but which, unless aided
by the communication, the child might never discover.

Gleitman [Gle90] called this process “syntactic” bootstrapping of language, and
showed that it is central to acquisition of verbs like “think” and “believe”, and the
corresponding concepts. It is the linguistic manifestation of the more general process
of generative structural bootstrapping outlined earlier. It is crucial to this process
that the child already has a knowledge representation that will allow it to entertain

11

Xperience 270273 PU

the new concept. We claim that the same process of structural bootstrapping can
be applied in artificial cognitive systems, with the same prerequisite of a generative
symbolic theory capable of expressing the concept to be learned. The same pro-
cess underlies even later cognitive processes such as learning from explanation and
ostentation, to formalize much abused notions like “imitation” and “imagination”.

Structural bootstrapping using generative models allow us to successfully approach
the problem of advanced interaction and communication between agents because
it enables one-trial identification by inner simulation (imagining). Similar to infer-
ence from self-observation, through structural bootstrapping agents will be able to
(partially) infer intentions of other agents.

This approach enables the efficient transfer of information and of cognitive concepts
between different platforms including the interaction and communication between
the human and the robot.

2.3 Object-Action Complexes - OACs

The definition of OACs is taken verbatim from the work of Wörgötter et al. [WAK+09]
which is in turn part of the work of the PACO+ project. We will also briefly address the
alternative view of a similar concept derived from the RobotCub project.

OACs had first been discussed by the European PACO+ Consortium as a possible way
to better formalize the requirements for a machine to approach some level of cognitive
complexity. OACs are related to state-action transitions e.g. known from machine learn-
ing [GMP+06][SB02].

They rest on the suggestion that objects and actions are inseparably intertwined. Starting
with Gibson’s notion of affordances: A hollow thing with liquid may suggest drinking.
For this we define an OAC formally by

[
O →A O′], which says object O suggests action

A and transforms under this action into object O′ (cup-full to cup-empty) as the final
outcome of this action. Note, rigorously one should define the OAC with respect to the
Attributes (full, empty) of an object that get altered by an action. This should be kept
in mind when using the abbreviated notation

[
O →A O′]. The notion of OACs, however,

goes beyond Gibson and the intertwining of Objects and Actions becomes more evident
when considering the role of Actions more closely. While objects may suggest actions, it is
often the action(-plan) that defines the object-ness of a physical thing. This become clear
by following example: It is the action of drinking that makes this thinghollow,full “a cup”
(“a container”, etc.). The decisive influence of the action becomes immediately obvious
if you plan to turn the (same!) thingsolid,bottom upside down to use it as “a pedestal” for
some figurine for your mantelpiece decoration. Hence, the planned and executed action
turns a thing with some (required) properties into a meaningful object. Depending on
the planned actions, different properties of the same thing (hollow, full vs. solid bottom)
become important. Clearly it is a very difficult (cognitive) problem for an agent to find
out which properties are important and which are not.

Therefore, according to this definition an OAC consists of:

• the object O;

• the action A;

12

Xperience 270273 PU

Figure 2.1: (a) General affordance scheme relating actions, objects (through their char-
acteristics) and the resulting effects. (b) A particular BN encoding affordances.

Inputs Outputs Function

(O,A) E Predict effect

(O,E) A Recognize action & planning

(A,E) O Object recognition & selections

Table 2.1: Using affordances for prediction, recognition, and planning.

• the effects on the object that make it into O′.

Similarly, the RobotCub project arrived at a definition of affordances that is strikingly
compatible to that of OACs. The route that led to the RobotCub’s definition was slightly
different owing to the collaboration with brain scientists. In this case we decided to
consider explicitly the effect E on the object rather than the new object’s state O′. For
any practical implementation this difference is irrelevant.

For learning affordances, RobotCub’s model used Bayesian Networks (BN) to model
the dependencies between robot actions, object characteristics, and the resulting effects
[MNN+10]. Briefly, a BN is described by a set of nodes that represent random variables,
a set of directed arcs that encode conditional dependencies and a set of conditional prob-
ability distributions. A BN encodes causality since an arc from a node X to a node Y
can be interpreted as X causes Y . We assumed that the iCub has developed certain skills
prior to be able to learn affordance: a motor repertoire (A), perhaps derived from expe-
rience, an object feature repertoire (F) also potentially acquired via object manipulation
and the effects (E) resulting from manipulating the environment.

The interaction of the iCub with the environment is therefore formalized in using one
action a from A on certain objects with features F (or a subset of them) to obtain effects
e from E. This information can be used to estimate the BN structure and parameters
using different learning algorithms. These parameters can be updated online as the robot
performs more experiments. Also, they can be updated by observation of other agents.
Examples are shown in Figure 2.1.

This model has some nice properties; for example, affordances can be learned au-
tonomously by experience and by self-observation, restricting the update of the probabil-
ity distributions. Features can be either selected or ignored, depending on their salience,
and the model can be used to perform prediction, recognition, and planning, depending
on how the affordance network is traversed. This traversal is based on probabilistic

13

Xperience 270273 PU

queries. These queries may take as input any combination of actions, objects and fea-
tures and compute conditional distributions of one or more of the other variables. Table
2.1 summarizes some of the basic operations that can be performed with the network.

From these compatible description of OACs, it is clear that they represent the link between
the sub-symbolic world – having to consider continuous actions – and the symbolic nature
of objects as specific “chunks” of the world in the agent’s own epistemology. In the
following, we will need to be able to consider, represent and store at least the three
components of the OACs specified above, i.e. objects, actions and transformed objects
(or effects) with the caveat that what changes is a specific attribute (or set of attributes) of
the object (empty, full, etc.). Advanced details of the representation of OACs is also shared
by the two models, e.g. both have a concept of reliability of the model (probabilities).

The latest definition of OACs combines elements of these two views into a single rep-
resentation which has been completely detailed in the paper by Krüger and colleagues
[KGP+11] as part of the PACO+ project. This text is repeated in D2.3.1. We think that
it is important to clarify it here too since it makes the discourse more complete.

OACs formalize sensorimotor schema [Pia76, CA97] and by that generate the required
data for generalization. An OAC is a dynamic entity that unifies the perceptions and
associated actions involved in the performance of a habitual behavior which is described
in detail in the paper mentioned earlier [KGP+11]. The schema represents knowledge
generalized from all the experiences of the behavior generated. It also includes knowledge
about the context in which the behavior was performed as well as expectations about its
effects. During cognitive development OACs are refined and combined. An OAC definition
is split into three parts, (1) a symbolic description consisting of a prediction function
defined over an attribute space, together with a measure of the reliability of the OAC,
and (2) an execution specification that defines how the OAC is executed by the embodied
system and generates experience in terms of ‘experiments’ and (3) a specification of how
the learning associated with the OAC is realized based on the ‘experiments’ generated by
the executed OACs. More formally (see also figure 2.2):

Definition 2.3.1. An Object-Action Complex (OAC) is a triple:

(id, T,M) (2.1)

• id is a unique identifier for an execution specification,

• T : S → S is a prediction function defined on an attribute space S encoding the
system’s beliefs as to how the world (and the robot) will change if the control is
executed, and

• M is a statistical measure representing the success of the OAC within a window
over the past.

