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Chapter 1

Executive Summary

This deliverable summarizes the efforts of the consortium on developing low-level perceptual representa-
tions. These include visual, visuo-haptic and motor representations.

In Chapter 2 we present results on visual data representations. We consider several approaches to
structure visual information. One approach is to segment the visual scene and consider relations between
segments. This approach is presented in Section 2.1. A GPU-based system allows achieving real-time
segmentation. Later graphs of geometrically neighbouring segments are formed and graph tracking is
performed over time. The second approach is based on the extraction of contours and surfaces from the
image and analysis of relations of those entities. This approach is described in section 2.2. The emphasis
is on representations which are color and pose invariant but show geometric similarities of shapes. The
third is model-based approach. This approach is described in section 2.3. Here part-based object model
building and object detection in the visual scene as well as learning parametric abstractions of shapes
using kernel methods are presented.

The outcomes of the work on visual representation are the following:

• Real-time image analysis and segmentation system is developed;

• Segment graph extraction and graph tracking over time is implemented allowing to segment se-
quences of observations into meaningful pieces;

• Methods for analyzing relations between contours and surfaces in a scene are developed;

• Features for describing geometric shapes are proposed;

• Part-based object modeling method is developed and is aimed at part-based generalization;

• Methods for model-based object detection in a scene and pose estimation are developed;

• Method for learning shapes using kernel methods is developed.

Chapter 3 considers the development of visuo-haptic object representations. As in some situations shape
and texture estimation as well as object-background separation is very complicated, this problem is being
solved by establishing common reference frame, which allows binding visual and haptic information and
thus enriching visually extracted information by tactile sensory data. The inclusion of haptic informa-
tion allows performing a reliable figure-ground segmentation even in such situations, where object and
background are visually ambiguous.

The outcomes of work on visio-haptic representations are the following:

• Strategy for haptic exploration and blind grasping of unknown objects is developed;

• Algorithm for binding visual and haptic information is developed;

• Algorithm for establishing contact point with the object is developed;

• Tactile exploration strategy based on contour following is proposed;
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• All the above is implemented on the humanoid robot ARMAR-III with preliminary evaluation of
performance.

Chapter 4 considers motor representations with the emphasis on reaching and grasping. In section 4.1
the iCub architecture for reaching including low-level force control with dynamics compensation and
optimization-based kinematics is presented. The implementation allows controlling the arm as well as
other body part (e.g. waist). Another way to represent motor actions/experiences (especially reaching)
is using Dynamic Movement Primitives (DMPs). However, the work on defining reaching movements
using DMPs within the first project year went beyond simple reaching representations, towards agent-
cooperative reaching regimes, and is reported as a whole in D4.1.1. For grasping the grasps using
three-finger hand were newly defined (in addition to earlier existing ones for the parallel gripper). Grasps
were based on contour as well as surface information. Large number of grasps was executed in a dynamic
simulator this way collecting statistics about visuo-motor grasping experience.

The outcomes of work on motor representations are the following:

• Method of computation of robot dynamics and kinematics based on graph representation is devel-
oped;

• Application of the method for definition of the reaching action is presented.

• Method is implemented and evaluated on iCub robot;

• DMP based representations have gone beyond the extent of this deliverable by including agent
cooperation components;

• Grasp definitions based on contour and surface information are developed;

• Large grasp experience database is collected using dynamic simulator.
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Chapter 2

Creating rich representation of
visual data

2.1 Scene graphs and tracking

2.1.1 Extracting scene graphs using Oculus system

This section presents real-time open-source vision system for scene graph extraction [PAAW12]. Graphs
are extracted from live or recorded video. Oculus is a plugin shell which provides an API for interacting
with a graphical user interface (GUI), memory management system, and visualization components. It
enables development and use of complex vision pipelines integrating any number of algorithms. Indi-
vidual algorithms are implemented using modular plugins, allowing integration of methods developed
independently and rapid testing of new vision pipeline configurations. The architecture exploits the par-
allelization of graphics processing units (GPUs) and multi-core systems to speed processing and achieve
real-time performance. Additionally, the use of a global memory management system for frame buffering
permits complex algorithmic flow (e.g.feedback loops) in online processing setups, while maintaining the
benefits of threaded asynchronous operation of separate algorithms.

Graphs are extracted in real-time using a system configuration consisting of four plugins. The overall
execution flow of the system, as well as examples of the outputs of the plugins is shown in Figure 2.1.
The first plugin in the pipeline acquires visual and depth data using a Kinect camera and the OpenNI
library [3]. Video can also be acquired using a stereo camera rig, but depth data derived from stereo
images is generally less accurate than data from an active sensor, such as the Kinect.

Next, optical flow is computed on the GPU using the method of Pauwels[27]. This is a phase-based
algorithm [16], which tracks the temporal evolution of equi-phase contours by taking advantage of phase
constancy. Differentiation of the equi-phase contours with respect to time yields spatial and temporal
phase gradients. Integrating the temporal phase across orientation yields optical flow fields. The plugin
uses the five most recent frames to compute optical flow in the case of online video, but can also use
”future” frames when working with recorded movies (to improve the quality of the results). When using
a stereo camera setup, sparse disparity maps are computed in a separate plugin using a technique similar
to optical flow [27]. Rather than use temporal phase gradients, the disparity algorithm relies on phase
differences between stereo-pair rectified images.

The depth, visual, and optical flow data are then used to perform combined segmentation and tracking
on the GPU using the method of Abramov et al.[5]. This accomplishes two goals; first, it partitions the
image into labeled regions, as seen in the right-most column of Figure 2.1, and second, it determines
correspondences between successive frames to maintain consistent labeling. The segmentation algorithm
applies the Potts model in such a way that superparamagnetic phase regions of aligned spins correspond to
a natural partition of the image data. Initial spins are assigned to pixels randomly, and then a Metropolis-
Hastings algorithm with annealing [5] is used to iteratively update the spins until an equilibrium state
is reached. In addition to segmentation, the plugin maintains consistent labels for objects from frame to
frame. This is accomplished by transferring spins between frames using optical-flow[5]. As such, only the
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first frame is actually initialized at random; subsequent frames are initialized using a forward-propagated
version of the previous frame’s equilibrium spins.

Finally, graphs are constructed by analzying the spatial relations of segments, as in the work of Aksoy et
al.[7, 6]. This process is described in detail in the next section.

2.1.2 Graph tracking

Following the extraction of segments (see previous section), we analyze the spatial relations between
each segment pair. We denote spatial relations by ρi,j in which i and j are the segment numbers. Note
that spatial relations are symmetric, i.e. ρi,j = ρj,i. We define two basic relations between segments:
Touching and Non-touching each of which refers to image segments that are physically neighbors or not
in 3D domain, respectively. Such spatial relations are directly referring to primitive manipulations.

Once the image sequence has been segmented and spatial relations have been extracted, we represent the
scene by undirected and unweighted labeled graphs. The graph nodes are the segment labels and plotted
at the center of each segment. Nodes are then connected by an edge if segment relations are Touching.

Scene graphs, such as those depicted in Fig. 2.2, represent spatial relations between nodes in temporal
domain. Unless touching and non-touching events happen, the scene graphs remain topologically the
same. The only changes in the graph structures are the node positions or the edge lengths depending
on the object trajectory and speed. Any touching or non-touching of segments corresponds to a change
in the main structure of the scene graphs. Therefore, those changes in the graphs can be employed to
define manipulation primitives. We apply an exact graph-matching method in order to extract the main
graphs by computing the eigenvalues and eigenvectors of the adjacency matrices of the graphs [33]. A
change in the eigenvalues or eigenvectors then corresponds to a structural change of the graph. Details
of this approach has been explained in detail elsewhere [7, 6].

Fig. 2.2 depicts some of main graphs calculated from a scenario “Moving Boxes” in which a hand is
picking a box and placing on top of another. While the hand is performing the picking and placing
manipulation, graphs are changing topologically, e.g. some nodes and/or edges appear and/or disappear.
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Figure 2.1: Overview of the system architecture and demonstration system output for four frames. The
colums show output from the different components; from left to right, Kinect image, Kinect depth (in
mm), optical flow, and graphs overlaid on segmentation output.

9



Xperience 270273 PU

Figure 2.2: Sample original frames with respective segments and scene graphs from a scenario Moving
Boxes
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2.2 Extracting view-point invariant representations based on
geometric and appearance relations

This section present a view-point invariant representations based on geometric and appearance relations.
The basis for this representation is formed by the Early Cognitive Vision (ECV) System [29] and its
recent extension to texture features [24]. The ECV system allows for the extraction and classification of
image structures (line-segment, junction and texture) from images and later on their combination within
stereo and grouping processes. In this way the system forms a hierarchical image representation. Figure
2.3 gives an example for the line-segment (contour) and the texture (surface) domain.

Figure 2.3: The hierarchical representation of edge and texture information in the ECV system. Based
on an example stereo image pair 2D line segments for the left and the right image, 2D texlets for the left
image and a disparity image are extracted. (c-i) 2D line segment details. (c-ii) 3D line segments. (c-iii)
3D contours. (s-i) 2D texlet details. (s-ii) 3D texlets. (s-iii) 3D surflings.

In two hierarchies’ complementary visual information is represented on different levels of granularity
together with the associated uncertainties and confidences. On all levels geometric and appearance infor-
mation is coded explicitly allowing to access this information separately and to link between the different
levels. The geometric and appearance information of the individual features allows us to define relations
between these features. Some important feature relations here are for example Euclidean distance, normal
distance, angle (binary relations) and the individual color values (a unary relation). A complete overview
of the different relations is given in [24].

This visual representation has a number of interesting properties in the context of classical vision problems
such as object recognition, pose estimation as well as a number of learning problems such as grasp
affordance learning. The view-point invariant representation based on geometric and appearance relations
makes use of three of those properties, namely: (1) the separation between geometric and appearance
information, (2) view point invariance, and (3) the richness in terms of providing a large set of relevant
attributes.
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The viewpoint-invariance of our representation can be shown by demonstrating the system’s ability to
maintain stable appearance and geometric attributes and relations under viewpoint transformation. In the
below work we studied this stability by means of a histogram approach. The work has been performed in
a simulated setup to have optimal control over object properties. To get a rather complete representation
three simulated cameras placed around the object were used.

The objects in study here are three variations of a 100x150x200 mm box. The two first objects are closed
boxes with different colors; white and green respectively. They are positioned with a relative 90◦ rotation
around the high axis. The third object is an open box (i.e., the same as the first box except a missing
top surface) with gray texture and with the same pose as the first object. Figure 2.4 shows histograms
corresponding to a subset of the surfling attributes and some second order relations extracted from the
stereo images for the three objects.

Figure 2.4: Three different scene configurations and corresponding histograms. The histogram blocks for
each scene present the following components: (top row) Three appearance histograms representing the
hue (H), the saturation (S) and the value (V) color information of the extracted surflings, while the right
most histogram shows the second order hue vs. saturation histogram. (bottom row, left) shows three
aspects of the geometric information: (1) The histogram corresponding to the angles of pairs of surflings,
(2) their normal distance and (3) their Euclidean distance relation are shown. (bottom row, right)
The histogram spanned by the angle between pairs of surflings as well as their normal distance is shown.

It can be easily noticed that the appearance histograms of the first and the third object are similar.
Analogously, the histograms representing the geometric relations of the first and and the second objects
are very similar. This similarity is due to the fact that the first and the third object have the same
appearance while the first and the second have the same geometry. The difference in color of the second
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object with respect to the first and the third object is reflected in the appearance histograms being
different.

Comparing the first and second object, it is noticeable that very similar relation histograms are obtained
despite the difference in pose. The geometric relations, being view point invariant by definition, also show
this property when being extracted from stereo images where the noise introduced by the uncertainties
in this controlled environment is rather limited.

In both cases, the two-dimensional angle / normal distance histograms reveal three peaks at around
(0◦,−200mm), (180◦,−100mm), and at (180◦,−150mm). These peaks correspond to the dimensions of
the box and the distances of the parallel planes (negative values indicate an outward direction). Peaks at
a certain normal distance with angle of 0 degree represent parallel surfaces pointing in the same direction
(i.e., the table and the top surface) and of 180 degrees when they are pointing in opposite directions (the
four side planes).

When comparing the third object with the two others, it can be seen that the peak at (0◦,−200mm)
does not appear anymore while five other peaks are introduced at (0◦,−100mm), at (0◦,−150mm), at
(180◦, 0mm), at (180◦, 100mm), and at (180◦, 150mm). The object in this case is a box that has no top
surface, and this explains the disappearance of the peak at (0◦,−200mm). Furthermore as a result of
having an open box in the third box, the inside faces of the surfaces can also be seen and their surflings
descriptors can be extracted. Therefore, surflings pointing in the same direction (the outside face of a
surface and the inside face of the parallel surface) can be obtained and this explains the two new peaks
at 0◦. In addition to that. the two peaks at (180◦, 100mm) and at (180◦, 150mm) represent the case
where surflings are pointing in opposite directions (the inside faces of the parallel surfaces). In addition
there is a large peak at (180◦, 0mm) representing surfling pairs on the same surface at opposite sides.

The above scenario shows that very similar histograms for color and geometric are obtained when the
objects have the same color despite their geometrical and pose differences. It also shows that the geometric
relations code the properties of the object in a stable way despite the differences in the pose or the color.
Hence, the ECV system can provide a view-point invariant appearance and geometric representation of
objects.

This example also shows that the histograms show a clear difference in case of open and closed objects.
This allows us to distinguish a closed box from an open box and can be used to derive a predicate for
open/closed.

2.3 Visual modeling of objects

2.3.1 Pose estimation in 2D images using probabilistic 3D object models

This section presents the work realized on pose estimation in 2D images. More details were presented
in [TP11]. We focused on the use of a single, monocular image as the source of scene observations, and
known, 3D models of the object considered. The state-of-the-art methods in this domain generally rely
on matching characteristic, local visual features between the observations of the scene and the model
of the object. This approach, although efficient with textured objects or otherwise matchable features,
would fail when considering non-textured objects, or visual features that cannot be as precisely located
as the texture patches or geometric features used in the classical methods. Our method therefore makes
few assumptions about the type of features used, and it does not rely on establishing specific matches
between features of the model and of the observed scene. For this purpose, we represent both the object
model and the 2D observations of a scene as probabilistic distributions of visual features. The model is
built from 3D observations that can be provided by any external, independent system. One of the main
interests of the proposed method, in addition to the genericity of the underlying principles, is its ability to
effectively handle non-textured objects. The general method itself does not make particular assumptions
about the type of features used, except that they must have a given, although not necessarily exact,
position in space, and they must be potentially observable in a 2D view of the object.
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Figure 2.5: Method for pose estimation in 2D images using edge segments. Top row, object model: (a)
stereo images of object i used to build the model; (b) 3D edge segments that compose the model ψi; (c)
probabilistic model ψi transformed to pose w, and its projection ψ′i,w in 2D (blue and red represent resp.
lowest and highest probability densities). Bottom row, scene: (d) image of a scene; (e) 2D edge segments
used as observations; (f) probabilistic representation of observations, to which projected models such as
ψ′i,w are matched under all poses w using MCMC.

Object model

The 3D observations used to build the model are provided by an external system that performs stereopsis
on a single pair of images. Such a model can thus be quickly and automatically learned, at the expense of
imprecision and imperfections in the model. This again motivates the use of a probabilistic distribution
of features as the object model. An object is represented as a conjunction of parts and their poses
relative to the object. Each part is represented as a spatial distribution of its constituent features, again
in object-relative pose space. Thus, object detection and pose estimation amounts to globally-consistent
matching of model features to scene observations via probabilistic inference.

Scene observations

In order to demonstrate the capabilities of the proposed method at handling textureless objects, we apply
it using local edge segments as observations. Practically, such features cannot be precisely and reliably
observed in 2D images, e.g., due to the ambiguity arising from multiple close edges, 3D geometry such as
rounded edges, or depth discontinuities that change with the point of view. Such problems motivate the
probabilistic approach used to represent the scene observations.

Pose estimation

The object and observation models presented above allow us to estimate the pose of a known object in a
cluttered scene. This process builds on the idea that the 2D projection of the 3D probability distribution
defining the object model can be used as a “template” over the observations, so that one can easily
measure the likelihood of a given pose. A likelihood function for the pose can thus be rigorously defined,
using the probability distributions of the model and of the scene. The maximum-likelihood pose is sought
using an iterative method based on the Metropolis-Hastings MCMC algorithm (Figure 2.5).

Additionally, the proposed method provides a rigorous framework for integrating evidence from multiple
views, yielding increased accuracy with only a linear increase of computation time with respect to the
number of views. As opposed to the classical way stereo images are used, our approach does not seek
matches between the two images, as stereopsis does, and it can thus handle arbitrarily wide baselines.

14
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Figure 2.6: Results of pose estimation (using a single view), with model features reprojected onto the
input image.

visuomotor
pattern

training
objects

test object

Figure 2.7: Parts can be considered as visuomotor patterns of objects.

Performance

We validated the proposed approach on two publicly-available datasets. One dataset allowed quantitative
evaluation; the result of an experiment was compared to the results of an existing method, and showed an
advantage in performance for our method. The pose estimation process was also evaluated with success
on scenes with clutter and occlusion (Figure 2.6).

For more detail please refer to the associated publication [TP11].

2.3.2 Building part-based object models using Kinect data

Part-based models have been widely used in modeling 2D objects. Their advantages over other models
can be mainly considered from two perspectives: (1) They provide a structure with good interpretation
consistent with evidence that the human visual mechanism is also part-based; (2) part-based structure
can be more robust to the circumstances in which objects are partially occluded. In addition, in the
case of 3D objects modeling, besides the two issues mentioned above, another important strength of
part-based models is that the grasping (or other manipulation) knowledge can also be generalized based
on composing parts. The underlying idea is that objects that share similarities in corresponding parts
should also hold similar grasping properties. One intuitive example is that a handle is a common part
that appears in knifes, forks and spoons, and all these objects can be grasped in quite similar manner.
In this way, we can avoid specific grasping training for different individual objects. Instead, the grasping
properties of a novel object can be inferred by detecting parts shared with previously-trained objects,
that is, by part-based grasping generalization. More abstractly, part-based grasping generalization can
be considered as the extraction of general visuomotor patterns relating the appearance and grasping
properties of parts via explicit representations (see Figure 2.7).

In our 3D object modeling case, the Kinect is used to obtain depth data (thus the color information
is lost), and for simplicity of interpretation and visualization, they are converted to 3D point clouds.
Kernel density estimation (KDE) can be applied on 3D point cloud representations, which provides a
probabilistic form of objects, and thus the object pose estimation and detection can be implemented
within a probabilistic framework. More concretely, for each point x, the surface normal θ ∈ S2 of
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Figure 2.8: Left: bag of parts, in which all parts are considered independently; Center: tree structure, in
which parts are organized in a hierarchy; Right: fully connected structure, in which all parts are connected
to each other.

its neighboring region can be computed, and combined with position λ ∈ R3. A point cloud can be
represented as {x(i)}Ni=1 = {λ(i), θ(i)}Ni=1. By applying KDE on points x ∈ R3 × S2, a Gaussian kernel
is established based on the position, and a von Mises-Fisher distribution kernel is constructed on the
normal orientation. Thus the probabilistic form of a point cloud can be written as:

ψ(x) =
N∑
i=1

K(x(i)) (2.1)

K(x(i)) = N(λ(i), σλ)× Φ(θ(i), σθ) (2.2)

where N(λ(i), σλ) is the position-based Gaussian kernel, and Φ(θ(i), σθ is the orientation-based von Mises-
Fisher kernel, and σλ and σθ denote the bandwidth of position and orientation kernels.