An execution function execute (see below) can map an OAC id to an ‘experiment’ which
is defined in the following way:

Definition 2.3.2. Given an attribute space S and an OAC with identifier id defined on
S, an experiment is a triple:

(s0, sp, sa) (2.2)

where:

14

Xperience 270273 PU

Figure 2.2: Graphical representation of an OAC and the OAC learning problems. This
shows how the actual state wsa (corresponding to sa in the model) resulting from the
execution of the control program CP diverges from the state sp predicted by the OAC’s
prediction function T . This divergence drives the learning (i.e. refinement) of the OAC.
For further explanation see text.

• so ∈ S, captures the state of world before execution

• sp ∈ S such that OAC id predicts that state sp will result from its execution in so,
i.e., sp = Tid(so), and

• sa ∈ S such that sa is observed as a result of actually executing OAC id in state so.

Thus, an experiment is an empirical event by which OACs will be grounded into sensory
experience. As empirical grounded events, such experiments can be used to update OACs
in cycles of execution and learning based on evaluations of their success. Note that
sometimes an experiment is actually not used directly for learning but stored in some
short term memory (see, e.g., [Bad99]) until resources for learning are available (e.g.,
during ‘sleeping phases’).

The definition of OACs as capturing both symbolic and control knowledge about actions
highlights a number of learning problems (addressing different aspects of the OAC as
indicated in figure 2.2) that must be addressed for OACs to be effective (for details, see
[KGP+11]). We note that while each of these learning problems can be addressed by
recognizing the differences between predicted states and those states actually achieved,
they may still require different learning algorithms (e.g., Bayesian, neural network-like,
parametric, non-parametric, etc.). It is up to the OAC designer to choose an appropriate
learning mechanism.

2.4 Structural bootstrapping

Besides OACs, the other major component of the Xperience architecture is Structural
Bootstrapping. The following text taken verbatim from D2.3.1 enters somewhat into the
elaboration of the idea for Xperience.

Cognitive development proceeds at two different levels of abstraction. Figure 2.3 shows
two such parallel tracks of development. On the bottom is the sensorimotor track which
shows the development of sensorimotor schema or OACs, which are observable in infant

15

Xperience 270273 PU

N
u

m
b

e
r

o
f
b

e
h

a
v
io

u
rs

Age (spanning approx. 2 years)

C
O

N
C

R
E

T
E

p
e

rc
e

p
ti
o

n
-a

c
ti
o

n
 t
ra

c
k

A
B

S
T

R
A

C
T

re
p

re
s
e

n
ta

ti
o

n
 t
ra

c
k

sensorimotor schemas developing

representations developing

Figure 2.3: Conceptual diagram, an overview of infant developments on both a low level
sensorimotor track and a higher level representational track; for explanation see text.

behavior. Each node in the lower track corresponds to one OAC. A directed edge travels
from each ancestor node to its descendants; for example the OAC for pulling a string
descends from a basic grasping OAC (a number of examples are outlined in [GKKed]).
Some OACs have more than one ancestor. The top of Figure 2.3 is the abstract track
which shows the parallel development of the underlying world knowledge. Nodes in the
upper track correspond to (for example) fragments of object knowledge which are common
to a number of OACs, and fragments of spatial relationships; these are gradually linked
up as development progresses (to the right), to eventually form a more comprehensive
world knowledge.

Early fragments of object and spatial knowledge are likely to be very context specific,
and are strongly associated with the OACs they have been abstracted from. It is only
after a long developmental process (moving to the right in Fig. 2.3) that these fragments
become more objective, and this developmental process must involve some sort of “rep-
resentational re-description” [CKS93].

For the lower track we see a developmental process in which a small set of innately defined
OACs lead to a large variety of OACs through branching and specialization. During this
developmental process, the effects of the OAC become increasingly predictable and can
then be used more and more purposefully by the cognitive agent for the planning of
behavior. In parallel to (and triggered by) the development of individual OACs, more
generic world knowledge is built up; as illustrated in the upper track of Fig. 2.3. This is
done through the abstraction of empirical data gained during the execution of the OACs.

There is a parallel development and interaction of observable behaviors and the increasing
abstract world knowledge which is based on the experiments generated by the OACs.
Structural bootstrapping addresses the process indicated by the red arrows (see figure 2.3)
in which generated abstracted world knowledge effects the behavioral track by means of
establishing new OACs or modulating existing OACs. More specifically, the dashed red
arrows in figure 2.3 illustrate bidirectional links between the abstract and sensorimotor
tracks. To avoid clutter only six links are shown, but in reality all representational
fragments will be linked to the OACs. In one direction (outside-in) representations are
linked to the OAC they have been generalized from (and hence can immediately link to
actions which can manipulate the represented object or spatial relation).

In the other direction (inside-out), more advanced OACs make use of the newly formed
representations, for example in their description of the context in which a behavior may

16

Xperience 270273 PU

Figure 2.4: Initial sketch of the Xperience cognitive architecture from the Annex I.

be performed, or its effects, or the control policy followed during execution of the schema.
These feedback processes are at the core of structural bootstrapping since they allow to apply
abstracted concepts generated in the outside-in process as an inside-out process facilitating
cognitive behavior based on predictions derived from internal concepts.

2.5 Components

This section contains additional details about the proposed components (modules) of the
Xperience cognitive architecture. A very first diagram showing the architecture is shown
in figure 2.4 as derived from Annex I. In particular, given the central role played by the
OACs, we will concentrate first on the algorithms needed for learning them from data
(outside-in component of the architecture).

The following list represents the major components of the planned architecture and will be
detailed below. Clearly at this stage, while some research has been started, the modules
are not fully integrated or made to fit into a coherent implementation of the Xperience
architecture. On the other hand, this is exactly the task of WP5, namely, to transform
the Xperience research into a complete and coherent software implementation to run on
various robotic platforms (at least the iCub and ARMAR-III at the moment). These are:

• action generation, i.e. kinematics, dynamics, inverses (closed and open loop);

• action coding, i.e. dynamical motion primitives (discrete and periodic);

17

Xperience 270273 PU

• body models, i.e. simulation of the robot’s body;

• visual representation, i.e. Early Cognitive Vision system (ECV);

• object visual representation, i.e. Markov random field hierarchy;

• planning with OACs;

We have also a number of examples of special OACs as follows:

• grasp densities, merging the concept of “effects” (success vs. failure) with the visual
appearance of the object represented as ECV features;

• iCub learning simple affordances using Bayes Net (BN);

and we clearly have to define structural bootstrapping as a set of modules that “use”
OACs to obtain better generalization, faster learning and complex behaviors as those
needed for interacting with other cognitive agents.

In what follows, we describe a software architecture which follows a significant subset of
the guidelines identified in section 2.2 and 2.3 to a greater or lesser extent. The goal
of this preliminary architecture is to integrate at least conceptually some of the motor
skills (e.g. reaching, manipulation) with learning (adaptation of motor skills) and the
construction of OACs (affordances) in simple cases. In other words, the current goal is to
build a minimal but faithful functioning system as a proof of principle. Figure 2.5 shows a
first sketch of the software modules with approximate connectivity cast into the three-tier
architecture shown earlier in figure 2.4.

Gaze control, reaching, and locomotion constitute the initial set of simple goal-directed
actions. Memory systems are included to effect a simplified version of internal simulation
in order to provide prediction (prospective abilities for action) as well as the construction
of affordances from the combination of sensorimotor inputs. Importantly, everything is
filtered by a “diffused” attention system which selects inputs and outputs by focusing
information processing to the salient elements of the scene and, conversely on the output
side, toward the most appropriate action or subset of skills. Attention can be both
exogenous as well as endogenous.

At the top tier, we find the goal/motivational system which provide initially with the
motivations to explore the sensorimotor space or to interact with others (social motives)
as characterized by Von Hofsten in [VvHF10] chapter 2 and 3. Structural bootstrapping is
considered at the top of the hierarchy by enabling one-shot learning and affordance-based
(or OACs based) internal simulation and planning skills.

In terms of the available software, with varying degrees of completeness, we find:

• action generation and coding:

gaze, reach and grasp (platform dependent).

• body models:

simulation of the robot’s body and planning (e.g. grasp).

18

Xperience 270273 PU

Figure 2.5: Initial sketch of the Xperience software architecture derived from the cognitive
architecture.

• visual models:

early vision and visual representation of objects and actions.

and clearly it remains yet to achieve the first OACs/affordances using an integrated ar-
chitecture. Detailed reporting of the implementation of these skills can be found in the
relevant deliverables, namely D2.1.1, D2.3.1, D3.2.1 and D4.1.1. It is fair to say that a
great deal of integration is still to be done especially to smooth the use of the architecture
on various hardware platform (e.g. iCub, ARMAR-III, etc.). This activity is planned as
part of WP5 and will be delivered (as planned) at the end of the second year.

With respect to the three major groups of modules described above, we report additional
details and the link with the other Xperience deliverables in the following table. In the
following, level 1 corresponds to the “Adaptable Sensorimotor Loop” of figure 2.5, level 2
to the “OACs”, and level 3 to the “Structural Bootstrapping”. There are modules that
conceptually span multiple levels which for simplicity have been added to one level only.

19

Xperience 270273 PU

Deliverable Module description Position in the archi-
tecture, figure 2.5

D2.1.1 Scene and graph tracking (Oculus
system)

level 1

D2.1.1 View-point invariant features
(ECV system)

level 1

D2.1.1, section 2.3 Visual modeling of objects, pose
estimation, part based models,
etc.

level 1

D2.1.1, chapter 3 Visuo-haptic object representa-
tion (including segmentation)

level 1

D2.1.1 Inverse kinematics level 1
D2.1.1 Dynamics and force/impedance

control
level 1

D2.3.1 OAC learning (from pushing) level 2
D2.3.1 Probabilistic manipulation func-

tions (using ECV system from
D2.1.1

level 2

D2.3.1 Extended PKS (informed search) level 3
D4.1.1 Movement primitives level 1

20

Chapter 3

Benchmarking

3.1 General considerations

The definition of benchmarks in Xperience responds to the task 1.2.1 (WP1.2) of the
Annex I. In particular we will define benchmarks to test the following five aspects of the
cognitive architecture:

B1 We will define benchmarks to test the ability of the agent to acquire and learn
knowledge from stimuli;

B2 We will define benchmarks which demonstrate how efficiently structural bootstrap-
ping works at different levels. Generative model building will be assessed in the
sensorimotor, the planning and the communication/interaction domain;

B3 We will define a benchmark by which the interplay between stimulus driven and
internal, generative processes can be assessed. As this is a dynamic process this
benchmark will have to take the shape of a procedural assessment;

B4 We will define benchmarks for interaction and communication. These will rely on
scenario 2 in WP5 and involve the comparison of human-human interaction with
respect to the case where one person is replaced by the robot;

B5 The complete systems aspect is the central overarching research goal of Xperience.
Success will be measured and benchmarked by reporting on how the individual
components work together and how they will be able to fulfill the tasks in scenarios
1 and 2 (see WP5).

In short the five definitions of benchmark represent the five components of the Xperience
cognitive model as described earlier in 2.2. In short, B1 is meant to test the outside-in
component of the architecture, B2 similarly tests the inside-out component, B3 is designed
specifically to test and validate the interplay between B1 and B2, B4 the interaction and
communication with other agents and finally, B5 is designed to test the complete system.

21

Xperience 270273 PU

3.2 Benchmarks for learning

Xperience project focuses on the performance of the learning process. In this context
we need to benchmark by how much and how quickly the task knowledge and robot
skills improve as the amount of data available to the learning agent increases. Since
interactive tasks normally involve other agents, learning of such tasks often take place
in collaboration with these agents. In Xperience this will normally mean that a robot
learns from a human through imitation or its extension coaching. While it is possible
that a robot guides the learning process of another robot, such learning is only possible
with already highly developed cognitive agents. It is therefore uncertain if this type of
learning can be achieved already within the Xperience project. Finally, especially in the
case of tightly coupled interaction, the acquired motor knowledge needs to be suitably
adapted to take into account the performance of the collaborating agent. Methods such
as reinforcement learning can be used for this purpose. In the following we focus on
key performance indicators (KPIs) related to the learning of tightly and loosely coupled
interactive tasks in Xperience project.

3.2.1 Key performance indicators

In imitation learning, the learning agent observes how another agent performs the task
and uses the acquired information to execute the task by itself. In this context we define
the following KPIs:

1 Quality of learning: How good is the acquired task knowledge? Note that this
indicator is always task-specific and cannot be defined in general;

2 Efficiency of learning: How many training examples are needed to achieve satisfac-
tory performance?

3 Stability of learning: Standard deviation of the number of training examples for
learning of a specific task.

In Xperience we study the following types of coaching 1) kinesthetic guiding, where the
teacher physically guides the robot arm to execute the task, 2) imitation with the teacher
in the loop, where the teacher actively observes the robot performance and possibly adapts
its own performance to improve the robot’s performance, and 3) coaching that involves
verbal communication, where the teacher specifies which elements of the task are impor-
tant and guides the adaptation of the acquired sensorimotor knowledge. The above three
KPIs still apply to coaching scenarios, but the following additional KPIs specifically for
coaching will be defined:

4 Quality of learning II: How much better is the task knowledge after coaching com-
pared to standard imitation learning? Like before, this is a task-specific indicator
that cannot be defined in general;

5 Efficiency of learning II: Reduction of the number of training examples needed to
learn the task compared to standard imitation learning;

22

Xperience 270273 PU

6 Amount of involvement of a teacher: How many times does the teacher need to
intervene before the task is learned?

Interactive tasks cannot be learned by an agent alone, but need to be tested and refined
during the actual execution of the task. We are going to use the following KPIs to
benchmark this adaptation process:

7 Speed of refinement: How long does it take to refine the available motor knowledge
to successfully execute the task in collaboration with another agent?

8 Efficiency of refinement: Number of trials before an interactive task can be success-
fully executed;

9 Speed of adaptation: How long does it take to successfully execute a task in collab-
oration with a different agent?

10 Efficiency of adaptation: Number of trials before motor knowledge is successfully
transferred for collaboration with another agent.