Generally, the part-based models can be categorized according to connectivity structure between parts.
Three popular models are: bag of parts, tree structure, fully-connected structure (see Figure 2.8). Since
the complexity of fully connected models is exponential in the number of parts, they are difficult to use
in practice. Therefore, only bag-of-parts and tree models are investigated in our experiments:

• Bag of parts model: according to (2.1), each part is mathematically represented as a distribution
ϕi(x) using KDE on point cloud. Scene distributions ψ(x) can be constructed in the same way.
The pose estimation and simultaneous detection (these two tasks can be done in one shot) can be
done by finding the optimal pose w∗ which maximizes the cross correlation between the scene and
model distributions:

w∗ = argmax
w

∫
ψ(x)[tw(ϕi(x))] dx (2.3)

where tw(ϕ(x)) is the distribution of the part after the corresponding transformation of pose w.

However, in this way, the recovered poses of the parts will probably differ from each other. Although
parts are modeled independently, they should be constrained to arrive at a consistent pose. One
straightforward way to compute a unique global optimal pose for all parts (and thus also for the
object) is as follows:

w∗ = argmax
w

#(parts)∏
i

∫
ψ(x)[tw(ϕi(x))] dx (2.4)

Since there is no closed form to compute (2.4), Markov Chain Monte Carlo (MCMC) and simulated
annealing are applied to obtain an estimation of global optimal solution. One test example can be
seen in Figure 2.9.

• Tree-structured model: Different from the bag-of-parts model, tree-structured models organize all
parts in a hierarchical structure. The model can be constructed top-down (segmentation) or bottom-
up (merging); see Figure 2.10. Here, bottom-up construction is used: lower-level parts are merged
into to higher level parts, and the merging procedure repeats until the whole object is composed.
In this way, pose estimation can be done at different part-complexity levels, and a hierarchical con-
ditional random field of all estimated poses can be constructed on the 3D point cloud observations:

p(w0, w1, . . . , wN |O) =
1

Z

∏
i,j∈connection

π(wi, wj)
∏
k

τ(wk, O) (2.5)
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Figure 2.9: Left: a cup is decomposed into 4 parts, and each part is modeled as a 3D point cloud; Right:
pose estimation and detection of the cup within clutter by using a bag-of-parts model.

Figure 2.10: Left: a tree-structured model of a swivel chair; Right: pose estimation of the swivel chair
within an office environment using a hierarchical conditional random field.
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where π(wi, wj) are pairwise potential functions associated with links between one part i and one
of its child parts j. It can be any function that reflects the spatial constraint between i and j after
their pose-corresponding transformation. The τ(wk) are unary potential functions that reflect the
likelihood of one part’s pose given observation O. By applying an inference algorithm on the above
conditional random field, all poses of different parts will reach a consensus, which is a globally
optimal w∗ based on the pose information of all levels. The performance of the model can be seen
in one example in Figure 2.10.

2.3.3 Learning parametric abstractions of shapes using kernel methods

One of the central problems in capturing the environment by a robot is to interpret the objects observed.
This interpretation can serve as a starting point to the potential activities. For example: can those
objects be grasped, moved and reordered? The interpretation should not stick a label to those objects
saying: this is a chair or that is a mug, but it should provide knowledge enough to act in a proper way.
A mug or a glass, even a bottle, can be grasped in the same way, thus some common properties are really
relevant among those objects, but others, e.g. colors, texture, some details of the shape can be ignored.
Some parts, segments of the entire shape of the objects, carry activity-related properties that need to be
captured.

The shapes of an object as an entity can not be directly observed by the known machine vision systems.
Those systems can yield several different local feature items and the task is to build an abstract shape
out of those features. Within that procedure we need to discover how those local items can relate to
each other, what is the three dimensional graph connecting them, and recognize those items which can
characterize the shape and separate them from those which can relate to something else, e.g. texture.

In learning shapes we assume features which can be characterized by two properties, a 3D position and an
orientation, e.g. a surface segment, a patch, etc. These properties can be translated relatively easily into
the properties of the potential activities. To collect this kind of features we need proper vision systems
which can provide them with sufficient accuracy. Here we assume that these features are available for
shape learning.

2.3.3.1 Shape model

We assume that the shape can be described as a manifold in the three dimensional space. This manifold,
we might say surface, is an almost everywhere smooth one allowing to model edges and corners with
high curvature, but otherwise it can be partitioned into relatively large connected smooth segments.
This assumption expresses the need to eliminate irrelevant small details. Another requirement we should
satisfy relates to the potential complexity of the shape, namely it can be a topologically higher order
manifold with holes, with a mixture of segments with positive and negative curvature, and convex and
concave parts.

To model a surface with complex structure and in the same time forcing a certain high level of smooth-
ness we apply an infinite dimensional parametric representation exploiting the fact that a complex low
dimensional manifold can be approximated by a hyperplane in a sufficiently high dimensional space.

The representation space we have chosen is an infinite dimensional Hilbert space of the square integrable
functions. Within this space we can apply the probability density functions as features defined on
the low dimensional 3D space to be modeled. This mathematical framework allows us to synthesize the
probabilistic generative models and the robustness of the maximum margin based discriminative methods.
Furthermore, the advantage of the kernel methods in expressing nonlinear relations can be exploited as
well. The discrimination happens between the shape and the non-shape points, and the generative,
density function based features provide certain local confidence measures on the shape approximation.

The shape modeling is considered as a machine learning procedure where the shape is extracted from local
vision features. The learning task is to force a certain type of manifold to closely fit to the parameters,
position and orientation, of the visual feature items, and in the same time it has to be as smooth, say
simple, as possible which can be achieved via regularization constraining the complexity of the manifold
applied.

The outcome of the learning method is an infinite dimensional vector, a combination of probability

18



Xperience 270273 PU

density functions. This kind of representation admits direct comparison of different objects to express
their similarities and dissimilarities. This representation can be reused in other learning method to
discover common parts within a given group of object, e.g. by applying Kernel Principal Component
Analysis.

The derived shape models can be transformed by any affine transformation, e.g. translation or rotation,
via acting on the parameters, expected values and/or covariance matrices, of the density functions used
in the expression of the vectors describing the models.

The robot activities, e.g. grasping, can be modeled in a similar framework, thus both the shape models
and the actions applied on those shapes as abstract vectors can be located in a common vector space. In
this way potential connections between shapes and actions can be predicted for a new shape and for a
new action. To do that the relationships between the novel items and the known ones needs to computed
in the common vector space.

The details of the shape learning can be found in an attached technical report [SXP11].

2.3.3.2 Planned work

We are planning to incorporate features derived from edges only. Those features can be collected with
less effort, require less sophisticated camera setups for capture, and can be computed significantly faster.

Another direction we started to work on is the incorporation of anisotropic kernels which emphasize the
tangential directions against the radial ones on the surfaces. Since the anisotropic representation can
express more flexible models, and it could lead to significantly smaller and simpler collection of features
which can accelerate the processing.
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Chapter 3

Visuo-haptic object representation

One key capability of autonomous robots consists in the ability of adapting their sensorimotor experience
to new situations and tasks. For this purpose, processes for the exploration of unknown entities in
the world are required to provide necessary perceptual abilities and generate suitable actions with the
purpose of enhancing the knowledge of the system in an outside-in fashion. In task 2.1.2, we are focusing
on the exploration of unknown objects by a humanoid robot with the goal to generate sensorimotor
representations which are suitable for recognition, grasping, and manipulation.

In prior work, we investigated methods for the dexterous haptic exploration of unknown objects based
on a potential field approach [10, 8, 9]). The feasibility of the approach has been demonstrated in the
application of grasp affordances calculation based on the sensory data collected during the exploration
process [11]. Since the proposed methods only generate sensory data based on the haptic domain, the
exploration of integrated visuo-haptic object representations requires to extend the work in different
directions. In the following, a brief summary of the conducted work toward integrated visuo-haptic
object representations is outlined.

The haptic exploration in our previous work was restricted to single handed exploration tasks. While
the single handed exploration constitutes a reasonable testbed for the potential field approach, it lacks
applicability to many real world tasks. For the experiments, heavy objects had to be used or the objects
had to be fixated in order to allow the integration of haptic data in a common reference frame. Further,
due to kinematic restrictions and to possible collisions with the support plane the object could not
be explored exhaustively. In order to overcome these limitations, we investigate the extension to bi-
manual haptic exploration. Having grasped and fixated the object in one hand allows performing a more
exhaustive exploration and overcomes the restriction to heavy or fixated objects. In order to grasp an
object with little prior knowledge in an outside-in fashion, we developed methods for ”blind” grasping to
enable the bi-manual exploration process. The approach towards blind grasping is detailed in Section 3.1.

The exploration of visuo-haptic object representations requires to augment the haptic sensory data with
visual information. Therefore, the binding problem across the visual and the haptic modality has to
be addressed. In order to fuse haptic and visual sensory data, a common reference frame needs to be
established. An approach allowing the establishment of such a common reference frame is proposed in
Section 3.2. While seeking and successively keeping contact with an unknown object, the robot hand
is localized visually. Using a model of the hand, the haptic sensory information relative to the tracked
hand and the visual information from the camera images can be assigned to the same object thus yielding
a visuo-haptic representation. The approach has been evaluated in a visuo-haptic object segmentation
task.

3.1 Blind grasping for bi-manual visuo-haptic exploration

As explained in the last section, it is necessary to grasp an object for its bi-manual exploration. As
the object is completely unknown before exploration, no model-based grasping techniques can be used.
Therefore, we developed a system to grasp unknown objects from a table based on haptic sensor data.
The search space where the unknown object(s) for exploration could be found is upper bounded by the
reachable space of the robot. This rather big space needs to be restricted to a subspace where the objects
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can actually be found. In order to simultaneously reduce this space and provide the initial hypotheses
(regions of interest) for the blind grasping, a simple and straightforward model-free vision method has
been developed. The method consist of four stages:

1. Stereo images are captured by the calibrated stereo-rig and are used to extract a point-cloud of the
scene.

2. Using the rigid transformation from the left camera to the robot platform, the point-cloud is mapped
from perspective dependent camera coordinates to the invariant robot platform coordinates.

3. Using a bounding-box, it is possible to separate the points within in the volume of interest.

4. A kernel density estimation is used to determine the index of connectivity of points within the
bounding box, in order to segment them into clusters, which are ranked by their size and high
(z-coordinate). These clusters are hypotheses which can be used for model-free grasping towards
bi-manual exploration, see Fig.3.1.

Figure 3.1: Schematic representation of the grasping hypotheses generation for the bi-manual visuo-haptic
exploration.

Once a promising hypothesis for an object is found, the robot tries to reach this position. While reaching
the robot uses the 6D force/torque sensor, which are mounted in the wrist, its tactile sensors in the finger
tips and the encoder values of the hand to detect a contact with the object and estimate the position
of the contact. The robot stops the movement upon contact and calculates a correction movement in
direction of the estimated contact point. If another contact is detected during the correction movement,
another correction movement is executed. The procedure is repeated until a contact in the palm of
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Figure 3.2: Different phases of the blind grasping: Generation of grasping hypothesis (left), contact
detection with the object (center) and object grasping after performing corrective movements (right).

the hand is detected, an upper bound of correction movements is reached or the limit of the reachable
space of the robot is reached. In the case of a contact on the palm, we assume that the object is inside
the hand and the hand is closed trying to enclose the object. The procedure is shown in Fig. 3.2. A
grasp stability check is performed using the position and tactile data. Only if the grasp is classified as
stable, the object is lifted while continuously checking the grasp stability. In the case of reaching the
upper bound of correction movements or the limit of the reachable space, the robot starts over with a
new grasping hypothesis. The approach for grasp stability detection is presented in [SLP+12]. This
is based on temporal filtering of a support vector machine classifier output and estimates the stability
continuously during the grasp attempt. Experimental evaluation on ARMAR-IIIb demonstrate that the
estimation provides equal performance to the earlier approaches while reducing the time to reach a stable
grasp significantly. Moreover, the results demonstrate for the first time that a learning based stability
estimation can be used with a flexible, pneumatically actuated hand, in contrast to the rigid hands used
in earlier works.

3.2 Visuo-haptic exploration for object segmentation

A prerequisite for performing visuo-haptic exploration is the establishment of a common reference frame
which allows binding visual and haptic sensory data. For this purpose, the position of the tactile sensors
of ARMAR-IIIb is registered with the visual coordinate frame by means of model-based tracking of the
five-fingered hand. Using a kinematic model of the ARMAR-IIIb hand and the encoder readings from
the finger joint sensors, the position of the finger tips are registered with the camera frame. Having
established this common reference frame, visual as well as haptic sensory data can be fused in a single
object representation.

The goal of the exploration process consisted in improving the figure-ground segmentation of objects in
the camera image using haptic information. Figure-ground segmentation is one of the key prerequisite
for the generation of object representations since it allows to bind sensory information to one single
object. The figure-ground segmentation of an unknown object based on visual input alone is an ill-posed
problem; if background and object exhibit a similar visual appearance, the pure visual segmentation will
fail. The inclusion of haptic information allows performing a reliable figure-ground segmentation even in
such situations, where object and background are visually ambiguous.

In order to verify the existence of an object at a spatial location using haptic sensory data, contact
information is collected. Therefore, we use the force information on one fingertip to test spatial locations
for object existence. The hand pose of the five-fingered hand used during exploration is illustrated
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Figure 3.3: The contour of the visible surface of an unknown object is explored using the force measured
on one fingertip. The configuration of the hand during exploration exposes this finger tip in order to
establish and remain contact to the object (left). In order to identify potential candidates for exploration,
unsupervised clustering is performed based on corner feature es. For each cluster center the exploration
approach tries to establish contact with the object (right).

in Fig. 3.3, left. The force is derived using an approximated model of the pneumatic hand actuators
according (see [12]).

In order to bind the contact information to the visual appearance of an unknown object, the exploration
process establishes contact to the object perceived by the cameras. For this purpose, the scene is analyzed
visually and from the visual information, hypotheses are generated in terms of potential 3D Cartesian
target locations on the object. The exploration process then successively tries to establish contact at
one of the potential target locations. For the calculation of potential targets, unsupervised clustering is
performed on a set of texture features extracted from the current scene as illustrated in Fig. 3.3, right.
Each cluster center is used as a potential target location. Based on the potential target location and the
visual tracking of the five-fingered hand, a Visual Servoing approach has been implemented in order to
establish the contact to the object. Using the texture features belonging to the hypothesis as reference
the Visual Servoing successively reduces the distance between the fingertip and the selected potential
target as illustrated in Fig. 3.4.

Once contact to the unknown object has been established, the exploration process starts to collect contact
information and thus enrich the visually extracted information. The goal of the exploration consists in
finding the extent of the object in the image plane of the camera. Therefore, a contour following approach
has been proposed as exploration strategy. With a fixed orientation of the fingertip and a sensitive
direction perpendicular to the image plane, the contour of the object is extracted. The exploration
strategy is based on two exploration directions which are perpendicular to each other: the exploration
direction and the testing direction. While keeping contact to the surface, the strategy moves discrete steps
in the exploration direction resulting in discrete exploration points. If contact is lost, a new contour point
is inserted, the fingertip is navigated to the last stable exploration point, and the exploration direction
is turned counter-clockwise. On each exploration point, a movement in the test direction is performed
in order to verify movement along the contour of the object. If the contact is not lost during the test
movement, the exploration direction is turned clock-wise. Once the exploration process returns to the
starting point of the exploration, the segmentation is finished. The contour of the object is recovered by
connecting all exploration and contour points in their sequence of exploration.

Segmentation experiments were performed including simple box-shaped as well as more complex objects.
More complex objects required a finer discretization of the exploration grid and thus resulted in a pro-
longed exploration process. For objects having a planar surface, the proposed exploration process allows
reliable figure-ground segmentation. The inclusion of contact information allows to perform figure-ground
segmentation of unknown objects even in scenes which contain visual ambiguities as can be seen in Fig-
ure 3.5. Also experiments on non-planar object have been performed. Therefore, the orientation of the
sensitive direction has been adapted to the explored surface normal. Due to kinematic restrictions of the
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Figure 3.4: Using a Visual Servoing approach, a potential target on the surface of the object is approached
in order to establish contact. Potential targets are defined by their cluster center and the associated tex-
ture features as resulting from unsupervised spatial clustering. The position of the fingertip is calculated
using a model-based tracking of the five-fingered hand and the finger joint angle sensor readings. The
texture features and the fingertip are tracked throughout the process in order to cope with head and hip
movements of the robot.

Figure 3.5: Results of the visuo-haptic exploration approach in figure-ground segmentation tasks. Due
to ambiguities in the visual appearance of background and object the segmentation of the object based
on visual data alone is affected (left). By enhancing the visual information using the proposed haptic
exploration approach, the segmentation becomes more stable (middle). Compared to the ground truth,
the visuo-haptic exploration approach is able to recover major parts of the contact surface (right).

ARMAR-III arm, the complete segmentation of such objects showed to be difficult. In such cases, the
exploration would substantially benefit from a bi-manual approach.
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Chapter 4

Reaching, grasping and manipulation

4.1 iCub architecture for reaching

4.1.1 Introduction

In this section we consider a solution to the problem of reaching for a visually identified target in a
complex humanoid robot platform, considering both potential forceful interactions with objects or people
and gross mistakes due to miscalibration of the controller parameters. Our reference platform is the
iCub [23] – one of the platform of Xperience – a humanoid robot shaped as a three and half years old
child. The iCub, by design, only uses “passive” sensors as for example cameras, gyroscopes, pressure,
force and contact sensors, microphones and so forth. We excluded the use of lasers, sonars and other
esoteric sensing modalities.

In this conditions and in an unstructured environment where human can freely move and work (our
laboratory space in the daily use of the iCub), it is unlikely that the robot obtains an accurate model
of the environment for accurate impact-free planning of movements. One common solution [32] is to
control the robot mechanical impedance and, simultaneously, minimize impacts by using for example
vision and trajectory planning. The possibility of impedance control lowers the requirements of vision
and guarantees a certain degree of safety in case of contacts with the environment – though, strictly
speaking, the robot can still be potentially dangerous and cause damage if it moves fast.

The control architecture described in this section is not very different in principle from a standard
computed torque approach [31]. A first layer compensates for the dynamics and linearizes the system.
Because of the communication bus of the iCub controllers, of bandwidth requirements, and implemen-
tation constraints, it operates in joint space. A second layer subsequently plans trajectories starting
from a description of the target position in extrinsic space and merging joint limits, a secondary task
specification, inverse kinematics and singularity avoidance. We show in the remainder of the section how
this is implemented by mixing hand-coded models of the robot dynamics and kinematics together with
machine learning.