Tasks often involve the manipulation of objects. It is therefore important to consider the
quality of learning with respect to library of objects that can be manipulated by the robot.
We can define the following KPIs, which are important for fast learning from experience:

11 Speed of acquisition: How many trials do we need to add information about new
objects to the library of known objects?

12 Efficiency of generalization: How many specific objects belonging to a particular
class do we need before we can apply the acquired knowledge to all objects of this
class?

13 Efficiency of transfer: How many examples do we need before we can transfer the
knowledge from one class of objects to another or from one task to another?

Item 13 is at the core of Xperience project.

3.2.2 Scenarios

Here we propose a list of scenarios that is not yet complete and will be extended and
refined in the course of the project. For example, in the realm of the affordance discovery
and learning we consider several types of possible affordances:

• Grasping;

• Pushing;

• Fill-able;

• Stackable;

• Switchable;

23

Xperience 270273 PU

• Cut-able;

• Open-able.

with the consideration that some of them are reusable to experience other affordances,
e.g. in the case of the “stackable”, the agent needs to be able to “grasp” an object in
order to experience the possibility of stacking it on top of another.

We then further characterize the scenarios into tightly coupled physical interaction sce-
narios, as for example:

• Collaborative pushing: learn how to push an object in collaboration with another
agent;

• Collaborative carrying: learn how to carry an object in collaboration with another
agent.

and, loosely coupled interaction, such as:

• Bi-manual learning about objects in collaboration with a human teacher: learn
object identities (for recognition), affordances, and categories by applying different
actions (pushing, relocating, etc.) to them. Here the human teacher can help the
robot when it is stuck due to its physical limitations or due to inability to select a
proper combination of actions.

3.3 Benchmarks

We consider the five set of requirements (B1..B5) in turn starting from B1 while consid-
ering the limits of the scenarios defined above. We also constrain this discussion to the
benchmark of the first year of the project, i.e. effectively B1 and B2. We briefly cover
some of the other definitions (B3..B5) although they will be finalized in D1.2.1 (M31).

In B1 we suggest benchmarks to evaluate and compare different aspects of sensorimotor
exploration-based learning. Some of the benchmarks come in multiple versions as for
example as a set of real world experiments and as problems being solved by a simulator.
The advantage of the latter is that (1) the benchmark can be used by laboratories not
having extensive robot equipment and (2) that the results are independent of the actual
embodiment. However, for this a suitable simulation is required which is sufficiently
realistic to produce meaningful results. This is possible for actions such as grasping,
pushing and inserting (see [PKJ+11]) but remains still unrealistic for others like cutting
or sawing. It also remains completely unrealistic to simulate aspects of cognitive systems
such as interaction with peers and communication.

In the following list, we indicate with letter “a” the benchmarks designed to work on
real world data in real time and “b” the simulated benchmarks. We further distinguish
multiple benchmarks of the same type by a numeral (e.g. B2b-1). We have:

B1a Learning to grasp unknown objects. We will provide a set of rigid objects of a
variety of shapes based on the KIT object data base [KIT]. The first task is to

24

Xperience 270273 PU

produce grasps from stereo images without using analytic information about the 3D
shape of new objects. Success is measured by the overall performance and by the
incremental increase of performance through learning on the successes and failures
on the objects which have been explored. Later in Xperience we will show how
structural bootstrapping will help to discover a grammar of feature relation/grasp
associations which can then be used to hypothesize grasps for novel objects. Grasp
can be substituted in other experiments by various other forms of actions such as
pushing.

B1b Benchmark B1a will (similarly to [PKJ+11]) come with a simulation environment
which allows testing methods independently of the robot hardware (see also the
Simox package described later).

B2a Affordance learning (sensorimotor). In correspondence to WP5.2 we will learn five
categories of objects with different affordances (for example, fill-able, stackable,
switchable, cut-able, open-able). We will measure how successful the associated
actions are performed before and after learning on five real objects on which these
affordances are meaningful. For each object we will define three contexts in which
these operations need to be slightly adapted to (e.g., “filling with small and slightly
larger items”, “stacking while being filled or empty”, etc.). We will measure how well
the affordance applies in a new context and how fast learning improves performance.
At least three categories will be also benchmarked with a simulator.

B2b-1 Semantics of high level symbolic actions. Learning the semantics of high level sym-
bolic actions is one of the critical subproblems necessary for structural bootstrap-
ping. In previous work on the PACO+ project, first research results on this problem
were achieved at UEDIN based on data produced using the SDU robot. In the Xpe-
rience project, one of our objectives will be to perform similar learning research
in the far more complex kitchen demonstration domain. To this end, one of our
benchmarks will be to define a corpus of real (and possibly simulated) robot action
executions (including action failures) performed by the Xperience robots within for
example the KIT kitchen domain.

We anticipate the actions contained in this dataset will include all of those actions
needed for both of the large scale demonstrations of the Xperience project. This
corpus may also contain actions that while not directly related to the demonstrations
are easily available on the robot platform. On the basis of this data set we will
demonstrate the learning of state transition functions similar to those normally
encoded in STRIPS type action operators [MPS10, MPS09].

In our previous work, a ten-fold cross-validation procedure was used to test the
performance of the learning model, and was repeated across different numbers of
training examples to assess how many examples would be needed to learn an ad-
equate model. The performance was measured by considering the fluents which
the model predicted would change versus the fluents which did change, and cal-
culating the balanced F-measure, the harmonic mean of precision and recall (true
positives/predicted changes and true positives/actual changes, respectively). We
anticipate using a similar set of metrics to demonstrate this benchmark.

B2b-2 Testing mirroring systems for action and recognition. One of the tasks of Xperience
is the development of a system for planning and plan recognition called ELEXIR.
This system has two significant research contributions relevant to Xperience. First,

25

Xperience 270273 PU

it defines a formal separation between the semantics of actions and a syntax for
action use. This distinction is critical in order to understand how structural boot-
strapping can be accomplished in the domains of reasoning about actions. Thus,
defining the formal underpinnings of and demonstrating such a system is a critical
benchmark for Xperience.

ELEXIR’s second research contribution for Xperience is that the same action rep-
resentation is used for both planning and plan recognition (mirroring). This means
that successfully learning knowledge about action from plan recognition (structural
bootstrapping through demonstration) can then immediately be used to planning.
Therefore, to demonstrate the effectiveness of the ELEXIR system requires demon-
strating the system performing both tasks. While there no generally agreed upon
test sets in the plan recognition community, the planning community has run the
International Planning Competition (IPC) for over ten years and has made the
problem domains available. Such domains provide a rich source of data for demon-
strating planning. In addition the domains (in conjunction with a planner) can be
used to generate test data for plan recognition systems as well. Therefore, as one of
our benchmarks for the project we will demonstrate the ELEXIR system achieving
state of the art performance on both planning and plan recognition on a selected
subset of the IPC domains. The metric for evaluating this benchmark, will be to
achieve state of the art performance on these tasks with respect to both speed and
and accuracy.

B2b-3 Semantic parsers map sentences onto compositional formal representations of their
meaning. The natural evaluation for a semantic parser is then to test whether it can
return the correct meaning representations for new unseen sentences. This evalua-
tion requires a corpus of natural language sentences labeled with formal representa-
tions of their meanings. In order to be meaningful these formal representations must
be defined within a closed model of meaning. They must also be easily expressible
in natural language.

Database queries to databases containing information about common concepts meet
these requirements and are easy to collect from untrained users. For these reasons,
semantic parsers are commonly evaluated on their ability to parse natural language
database queries to formal representations of their meaning. The parsers are scored
according to accuracy over a test set – the proportion of the test sentences for which
they return the correct meaning representation. In light of these requirements, one
of the benchmarks for the Xperience project will be to demonstrate state of the art
performance on grammar induction on the standard datasets such as GeoQueries,
Atis, etc.

The GeoQuery dataset [ZM96] contains English natural language queries to a
database about US geography. This dataset was collected from a number of users
and has been translated into Spanish, Turkish and Japanese by [WM06]. It has
served for the last fifteen years as the benchmark dataset for the semantic parsing
task e.g. [ZM96, KWM05, KM06, WM06, WM07, ZC05, ZC07, LNLZ08, CGCR10,
LJK11]. As such, success in parsing GeoQuery is widely regarded as a reliable
indicator of semantic parser quality.

The Atis dataset contains natural language dialog commands to a flight booking
dataset. Unlike the GeoQuery dataset, the Atis dataset contains raw unedited
utterances. These utterances contain much more syntactic variation and noise than

26

Xperience 270273 PU

those in the GeoQuery dataset. For this reason, Atis provides a harder (and more
realistic) test for semantic parsers. The Atis dataset seems poised to become a
benchmark dataset for the next tranche of work on semantic parsing [ZC07].

For the benchmarks related to B3 to B5 we have:

B3a Affordance learning (transfer through structural bootstrapping at the sensorimotor
level). For each category from Benchmark B2a, we will introduce at least two new
(“unknown”) objects that exhibit, by construction but without robot exploration,
the same affordances as the existing (“known”) objects within their respective cat-
egories. We will measure:

1. the extent to which each affordance (e.g., fill, stack, switch, cut, and open) can
be transferred from known to unknown objects. Possible quantification can, for
example, be achieved by counting the proportion of attempted manipulations
that are successful,

2. how fast learning on these unknown objects leads to a refinement of the OACs
(or sensory motor schemas) associated to the applicable affordances. Quantifi-
cation can, for example, be achieved by comparing the proportion of successful
manipulations as a function of the number of learning trials (a) starting from
transferred OACs and (b) starting from scratch.

B3b Affordance learning (transfer through structural bootstrapping on sensory motor
level and the language level): We allow the system to use the Internet or other large
data-bases to find out about the affordances associated to new objects [TMKW11].
We also measure how much this additional information helps the system to apply the
corresponding sensory motor schema to the new objects introduced in benchmark
B3a.

B4a Testing the ELEXIR on robotic systems. Having demonstrated the ability of the
ELEXIR system to perform both planning and plan recognition in the IPC do-
mains (see B2b-2), this benchmark will demonstrate the same capabilities within
the robotic domains. ELEXIR will do this based on hand defined grammars for the
motion primitives for one or more of the KIT, SDU, JSI, or IIT robotic platforms.
As in B2b-2, the metrics we will use to measure this benchmark will be those gener-
ally accepted in the community of speed in plan construction and accuracy of plan
recognition.

27

Chapter 4

Software poll

The results of the software module poll has ideally to coincide with the required modules
of the architecture listed above at least up to the level of the learning of OACs. In the
following we report the current status of the poll.

This is the pool of components that we will use (and initial reports are contained in
D2.1.1, D2.3.1, D3.2.1, D4.1.1, D5.2.1, and D5.3.1.

28

Xperience 270273 PU

General information

Package name Learning of dynamic movement primitives

Functionality

The package implements discrete and periodic dynamic
movement primitives and the built-in mechanisms to re-
act to external signals, one-shot learning of dynamic
movement primitives from a single demonstration, on-
line learning of periodic movements, and learning from
multiple demonstrations using statistical methods.

Licensing and authorship

Authors Andrej Gams, Denis Forte, Ales Ude
Copyright holder Jozef Stefan Institute
License Not yet officially released

Programming information

Dependencies
Depends on Gaussian Processes for Machine Learn-
ing package gpml (http://www.gaussianprocess.
org/gpml/code/matlab/doc/index.html)

User interface mechanism Input through Matlab interface
Distribution Sources in a tarball
Compiler Matlab
Build system Not applicable
OS on which the module
was tested

Mac/Windows/Linux

Files

Format of input data files Text files and communication with a robot via UDP
Format of output data files Text files and communication with a robot via UDP
Format of configuration files Not applicable

Other dependencies

The software can be run independently of the robot.
Robot interface is provided via UDP interface, but the
user must write the appropriate software for the robot
side of communication.

29

http://www.gaussianprocess.org/gpml/code/matlab/doc/index.html
http://www.gaussianprocess.org/gpml/code/matlab/doc/index.html

Xperience 270273 PU

General information

Package name Oculus

Functionality

Real time vision Software for video segmentation and
segment tracking, providing also scene graphs. It in-
tegrates simple cameras, stereo cameras, Kinect device
and video files as inputs. Allows embedding of own soft-
ware modules.

Licensing and authorship

Authors
Jeremie Papon, Alexey Abramov, Eren Aksoy, Florentin
Wörgötter

Copyright holder The authors, see above

License

Currently there is no license, but we are working on it.
The package is “free to be used by project partners”.
Most probably the source code will be released under
one of open source licenses very soon.

Programming information

Dependencies
Installation process and the list of all required libraries
can be found under https://oculus.unfuddle.com/.

User interface mechanism

It is a GUI application requiring user’s input for the
system configuration. Modules can also write to other
“devices” for daisy-chaining the Oculus output with any
other application.

Distribution https://oculus.unfuddle.com/

Compiler g++
Build system See https://oculus.unfuddle.com/

OS on which the module
was tested

Linux

Files

Format of input data files Camera streams or raw image data
Format of output data files Image data (PNG)
Format of configuration files XML

Other dependencies
Specific hardware requirements exist. The system needs
camera input and for processing GPUs are required,
please see documentation attached.

30

https://oculus.unfuddle.com/
https://oculus.unfuddle.com/
https://oculus.unfuddle.com/

Xperience 270273 PU

General information

Package name
PKS - Planning with Knowledge and Sensing, pemPKS
- Plan execution monitor for PKS

Functionality

PKS is a goal-directed symbolic planner that produces
action plans for controlling the robot’s high-level be-
haviour. pemPKS is a plan execution monitor controls
the invocation of the planner and determines whether
the next action in a plan should be executed or whether
the plan should be reconstructed as a result of changes in
the world state. The goal on XPERIENCE is to replace
the existing plan execution monitor with a general mod-
ule that allows other planning backends (not just PKS)
and to experiment with planners other than PKS.

Licensing and authorship

Authors Ron Petrick
Copyright holder Ron Petrick

License

The plan execution monitor is open source (no formal
licence yet), however, the currently distributed planner
backend is currently closed source (binary library). The
plan for XPERIENCE is to release an open source ver-
sion of the planner that works with the plan execution
monitor.

Programming information

Dependencies
Standard C/C++ libraries for building the planner and
the basic plan execution monitor. ICE to build the ICE
interface for the plan execution monitor.