Reaching and pointing is fundamental in learning about the environment enabling interaction with objects
and their manipulation to achieve complex tasks. In this sense these are the basic building blocks of a
complex cognitive architecture for the iCub and consequently for Xperience. This text and the following
is larged imported from the ISRR 2011 invited paper where we summarized most of the work carried out
on the iCub for the Xperience project.

4.1.2 Experimental platform: the iCub

The iCub is one of the results of the RobotCub project, an EU-funded endeavor to create a common
platform for researchers interested in embodied artificial cognitive systems [2].

The initial specifications of the robot aimed at replicating the size of a three and a half years old child. In
particular, it was required that the robot be capable of crawling on all fours and possess fine manipulation
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(a) (b) (c)

Figure 4.1: The iCub platform: panel (a) a picture of the latest realization of the iCub; panel (b)
approximate dimensions height × width; and panel (c) the kinematic structure of the major joints.

abilities. For a motivation of why these features are important, the interested reader is referred to Metta
et al. [22].

Dimensions, kinematic layout and ranges of movement were drafted by considering biomechanical models
and anthropometric tables [34]. Rigid body simulations were used to determine the crucial kinematic
features in order to perform the set of desired tasks and motions, i.e. reaching, crawling, etc. [35]. These
simulations also provided joint torques requirements. Data were then used as a baseline performance
indicator for the selection of the actuators. The final kinematic structure of the robot is shown in figure
4.1c. The iCub has 53 degrees of freedom (DoF). Its kinematics has several special features which are
rarely found in other humanoid robots: e.g. the waist has three DoF which considerably increase the
robot’s mobility; the three DoF shoulder joint is constructed to have its axes of rotation always intersecting
at one point.

To match the torque requirements we employed rotary electric motors coupled with speed reducers. We
found this to be the most suitable choice in terms of robustness and reliability. Motor groups with various
characteristics were developed (e.g. 40Nm, 20Nm and 11Nm) for different placements into the iCub. We
used the Kollmorgen-DanaherMotion RBE type brushless frameless motor (BLM) and a CSD frameless
Harmonic Drive as speed reducer. The use of frameless components allowed further optimization of space
and reduced weight. Smaller motors for moving the fingers, eyes and neck are from Fulhaber in various
sizes and reduction gear ratios.

Cable drives were used almost everywhere on the iCub. Most joints have relocated motors as for example
in the hand, shoulder (besides one joint), elbow, waist and legs (apart from two joints). Cable drives
are efficient and almost mandatory in order to optimize the motor locations and the overall “shape”
of the robot. All joints in the hand are cable driven. The hand of the iCub has 20 joints which are
moved by only 9 motors: this implies that some of the joints are under-actuated and their movement is
obtained by means of the cable couplings. Similarly to the human body most of the hand actuation is
in the forearm subsection. The head is another particular component of the iCub enabling independent
vergence movements supported by a three DoF neck for a total of six DoF.

By design we decided to only use “passive sensors” and in particular cameras, microphones, gyroscopes
and accelerometers, force/torque (FTS) and tactile sensors as well as the traditional motor encoders.
Of special relevance is the sensorized skin which is not easily found in other platforms as well as the
force/torque sensors that are used for force/impedance control (see later). No active sensing is provided
as for example lasers, structured light projectors, and so forth.

The iCub mounts custom-designed electronics which consists of programmable controller cards, amplifiers,
DACs and digital I/O cards. This ecosystem of microcontroller cards relies on multiple CAN bus lines
(up to 10) for communication and synchronization and then connects with a cluster of external machines
via a Gbit/s Ethernet network. Data are acquired and synchronized (and timestamped) before being
made available on the network. We designed the software middleware that supports data acquisition and
control of the robot as well as all the firmware that operates on the microcontrollers which eventually
drive each single transistor that moves the motors.
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(a) (b)

Figure 4.2: In (a) a typical interaction of the iCub arm with the environment exemplified here with a
number of wrenches at different locations and in (b) the location of the four FTSs of the iCub in the
upper part of the limbs (proximal with respect to the reference frame of the robot kinematic chains) and
of the inertial sensors mounted in the head.

The software middleware is called YARP [15]. YARP is a thin library that enables multi-platform and
multi-IDE development and collaboration by providing a layer that shields the user from the quirks of the
underlying operating system and robot hardware controllers. The complete design of the iCub (drawings,
schematics, specifications) and its software (both middleware and controllers) is distributed according to
the GPL or the LGPL licenses. In Xperience we decided to interface YARP with other middlewares as
for example the widely employed ROS (www.ros.org) and ICE (http://www.zeroc.com/).

4.1.3 Dynamics

The first layer of the proposed architecture is based on computation of the body dynamics and implements
joint position & velocity control on top of joint-level impedance. In the simplest possible version, the
controller cards implement a 1ms feedback loop relying on the error e defined as:

e = τ − τd , (4.1)

where τ is the vector of joint torques and τd its desired value. We do not know τ directly on the iCub but
we have access to estimates through the force/torque sensors (FTSs). They are mounted as indicated in
figure 4.2 in the upper part of the limbs and can therefore be used to detect wrenches at any location in
the iCub limbs and not only at the end-effector as it is more typical for industrial manipulators.

We show that τ can be estimated from the FTS measurements of each limb (equations repeat identical
for each limb). Let’s indicate with ws the wrench measured by the FTS and assume that it is due to an
actual external wrench at a known location (e.g. at the end-effector) which we call we. We can estimate
we by propagating the measurement on the kinematic chain of the limb (changing coordinates):

ŵe =

[
I 0

−[r̄se]× I

]
· (ws − wi) , (4.2)

with [r̄se]× the skew-symmetric matrix representing the cross product with the vector r̄se, ŵe the estimate
of we, and wi the internal wrench (due to internal forces and moments). Note that [r̄se]× is a function of
q, the vector of joint angles. wi can be estimated from the dynamics of the limb (either with the Lagrange
or Newton-Euler formulation). To estimate τe we only need to project ŵe to the joint torques using the
transposed Jacobian, i.e.:

τ̂e = JT (q) · ŵe . (4.3)

We can then use this estimate in a control loop by defining the torque error e as:

e = τ̂e − τd , (4.4)
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Figure 4.3: The torque controller of the iCub. See text for details.

where τ̂e is an estimate of τ regulated by a PID controller of the form:

u = kp · e+ kd · ė+ ki ·
∫
e , (4.5)

where kp, kd and ki are the usual PID gains and u the amplifier output (the PWM duty cycle which
determines the equivalent applied voltage at the motor). Similarly we can build an impedance controller
in joint space by making τd of the form:

τd = K · (q − qd) +D · (q̇ − q̇d) , (4.6)

which can be implemented at the controller card level if K and D are diagonal matrices. Furthermore,
we can command velocity by making:

qd(t) = qd(t− δt) + q̇d(t)δt , (4.7)

with δt the control cycle interval (1ms in our case). This latter modality is useful when generating whole
trajectories incrementally. The actual computation of the dynamics and kinematics is based on a graph
representation which we detail in the following.

We start by considering an open (single or multiple branches) kinematic chain with n DoF composed of
n+ 1 links. Adopting the Denavit-Hartenberg notation [31], we define a set of reference frames 〈0〉, 〈1〉,
. . ., 〈n〉, attached at each link. The ith link of the chain is described by a vertex vi (sometimes called

node), usually represented by the symbol i . A hinge joint between the link i and the link j (i.e. a

rotational joint) is represented by an oriented edge ei,j connecting vi with vj : i → j . In a n DoF open

chain, each vertex (except for the initial and terminal, v0 and vn respectively) has two edges. Therefore,
the graph representation of the n-link chain is an oriented sequence of nodes vi, connected by edges ei−1,i.
The orientation of the edges can be either chosen arbitrarily (it will be clear later on that the orientation
simply induces a convention) or it can follow from the exploration of the kinematic tree according to
the regular numbering scheme [14], which induces a parent-child relationship such that each node has
a unique input edge and multiple output edges. We further follow the classical Denavit-Hartenberg
notation, we assume that each joint has an associated reference frame with the z-axis aligned with the
rotation axis; this frame will be denoted 〈ei,j〉. In kinematics, an edge ei,j from vi to vj represents the
fact that 〈ei,j〉 is fixed in the ith link. In dynamics, ei,j represents the fact that the dynamic equations
will compute (and make use of) wi,j , i.e. the wrench that the ith link exerts on the jth link, and not the
equal and opposite reaction −wi,j , i.e. the wrench that the jth link exerts on the ith link. In order to
simplify the computations of the inverse dynamics on the graph, kinematic and dynamic measurements
have been explicitly represented. Specifically, the graph representation has been enhanced with a new set
of graphical symbols: a triangle to represent kinematic quantities (i.e. velocities and acceleration of links
- ω, ω̇, ṗ, p̈), and a rhombus for wrenches (i.e. force sensors measurements on a link - f , µ). Moreover
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Figure 4.4: Representation of iCub’s kinematic and dynamic graph. In (a): iCub’s kinematics. The
inertial sensor measure (H) is the unique source of kinematic information for the whole branched system.
(b): iCub’s dynamics when the robot is standing on the mainstay and moving freely in space. Given the
four FTSs, the main graph is cut by the four links hosting the sensors, and a total of five sub-graphs
are finally generated. The unknowns are the external wrenches at the end-effectors: if the robot does
not collide with the environment, they are zero, whereas if a collision happens, then an external wrench
arises. The displacement between the expected and the estimated wrenches allows detecting contacts
with the environment under the hypothesis that interactions can only occur at the end-effectors. The
external wrench on top of the head is assumed to be null. Notice that the mainstay is represented by
a unknown wrench ♦. (c): iCub’s dynamics when the robot is crawling (four points of contact with
the ground). As in the previous case, five sub-graphs are generated after the insertion of the four FTSs
measurements, but unlike the free-standing case, here the mainstay wrench is removed, being the iCub
on the floor. Specific locations for the contacts with the environment are given as part of the task: the
unknown external wrenches (♦) are placed at wrists and knees, while wrenches at the feet and palms
are assumed known and null (H). Interestingly, while moving on the floor the contact with the upper
part could be varying (e.g. wrists, palms, elbows), so the unknown wrenches could be placed in different
locations than the ones shown in the graph.

these symbols have been further divided into known quantities to represent sensors measurements, and
unknown to indicate the quantities to be computed, as in the following:

• ∇: unknown kinematic information

• H: known (e.g., measured) kinematic information

• ♦: unknown dynamic information

• �: known (e.g., measured) dynamic information

In general, kinematic variables can be measured by means of gyroscopes, accelerometers, or simply inertial
sensors. When attached on link ith, these sensors provide angular and linear velocities and accelerations
(ω, ω̇, ṗ and p̈) at the specific location where the sensor is located. We can represent these measurement
in the graph with a black triangle (H) and an additional edge from the proper link where the sensor is
attached to the triangle. As usual, the edge has an associated reference frame, in this case corresponding
to the reference frame of the sensor. An unknown kinematic variable is represented by a white triangle
(∇) with an associated edge going from the link (where the unknown kinematic variable is attached) to
the triangle. Similarly, we introduce two new types of nodes with a rhomboidal shape: black rhombus (�)
to represent known (i.e. measured) wrenches, white rhombus (♦) to represent unknown wrenches which
need to be computed. The reference frame associated to the edge will be the location of the applied or
unknown wrench. The complete graph for the iCub is shown in figure 4.4.

From the graph structure, we can define the update rule that brings information across edges and by
traversing the graph we therefore compute either dynamical or kinematic unknowns (♦ and ∇ respec-
tively). For kinematic quantities this is:
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Figure 4.5: Comparison between the wrench measured by the FT sensor and that predicted by the model,
during a generic contact-free movement of the left arm. The three plots on the left are forces expressed
in [N ]; the three rightmost plots are the moments in [Nm].

ωi+1 = ωi + θ̇i+1zi ,

ω̇i+1 = ω̇i + θ̈i+1zi + θ̇i+1ωi × zi ,
p̈i+1 = p̈i + ω̇i × ri,i+1 + ωi+1 × (ωi+1 × ri,i+1) ,

(4.8)

where zi is the z-axis of 〈i〉, i.e. we propagate information from the base to the end-effector visiting
all nodes and moving from one node to the next following the edges. The internal dynamics of the
manipulator can be studied as well: if the dynamical parameters of the system are known (mass mi,
inertia Ii, center of mass Ci), then we can propagate knowledge of wrenches applied to e.g. the end-
effector (fn+1 and µn+1) to the base frame of the manipulator so as to retrieve forces and moments fi,
µi:

fi = fi+1 +mip̈Ci
,

µi = µi+1 − fi × ri−1,Ci
+ fi+1 × rri,Ci

+ Iiω̇i + ωi × (Iiωi) ,
(4.9)

where:

p̈Ci
= p̈i + ω̇i × ri,Ci

+ ωi × (ωi × ri,Ci
) , (4.10)

noting that these are the classical recursive Newton-Euler equations. Knowledge of wrenches enables the
computation of wi as needed in equation 4.2 or the corresponding joint torques from τi = µTi zi−1.

4.1.3.1 Validation and further improvements

In order to validate computation of the dynamics, we compared measurements from the FTSs with
their model-based prediction. The wrenches ws from the four six-axes FTSs embedded in the limbs
are compared with the analogous quantities ŵs predicted by the dynamical model, during unconstrained
movements (i.e. null external wrenches). Kinematic and dynamic parameters are retrieved from the CAD
model of the robot. Sensor measurements ws can be predicted assuming known wrenches at the limbs
extremities (hands or feet) and then propagating forces up to the sensors. In this case, null wrenches are
assumed, because of the absence of contact with the environment. Table 4.1 summarizes the statistics
of the errors (ws − ŵs) for each limb during a given, periodic sequence of movements, with the robot
supported by a rigid metallic mainstay, and with the limbs moving freely without self collision or contact
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Table 4.1: Error in predicting FT sensor measurement (see text for details).

εf0 εf1 εf2 εµ0 εµ1 εµ2

ε̄ -0.3157 -0.5209 0.7723 -0.0252 0.0582 0.0197
σε 0.5845 0.7156 0.7550 0.0882 0.0688 0.0364

right arm: ε ≡ ŵs,RA − ws,RA
ε̄ -0.0908 -0.4811 0.8699 0.0436 0.0382 0.0030
σε 0.5742 0.6677 0.7920 0.1048 0.0702 0.0332

left arm: ε ≡ ŵs,LA − ws,LA
ε̄ -1.6678 3.4476 -1.5505 0.4050 -0.7340 0.0171
σε 3.3146 2.7039 1.7996 0.3423 0.7141 0.0771

right leg: ε ≡ ŵs,RL − ws,RL
ε̄ 0.2941 -5.1476 -1.9459 -0.3084 -0.8399 0.0270
σε 1.8031 1.8327 2.3490 0.3365 0.8348 0.0498

left leg: ε ≡ ŵs,LL − ws,LL
SI units: f : [N ], µ : [Nm]

with the environment. Table 4.1 shows the mean and the standard deviation of the errors between
measured and predicted sensor wrench during movement. Figure 4.5 shows a comparison between ws
and ŵs for the left arm (without loss of generality, all limbs show similar results).

Subsequently we investigated methods to improve the estimates of the robot dynamics. In another set of
experiments we thus compared various non-parametric learning methods with the rigid body model just
presented. We refer the interested reader to Gijsberts et al. [17]. We report here only the main findings.
The task of learning here is the estimation of the wrenches due to the internal dynamics (wi) given the
FTS readings (ws) and the robot configuration (q, q̇, q̈); we do not take into account inertial information.

We compared various methods from the literature as for example the widely used Local Weighted Pro-
jection Regression (LWPR), the Local Gaussian Process (LGP) and Gaussian Process Regression (GPR)
as presented by Nguyen-Tuong et al. [25] with an incremental version of Kernel Ridge Regression (also
known as Sparse Spectrum Gaussian Process) with the aim of maintaining eventually an incremental
open-ended learner updating the estimation of the robot dynamics on-line. Our incremental method
relies on an approximation of the kernel (see [30]) based on a random sampling of its Fourier spectrum.
The more random features, the better the approximation. We considered approximations with 500, 1000,
and 2000 features. In the following we call KRR the plain kernel ridge regression method and RFRRD

the random feature version for D features. Various datasets (e.g. Barret, Sarcos) were used from the
literature (for comparison [25]) before applying the method to the iCub.

The results in figure 4.6 show that KRR often outperforms GPR by a significant margin, even though
both methods have identical formulations for the predictive mean and KRR hyperparameters were op-
timized using GPR. These deviations indicate that different hyperparameter configurations were used
in both experiments. This is a common problem with GPR in comparative studies: the marginal like-
lihood is non-convex and its optimization often results in a local optimum that depends on the initial
configuration. Hence, we have to be cautious when interpreting the comparative results on these datasets
with respect to generalization performance. The comparison between KRR and RFRR, trained using
identical hyperparameters, remains valid and gives an indication of the approximation quality of RFRR.
As expected, the performance of RFRR steadily improves as the number of random features increases.
Furthermore, RFRR1000 is often sufficient to obtain satisfactory predictions on all datasets. RFRR500,
on the other hand, performs poorly on the Barrett dataset, despite using distinct hyperparameter config-
urations for each degree of freedom. In this case, RFRR1000 with a shared hyperparameter configuration
is more accurate and requires overall less time for prediction.

Figure 4.7 shows how the average nMSE develops as test samples are predicted in sequential order
using either KRR or RFRR. RFRR requires between 5000 and 10000 samples to achieve performance
comparable to KRR. The performance of KRR, on the other hand, decreases over time. In particular on
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Figure 4.6: Prediction error per degree of freedom for the (a) Simulated Sarcos, (b) Sarcos, and (c)
Barrett datasets. The results for LWPR, GPR, and LGP are taken from Nguyen-Tuong et al. [25]. The
mean error over 25 runs is reported for RFRR with D ∈ 500, 1000, 2000, whereas error bars mark a
distance of one standard deviation. Note that in some cases the prediction errors for KRR are very close
to zero and therefore barely noticeable.

the iCub dataset it suffers a number of large errors, causing the average nMSE to show sudden jumps.
This is a direct consequence of the unavoidable fact that training and test samples are not guaranteed
to be drawn from the same distribution. Incremental RFRR, on the other hand, is largely unaffected
by these changes and demonstrates stable predictive performance. This is not surprising, as RFRR is
incremental and thus (1) it is able to adapt to changing conditions, and (2) it eventually has trained
on significantly more samples than KRR. Furthermore, figure 4.7 shows that 200 random features are
sufficient to achieve satisfactory performance on either dataset. In this case, model updates of RFRR
require only 400µs, as compared to 2ms and 7ms when using 500 or 1000 random features, respectively.
These timing figures make incremental RFRR suitable for high frequency loops as needed in robot control
tasks.

In conclusion, this shows that for a relatively complex robot like the iCub, good estimation of the
internal dynamics is possible and that a combination of non-parametric and parametric methods can
provide simultaneously good generalization performance, fast and incremental learning. Not surprisingly,
lower errors are obtained with learning. In the next section we see how to build on this controller to
reach for visually identified targets.