User interface mechanism Console / ICE interface.
Distribution Tarball with binaries and source files.
Compiler gcc
Build system cmake
OS on which the module
was tested

Linux

Files

Format of input data files XML / plain text / ICE interface
Format of output data files XML / plain text / ICE interface
Format of configuration files plain text / ICE interface
Other dependencies None.

31

Xperience 270273 PU

General information

Package name Nuklei

Functionality

Nuklei is a C++ library that implements kernel func-
tions and kernel density estimation for SE(3) data.
Nuklei also provides tools for manipulating SE(3) trans-
formations, and for manipulating point clouds. Nuk-
lei includes implementations of efficient algorithms for,
among others:
• Evaluating and simulating Gaussian distributions

and von Mises-Fisher distributions;

• Evaluating and simulating arbitrary SE(3) distri-
butions with kernel density estimation;

• Kernel logistic regression;

• Reading, writing, transforming clouds of SE(3)
points. Potential applications of SE(3) density
models: robot position and orientation (naviga-
tion), object pose (pose estimation), gripper pose
(grasping).

Licensing and authorship

Authors Renaud Detry
Copyright holder Renaud Detry
License GNU GPL v3

Programming information

Dependencies

Required nonstandard libraries:

• Boost >= 1.38

• GSL >= 1.8

• BLAS and LAPACK

Optional nonstandard libraries:

• OpenCV >= 1

• CGAL >= 3.3

User interface mechanism
Nuklei is a library. It comes with a few example console
applications that require data input.

Distribution Git (http://nuklei.sourceforge.net/)

32

Xperience 270273 PU

Compiler GCC 4 (also LLVM/clang 2.8+, with some caveats)
Build system SCons
OS on which the module
was tested

Linux, MacOS X

Files

Format of input data files custom XML, plain ASCII
Format of output data files custom XML, plain ASCII
Format of configuration files none (AFAIK)
Other dependencies Nuklei is currently not thread safe.

33

Xperience 270273 PU

General information

Package name Cognitive Vision Software – CoViS
(http://www.covig.org/)

Functionality

The package provides a core library and a set of appli-
cations. Core functionality is the extraction of a generic
scene representation. This representation is modelled
as a functional abstraction of the human visual system.
Further functionality includes the use of this represen-
tation for for pose estimation, grasp generation etc.

Licensing and authorship

Authors

Marcus Ackermann, Leon Bodenhagen, Emre Baseski,
Lars B. Christensen, Mogens Christiansen, Christian
Gebken, Dibyendusekhar Goswami, Oliver Granert,
Daniel Grest, Marco Hahn, Jesper Juul Henriksen,
Thomas Jaeger, Lars B. W. Jensen, Ushanthan Jeya-
balan, Jeppe Barsoe Jessen, Sinan Kalkan, Thomas
Kiesche, Dirk Kraft, Anders Kjaer-Nielsen, Norbert
Krueger (co-ordinator), Mads Thorsted Nielsen, Florian
Pilz, Mila Popovic, Martin Poerksen, Nicolas Pugeault,
Torge Rabsch, Volker Roelke, Bodo Rosenhahn, Kasper
Broegaard Simonsen, Daniel Wendorff, Brian Wette-
gren, Jan Woetzel, Shi Yan

Copyright holder University of Southern Denmark
License BSD

Programming information

Dependencies
openCV, openGL, libxml, cairo, qt4, boost, tclap,
blas, lapack, glut, nurbs++*, gl2ps*, libraw1394*,
libdc1394*, xmlrpc*, CUDA*
dependencies marked with an asterix are optional (some
functionality will be missing)

User interface mechanism
Most components are console applications, our visual-
ization component is a GUI application

Distribution tarball (+svn acces for selected users)
Compiler gcc
Build system cmake
OS on which the module
was tested

Linux

Files

34

Xperience 270273 PU

Format of input data files
Depends on the specific application. E.g., images, cus-
tom xml files.

Format of output data files
Depends on the specific application. E.g. custom xml
files, ascii.

Format of configuration files Custom xmlfiles.
Other dependencies The system is able to directly talk to firewire cameras.

35

Xperience 270273 PU

General information

Package name EarlyVision

Functionality

Build on the Integrating Vision Toolkit (IVT), the Ear-
lyVision library implements methods for active visual
perception. These methods support the execution of
head eye movements as well as the continuous percep-
tion based on the generated visual input. The provided
methods include:
• kinematic calibration of active camera systems;

• execution of saccadic eye movement and smooth
pursuit;

• visual attention mechanisms;

• continuous accumulation of visual information;

• visual short term memory.

Licensing and authorship

Authors Kai Welke
Copyright holder Kai Welke, Karlsruhe Institute of Technology (KIT)
License GNU General Public License v3

Programming information

Dependencies IVT, Qt3, liblevmar
User interface mechanism User interface via IVT (Qt3)

Distribution
Source code downloadable at SourceForge.net as
tarball (starting from September 2011): earlyvi-
sion.sourceforge.net

Compiler gcc 4.1+
Build system Makefiles
OS on which the module
was tested

Linux

Files

Format of input data files
Format of output data files
Format of configuration files
Other dependencies Active camera system

36

Xperience 270273 PU

General information

Package name VisionX

Functionality

Framework for the integration of vision processing com-
ponents and camera capturers. Low-level communica-
tion based on ICE and shared memory, high level com-
munication based on ICE only.

Licensing and authorship

Authors Kai Welke, David Gonzalez, Jan Isaac

Copyright holder
Kai Welke, David Gonzalez, Jan Issac, Karlsruhe Insti-
tute of Technology (KIT)

License GNU General Public License v3

Programming information

Dependencies ICE, IVT
User interface mechanism User interface via IVT (Qt3)
Distribution SVN repository at KIT
Compiler gcc 4.1+
Build system CMake
OS on which the module
was tested

Linux

Files

Format of input data files
Format of output data files
Format of configuration files
Other dependencies

37

Xperience 270273 PU

General information

Package name Integrating Vision Toolkit (IVT)

Functionality

The Integrating Vision Toolkit (IVT) is a stand-alone
easy-to-use, platform- independent open source C++
computer vision library with an object-oriented archi-
tecture. It offers a clean camera interface and a gen-
eral camera model, as well as many fast implementa-
tions of image processing routines and mathematic data
structures and functions. The IVT offers its own multi-
platform GUI toolkit.

Licensing and authorship

Authors Pedram Azad
Copyright holder Pedram Azad, Karlsruhe Institute of Technology (KIT)
License Modified BSD license (3-clause BSD)

Programming information

Dependencies For IEEE1394 camera support if required: libdc1394v2

User interface mechanism
Examples, tools with GUI using either Qt3, Qt4 or in-
ternal GUI components (Linux).