4.1.4 Kinematics

We consider the general problem of computing the value of joint angles qd in order to reach a given
position in space xd ∈ R3 and orientation αd ∈ R4 of the end-effector (where αd is a representation of
rotation in axis/angle notation). Note that qd can be directly connected to the input of the impedance
controller described in section 4.1.3. It is desired that the computed solution satisfies a set of additional
constraints expressed as generic inequalities – we see later the reason for constraining the solution of the
optimization problem. This can be stated as follows:
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Figure 4.7: Average prediction error with respect to the number of test samples of KRR and incremental
RFRR with D ∈ 200, 500, 1000 on the iCub dataset. The error is measured as the nMSE averaged over
the force and torque output components. The standard deviation over 25 runs of RFRR is negligible in
all cases, for clarity we report only the mean without error bars.

qd = argminq∈Rn(‖αd −Kα(q)‖2 + β(qrest − q)TW (qrest − q)) ,

s.t.

{
‖xd −Kx(q)‖2 < ε
qL < q < qU

,
(4.11)

where Kx and Kα are the forward kinematic functions for the position and orientation of the end-effector
for a given configuration q; qrest is a preferred joint configuration, W is a diagonal weighting matrix, β
a positive scalar weighting the influence of the terms in the optimization and ε a parameter for tuning
the precision of the movement. Typically β < 1 and ε ∈ [10−5, 10−4]. The solution to equation 4.11 has
to satisfy the set of additional constraints of joint limits qL < q < qU with qL, qU the lower and upper
bounds respectively. In the case of the iCub, we solved this problem for ten DoF – seven of the arm and
three of the waist and we determined the value of qrest so that the waist is as upright as possible. The
left and right arm can be both controlled by switching from one or the other kinematic chain (e.g. as a
function of the distance to the target).

We used an interior point optimization technique to solve the problem in 4.11. In particular we used
IpOpt [36], a public domain software package designed for large-scale nonlinear optimization. This
approach has the following advantages:

1. Quick convergence. IpOpt is reliable and fast enough to be employed in control loops at reasonable
rates (tens of milliseconds), as e.g. compared to more traditional iterative methods such as the
Cyclic Coordinate Descent (CCD) adopted in [18];

2. Scalability. The intrinsic capability of the optimizer to treat nonlinear problems in any arbitrary
number of variables is exploited to make the controller structure easily scalable with the size of the
joint space. For example, it is possible to change at run time from the control of the 7-DoF iCub
arm to the complete 10-DoF structure inclusive of the waist or to any combination of the joints
depending on the task;

3. Automatic handling of singularities and joint limits. This technique automatically deals with sin-
gularities in the arm Jacobian and joint limits, and can find solutions in virtually any working
conditions;

4. Tasks hierarchy. The task is split in two subtasks: the control of the orientation and the control
of the position of the end-effector. Different priorities can be assigned to the subtasks. In our case
the control of position has higher priority with respect to orientation (the former is handled as a
nonlinear constraint and thus is evaluated before the cost);

5. Description of complex constraints. It is easy to add new constraints as linear and/or nonlinear
inequalities either in task or joint space. In the case of the iCub, for instance, we added a set
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Figure 4.8: The multi-referential scheme for trajectory generation. K is the forward kinematics map; qfb
is the vector of encoder signals.

of constraints that avoid reaching the limits of the tendons that actuate the three joints of the
shoulder.

Once qd is determined as described above, there is still the problem of generating a trajectory from
the current robot configuration q to qd. Simultaneously, we would like to impose suitable smoothness
constraints to the trajectory. This has been obtained by using the Multi-Referential Dynamical Systems
approach [18], whereby two dynamical controllers, one in joint space and another in task space, evolve
concurrently (figure 4.8). The coherence constraint, that is ẋ = Jq̇, with J the Jacobian of the kinematics
map, guarantees that at each instant of time the trajectory is meaningful. This is enforced by using the
Lagrangian multipliers method and can be tuned to modulate the relative influence of each controller (i.e.
to avoid joint angles limits). The advantage of such a redundant representation includes the management
of the singularities while maintaining a quasi-straight trajectory profile of the end-effector in the task
space – reproducing a human-like behavior [4].

Differently from the work of Hersch and Billard, we designed a feedback trajectory generator instead
of the VITE (Vector- Integration-To-Endpoint) method used in open loop. A complete discussion of
the rationale of the modifications to the trajectory generation is outside the scope of this report; the
interested reader is referred to Pattacini et al. [26]. Reasons to prefer a feedback formulation include the
possibility of smoothly connecting multiple pieces of trajectories and correcting on line for accumulation
of errors due to the enforcement of the constraints of the multi-referential method.

4.1.4.1 Validation and further improvements

As earlier for the dynamics, we compared our method with other methods from the literature. The
comparison with the method of Hersch et al. [18] was almost immediate since the work was developed on
the iCub. This provides the multi-referential approach together with the VITE trajectory generation at
no cost. Additionally, we included in the assessment another controller representing a more conventional
strategy that uses the Damped Least-Squares (DLS) rule [13] coupled with a secondary task that com-
prises the joints angles limits by means of the gradient projection method [20]. This solution employs the
third-party package Orocos [1], a tool for robot control that implements the DLS approach and whose
public availability and compliance with real-time constraints justified its adoption as one of the reference
controllers.

In the first experiment we put to test the three selected schemes in a point-to-point motion task wherein
the iCub arm was actuated in the “7-DoF mode” and where the end-effector was controlled both in
position and orientation. Results show that paths produced by our controller and by the DLS-based
system are well restricted in narrow tubes of confidence intervals and are quite repeatable; conversely
the VITE is affected by a much higher variability. Figure 4.9 highlights results for a set of 10 trials of
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Figure 4.9: Point-to-point Cartesian trajectories executed by the three controllers: the VITE-based
method produces on average the blue line, the minimum-jerk controller result is in green, the DLS
system using Orocos in red. Bands containing all the measured paths within a confidential interval of
95% are drawn in corresponding colors. Controllers settings are: T = 2.0s for the minimum-jerk system,
α = 0.008, β = 0.002, KP = 3 for the VITE (see [18] for the meaning of the parameters), and µ = 10−5

for the damping factor of the DLS algorithm.

Table 4.2: Mean errors along with the confidence levels at 95% computed when the target is attained.
An average measure of the variability of executed path is also given for the three controllers.

Controller Position error
Orientation

error

Mean radius of
the trajectory

band

VITE
1.3± 1.4 ·
10−3mm

0.041± 0.05rad 10± 10.8mm

Min-jerk
3.0± 1.3 ·
10−3mm

0.048±0.008rad 2.5± 1.5mm

DLS
1.3± 1.4 ·
10−3mm

0.016±0.028rad 2.0± 1.36mm

a typical reaching task where the right hand is moved from a rest position to a location in front of the
iCub with the palm directed downward.

Table 4.2 summarizes the measured in-target errors for the three cases: all the controllers behave satis-
factory, but the DLS achieves lower errors because operates continuously on the current distance from the
target xd , being virtually capable of canceling it at infinite time. On the contrary, strategies based on
the interaction with an external solver bind the controller module to close the loop on an approximation
x̃d of the real target that is determined by the optimization tolerances as in 4.11.

Additional experiments tend to favor our method. For example, measuring the jerk of the resulting
trajectory shows a gain of our method by 43% from the VITE and of about 69% from DLS. This turns
out to be crucial for more complicated trajectories when speed factors make the minimum jerk controller
even more advantageous.

Further improvements can be made on the quality of the inverse kinematic results by means of machine
learning. As for the dynamics, we initially estimated the function K from the CAD models of the iCub.
This is a good initial guess in need of refinement. The goal here is therefore to design a procedure that
allows enforcing eye-hand coordination such that, whenever the robot reliably localizes a target in both
cameras, it can also reach it. Here we further simplified the problem (from the visual point of view) and
decided to learn only the position of the end-effector (x, y, z) since the orientation of the hand in the image
is difficult to detect reliably. For this problem, the input space is defined by the position of the hand (or
the target) in the two cameras (ul, vl) and (ur, vr) with respect to the current head configuration.

To sum up, having defined the input and the output space, the map M that is to be learned is:

37



Xperience 270273 PU

Figure 4.10: The desired target (dashed red) and the corresponding outputs of the neural network (green)
for the three Cartesian coordinates in the head centered frame.

(x, y, z)H = M(ul, vl, ur, vr, T, Vs, Vg) , (4.12)

where (ul, vl, ur, vr) ∈ R4 represent the visual input of the position of the hand in the iCub cameras,
whereas (T, Vs, Vg) ∈ R3 accounts for the proprioceptive part of the input designating the tilt, the pan
and the vergence of the eyes; finally, (x, y, z)H ∈ R3 is the Cartesian position of the hand expressed in
the head-centered frame.

This map can be learned by a regression method if enough training samples are available and these
can be in turn collected if we can measure (ul, vl, ur, vr) by means of vision (see section 4.1.5). Some
preliminary results by using a sigmoidal neural network from Matlab (Neural Network Toolbox) trained
with backpropagation can be seen in figure 4.10. The training phase is carried out off-line. The neural
network consists of 7 nodes in the linear input layer, 50 nodes for the hidden layer implemented with the
ordinary hyperbolic tangent function and 3 nodes in the linear output layer: an overall number of 15000
samples has been employed for training and validation, whereas 5000 samples have been used for testing.
The neural network provides a very good estimation of M as demonstrated by the testing phase. Notably,
as expected, the z component estimation is the most affected by noise since it accounts principally for
the distance of the hand from the head, a value that is not directly measured by the cameras but only
indirectly from binocular disparity. The inspection of the mean and standard deviation supports this
claim, i.e. mean error 0.00031m and standard deviation of 0.0055m for the x and y components and
about twice as big for z.

In summary, it is relevant to outline here that an upcoming activity has been planned with the purpose to
replace the off-line training phase with a fully online version that resorts to random features as in Gijsberts
et al. [17] and will eventually make the robot learn the eye-hand coordination completely autonomously.

4.1.5 Vision

The remaining piece of information in this journey through the structure of the iCub controller is certainly
vision. We strive to provide reliable estimates of object in space since this enables the control of action as
presented earlier. One appealing visual cue is motion and we have been recently able to devise a method
which provides motion segmentation independent from the movement of the cameras.

Our method is based on the analysis of failures of the standard Lucas-Kanade algorithm [21]. As a
general rule, in order to verify that the instant velocity v of a point p has been correctly estimated, the
patch W around that point in the image It is compared to the patch of the same size at p+ v in the new
image It+1 (where the original point is supposed to have moved). Given a suitable threshold ΘM , the
discrepancy measure
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Figure 4.11: Trajectories of the x, y coordinates of the center of mass of the areas detected as moving
independently. The cart is moving parallel (up) or orthogonal (down) with respect to the image plane.
The plots are reported for the following cart speeds: from left to right 20, 40, 100cm/s. Colors legend:
(1) green for x and red for y in the case of a static head; (2) blue for x and black for y in the case of a
head rotating at 20deg/s.

M(p) =
∑
q∈W

(It(p+ q)− It+1(p+ v + q))2 , (4.13)

is then used to evaluate whether tracking was correctly performed (M(p) < ΘM ) or not (M(p) ≥
ΘM ). It is thus interesting to analyze empirically when the Lucas-Kanade algorithm tends to fail and
why. Conclusions from this investigation will lead directly to a method to perform independent motion
detection. The main empirical circumstances in which errors in the evaluation process of the optical flow
arise are three:

• Speed. The instantaneous velocity of the point is too large with respect to the window where motion
is being considered. Hence, the computation of temporal derivatives is difficult;

• Rotations. The motion around the point has a strong rotational component and thus, even locally,
the assumption regarding the similarity of velocities fails;

• Occlusions. The point is occluded by another entity and obviously it is impossible to track it in the
subsequent frame.

Tracking failures caused by high punctual speed depend exclusively on the scale of the neighborhood where
optical flow is computed. This issue is usually solved by the so called pyramidal approach which applies
the Lucas-Kanade method at multiple image scales. This allows evaluating iteratively larger velocities
first and then smaller ones. Instead we determined empirically that when rotations cause failures in the
tracking process, this is often a consequence of a movement independent from that of the observer. The
third situation in which Lucas-Kanade fails, is caused by occlusions. In this context the main role in
determining whether optical flow has been successfully computed is played by the speed at which such
occlusion takes place.

We therefore look for points where tracking is likely to fail as soon as one of the conditions discussed
is met, i.e. flow inconsistencies due to rotations or occlusions. In detail, we run Lucas-Kanade over a
uniform grid on the image, perform the comparison indicated in equation 4.13 and then filter for false
positives (isolated failures). The results is a set of independent moving blobs.

We tested the method both in controlled situations (a small robotic device moving linearly in front of the
iCub) and, more generally, in tracking people and other moving objects in the laboratory. Figure 4.11
shows results of tracking with both stationary and moving cameras (therefore without and with ego-
motion respectively). In the configuration considered, a linear speed of 10cm/s corresponds to one pixel
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Figure 4.12: A sequence of images recorded during the real time stereo tracking of a person walking in
front of the iCub: six images are shown in temporal order from L1 to L6 (left camera) and R1 to R6 (right
camera). The walking person is highlighted with a green blob using the result of proposed algorithm.

per frame in a 30 frames-per-second (fps) acquisition. Experiments were conducted up to 100cm/s and
with the iCub head adding movement up to 40deg/s.

The sequence of images in figure 4.12 is an example of a more naturalistic tracking. In spite of the
complexity of the background, it is evident from the images that our method produces robust detection
of the moving target with a behavior that varies smoothly in time and is consistent with respect to the
two different views acquired from the left and right cameras of the robot. In particular, the movement
of the target is effectively tracked both when the person is far from the robot (frames 1 and 6) as well as
when he gets closer to it (frames 2-5). Furthermore a substantial modification to light conditions exists
with a maximum of brightness reached approximately at frame 4. The algorithm is robust to occlusions:
this is visible at the frames in which pillars and posters cover the person. Notably, at frame 3 another
person sitting at the table produces a secondary blob with his hand. This distractor is of limited size
and it does not interfere with the task since the tracker is instructed to follow the largest blob in the
sequence.

These are the data that at the moment the iCub uses for attention, for tracking and which are eventually
passed to the reaching controller described earlier. We favored robustness to accuracy here in order to be
able to run learning methods and exploration of the environment for considerable periods of time (e.g.
as for collecting the 20000 samples mentioned in section 4.1.4.1). Our experiments show that this goal
has been fully achieved.

4.1.6 Conclusions

This section of D2.1.1 deals with the problem of building a reliable architecture to control reaching in a
humanoid robot – more specifically the iCub – where many degrees of freedom need to be coordinated.
We have shown original solutions to vision (using motion), to kinematics (using robust optimization and
a multi-referential trajectory formulation) and dynamics (by enabling impedance control from a set of
FTSs). Although certain aspects of these methods are somewhat traditional, their specific application
and combination is novel. We took particular care in testing all methods rigorously and comparing them
with other methods in the literature.

Furthermore, the entire implementation of this software is available, following the iCub/Xperience poli-
cies, as open source (GPL) from the iCub SVN repository. These libraries and modules, besides running
on the iCub, are available to the research community at large. The algorithms are almost always embed-
ded in static libraries ready to be picked up by others.

The iCub repository can be found at http://www.icub.org and browsed on SourceForge (http://www.
sourceforge.net). This libraries are further linked from the Xperience SVN SourceForge repository.
Several videos of the iCub showing the methods described in this deliverable are available on the Inter-
net and in particular at this site: http://www.youtube.com/watch?feature=player_profilepage&v=

LMGSok5tN4A.

4.2 Edge and surface based grasping affordances

Getting physical control over an unknown object is an important first step to autonomously acquire
object properties (e.g., object shape) [19]. In previous work [28] we have therefore shown how visual
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contour information — extracted using the Early Cognitive Vision System [29], [24] — can can be used
to grasp unknown objects with a parallel gripper. In [PKJ+ed] we extended this work to be able to
create grasping affordances not only based on contours, but also surface information. We also extended
the approach to be able to provide grasps for a three finger hand in addition to the parallel gripper. Both,
contour and surface information, can be extracted from a pair of stereo images using the Early Cognitive
Vision (ECV) system (see [24] and figure 2.3).

Figure 4.13: Some examples of the elementary grasping actions (EGA). For each type of grasping action,
an example is shown consisting of an original image, a snapshot of the ECV representation along with
the selected grasp, and the grasp execution in the simulation/real setup.

Based on the surface and contour information extracted using the ECV system elementary grasping
actions (EGAs) can be defined. The different sources of structural information allow for different EGAs.
The center element of figure 4.13 shows the different EGAs used in this work. The EGAs in the top row
are based on two matched contours (highlighted in red) while the bottom row shows grasps based on
a surface (darker side of the cube). Figure 4.13 also gives for each EGA a sample scene, the extracted
visual representation with the concrete suggested EGA and the execution result. Details about the exact
definition of the EGAs and how they can be computed from the visual representation can be found in
[PKJ+ed].

The approach was tested in different experimental setups. First, a hybrid real-world and simulated
setup was used. Based on real stereo images, our method built a visual representation of the scene and
generated grasps. These grasps were then executed in a dynamic simulator. This setup allowed us to test
a large number of grasps and get quantitative results, while still dealing with the noise and uncertainty
in the real-world visual data. It allowed us, moreover, to compare the different methods under the exact
same circumstances. Second, to show the applicability of the proposed methods on real robotic systems,
we tested the proposed methods on two different real-world experimental setups, using a parallel and a
three-finger dexterous hand.

The results show a good average performance of the proposed grasping methods, which is even further
improved when the different methods are combined. This shows that the different methods, which are
based on different types of visual information and apply different grasps to contact points, complement
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each other so that a better performance can be achieved. In particular, the contour-based methods
perform better in the situations where objects are not textured, while different surface-based methods
complement each other in the situations where objects are textured. By combining both types of infor-
mation, the overall system can deal with both types of objects. A detailed presentation and discussion
of the results can be found in [PKJ+ed].

To enable the community to evaluate and compare different methods for grasping unknown object based
on visual information, the above described hybrid real-world and simulated setup is provided as a basis for
a benchmark. [KPJ+ed] gives more detail about the concrete setup and how to use the benchmark. The
focus of the benchmark here is on the visual processing (extraction of relevant features from the stereo
images) and the grasp computation and selection. The user does not have to deal with the complexity on
the robotics side (e.g., computation of grasp quality, control of the finger joints in a dynamic setup) since
this functionality is provided by the benchmark. The user only needs to provide either (1) wrist position
and orientation and a specific hand pre-shape (e.g., 2-finger parallel grasp, 3-finger ball grasp), (2) the
finger contact points (the system will compute the hand configuration here based on inverse kinematics)
or (3) the wrist position and orientation and the joint angles of all finger joints. The system is then
able to evaluate this grasp. The results of the methods described above (from [PKJ+ed]) are given as a
baseline for comparisons.
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Chapter 5

Conclusions

The project has considerably progressed in defining the new ways how sensorimotor experiences can be
achieved by a robot as well as collecting statistics on those sensorimotor experiences. This provides back-
ground for more complicated (as compared to reaching and grasping) motor action definition, learning
and sequencing and motor-behavior development that is planned for the next period in WP2.1. Coop-
eration between partners has not been strong while working on this deliverable, as it was not required
for this preliminary step of simple action definition and low-level perceptual representation formation.
However, cooperation will be required in the next period where there will be a need to put the developed
methods together for more complicated action definition.
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[6] E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and F. Wörgötter. Learning the semantics of
object-action relations by observation. The International Journal of Robotics Research, 30(10):1229–
1249, 2011.

[7] E. E. Aksoy, A. Abramov, F. Wörgötter, and B. Dellen. Categorizing object-action relations from
semantic scene graphs. In IEEE International Conference on Robotics and Automation, ICRA2010
Alaska, USA, 2010.

[8] A. Bierbaum, M. Rambow, T. Asfour, and R. Dillmann. A Potential Field Approach to Dexterous
Tactile Exploration. In IEEE/RAS International Conference on Humanoid Robots, pages 360 – 366,
Daejeon, Korea, 2008.

[9] A. Bierbaum, K. Welke, D. Burger, T. Asfour, and R. Dillmann. Haptic Exploration for 3D Shape
Reconstruction using Five-Finger Hands. In IEEE/RAS International Conference on Humanoid
Robots, pages 616 – 621, Pittsburgh PA, USA, Nov 29 - Dec 01 2007.
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Abstract
We present a database and a software tool, VisGraB, for benchmarking of methods for vision-
based grasping of unknown objects. The benchmark is a combined real-world and simulated
experimental setup. Stereo images of real scenes containing several objects in different config-
urations are included in the database. The user needs to provide a method for grasp generation
based on the real visual input. The grasps are then planned, executed, and evaluated by the pro-
vided grasp simulator where several grasp-quality measures are used for evaluation. This setup
has the advantage that a large number of grasps can be executed and evaluated while dealing with
dynamics and the noise and uncertainty present in the real world images. VisGraB enables a fair
comparison among different grasping methods. The user furthermore does not need to deal with
robot hardware, focusing on the vision methods instead. As a baseline, benchmark results of our
grasp strategy are included.

Keywords
grasping of unknown objects · vision-based grasping · benchmark

1. Introduction

Grasping previously unseen objects based on visual input is a chal-
lenging problem. Various methods have been proposed for solving
the problem, as will be discussed later, but it is difficult to com-
pare them and evaluate their strengths and weaknesses. This is due
to the fact that methods are often tested on different data and with
different hardware setups, which makes it difficult, if not impos-
sible, to repeat the experiments under the same conditions. It is

∗E-mail: kootstra@kth.se

furthermore difficult to quantify results thoroughly, because of the
time consuming nature of the experiments. For these reasons, we
propose a mixed real-world and simulated benchmark framework.
A database of stereo images is provided and the generated grasps
are evaluated using a simulated environment, [6, 8], see Figure 1.
This setup allows for extensive experimental evaluation, supporting
comparison of different methods, while considering noise and un-
certainty in the real stereo images. Our previous work used a part
of the database as a proof of concept, [14]. In this paper, we present
a large database along with software tools to evaluate the generated
grasps.
The proposed benchmark focuses on grasping unknown objects in
realistic, everyday environments. To deal with noisy and incomplete
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Figure 1. The benchmark pipeline. The real stereo images (a) are input to the user’s grasp-generation method (b). Our method is given as a baseline example. The grasp-
generation method proposes a grasp hypothesis, either as (c-i) a set of desired contacts , C = {C1, C2, C3} (implicitely coding the approach side), (c-ii) by
choosing one of the hand pre-grasps and the desired hand pose, or (c-iii) by directly setting the joint angles and hand poser. Based on the grasp hypothesis, the hand
pose, Xhand, and configuration, q = {q0, . . . , q6}, are determined by the provided software (d), and the grasp is executed by the dynamic simulator (e). Note
that b) shows the object representation specific to our baseline method (see Section 4).

data coming from robotic sensors and to provide a reduced set of
potential grasps, shape primitives, such as boxes and quadrics, have
been used in [4, 7]. A less restricted strategy for grasping unknown
objects in the real world based on a hierarchical edge representa-
tion of the scene has been presented in [15]. In [14], this method
has been extended to include surface information. Other methods
learn the relation between some visual features and the grasp qual-
ity, and apply this knowledge in grasping unknown objects. In [13],
for instance, an SVM has been trained to predict the grasp qual-
ity based on the hand configuration and the parameters of a single-
superquadric representation of the objects. In [5], human expertise
is used to learn, the graspability of object parts based on the param-
eters of superquadrics fitted to segmented parts of the object. Simi-
lar, grasp knowledge is learned on a set of simple geometrical shapes
and applied to grasp novel objects in [3]. In [18], synthesized ob-
jects are used to generate local 2D images features, including edge,
texture and color information at different scales, which are used to
train the grasp system. The learned knowledge is then used to grasp
novel objects in the real world. Features of edge points have been
used in [1] to learn to predict grasping success. In [2], the shape
context is used for the classification of grasping points.

The presented database contains original stereo images, where no
object hypotheses are generated before hand. This means that the
grasp generation methods provided by the users of the benchmark
need to be able not only to deal with the grasp-generation process
but also with generating object hypotheses, if the grasp generation
method requires that. Methods such as the one presented in [18] as
well as our method [14], works directly on images without the need
to generate object hypotheses. There are also several examples that
perform figure-ground segmentation at first. In [17], a bottom-up
segmentation method based on color and depth information is used
to segment the object from its background. Additional information
of the table plane is used in [2] to improve object segmentation. In

[15], two grasp points are associated with the same surface of an
object by using coplanarity and cocolority. Other methods do not
need a segmentation of the scene, because they use single image
points for pinch grasps, e.g., [18].

Although the studies discussed all deal with grasping unknown ob-
jects, the experiments were all done in different conditions; different
objects and scenes have been used, as well as different robotic plat-
forms. Some of the studies have been done entirely in simulation
(e.g., [3, 5]), whereas others are performed in the real world (e.g.,
[7, 15, 18]). In this paper, we propose VisGraB as a standardized
benchmark for grasping unknown objects based on real-world vi-
sual data. By enabling the comparison between different grasping
methods, we aim to provide a better insight in the different method-
ologies and their outcomes.

The wish for a standardized test for grasping has also been put for-
ward in [19], where a benchmark is presented for the evaluation of
grasp planners. However, different from our aims, the benchmark
focusses on grasping known objects based on full and detailed geo-
metrical information about the objects. We, on the other hand, pro-
pose a benchmark for grasping unknown objects in complex scenes
based on real, incomplete, and noisy visual observations.

In summary, the main contribution of this paper is the benchmark
for vision-based grasping of unknown objects, so that different grasp
generation methods can be systematically tested and compared. In
addition, the users can focus on the vision aspects, without having
to deal with the robotic hardware.

The paper is organized as follows: We first describe the benchmark
with the database, the dynamic simulator, and the grasp quality mea-
sures in Section 2. In Section 3, a description of how to use the
benchmark is given. Next, in Section 4, we give a baseline perfor-
mance for the benchmark using our method described in [14]. The
paper ends with a discussion in Section 5.
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Figure 2. The 18 objects used in the benchmark.

2. The Benchmark

The benchmark consists of a database containing real visual input
and a grasp simulator including a dynamics engine to evaluate the
grasps. The benchmark contains a total of 432 scenes with a variety
of different objects and with different backgrounds. The database
includes real stereo images of all the scenes, as well as the 3D mod-
els of the scenes, which will be used by the simulator to evaluate the
grasps.

The general pipeline of the benchmark is illustrated in Figure 1.
Based on the stereo images (Fig. 1a), the user’s method generates
grasping hypotheses (Fig. 1b). The hypotheses can be provided in
different formats (Fig. 1c), as will be discussed in Section 2.3. Given
a grasping hypothesis, the software provided with the benchmark
determines the pose of the hand and the joint configuration (Fig. 1d).
The grasp is then executed by the simulator and the quality of the
grasp is displayed to the user (Fig. 1e). Details on the database are
given in Section 2.1. Section 2.2 describes the grasp simulator, and
the possible grasp representation are given in Section 2.3. Finally,
Section 2.4 describes the evaluation of the grasps.

The benchmark, including stereo images, the modeled 3D scenes,
and the simulation software can be found on the VisGraB website
[9].

2.1. The Database

The 18 objects used in the database are displayed in Figure 2. The
objects are part of the KIT ObjectModels Web Database1. 3D mod-
els of all objects are available for the grasp simulation. The ob-
jects have various shapes, sizes, colors, and textures. We recorded
scenes with one object and with two objects. In the single-object

1 http://wwwiaim.ira.uka.de/ObjectModels

case, we recorded the 18 different objects in eight different poses,
four where the object stands upright, and four where the object lies
down. In the double-object scenes, we have 9 combinations of ob-
jects, where the objects are in eight different configurations, four
where the objects are placed apart, and four where the objects touch
each other. All scenes are recorded in two conditions, placed on a
non-textured and on a cluttered/textured table. This gives in total
2 × (18 × 8 + 9 × 8) = 432 scenes. Some example scenes are
given in Figure 3, top row.

The scenes are modeled in 3D, in order to test the user-generated
grasps in simulation. The models are obtained by calculating the 3D
point cloud of the scene using the dense stereo algorithm provided
in OpenCV, and subsequently registering the 3D object models to
the point cloud using rigid point-set registration [12]. Where nec-
essary, the registration was corrected by hand. A few scene models
ae shown in Figure 3, bottom row.

With the database, the vision-based grasping methods are tested for
the ability to generate grasps on objects with a variety of different
shapes, sizes, colors and textures. Furthermore, the robustness to
the pose of the object, the complexity of the scene and the clutter in
the scene is tested.

2.2. The Grasping Simulator

The grasps are performed in simulation using RobWork2, see Fig-
ure 1. RobWork is a simulator for robotic grasping with dynamics
capabilities, which has been used in several related experiments [8].
The simulator has been initially evaluated in [6], where several thou-
sands of grasps with a parallel gripper in a real robotic setup have
been compared to the simulation. Our benchmark methodology can
readily be used with other grasp simulators, such as GraspIt [11] and
OpenGRASP [10]. The choice of RobWork was mainly motivated
by its extensive simulation features such as available hand models,
sensors and controllers, but also because of the availability of gen-
eral robotics tools such as inverse kinematics for hands and robots,
trajectory and planning tools.

Using the RobWork grasp simulator including a dynamics engine
allows us to not only look at static quality measures of the grasp,
but also to determine the actual grasp success by observing the dy-
namical and physical consequences of the grasp. In our definition,
a stable grasp is a grasp with which the object can be lifted without
slipping from the hand. We therefore propose a method where the
object is lifted after it has been grasped. We therefore define the
lift-quality measure (see Section 2.4.1) as an important measure for
the stability of a grasp.

We chose to use the three-finger Schunk Dexterous Hand (SDH) for

2 http://www.robwork.dk
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Figure 3. Examples of scenes included in the database. The top row gives the rectified left camera images and the bottom row gives a view on the modeled scenes used for
grasp simulation. Examples of the different conditions are given.

the benchmark (see Figure 4), which can be used for both two-finger
parallel and three-finger grasping. The SDH has seven degrees of
freedom, allowing for complex and flexible grasping. We denote
the joint configuration as q = {q0, . . . , q6}. Although we made the
decision to use the SDH, RobWork supports the easy use of other
grippers.
A grasp is performed by first placing the hand in a suitable grasp
configuration generated by the user’s vision algorithm and using
the utility functions provided by the benchmark, see Section 2.3.2
and 2.3.1. The simulation is then started and a grasp-control pol-
icy guides the fingers from the start configuration qopen towards the
closed configuration qclosed. When the fingers achieve a static con-
figuration, it is either because of contact forces or because qclosed is
reached. Next, the system attempts to lift the grasped object. After
lifting, the quality of the grasp is determined as explained in Sec-
tion 2.4.1.
The grasp control policy is fairly simple, but can directly be used on
the interface of the real hardware of the SDH as well. The policy
does not rely on specific sensor feedback other than the joint angles.
It requires two joint configurations of the hand qopen and qclosed, as
well as the maximum allowed joint torques τmax. The user more-
over needs to provide Xhand, which is the 6-dimensional Cartesian
pose of the hand base (position and orientation in 3D). The control
policy will close the fingers from qopen toward qclosed using a PD
controller on each joint. The torque used by the PD controller will
be limited by τmax which allows for a rough balancing of the con-
tact forces. As such the simulation only need a few parameters to
execute a grasp:

(Xhand, qopen, qclosed, τmax) (1)

These parameters make out the grasp configuration and should be

the output of the grasping strategy that is being benchmarked. How-
ever, many vision-based grasp strategies do not include grasp con-
trol specifics such as inverse kinematics or explicit modeling of joint
force limits. To accommodate the need for varying levels of grasp
control, the benchmark provides two utility functions that ease the
generation of grasp configurations, which are outlined in the next
section.

2.3. Grasp Utility Functions

To simplify the generation of grasps, we provide three grasp util-
ity functions as part of the benchmark: based on grasp contacts
(Fig. 1c-i), based on hand pre-shapes (Fig. 1c-ii), and based on the
the joint configuration (Fig. 1c-iii).

2.3.1. Grasp contacts

The grasp parameters can also be generated by providing two or
three desired grasp contacts. See Figure 1c-i for an example of
three contacts. A contact Ci = {cpos, cdir} indicates the position,
cpos = {cx, cy, cz}, where the tip of the finger should be placed
and the contact direction, cdir = {cd1, cd2, cd3}, which determines
in which direction the contact force should work. The inverse kine-
matics are solved by the utility function provided in the benchmark:

C 7→ (Xhand, qopen, qclosed, τmax) (2)

where C = {C1,C2} for two-finger grasps and C = {C1,C2,C3}
for three-finger grasps.
The inverse kinematics algorithm does not require the grasp con-
tacts to be in a specific order or even to be part of the inverse
kinematics solution. In the latter case, the algorithm generates

4



PALADYN Journal of Behavioral Robotics

Figure 4. The hand pre-shapes. The top row depicts the qopen configurations and
the bottom row the qclosed configurations. From the left to the right:
2-finger parallel grasp, 3-finger ball grasp and 3-finger cylinder grasp.

inverse-kinematics solutions that are close to the desired configu-
ration. However, configurations with too high deviation from the
target configuration are reported as failed grasps.

2.3.2. Hand pre-shape

It is common to use hand pre-shapes in grasp planning, where the
pre-shapes are either generated using simple heuristics or by expert
users. For the SDH we have chosen three general hand pre-shapes,
see Figure 4. The figure shows the opening and closing positions.
The 2-finger parallel grip is shown in left left column, the 3-finger
ball grip in the middle column, and the 3-finger cylinder grip in the
last column. Given the desired pose of the hand base, Xhand and
the identifier for the specific hand pre-shape, k, the utility function
calculates the grasp parameters:

(Xhand, k) 7→ (Xhand, qopen, qclosed, τmax) (3)

The complete description of the pre-shape configurations including
τmax is available on the VisGraB website [9].

2.3.3. Joint configuration

The user can also use his or her own inverse-kinematic solver to ac-
quire the hand pose, Xhand, and joint configuration when the fingers
are in contact with the object, q. The simulation parameters are then
obtained with the utility function:

(Xhand, q) 7→ (Xhand, qopen, qclosed, τmax) (4)

2.4. Experimental Evaluation

To test the quality of the user’s grasp-generation method, we apply
the following experimental procedure: The user provides a list of
grasp configuration for every scene in the database. All grasps are
then performed by the simulator and the results are returned.

Figure 5. Surface-based Elementary Grasping Actions used by the benchmark
method [14].

In a single experimental trial, the quality of the generated grasp is
tested as follows: the hand is placed in the correct pose, Xhand. It
then closes from the opening configuration, qopen, to the closing
configuration, qclosed. The object is grasped when the hand settles
in a stable configuration and the fingers touch the object. However,
this does not necessary mean that the grasp is stable. To test the
stability of the grasp, the hand attempts to lift the object. We dis-
criminate the following results:

Stable grasp: The object was grasped and held after lifting, with
little or no slippage of the object in the hand.

Object slipped: The object was grasped and held after lifting, but
there was considerable slippage of the object in the hand.

Object dropped: The object was grasped, but after lifting, the object
was no longer held by the hand.

Object missed: The object was not grasped by the hand.

In collision: The initial hand configuration produced a situation
where the hand was penetrating the object(s) and/or the table.

Invalid grasp contacts: The inverse-kinematics solver could not
find a joint configuration to reach the desired grasp contacts.

Simulation failure: The simulation failed due to physics-engine
failure.

We consider the grasp to be successful when the result is either
object slipped or stable grasp. In both cases, the object is in the
hand after lifting. The two situations are discriminated based on the
amount that the object slipped in the hand during lifting. The slip-
page defines the lift-quality measure, In case of the double-object
scenes, the results are given for the object that is closest to the hand.

2.4.1. Grasp quality measures

In case the object is lifted successfully, we calculate the grasp qual-
ity using two quality measures: the lift quality, Qlift, and the grasp
wrench-space quality, Qgws.
The lift quality is a dynamic quality measure that represents the abil-
ity of a grasp to hold the object stable during lifting, that is, with the
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object slipping from the hand as little as possible. The lift quality is
a value between 0.0 and 1.0 and it is inversely proportional to how
much the object moves with respect to the hand during lifting:

Qlift = 1− ||h− o||
||h|| (5)

where h is the 3D displacement of the hand during lifting and o is
the 3D displacement of the object during lifting.
The grasp wrench-space measure Qgws is a static quality measure
based upon the grasp wrench space (GWS). The GWS is determined
by the friction cones of the contact points, where the friction cone
of contact point i is approximated by a set of m contact bound-
ary wrenches, {wi,j |j = {1 . . .m}}. The six-dimensional contact
boundary wrenches are defined as in [11] such that the torque is
scaled by the radius r of the object:

wi,j =

(
fi,j

1
r
· di × fi,j

)
(6)

where fi,j is one of the force vectors in contact i, and di is the vector
from the torque origin to the ith point of contact. The cross product
di × fi,j is the torque τi,j . The GWS is then computed as the con-
vex hull over the union of each set of contact boundary wrenches.
Finally, the grasp quality measureQgws is determined by the radius
of the inscribing n-sphere of the GWS, which reflects the maximum
perturbrating wrench that the grasp can counterbalance, given the
maximum forces of the fingers.

2.4.2. Presentation of results
Scripts are provided as part of the benchmark to parse the simula-
tion results files and to present the results. Since different grasping
methods may have their own strengths and weaknesses, we do not
summarize the results in a single value. Instead, we give the distri-
bution of grasping results for the different conditions. Furthermore,
the grasping quality for each condition is given as the average lift
quality, Qlift, and the average grasp wrench-space quality, Qgws,
over the successful grasps, i.e., stable grasps and object slipped. An
example of the overview of results will be given in Section 4.

3. Using the Benchmark
In order to use the benchmark, the database and the software tool
need to be downloaded from the VisGraB website [9]. Using the
benchmark works in a number of steps:

1. Loading the stereo images and the stereo-calibration file.

2. Generating grasps based on the visual information and pro-
viding the grasp configurations, potentially by using the util-
ity functions for hand pre-shapes or grasp contacts.
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Figure 6. Grasp results. The stacked-bar plots show the average distribution of all
grasps over all scenes. The stable and slipped grasps are considered suc-
cessful grasps, where the object is held in the hand after lifting. The gray
area shows the proportion of scenes where the methods do not suggest any
grasps.