Distribution
Source code downloadable at SourceForge.net as tarball:
ivt.sourforge.net

Compiler
Linux, MacOSX: gcc 4.1+, Windows: Microsoft Visual
Studio

Build system Makefiles or Visual Studio porjects
OS on which the module
was tested

Linux, Windows, MacOSX

Files

Format of input data files bitmap (bmp)
Format of output data files bitmap (bmp)
Format of configuration files OpenCV camera calibration file format
Other dependencies Active camera system

38

Xperience 270273 PU

General information

Package name OpenMMM

Functionality

The library OpenMMM handles a variety of types of
motions and (biomechanical) models. This library is
an implementation of the conceptual framework MMM
as proposed in various publications. The essential part
of the MMM framework is based on a three-dimensional
whole-body, kinematic model enriched with proper body
segment properties (BSP), such as mass distribution,
segment length, moment of inertia, etc., in order to com-
pute gross body dynamics.

Licensing and authorship

Authors Stefan Gaertner, Martin Do

Copyright holder
Stefan Gaertner, Martin Do, Karlsruhe Institute of
Technology (KIT)

License GNU General Public License v3

Programming information

Dependencies

GSL 1.12, Xerces-C 2.8, GAUL
(http://gaul.souceforge.net/), kmlocal 1.7.3
(http://www.cs.umd.edu/ mount/), SNOPT 7.0,
(http://www.scicomp.ucsd.edu/ peg/), Qt4, SoQT 1.4,
Coin3D 2.5

User interface mechanism
Distribution Source code downloadable at SourceForge.net as tarball
Compiler gcc 4.1.3 or higher
Build system Makefiles
OS on which the module
was tested

Linux

Files

Format of input data files MMM motion files in xml, c3d motion files
Format of output data files MMM motion files in xml
Format of configuration files Model files in xml
Other dependencies

39

Xperience 270273 PU

General information

Package name SIMOX

Functionality

Simox is a leightweight platform indepedent C++ tool-
box containing three libraries for 3D simulation of robot
systems, sampling based motion planning and grasp
planning. The Virtual Robot library is used to de-
fine complex robot systems which may cover multi-
ple robots with many degrees of freedom. The robot
structure and its visualisation can be easily defined
via XML files and environments with obstacles and
objects to manipulate are supported. The libraries
Grasp Studio and Saba use these definitions for plan-
ning grasps or collision-free motions. State-of-the-art
implementations of sampling-based motion planning al-
gorithms (e.g. Rapidly-exploring Random Trees) are
served by the Saba library which was designed for effi-
cient planning in high-dimensional configuration spaces.
The library Grasp Studio offers possibilities to compute
grasp quality scores for generic end-effector definitions
(e.g. a humanoid hand). The implemented 6D wrench-
space computations, offer the possibility to easily (and
quickly) measure the quality of an applied grasp to an
object. Furthermore, the implemented planners are able
to generate grasp maps for given objects automatically.

Licensing and authorship

Authors Nikolaus Vahrenkamp

Copyright holder
Nikolaus Vahrenkamp, Karlsruhe Institute of Technol-
ogy (KIT)

License GNU General Public License v3

Programming information

Dependencies Qt4, Coin3d
User interface mechanism 3D visualization via Coin3d and Qt

Distribution
Source code downloadable at SourceForge.net as tarball:
simox.sourceforge.net

Compiler gcc 4.1+, Microsoft Visual Studio
Build system CMake
OS on which the module
was tested

Linux, Windows 7, XP, MacOSX

Files

40

Xperience 270273 PU

Format of input data files XML based
Format of output data files XML based
Format of configuration files XML based
Other dependencies

41

Xperience 270273 PU

General information

Package name RobWork (RobWork,RobWorkStudio,RobWorkSim)

42

Xperience 270273 PU

Functionality

RobWork is a collection of C++ libraries for simula-
tion and control of robot systems. RobWork is used for
research and education as well as for industrial robot
applications. Features of the library include:
• Math for robotics (transformations, Jacobians and

such);

• Extensible stateless design for handling multi-
threading issues and shared state issues;

• Kinematic modeling of various types of industrial
manipulators;

• Support for serial robots, parallel robots and tree-
structured (e.g. hands or multiple serial robots).
Beta support for Conveyor and mobile devices;

• Path-planning and inverse kinematics algorithms;

• Simulation of sensors (range, camera, tactile);

• Task and trajectory generation and representa-
tions;

• Tools for geometry manipulation and collision de-
tection;

• Tools for opengl visualization of geometry, tex-
tures, lighting and other data types;

• Tools for grasp planning and analysis, including
several measures for evaluating grasp quality;

• Lua script interface;

• Plug-in structure.
Besides the core part RobWork has a number of add-ons
including:

• RobWorkStudio provides a plugin-able graphical
user interface. Plug ins for path planning, inverse
kinematics, scripting, virtual sensors, logging and
other simple manipulations of a robotics scene is
included;

• RobWorkSim is a simulator suited for dynamic
grasp simulation, with support for simulating var-
ious tactile sensors, cameras and range scanners.
Plugins for dynamic simulation of large grasp
databases are available as well as for simple rigid
body simulation.

The goal of RobWork is not to include or become a com-
ponent/communication framework such as e.g. YARP
or Orocos. In fact for large projects we (RobWork devel-
opers) use and also encourage others to use these frame-
works in conjunction with RobWork.

43

Xperience 270273 PU

Licensing and authorship

Authors

RobWork is developed at the robotics department of
the Maersk McKinney Moller Institute (MMMI) at the
University of Southern Denmark. The focus of the de-
partment is on industrial robots and their applications.
Main developers include:

• Lars-Peter Ellekilde (MMMI)

• Jimmy Alison Jorgensen (MMMI)

Past developers:

• Anders Lau Olsen (past MMMI)

• Lars Jessen (past MMMI)

Contributors:

• Preben Holm (MMMI)

• Anders Glent Buch (MMMI)

Copyright holder
The Robotics Group, The Maersk Mc-Kinney Moller In-
stitute, Faculty of Engineering, University of Southern
Denmark

License

(Apache License, Version 2.0) RobWork is distributed
under the Apache License, Version 2.0. For convenience,
a number of open-source libraries are distributed to-
gether with RobWork; the RobWork license does not
apply to these libraries.

Programming information

44

Xperience 270273 PU

Dependencies

The different packages of RobWork has different depen-
dencies which is separated in three groups: Mandatory
(M), Optional (O), Optional but Distributed with Rob-
Work (OD)

• RobWork - the core package with only two manda-
tory dependencies: Boost (M), Xerces (M), Yaobi
(OD), Lua (OD), toLua (OD), PQP (OD), qhull
(OD)

• RobWorkStudio - the visualisation package adds
one additional dependency on Qt (M)

• RobWorkSim - the dynamic simulation package
only adds additional optional dependencies such
as ODE (O), Bullet (O) and Moby (O)

User interface mechanism

The core RobWork is a c++ toolbox, with several con-
sole applications as examples of use:

• With RobWorkStudio a complete GUI is available
which provide pluginable GUI functionality;

• With RobWorkSim dynamic simulation can be
performed in both console and GUI application
(through RobWorkStudio). Plugins for generat-
ing large grasp databases as well as ordinary rigid
body simulations are provided.

Distribution
The package is distributed as: binary installer (win and
ubuntu/debian), binaries/source and svn.