3. Running the simulation, providing a list of grasp configura-
tions for every scene.

4. Running the scripts to process and represent the results.

The final benchmark results can then be published on the VisGraB
website for comparison. The detailed information about the formats
and the use of the software can be found on the website.
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Table 1. The lift quality and grasp wrench-space quality for the textured scenes. The
values are the averages over the successful trials (stable, slipped).

Textured background
s2EGA1 s2EGA3 s3EGA1

Ql QGWS Ql QGWS Ql QGWS

Si
ng

le standing 0.58 0.46 0.44 0.30 0.72 0.59
laying 0.31 0.31 0.04 0.03 0.55 0.50

all 0.44 0.39 0.24 0.17 0.64 0.55

D
ou

bl
e apart 0.60 0.47 0.46 0.35 0.76 0.63

close 0.68 0.46 0.45 0.35 0.74 0.60
all 0.64 0.47 0.45 0.35 0.75 0.62

Non-textured background
s2EGA1 s2EGA3 s3EGA1

Ql QGWS Ql QGWS Ql QGWS

Si
ng

le standing 0.60 0.46 0.51 0.37 0.79 0.65
laying 0.36 0.31 0.01 0.03 0.55 0.51

all 0.48 0.39 0.26 0.20 0.67 0.58

D
ou

bl
e apart 0.62 0.50 0.46 0.40 0.68 0.55

close 0.51 0.41 0.36 0.35 0.68 0.52
all 0.56 0.46 0.41 0.38 0.68 0.53

4. Baseline Method

To set a baseline for comparison, we used our grasp-generation
method presented in [14] and applied it to the VisGraB benchmark.
The grasping method is based on an Early Cognitive Vision sys-
tem [16] that builds a sparse hierarchical representation based on
edge and texture information. This representation is used to gener-
ate edge-based and surface-based grasps. The method detects sur-
faces of the objects in the scene, and generates grasps based on
these surfaces. For the baseline, we use the surface-based grasps
only. The grasp method finds contact points at the boundary of a
surface, on which so-called Elementary Grasp Actions are applied,
see Figure 5. Based on two grasp contacts, a two-finger encompass-
ing grasp, s2EGA1, is generated, as well as two two-finger pinch
grasps, s2EGA3 one for each contact. Based on three grasp con-
tacts, a three-finger encompassing grasp, s3EGA1, is generated.
For details about the method, we refer to [14].

4.1. Results

The grasp results are shown in Figure 6 and the grasp quality of
the successful grasps are in Table 1. The results indicate that the
three-finger encompassing-grasps are most successful, followed by
the two-finger encompassing-grasps. Due to missing visual infor-
mation about the back of the objects, the two-finger pinch grasps
results more often in collisions or no grasp is suggested. In gen-
eral, the methods are more successful in grasping one object from
the double-object scene then grasping the object in the single-object

scene. However in the double-object scenes there are more col-
lisions. The results for the scenes with textured and non-textured
background are veru similar, which shows that out method can deal
with a higher degree of visual complexity. The grasp success for the
individual objects are given in Tables 2 and 3.

5. Discussion

We presented VisGraB, a database and a software tool for bench-
marking vision-based grasping of unknown objects. The database
contains real stereo images, which can be used by the user to gen-
erate grasp hypotheses. These hypotheses can then be passed on to
the software tool, which contains a dynamic grasps simulator that
plans, executes, and tests the grasp. The database contains a large
set of scenes, with different objects displaying a variety of different
shapes, sizes, colors and textures, and with different backgrounds.
By performing the grasps in simulation, a large number of grasps
can be repeatedly tested. The benchmark facilitates 1) the evaluation
and comparison of different vision-based grasp-generation methods
in a standardized fashion, and 2) a focus on the vision methods in-
stead of on the robotic hardware. We presented an example as an
illustration of the use of the benchmark.
In addition to what we presented here, the VisGraB framework can
be used for evaluating a variety of tasks related to grasping, for ex-
ample grasping known objects can be tested using the KIT object
models, and learning methods can be evaluated on their generaliza-
tion abilities.
We strongly encourage the use of the benchmark to test your vision
based grasp-generation methods and to compare it to other methods.
We are very open to extend the benchmark based on future needs
from the community.
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Textured background

Single-object scenes
s2EGA1 s2EGA3 s3EGA1

s l s l s l
1 50 % 10 % 12 % 8 % 76 % 31 %
2 28 % 74 % 4 % 0 % 77 % 86 %
3 17 % 32 % 21 % 6 % 9 % 19 %
4 48 % 15 % 38 % 0 % 37 % 21 %
5 57 % 38 % 50 % 0 % 33 % 12 %
6 45 % 44 % 9 % 0 % 67 % 12 %
7 23 % 76 % 43 % 0 % 35 % 64 %
8 33 % 44 % 0 % 0 % 31 % 13 %
9 23 % 9 % 16 % 0 % 38 % 55 %
10 87 % 29 % 31 % 4 % 97 % 61 %
11 60 % 47 % 20 % 0 % 59 % 73 %
12 54 % 60 % 5 % 0 % 76 % 47 %
13 54 % 38 % 22 % 0 % 59 % 58 %
14 74 % 4 % 46 % 0 % 86 % 35 %
15 14 % 19 % 12 % 0 % 63 % 41 %
16 90 % 50 % 64 % 0 % 82 % 65 %
17 33 % 25 % 0 % 0 % 13 % 0 %
18 13 % 0 % 0 % 8 % 53 % 0 %

Double-object scenes
s2EGA1 s2EGA3 s3EGA1

f c f c f c
a 58 % 87 % 0 % 0 % 84 % 85 %
b 21 % 48 % 0 % 0 % 40 % 55 %
c 0 % 32 % 36 % 33 % 45 % 31 %
d 37 % 48 % 24 % 23 % 42 % 24 %
e 52 % 66 % 43 % 30 % 76 % 61 %
f 44 % 54 % 20 % 25 % 43 % 39 %
g 31 % 33 % 15 % 27 % 68 % 36 %
h 53 % 76 % 8 % 9 % 76 % 55 %
i 58 % 50 % 10 % 8 % 67 % 31 %

Table 2. Percentage of successful grasps for the different objects in the textured
scenes. Results for the single-object scenes are split into standing (s) and
laying (l) object poses and for the double-object scenes into far (f) and close
(c). The pairs in the double-object scenes are: a: 1-18, b: 2-11, c: 3-7, d:
4-15, e: 5-14, f: 6-8, g: 9-13, h: 10-12, i: 16-17.

Non-textured background

Single-object scenes
s2EGA1 s2EGA3 s3EGA1

s l s l s l
1 72 % 25 % 7 % 0 % 93 % 30 %
2 37 % 69 % 4 % 0 % 85 % 88 %
3 34 % 51 % 23 % 0 % 49 % 10 %
4 69 % 5 % 28 % 0 % 53 % 12 %
5 52 % 21 % 31 % 0 % 48 % 13 %
6 43 % 19 % 8 % 0 % 66 % 6 %
7 41 % 63 % 23 % 0 % 46 % 61 %
8 25 % 50 % 13 % 0 % 21 % 0 %
9 48 % 33 % 10 % 0 % 85 % 61 %
10 86 % 19 % 17 % 0 % 99 % 72 %
11 70 % 46 % 20 % 0 % 89 % 74 %
12 33 % 54 % 6 % 0 % 74 % 47 %
13 70 % 29 % 21 % 15 % 91 % 56 %
14 73 % 13 % 24 % 0 % 87 % 39 %
15 45 % 14 % 10 % 0 % 86 % 19 %
16 78 % 44 % 66 % 0 % 91 % 53 %
17 19 % 0 % 16 % 18 % 19 % 0 %
18 13 % 10 % 50 % 0 % 57 % 20 %

Double-object scenes
s2EGA1 s2EGA3 s3EGA1

f c f c f c
a 71 % 79 % 3 % 3 % 93 % 82 %
b 42 % 24 % 2 % 0 % 44 % 53 %
c 29 % 4 % 17 % 4 % 16 % 28 %
d 38 % 45 % 18 % 18 % 38 % 54 %
e 66 % 63 % 27 % 21 % 83 % 48 %
f 77 % 55 % 18 % 22 % 38 % 51 %
g 25 % 44 % 12 % 17 % 64 % 80 %
h 57 % 20 % 7 % 3 % 63 % 19 %
i 35 % 26 % 19 % 19 % 74 % 27 %

Table 3. Percentage of successful grasps for the different objects in the non-textured
scenes. Results for the single-object scenes are split into standing (s) and
laying (l) object poses and for the double-object scenes into far (f) and close
(c). The pairs in the double-object scenes are: a: 1-18, b: 2-11, c: 3-7, d:
4-15, e: 5-14, f: 6-8, g: 9-13, h: 10-12, i: 16-17.
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Abstract

We present an architecture for real-time, online vision
systems which enables development and use of complex vi-
sion pipelines integrating any number of algorithms. In-
dividual algorithms are implemented using modular plug-
ins, allowing integration of independently developed algo-
rithms and rapid testing of new vision pipeline configura-
tions. The architecture exploits the parallelization of graph-
ics processing units (GPUs) and multi-core systems to speed
processing and achieve real-time performance. Addition-
ally, the use of a global memory management system for
frame buffering permits complex algorithmic flow (e.g. feed-
back loops) in online processing setups, while maintaining
the benefits of threaded asynchronous operation of separate
algorithms. To demonstrate the system, a typical real-time
system setup is described which incorporates plugins for
video and depth acquisition, GPU-based segmentation and
optical flow, semantic graph generation, and online visual-
ization of output. Performance numbers are shown which
demonstrate the insignificant overhead cost of the archi-
tecture as well as speed-up over strictly CPU and single
threaded implementations.

1. Introduction
There is a growing interest in development of complex

vision systems for robotic vision applications. Such re-
search has strict requirements; these systems must operate
in real-time, using input from multiple sources, and typi-
cally consist of multiple algorithms which work in concert
to produce useful output with minimal delay. Consequently,
the architecture which binds algorithms and input sources
together has become an increasingly important factor. This
work presents a vision architecture which uses modular plu-
gins, a novel buffering scheme, and GPU memory optimiza-
tions to allow real-time performance of an online vision sys-
tem, even with complex pipelines and algorithms developed
by independent researchers.

A primary concern when developing such complex vi-

sion systems lies in how to properly integrate algorithms
developed by different researchers, often from multiple in-
stitutions. Typically, computer vision researchers develop
solutions tailor-made for their particular problem, without
concern over the difficulties involved in integrating their
particular algorithm in a large system. The proposed ar-
chitecture eases this integration process by providing a plu-
gin interface. The plugin system allows independently de-
veloped algorithms to communicate with the architecture’s
central memory management system, interact with the GUI,
define their own unique data types, and integrate into sys-
tems with plugins developed by other researchers.

Another motivation for developing a vision architecture
is the desire to enable the use of complex algorithmic lay-
outs in an online system. In particular, interest in creating
loops that allow high level algorithms (i.e. which come late
in the pipeline) to feedback and improve the output of low
level vision methods. Traditional online vision pipeline ar-
chitectures cannot accommodate such loops in an adequate
way, as at any given moment each portion of the pipeline is
processing data from different instants in time.

Existent vision system architectures also do not sup-
port the use of GPUs in a fully integrated way, leading to
inefficient use of the device and communication with de-
vice memory. The presented method incorporates specially
designed GPU data-containers to ensure optimal PCI-bus
use through a pre-caching scheme and concurrent mem-
ory transfers. In addition to these, extendibility is en-
sured through an interface which allows user-defined data-
container handling, allowing plugin developers to explicitly
define how the memory manager shares data between the
host and device. The paper is structured as follows: first we
review existing architectures, then present our system, de-
scribe a typical system configuration used for robotics, and
then give performance figures from a demonstration setup.

2. Related Work
There are a few existing open-source projects cen-

tered around computer vision system architecture, such as
iceWing [?] and Imalab [?]. These systems bear some simi-
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larities to ours, in that they are sophisticated vision develop-
ment environments, featuring modularity, efficient visual-
ization, and simple control of algorithm parameters. While
a step forward, these projects lack two core features re-
quired for our work; support of feedback loops and inte-
grated use of the GPU as a coprocessor. In addition to the
open-source projects, there are a few commercial solutions
available. Foremost among these is MATLAB, which uses
a high-level scripting language to allow for rapid develop-
ment. Unfortunately, its restrictive and expensive licensing
can make it difficult to develop algorithms in distributed lo-
cations; every developer must have not only a MATLAB li-
cense, but also licenses for the multiple toolboxes required.
Additionally, since MATLAB (and it’s open source equiva-
lent Octave) development is not in C/C++, creation of novel
GPU algorithms using a language such as CUDA is diffi-
cult. Other commerical solutions, such as HALCON [?] or
BLOX [?] also suffer from their restrictive licensing, mak-
ing them not well suited for research. None of these so-
lutions permit feedback loops in a real-time online vision
system.

3. System Architecture
Our vision system is a plugin shell which provides an

easy-to-use API for interacting with the GUI, memory man-
agement system, and visualization components. In or-
der to ensure expandability, such a system must provide
straightforward communication and interaction between
plugins created independently, while employing strong-
typing checks to ensure only valid plugins may be inter-
connected. In addition, it must ensure that plugins have
the flexibility to define their own methods for visualiza-
tion. Finally, the system must ensure that each plugin is
self-contained, and executes within its own thread. This is
especially important for fast execution on modern proces-
sors, where the number of cores can match, or even exceed,
the number of plugins one is running.

In the next subsections, we shall describe how our ar-
chitecture accomplishes these goals while requiring as lit-
tle computational and communication overhead as possible.
Small overhead is especially important in the case of real
time video processing, where relatively large images must
be processed at fast frame rates.

3.1. Execution Flow

At its core, the architecture provides a shell which
consists of a GUI for loading plugins and visualizing
data, a system for storing plugin output to file, and a
buffering/memory-management system for handling data.
This functionality is contained in the Main Thread and
Memory Manager Thread shown in Figure 1. Users build
their system by adding plugins, configuring their options
via the GUI, and then connecting the plugins to each-other.

The user can also save/load a fully configured system as an
XML file. Once a vision system has been built, the user
can control execution using the frame rate module, which
controls the firing rate of the system clock.

As the whole system runs asynchronously in indepen-
dent threads, the clock trigger acts as the initial starting
point for each frame. This means that any source plugins,
such as a stereo camera rig or a video file reader plugin,
must connect to the frame rate module. As a trigger arrives
at each plugin, a triggering signal is sent to the memory
manager, telling it to generate a DataContainer for the plu-
gin’s output. The plugin is then triggered, causing it to exe-
cute its processing functionality and generate output, which
it stores in the location assigned to it by the memory man-
ager. The plugin then generates another triggering signal,
which is connected to both the memory manager and what-
ever ensuing plugins use the output as their input. When a
plugin has multiple inputs, it will loop inside its execution
thread, waiting until all inputs for a frame have arrived be-
fore executing. This is accomplished by each thread having
its own input queue map; it is important to note though, that
these queues contain no actual data (and thus minimal over-
head), and merely serve as a message passing system. The
signaling and triggering system employs the open-source Qt
signal & slot architecture. In particular, the system makes
use of Qt’s ability to queue signals for execution as they
arrive at a thread.

3.2. Plugin Development and Interaction

The functionality of the system is provided primarily via
plugins. A plugin consists of a shared library which is lo-
cated and loaded dynamically at run-time. The system is
based on the low-level Qt plugin API, which facilitates de-
velopment and ensures compatibility across different plat-
forms. Plugins inherit from a pure abstract interface class
which defines a protocol for communicating with the core
application. This permits plugins to define input and out-
put types and pass messages to/from the GUI and memory
manager.

Developers are required to implement a processData
function, which receives input and writes to an output Data-
Container. The developer can optionally create any number
of GUI elements (e.g. sliders, buttons) using the interface
functions. Plugins specify how many inputs they require,
and give the possible types for these inputs. Communica-
tion between plugins is accomplished through a standard-
ized data container interface. The core architecture contains
commonly used data container implementations, such as
StereoImageContainer. Plugins may define their own spe-
cialized data containers which are loaded at runtime with
the plugin. For example, the Segmentation plugin has its
own container type SegmentationData, which contains a list
of labeled segments, metadata about the segments, and la-
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Figure 1. Overview of the system architecture and demonstration system output for four frames. The colums show output from the different
components; from left to right, Kinect image and depth (in mm), optical flow, and graphs overlaid on segmentation plugin output. This
type of output can be seen live in any number of visualization windows within the GUI.
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beled images. The standardized data container interface al-
lows for any plugin to refer to a new container class without
actual knowledge of the container itself other then the string
identifiers of its members (e.g. ”Segment Labels”). Cor-
rect handling of access to these members is accomplished
through dynamic dispatch using the virtual lookup table.
This ensures that a plugin written by one researcher can be
easily used as input to another’s, as long as they know the
proper identifiers and underlying formatting of the data.

3.3. Visualization

During the development and use of a vision system, it
is of utmost importance to be able to visualize what is oc-
curring at every stage of the system pipeline. As such, our
system allows users to create any number of visualization
windows which can select any plugin to display (and which
part of the plugin’s output to display, e.g. left or right im-
age). If a developer creates their own data container for a
plugin, they can define a special visualization callback func-
tion as part of this container. The system will automatically
detect this callback when the plugin is loaded, and use it
for visualizing the plugin’s output. Developers can spec-
ify multiple methods for visualizing the plugin; the GUI for
visualization will allow selection of which to display.

Visualization windows read directly from the global
buffer, and as such have a small memory overhead. Ad-
ditionally, visualization runs in the GUI thread, rather than
in any of the plugin threads. If a plugin slows down the
system, visualization (and the GUI) will remain responsive,
allowing the user to troubleshoot. This also means that vi-
sualization that requires computation, such as labeling an
image with text or vector graphics, will have a negligible
effect on the actual frame throughput of the system. If vi-
sualization lags behind the system output, frames are auto-
matically skipped on an interval that allows visualization to
maintain synchronization with the rest of the system. This
is of particular importance in an online system, such as our
real-time robotic application, where visualization lagging
behind processing can cause confusion or even errors.

4. Memory Architecture

The memory management system has been designed
to allow distributed development and computing, complex
system pipelines incorporating feedback loops, and efficient
use of the GPU as a computational resource. The following
subsections will describe how these design goals have been
achieved by illustrating our Global Buffer design and ex-
plaining how it manages GPU memory.

4.1. Global Buffer

Our global buffer concept was designed to overcome the
limitations of standard online vision pipelines. In a standard

Figure 2. A typical buffering scheme (top) and our buffer (bottom).

online pipeline a local buffering scheme is used; each al-
gorithm has an input buffer, where data accumulates while
it is waiting to be processed. Such a setup is adequate as
long as the pipeline remains unidirectional, but complica-
tions arise in using feedback loops. Figure 2 compares a
standard pipeline with our global buffer; unlike a typical
buffering scheme, our global buffer maintains and manages
all memory in a central location (and separate thread). The
global buffer is responsible for dynamic allocation of all
data containers, maintaining reference counts, and deter-
mining when a frame can expire. Since the global buffer is
responsible for maintaining memory, plugins use a message
passing system to communicate. Plugins pass messages to
each other to notify completion of a new frame, or to trigger
a feedback mechanism. They also use the message passing
system to request that the global buffer allocate a new data
container for their output. When a developer creates a new
type of data container, they use a simple interface to pass
the global buffer a function pointer for creating an instance
of their new data container type.