Compiler
RobWork is multi-platform and any gcc compatible com-
piler will do. It is tested on: gcc (Linux), mingw-gcc
(win), vc++

Build system CMake and Visual Studio projects
OS on which the module
was tested

Linux, Windows and earlier versions tested on Mac

Files

Format of input data files

Most input files are xml based but several non-xml based
image formats (PPM, PGM, RGB) with qt (png, jpeg
tiff and several more) and 3d object/scene description
formats are also supported (AC3D, 3DS, STL, IVG,
OBJ). The main robot scene description is a custom
format in xml, but an alpha version for Collada format
is coming up.

45

Xperience 270273 PU

Format of output data files
Most output file-formats are xml based. RobWork de-
fines formats for loading/saving: paths, trajectories,
property-maps, robotic scenes, states.

Format of configuration files ini and xml
Other dependencies

46

Bibliography

[Bad99] Alan D. Baddeley. Essentials of Human Memory. Psychology Press, Taylor
and Francis, 1999.

[CA97] Fernando J. Corbacho and Michael A. Arbib. Schema-based learning: To-
wards a theory of organization for biologically-inspired autonomous agents.
In Agents, pages 520–521, 1997.

[CGCR10] James Clarke, Dan Goldwasser, Ming-Wei Chang, and Dan Roth. Driving
semantic parsing from the world’s response. In Proceedings of the Four-
teenth Conference on Computational Natural Language Learning (CoNLL-
2010), pages 18–27, Uppsala, Sweden, 2010.

[CKS93] Andy Clark and Annette Karmiloff-Smith. The cognizer’s innards: A psycho-
logical and philosophical perspective on the development of thought. Mind
& Language, 8(4):487–519, 1993.

[Cla01] A. Clark. Mindware: an introduction to the philosophy of cognitive science.
Oxford University Press, Oxford, UK, 2001.

[GKKed] F. Guerin, N. Krüger, and D. Kraft. A survey of the ontogeny of tool use:
from sensorimotor experience to planning. IEEE TAMD, submitted.

[Gle90] L. Gleitman. The structural source of verb meanings. Language acquisition,
1:3 – 55, 1990.

[GMP+06] C. Geib, K. Mourao, R. Petrick, M. Pugeault, M. Steedman, N. Krger, and
F. Wörgötter. Object action complexes as an interface for planning and
robot control. In IEEE RAS International Conference on Humanoid Robots,
Genova, 2006.

[KGP+11] Norbert Krüger, Christopher Geib, Justus Piater, Ronald Petrick, Mark
Steedman, Florentin Wörgötter, Aleš Ude, Tamim Asfour, Dirk Kraft, Damir
Omrčen, Alejandro Agostini, and Rüdiger Dillmann. Object-action com-
plexes: Grounded abstractions of sensorimotor processes. Robotics and Au-
tonomous Systems, 59(10):740–757, 2011. doi:10.1016/j.robot.2011.05.009.

[KIT] KIT. The kit object database. http://i61p109.ira.uka.de/ObjectModelsWebUI.

[KM06] Rohit J. Kate and Raymond J. Mooney. Using string-kernels for learning se-
mantic parsers. In Proceedings of the 44th Annual Meeting of the Association
for Computational Linguistics, 2006.

47

Xperience 270273 PU

[KWM05] Rohit J. Kate, Yuk Wah Wong, and Raymond J. Mooney. Learning to trans-
form natural to formal languages. In Proceedings of the National Conference
on Artificial Intelligence, 2005.

[LJK11] P. Liang, M. I. Jordan, and D. Klein. Learning dependency-based composi-
tional semantics. In Association for Computational Linguistics (ACL), 2011.

[LNLZ08] Wei Lu, Hwee Tou Ng, Wee Sun Lee, and Luke S. Zettlemoyer. A gen-
erative model for parsing natural language to meaning representations. In
Proceedings of The Conference on Empirical Methods in Natural Language
Processing, 2008.

[MNN+10] G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. von
Hofsten, K. Rosander, J. Santos-Victor, A. Bernardino, and L. Montesano.
The icub humanoid robot: An open-systems platform for research in cognitive
development. Neural Networks, 23:1125 – 1134, 2010.

[MPS09] Kira Mourão, Ronald P. A. Petrick, and Mark Steedman. Learning action ef-
fects in partially observable domains. In Proceedings of the ICAPS 2009
Workshop on Planning and Learning, pages 15–22, Thessaloniki, Greece,
September 2009.

[MPS10] Kira Mourão, Ronald P. A. Petrick, and Mark Steedman. Learning action
effects in partially observable domains. In Proceedings of the European Con-
ference on Artificial Intelligence (ECAI 2010), pages 973–974, August 2010.

[Pia76] J. Piaget. The psychology of intelligence. 1976.

[PKJ+11] M. Popovic, G. Kootstra, J.A. Jorgensen, D. Kragic, and N. Krüger. Grasp-
ing unknown objects using an early cognitive vision system for general scene
understanding. In International Conference on Intelligent Robots and Sys-
tems (IROS), San Francisco, CA, 2011.

[SB02] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction, 2002
edition. Bradford Books, MIT press, Cambridge, MA, 2002.

[TG07] J.C. Trueswell and L.R. Gleitman. Oxford Handbook of Psycholinguistics,
chapter Learning to parse and its implications for language acquisition. Ox-
ford University Press, Oxford, 2007.

[TMKW11] M. Tamosiunaite, I. Markelic, T. Kulvicius, and F. Wörgötter. Generalizing
objects by analyzing language. In IEEE/RAS International Conference on
Humanoid Robots, Bled, Slovenia, 2011.

[VvHF10] D. Vernon, C. von Hofsten, and L. Fadiga. A Roadmap for Cognitive Devel-
opment in Humanoid Robots. Springer, 2010.

[WAK+09] F. Wörgötter, A. Agostini, N. Krüger, N. Shylo, and B. Borr. Cognitive
agents a procedural perspective relying on the predictability of object-action-
complexes (oacs). Robotics and Autonomous Systems, 57:420 – 432, 2009.

[WM06] Yuk Wah Wong and Raymond Mooney. Learning for semantic parsing with
statistical machine translation. In Proceedings of the Human Language Tech-
nology Conference of the NAACL, 2006.

48

Xperience 270273 PU

[WM07] Yuk Wah Wong and Raymond Mooney. Learning synchronous grammars for
semantic parsing with lambda calculus. In Proceedings of the Association for
Computational Linguistics, 2007.

[ZC05] Luke S. Zettlemoyer and Michael Collins. Learning to map sentences to
logical form: Structured classification with probabilistic categorial grammars.
In Proceedings of the Conference on Uncertainty in Artificial Intelligence,
2005.

[ZC07] Luke S. Zettlemoyer and Michael Collins. Online learning of relaxed CCG
grammars for parsing to logical form. In Proc. of the Joint Conference on
Empirical Methods in Natural Language Processing and Computational Nat-
ural Language Learning, 2007.

[ZM96] John M. Zelle and Raymond J. Mooney. Learning to parse database queries
using inductive logic programming. In Proceedings of the National Conference
on Artificial Intelligence, 1996.

49

	Executive Summary
	Cognitive architecture
	Definition
	Requirements
	Object-Action Complexes - OACs
	Structural bootstrapping
	Components

	Benchmarking
	General considerations
	Benchmarks for learning
	Key performance indicators
	Scenarios

	Benchmarks

	Software poll