In order to fully understand the limitations of a standard
buffering system, consider, for instance, the system shown
at the top of Figure 3. If the feedback mechanism is trig-
gered for frame n, plugin B must return to frame n in or-
der to modify how it was processed. This is not possible
in the standard local buffer scheme, as that data was dis-
carded after it was used as input to B. One possible solution
is to maintain another local buffer for each plugin which
contains data which has already been processed, but this
quickly adds several degrees of complexity. In particular,
garbage collection becomes very difficult, and management
of these buffers when feedback does occur becomes unnec-
essarily convoluted.

The global buffer solves this by maintaining data in a
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Figure 3. Feedback using a global buffer

more structured way. When a feedback mechanism is trig-
gered for frame n the triggering plugin (D) sends a message
to B, causing it to stop processing what it has scheduled, and
revert to frame n. As frame n is still easily accessible in the
global buffer, B can simply send a request for the pointer(s)
to the input data container(s) it requires. The global buffer
is guaranteed to still have the data for frame n, because D
never produced an output for frame n, so the global buffer
has not marked frame n as complete. Once B finishes pro-
cessing frame n with its new feedback information, it will
overwrite its old output for frame n (shown in orange) and
then simply continue on as it would normally, processing
frame n+1. The feedback corrected data will propagate
down the pipeline, and any data which is no longer valid
(shown in red) will simply be overwritten. Infinite feedback
loops are avoided by a preventing feedback from occurring
more than once per plugin per frame.

4.2. GPU Memory Handling

While utilizing the massively-parallel GPU as a copro-
cessor has become increasingly common, how to integrate it
effectively into an open vision architecture remains an open
question. Particularly vexing is how to integrate it seam-
lessly into the memory system of such an architecture, as
the GPU has separate physical memory, which is entirely
distinct in both location and structure from that used by the
CPU [?]. Data streaming through the system must be trans-
ferred to the GPU for modules which use it, and then trans-
ferred back out for visualization and used by modules later
in the pipeline.

A naive implementation of this architecture would sim-
ply serialize the operations; when a module needs to use
the GPU, it copies data to device memory, executes a ker-
nel, and then copies the output back out to host memory.
While this is still relatively efficient, it fails to fully take
advantage of the pipelined streaming architecture, since the

Figure 4. Streaming; Concurrent kernel execution

memory transfer bandwidth is idle while the kernel is exe-
cuting. The architecture uses the streaming CUDA API to
utilize this spare bandwidth, allowing it to perform concur-
rent asynchronous memory transfer and kernel execution.

As shown in Figure 4, we utilize a pre-caching tech-
nique, whereby data for frame n+1 is transferred during the
execution of frame n. When the kernel execution time is sig-
nificantly longer than the transfer time (B), memory trans-
fer is completely hidden, even with unidirectional mem-
ory. When kernel execution time is comparable to memory
transfer time, only some of the transfer can be hidden (C),
unless the hardware supports concurrent data transfers1 (D).

5. Demonstration System

This section presents a real-time demonstration system,
consisting of six plugins. The demonstration system calcu-
lates dense disparity using a standard stereo camera setup
(rather than Kinect data) in order to show the flexibil-
ity of the architecture as well as highlight the speedup
achieved via multithreading. Switching from Kinect in-
put to a stereo camera setup is simply a matter of changing
connections in the GUI. The pipeline described consists of
plugins for reading and rectifying stereo data, calculating
optical flow[?], computing disparity[?], segmentation and
tracking[?], dense disparity estimation, and semantic graph
and event chain generation[?, ?]. This type of a system con-
figuration is used to recognize and learn object manipula-
tion actions in a robotics context.

1Concurrent data transfers are supported under the Fermi
architecture[?]. Currently the Fermi Quadro and Tesla series cards
have two Direct memory access (DMA) engines[?], allowing them to
perform host-to-device and device-to-host operations simultaneously. The
consumer Fermi cards (GTX 4xx, 5xx) only have a single DMA engine,
so concurrent transfers are disabled on them.
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5.1. Image Acquisition

Video is acquired using a Firewire stereo camera rig.
Triggering for image acquisition can be controlled using ei-
ther an external hardware trigger or the architecture’s soft-
ware clock. Rectification is performed on the GPU (there
is a separate plugin for calibration using a standard chess-
board). Time from triggering to output of a rectified pair of
stereo images is around 10ms at 1024x768.

5.2. Disparity and Optical Flow

Optical flow is computed using the GPU implementation
[?] of a phase-based algorithm [?]. The algorithm tracks the
temporal evolution of equi-phase contours by taking advan-
tage of phase constancy. Differentiation of the equi-phase
contours with respect to time yields spatial and temporal
phase gradients. Optical flow is then computed by integrat-
ing the temporal phase across orientation. Estimates are re-
fined by traversing a Gabor pyramid from coarser to fine
levels. The plugin uses the five most recent frames to com-
pute optical flow in the case of online video, but can also
use ”future” frames when working with recorded movies
(this can slightly improve the quality of output flow).

Sparse disparity maps are computed on the GPU using
a technique similar to optical flow [?]. Rather than use
temporal phase gradients, the disparity algorithm relies on
phase differences between stereo-pair rectified images. As
with the optical flow algorithm, results are computed using
a coarse to fine pyramid scheme.

5.3. Segmentation and Tracking

The segmentation and segment tracking plugin has two
roles; first, it partitions the image into labeled regions, as
seen in the right-most column of Figure 1, and second, it de-
termines correspondences between frames to maintain con-
sistent labeling. The segmentation algorithm is based on
the work of Blatt et al. [?], which applies the Potts model in
such a way that superparamagnetic phase regions of aligned
spins correspond to a natural partition of the image data.
Initial spins are assigned to pixels randomly, and then a
Metropolis-Hastings algorithm with annealing [?] is used
to iteratively update the spins until an equilibrium state is
reached.

The Metropolis algorithm is implemented on the
GPU[?], permitting real-time performance. The algorithm
itself lends itself to efficient implementation on a GPU, as
interactions are only computed locally (8 connected nearest-
neighbors). Coupling interactions between pixels are deter-
mined using average color vector difference (in the HSV
space) of nearest-neighbors. Additionally, when depth data
is available, the algorithm prevents interactions between
pixels if there is a significant difference in their depth val-
ues. This prevents coupling across regions which have sim-
ilar color but discontinuous depth.

In addition to segmentation, the plugin maintains con-
sistent labels for objects from frame to frame. This is ac-
complished by transferring spins between frames using out-
put from an optical-flow plugin [?]. As such, only the first
frame is actually initialized at random; subsequent frames
are initialized using a forward-propagated version of the
previous frame’s equilibrium spins. This has two advan-
tages; the number of iterations needed to reach equilibrium
is greatly reduced since the spin distribution already ap-
proximates the final state, and the algorithm naturally tracks
objects since spins (and thus labels) are maintained over
time.

5.4. Semantic Graphs

The semantic graphs plugin constructs a symbolic 3D
description of the scene from the segmentation results and
disparity maps. Segments are used to construct undirected
and un-weighted graphs (seen in the right-most column of
Figure 1; nodes are labeled with numbers and red lines are
graph edges). Each segment is given a node and edges rep-
resent their three dimensional touching relations. Graphs
can change by continuous distortions (lengthening or short-
ening of edges) or, more importantly, through discontin-
uous changes (nodes or edges can appear or disappear).
Such a discontinuous change represents a natural breaking
point: All graphs before are topologically identical and so
are those after the breaking point. Hence, we can apply
an exact graph-matching method [?] at each breaking point
and extract the corresponding topological main graphs. The
sequence of these main graphs thus represents all structural
changes (manipulation primitives) in the scene.

This type of graph representation is then encoded by
a semantic event chain (SEC), which is a sequence-table;
rows and columns of which represent possible spatial rela-
tions between each segment pair and manipulation primi-
tive. This final output can be used to classify manipulations
and categorize manipulated objects for use in a robotics or
human-computer interaction (HCI) setting[?, ?]. The pri-
mary advantage of this method is that actions can be ana-
lyzed without models or a-priori representation; the dynam-
ics of an action can be acquired without needing to know
the identities of the objects involved.

6. Results and Discussion
Testing was performed to compare single threaded with

multi-threaded operation mode and to detect the impact of
visualization on processing speed. Testing was performed
on an Intel i7 (3.33Ghz, 8 execution threads) system with an
NVIDIA GTX 295 GPU. The demonstration setup depicted
at the top of Figure 5 was used for all tests. To determine if
visualization had a negative impact, the tests were run with
and without a visualization windows for each component,
showing live views of their outputs. Timing measurements

366



Single Core

M
ul

ti 
Co

re

Core 0
Core 1
Core 2
Core 3

0 10 20 30 40 50 60 70 80

Core 4

90 100 110 120 130 140 150 160 170 180 190
time (ms)

0

0

0

0

0

00000

1

1

1

1

1

2

2

2

2

2

3

3

3

11111

Frame Lag- 90ms Max Framerate 1/90ms (~11.1 fps)

Frame Lag- 92ms Max Framerate
1/48ms (~20.83 fps)

Stereo Capture 
& Rectification

Optical Flow

Stereo Disparity

Segmentation 
& Tracking

Graph &
Event Chain

Figure 5. Timing results for demonstration system; plugins are color coded and contain frame numbers. When run in single thread mode,
short GPU operations such as optical flow are significantly faster due to reduced overhead; this results in slightly lower (2ms) frame lag.
The true benefit of multi-threaded mode is the higher maximum frame-rate that can be achieved.

for plugins are the mean execution time per frame of a 1000
frame (640x480) stereo video sequence (frames of which
are shown in Figure 1), averaged over 10 runs. The code
for the single and multi-threaded versions is identical with
the exception of the movement of plugin objects to separate
threads.

We measure performance by analyzing two key at-
tributes of a pipelined vision real-time vision system. First,
in terms of frame lag, that is time from frame acquisition
to final output, multi-threaded mode is slightly slower than
single-threaded. As shown in Figure 5, this is due to rel-
atively fast plugins which use the GPU (disparity and op-
tical flow in this case). This can be attributed to the static
overhead cost incurred by switching between threads while
using the CUDA run-time API. The switching is relatively
expensive for short GPU operations as it forces the CUDA
driver to create and destroy GPU contexts2. This could
be avoided by the addition of an additional GPU; in our
demonstration system the driver is forced to change con-
texts as there are three threads (flow, disparity, segmenta-
tion) attempting to use two GPUs. Additionally, the archi-
tecture will soon be brought to the newest CUDA release,
which allows context sharing between threads. It should
also be noted that at higher resolutions multi-threaded mode
overtakes single-threaded, as the overhead cost of context
switching is outweighed by the gain from computing opti-
cal flow and disparity in parallel.

The second measure of performance, throughput, or
maximum frame rate, shows a significant speedup in multi-

2GPU contexts are analogous to CPU processes, and each have their
own distinct address space. Each thread may only have one context active
at a time, and contexts may not share threads. See [?, ?] for more details.

threaded mode, almost doubling from 11.1 (stereo)fps to
20.83. While significant, the speedup is not equal to the
number of execution threads used by the demonstration
setup (six; one for each plugin and one for the GUI & mem-
ory manager). This less-than-optimal gain can be attributed
to the fact that the demonstration system had one com-
ponent, segmentation & tracking, which was significantly
slower then the rest. As seen in Figure 5, the entire system
throughput is limited by the rate at which the segmentation
plugin produces output.

As seen in Figure 6, the addition of visualization com-
ponents has a small impact on performance. This delay was
most noticeable for the shorter components, disparity and
optical flow, but never exceeded 2ms. Fortunately, this ad-
ditional time does not affect throughput in multi-threaded
mode, as it is hidden by the length of the longest component.
The times with visualization were used for Figure 5; clearly
shortening the time of any component other than segmen-
tation will have a negligible effect on performance. While
the increase does not affect throughput, it has a slight effect
on frame lag. Frame lag is less important than throughput
for our research, but it should be noted that in certain cases,
such as when quick reactions are required, frame lag may
be an important performance measure.

Although we have shown that an architecture which sup-
ports feedback loops for an online vision pipeline can be im-
plemented efficiently and can have real-time performance,
we have not presented a feedback loop in our demonstration
system. The description of the algorithms which use them
is beyond the scope of this paper. As such, we presented the
buffering system which enables the use of feedback loops
in a pipeline, but leave testing of the efficacy of feedback
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Figure 6. Visualization has a slight impact on performance, but
the effect is negligible in multi-threaded mode where the slight
increases in processing time are hidden in the length of the longest
component (in this case, segmentation).

mechanisms themselves in improving segmentation results
to future publication.

7. Conclusion

Building a self-contained, efficient, and complete vision
system acts as a significant barrier to entry for those wish-
ing to develop and test new vision algorithms. We have
presented a modular plugin environment, designed specifi-
cally for expandability and parallel architectures, which fa-
cilitates rapid distributed development of vision pipelines.
Our plugin system allows simple collaboration between or-
ganizations, allowing developers to share algorithms eas-
ily, and without forcing them to share code. The architec-
ture permits streaming use of the GPU as a coprocessor,
efficient visualization of algorithm outputs, and the ability
to use complex pipelines involving feedback mechanisms.
The system architecture is being released under an open-
source GPL license3, with the goal of spurring the growth
of GPU use and the research of feedback mechanisms in
real-time vision applications by lowering the cost-to-entry
of development and prototyping of algorithms.
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December 20, 2011

a the Cognitive Vision Lab, the Mærsk Mc-Kinney
Møller Institute, University of Southern Denmark,

Odense, Denmark
b the Computer Vision and Active Perception Lab,

CSC, Royal Institute of Technology (KTH),
Stockholm, Sweden

c the Robotics Lab, The Mærsk Mc-Kinney Møller
Institute, University of Southern Denmark, Odense,

Denmark
d Automation and Robotics Dept. Białystok

University of Technology, Poland

Abstract
Grasping unknown objects based on real-world visual input
is a challenging problem. In this paper, we present an Early
Cognitive Vision system that builds a hierarchical representa-
tion based on edge and texture information, which provides a
sparse but powerful description of the scene. Based on this
representation, we generate contour-based and surface-based
grasps. We test our method in two real-world scenarios, as well
as on a vision-based grasping benchmark providing a hybrid
scenario using real-world stereo images as input and a simula-
tor for extensive and repetitive evaluation of the grasps. The
results show that the method generates a large percentage of
successful grasps, and in particular that the edge and surface
information are complementary. This allows our approach to
deal with rather complex scenes.

Keywords: Vision-based grasping, Grasping unknown ob-
jects, Visual scene representation, Dexterous hands

1 Introduction
In this paper we propose a vision system for general scene un-
derstanding allowing for grasp planning. We focus on grasping
unknown objects for which top-down knowledge is not avail-
able. In contrast to 2D approaches, which often need simpli-
fying assumptions on the actual action execution, e.g., (Sax-
ena et al., 2008; Chinellato et al., 2005), we make use of 3D

information in terms of contour and surface descriptors, al-
lowing for improved grasp planning. In contrast to other 3D
approaches that are based on segmenting scenes by different
kinds of shape primitives, e.g., (Hübner et al., 2008; Miller
et al., 2003), our approach does not require any kind of com-
plex segmentation and registration process nor manual pre-
processing, but operates on elements of a visually extracted
hierarchical representation of the scene.

One of the problems in grasp planning is the nearly infinite
number of possible grasps, which all need to be evaluated to
assess their quality. Many current approaches therefore reduce
the number of possible grasps by modeling the object shape
with a number of shape primitives, such as boxes (Hübner
et al., 2008), cylinders, cones, spheres (Miller et al., 2003), or
superquadrics (Goldfeder et al., 2007). With the approach we
present here, such explicit shape abstractions are not necessary.
Our vision system inherently provides a sparse and abstract,
but powerful set of 3D features. Making use of our hierarchi-
cal representation of the scene, the amount of computed grasps
can be controlled by the granularity of the feature descriptors
at the different levels of the hierarchy. Moreover, our 3D fea-
tures are naturally aligned with the shape of the object, which
is not necessary the case when shape primitives are used. This
allows our method to plan grasps more accurately.

More specifically, we propose and evaluate a method for the
bottom-up generation of two- and three-fingered grasps based
on contour and surface structures. These structures are ex-
tracted by means of an extension of the biologically-motivated
hierarchical vision system (Pugeault et al., 2010a). This sys-
tem, in the following called Early Cognitive Vision (ECV) sys-
tem, makes use of an elaborated mid-level ECV stage in which
structurally rich and disambiguated information is provided to
higher levels of visual processing (for a detailed discussion see
(Krüger et al., 2010)). This system has been applied to the
problem of grasping unknown objects based on contour rela-
tions (Popović et al., 2010). The ECV system has not only
been used for grasping, but also for tasks such as pose estima-
tion (Detry et al., 2009; Kjær-Nielsen et al., 2010), and object
learning and recognition (Pugeault et al., 2010a; Başeski et al.,
2010).

In this paper, we extend the ECV system, which primarily
was dealing with edge-like structures (Pugeault et al., 2010a),
by texture information to allow for the association of grasps
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Figure 1: The elementary grasping actions (EGA). Top row: three types of
contour-based EGAs. The red lines indicate the selected contours. Bottom
row: three types of surface-based EGAs. The dark face shows the selected
surface. The first letter in the naming scheme marks the type of features used
to generate a grasp. ’c’ stands for contour-based and ’s’ for surface based. The
following subscript stands for two or three fingers. The last subscript marks
the general type of grasp, where ’1’ is an encompassing grasp, ’2’ is a pinch
grasp from the top and ’3’ is a pinch grasp from the side of the surface.

to surface information in addition to the contour information.
The different sources of structural information allow for differ-
ent elementary grasping actions (EGAs). The top row of Fig. 1
shows three EGAs based on two matched contours: two-finger
encompassing grasps, top pinch grasps, and side pinch grasps,
such as presented in (Popović et al., 2010). The bottom row
shows three surface-based EGAs for two and three-finger en-
compassing grasps, and side pinch grasps. Figure 2 shows the
different EGAs together with the examples of the performed
experiments.

The ECV system provides a visual hierarchical representa-
tion, where the perceptual organization is guided by 2D and 3D
geometrical and appearance relations between visual entities at
the different levels of the hierarchy, see Fig. 3. In the edge do-
main, the hierarchy consists of local edge primitives, grouped
into contours, which are then matched to contours belonging to
the same surface. In the texture domain, local textured patches
(texlets) are grouped into larger surface elements (surflings),
which are further grouped into surfaces. The hierarchy is il-
lustrates in Fig. 3) and described in more detail in Sect. 3.1.
The visual features allow for the extraction of orientation and
depth discontinuities, which can be used for surface segmen-
tation. Once the 3D surfaces with their boundaries have been
extracted, we generate the EGAs by associating a set of grasp-
ing hypotheses to a single boundary primitive or to duplets or
triplets of boundary primitives.

We do systematic tests of the generated grasp hypotheses in
two scenarios. First by using the vision-based grasping bench-
mark, VisGraB (Kootstra et al., submitted), which provides a
mixed real-world and simulated environment, in which fea-
tures are extracted from real visual data and grasps are per-
formed in a virtual environment using a dynamic simulation
(see Fig. 11). This allows us to test a large number of grasps
generated from natural stereo images (in total over 40,000

grasps were tested). By that we can make elaborated quantifi-
cations of contour-based and surface-based grasps. The second
scenario is a real-world scenario with a stereo camera, an in-
dustrial robot arm, a gripper, and real objects. Grasps are tested
in two different hardware setups, one with the Schunk parallel
jaw gripper and other with the Schunk three-finger dexterous
hand, see Fig. 4.

This paper makes the following three contributions: (1) We
extend the ECV system with a hierarchy of features in the tex-
ture domain, providing a sparse and meaningful representation
of the scene. The representation on one side reduces the search
space for grasping and on the other side creates additional con-
text information which is relevant for grasping, (2) we define
new grasping affordances based on texture and surface infor-
mation and build a system that performs the grasps, and (3) we
show the complementary strength of edge and texture informa-
tion for grasping in an extensive experimental evaluation.

This article is a major extension of the conference article
(Popović et al., 2011). We go beyond (Popović et al., 2011), in
a number of ways: by presenting a novel surface-based grasp-
generation method, by giving a much more detailed description
of applied methods, and finally by performing elaborate exper-
iments in a mixed real-world and simulated setup and on two
different real robotic setups.

The paper is organized as follows: Section 2 discusses the
related work in the area of vision-based grasping. In Section
3 we introduce the ECV system. Section 4 presents the three
grasp generation algorithms and details on the grasp execution
procedure are given in Section 5. We describe the experimen-
tal evaluation scenarios and give the overview of the results in
Section 6. The paper is concluded with a discussion in Section
8.

2 Related Work
Different approaches to visual-based object grasping have been
proposed by the robotic community. As proposed in (Bohg and
Kragic, 2010), these approaches can be roughly divided into
grasping of known, familiar, and unknown objects.

For grasping known objects, a detailed 2D or 3D model of
the object is generally available. This model is then fitted to
the current visual observation to retrieve the pose of the object.
Based on the model and the pose estimation, a large number of
grasps suggestions are generated and their quality is evaluated
to select the most promising grasp, e.g., (Nguyen, 1989; Shi-
moga, 1996). One of the main challenges is the huge amount
of possible grasps. In order to reduce the search space, dif-
ferent techniques have been applied. In (Miller et al., 2003;
Goldfeder et al., 2007; Hübner et al., 2008), the shape of the
object is simplified by using shape primitives, such as, spheres,
boxes, and superquadrics, thereby reducing the number of pos-
sible grasps. Another method for reducing the dimensionality
of the configuration space of the hand, using so-called eigen-
grasps, has been proposed in (Ciocarlie and Allen, 2009). It
has been demonstrated in (Borst et al., 2003) that generating
an optimal grasp, according to some quality measure, is not

2



Figure 2: Some examples of the elementary grasping actions (EGA). For each type of grasping action, an example is shown consisting of an original image, a
snapshot of the ECV representation along with the selected grasp, and the grasp execution in the simulation/real setup.

necessary. A small random subsample of the possible grasps
will generate grasps of the average quality which is sufficient.
In (Detry et al., 2011) grasp affordances are modeled with con-
tinuous probability density functions (grasp densities) which
link object-relative grasp poses to their success probability.
Grasp data is gathered from exploration and when a satisfac-
tory number of data is available, an importance-sampling algo-
rithm turns these into a grasp density.

The above-mentioned studies have been done in simulation,
assuming complete knowledge about the object and the robot,
and ignoring noise, with the exception of (Detry et al., 2011)
and (Hübner et al., 2008), where incomplete and noisy data
has been used as well. The studies all assume a perfect seg-
mentation of the object from its background. In contrast, we
propose a method based on real visual data without any knowl-
edge about the presented objects.

In work on the grasping of familiar objects, the system is
generally trained on a set of objects and learns the relation be-
tween some visual features and the grasp quality. This knowl-
edge is then used to grasp resembling objects. In (El-Khoury
and Sahbani, 2008), for instance, the graspability of object
parts is learned based on the parameters of superquadrics fitted
to segmented parts of the object and using human expertise. An

SVM has been trained to predict the grasp quality based on the
hand configuration and the parameters of a single-superquadric
representation of the objects in (Pelossof et al., 2004). In (Cur-
tis and Xiao, 2008), grasp knowledge is learned on a set of
simple geometrical shapes and applied to grasp novel objects.
All these experiments were done completely in simulation with
synthesized data. In (Saxena et al., 2008) grasping hypotheses
are learned based on a set of local 2D images features using
synthesized objects, and this knowledge is used to grasp ob-
jects in the real world. The feature vector used is a high di-
mensional set of edge, texture and color features on different
scales. Different features of two contours resulting from our
ECV system have been used in (Bodenhagen et al., 2009) to
learn to predict the grasping success.

When grasping unknown objects, no model of the objects or
prior grasp knowledge is used and all reasoning about grasp-
ing is done on the visual observation of the scene. In (Hübner
et al., 2008) and (Dune et al., 2008), shape primitives, respec-
tively boxes and quadrics, were used to deal with the noisy and
incomplete data coming from robotic sensors, and to provide a
reduced set of potential grasps. In (Gallardo and Kyrki, 2011),
the stereo-vision data was approximated with box and cylinder
primitives, which describe an objects overall shape, as well as
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Figure 3: The hierarchical representation of contour and texture information in the ECV system. This figure is best viewed in color.

its location, orientation, and size. Grasps based on the 2D sil-
houettes of the objects were tested in (Morales, 2004). A learn-
ing framework for discovering the visual features that predict a
reliable grasp was presented. In (Richtsfeld and Vincze, 2008),
a top surface of an object was detected by selecting the points
that belong to the top 3 mm of the segmented point cloud. The
grasping points were placed at the rim of the detected surface
and the grasps were performed in simulation. A sophisticated
3D representation of the scene based on ECV system was used
in (Kraft et al., 2008; Popović et al., 2010) for grasp planning.
We build upon this work by extending the system to not only
take edge features into consideration, but also texture features.

Most of the studies on vision-based grasping assume a seg-
mentation of the objects from their background. However, for
grasping unknown objects in real-world situations this assump-
tion does not hold. When using pinch grasps, (as done in
e.g., (Saxena et al., 2008)), single image points are sufficient
to define a grasp, making object segmentation to relate multi-
ple points on the same object unnecessary. Input of the user is
taken to initialize object segmentation using active contours in
(Dune et al., 2008). In (Rao et al., 2010), a bottom-up segmen-
tation method based on color and depth information is used and
the graspability of the segments is learned using an SVM. In
(Popović et al., 2010), we associated two grasp points with the
same surface of an object by using co-planarity and co-colority.

In this paper, we present vision-based bottom-up methods

for grasping unknown objects, based on unsegmented real-
world scenes. Unlike other approached discussed in this sec-
tion, we do not use a simplification of the object(s) using shape
primitives to abstract the shape. Instead we extend the ECV
system to produce a sparse, yet semantically meaningful rep-
resentation of the scene that remains close to the true shapes of
the objects and which allows the system to utilize the potential
of edge as well as texture information.

3 Theoretical Framework

In this section we describe the Early Cognitive Vision (ECV)
framework. We specifically introduce the visual features that
are used for grasp generation, i.e. edges, contours, texlets,
surflings and surfaces. The edges and contours are described
briefly and we refer to our previous work, while the surface
extraction is given in a more detail to allow for the precise for-
malization of the novel surface-based grasp methods.

3.1 The ECV System

The framework of the Early Cognitive Vision system provides
a rich hierarchical visual representation that includes edges and
textured surfaces (Krüger et al., 2010; Pugeault et al., 2010a).
Fig. 3 shows different stages in creating the hierarchical repre-
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sentation. The left-hand branch illustrates the propagation of
edge information, and the right-hand branch shows the propa-
gation of texture information.

The representation is layered and starts with extracting
sparse local features from 2D images. These basic features are
called multi-modal primitives and encode both geometric and
appearance information. In this paper, we use edge primitives
and textured-surface primitives (texlets). By matching 2D fea-
tures over two stereo views, the system derives corresponding
3D descriptors for the different structures, see Fig. 3.

On the second level, the ECV system organizes basic fea-
tures into perceptual groups (in both 2D and 3D) (Başeski
et al., 2010; Pugeault et al., 2010b). Edge primitives are
grouped into contours, while the texlets are organized in so-
called surflings, see Fig. 3. On this higher level of abstraction
it is again possible to group complex features or observe their
relations. Contours are matched to other contours that are part
of the same surface and surflings are combined into surfaces,
see Fig. 5b.

3.1.1 Edges and Contours

Line segments in the ECV system are local edge-feature de-
scriptors (see Fig. 3c-i,c-ii) that integrate geometrical (posi-
tion and orientation) and appearance (color and phase) infor-
mation, see (Pugeault et al., 2010a). The local edge features
are grouped into bigger perceptual groups – contours – based
on multi-modal constraints including proximity, collinearity,
co-circularity, and similarity in appearance. (see Fig. 3c-iii).
Contours, as features on the higher level of abstraction, can
again be compared and grouped by observing relations be-
tween them. In this paper, as in (Popović et al., 2010), we use
the co-planarity and co-colority contour relations to identify
pairs of contours belonging to the same surface of an object.
These are used to trigger contour-based grasping actions, see
Sect. 4.1 and Figs. 1,2(top row). Co-planarity refers to con-
tours that lie in the same plane, while co-colority means that
contour share the same color, for details see (Başeski et al.,
2010).

3.1.2 Texlets, Surflings and Surfaces

The full formalization of texlets, surflings and surfaces can be
found in (Mustafa et al., 2011), this section introduces only the
features relevant for defining grasping actions.
Texlets

Texlets are visual features that describe the local properties
of a textured surface, see Fig. 3s-i,s-ii). They store the mean
color, the position and the normal of a surface patch. Although
texlet features are more complex in principle, for the purpose
of this paper we formalize a texlet as:

Π
T = (pT ,nT ,cT ) (1)

where pT is the position of the texlet, nT is the normal of the
surface patch, and cT is the color of the texlet in the CIELab
color space.

Initial texlets in 2D are extracted from the left image of the
stereo pair (see Fig. 3s-i). The image plane is separated into
local patches by applying a hexagonal grid. For cells that con-
tain texture information, texlet features are defined by aver-
aging appearance and disparity information over pixels in the
cell. Due to the grid sampling, each texlet in 2D has up to
six neighbor texlets. After constructing texlets in 3D through
stereo matching (see Fig. 3s-ii), the neighboring structure is
propagated from 2D to 3D. Only texlets that remain close by
in 3D space, and have similar orientation and color, are labeled
as neighbors in 3D.

We create links between similar neighboring texlets, i.e.
texlets that are proximate, co-planar and co-color, see (Mustafa
et al., 2011). These connections are propagated using the tran-
sitivity relation to derive pools of connected texlets sharing
similar properties in color, position, and 3D orientation.

When creating links between neighboring texlets, due to
noise it is possible that wrong connections are created. These
local erroneous connections might lead to errors in the segmen-
tation on the global level. We therefore have multiple levels of
granularity in the hierarchy, so that local errors do not propa-
gate.
Surflings

In the next level of the hierarchy, the texlets are grouped
into semi-global surface descriptors called surflings, see Fig.
3s-iii. The system subdivides the pools of texlets into small
subsets of about five to ten texlets using k-means clustering on
the position. These subsets of similar texlets form the surfling
features, which represent the mid-level abstraction bridging the
texlets and the surfaces:

Ψ
SL = (pSL,oSL,sSL,cSL,bSL,nSL

b ,pSL
E ) (2)

where the surfling feature is a rectangular planar patch de-
scribed by a full 6D pose (position pSL, orientation oSL), size
sSL (width and length), and color cSL, see Fig. 3s-iii. The
boundary label bSL = (true/ f alse) tells if the surfling is lo-
cated at the boundary of the segmented surface. If so, the
boundary normal, nSL

b , is a vector assigned to each boundary
surfling, which gives the direction of the local boundary, and
pSL

E is the boundary edge point. The boundary label, boundary
normal, and boundary edge-point properties will be explained
at the end of this section.

The position of the surfling is the center of mass of the mem-
ber texlets positions, pSL = 1

N ∑
N
i=1 pT . The orientation is ob-

tained using singular value decomposition (SVD) applied to
the positions of the member texlets. If xSL and ySL are the
eigenvectors with the largest and second largest eigenvalue,
then the orientation of the surfling is defined as the rotation
matrix oSL = (xSL,ySL,zSL), where zSL = xSL× ySL. The sur-
face of the surfling lies in the (xSL ySL)-plane, while zSL de-
fines the surface normal. The width, lSL

x , and length, lSL
y , of the

surfling are calculated based on the eigenvalues resulting from
the SVD. The size in the direction i is given as lSL

i = 4 ·
√

Ei,
i ∈ {xSL,ySL}, where Ei is the eigenvalue of the corresponding
eigenvector. The color property of the surfling is defined in the
CIELab color space and is derived by averaging the color of
the underlying texlets: cSL = 1

N ∑
N
i=1 cT .
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Surfaces
The ECV system constructs surfaces by grouping surflings

in the next level of the hierarchy, see Fig. 5b. The system es-
tablishes a neighboring structure between surflings with proxi-
mate position and orientation and performs grouping using the
transitivity relation, in a similar way the surflings are created
from texlets, see (Mustafa et al., 2011).

The color information is not considered when grouping
surflings into surfaces, allowing for surfaces with differently
colored regions. Color can be an important cue for sur-
face segmentation and has therefore been used at the lower
level to group texlets of similar color into surflings. A sur-
face, ΨS

i , is defined by the set of M surflings that it contains:
{ΨSL

1 , . . . ,ΨSL
M }.

Once the surfaces are computed, the system identifies a sub-
set of member surflings that are positioned on the boundaries
of the surfaces. A boundary surfling, ΨSL

b , is labeled with
bSL = true and has the additional boundary normal (nSL

b ) prop-
erty, see Fig. 5a-i. Figure 5a-ii shows a detail of the boundary
of a top surface of a box. nSL

b lies within the surface plane
of the surfling and points out of the surface, it is computed as
follows:

Two vectors connecting the center of a boundary surfling pSL
b

with the centers of its two closest boundary surflings pSL
b1 ,p

SL
b2

are drawn: V1 = pSL
b1−pSL

b and V2 = pSL
b −pSL

b2 , and normalized:
V ′1 =V1/|V1|,V ′2 =V2/|V2|. Their normalized sum is given with
V ′′ = (V1 +V2)/|V1 +V2|, and it is further projected to the sur-
fling’s plane V ′′p =V ′′− (V ′′ · zSL) · zSL. The normal vector nSL

b
is determined as a direction orthogonal to V ′′p lying inside the
surfling plane nSL

b =V ′′p × zSL, where the sign is chosen so that
the normal is pointing out of the surface, see Fig. 5a-ii. If the
angle between the lines connecting the surfling with the neigh-
boring boundary surfling at one side and the other is bigger
than a fixed threshold, we label the surfling as a corner.

For each boundary surfling that is not labeled as corner, a
boundary edge point, pSL

E , is calculated, which is the point on
the outer side of the boundary surfling, that is, on the edge of
the surface, see Fig. 5a-iii. This is important information for
the generation of grasp hypotheses, since it is the point where
the finger of the robotic hand is expected to contact the ob-
ject. Usually, a surface spans several surflings in width and the
boundaries on each side are described with separate boundary
surflings. However, when a surface has a narrow area with only
one surfling in width, that surfling will support two boundaries.
In that case, predicted contact points will be created on each
side of the surfling, analog to the general case.

4 Grasp-Generation Methods
The hierarchical visual representation created by the ECV sys-
tem as defined in Sect.3.1 provides an abstract description of
the scene in terms of two hierarchies corresponding to contours
and surface information. In this section, we apply this general
scene representation to the problem of grasping unknown ob-
jects. By matching contours and finding surfaces of objects,
we can discard many inadequate grasps and thereby drastically

Figure 4: The two grippers used in the experimental evaluation. Left: the
Schunk dexterous hand, and right: the Schunk PG70 parallel gripper

reduce the search space, compared to creating grasps based on
more local descriptors on a lower level of the hierarchy.

In this paper we look at three methods for generating El-
ementary Grasping Actions (EGAs) , see Fig. 1. The first
method generates two-fingered grasps based on contour fea-
tures, c2EGAs. This method was already proposed in (Popović
et al., 2010) and is briefly described in Sect. 4.1. The other
two methods use surface features to generate two-fingered and
three-finger grasps, s2EGAs, s3EGAs. The first surface-based
method approximates the shape of the surface in a coarse way.
This method is described in Sect. 4.2.1. The second surface-
based method is based on the boundary surflings of the surface
and is described in detail in Sect. 4.2.2.

Throughout the paper, we use the following notation for
the grasp types: [c|s] f EGAi, where c denotes a contour-based
grasp and s a surface-based grasp, f is the number of fingers
involved in the grasp, and i is the index of the grasp sub-
type, where i = 1 for encompassing grasps, i = 2 for top pinch
grasps, and i = 3 for side pinch grasp. As an example, s2EGA1
is a two-finger surface-based encompassing grasp, see Fig.1.

We choose to define a general grasp G as:

G = (C ,ad) (3)

Where C is a set of two, C = {c1,c2}, or three, C = {c1,c2,c3}
contacts, and ad is the approach direction of the gripper, see
Fig. 5b. A contact c is defined by its position, cpos, and normal,
cn, see Fig. 5a-iv:

c = (cpos,cn), (4)

A “contact” defines the place and orientation that is the tar-
get for one of the gripper’s fingers. For the encompassing
grasps, the contacts mark the exact location of the predicted
meeting between the fingers and the object. For the pinch
grasps, however, the neighborhood of the detected visual fea-
ture we are trying to grasp is in general not interpreted in
enough detail to estimate the exact location of the collision.
We, for instance, do not reason about the thickness of an edge
or a surface, or about the size of the opening between two con-
tours. For the pinch grasp, the contacts are therefore placed so
that the gripper’s fingers are at a certain distance from the fea-
ture. A distance of 20 mm has been used for the experiments
in this article.

In the case of surface boundary grasps (see Sect. 4.2.2), a
contact region cR is defined as a region of the boundary that
supports the given contact point, see Fig. 5a-iv. This region
is used to compute one of the geometric constrains for the en-
compassing two finger grasps. The contact region is lying in
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Figure 5: (a) Examples of boundary surflings. (ai) The boundary surflings are
connected by the green line, the boundary normals (nSL

b ) are shown by the red
line. The boundary edge points (pSL

E ) are shown by the black dots and are cre-
ated for the non-corner boundary surflings. (aii) Examples of contacts, given
for the case of boundary surface encompassing grasps. The contact position
cpos is placed at the boundary edge point and is marked with the black dot.
The black arrow shows the contact normal cn, and the red line shows the con-
tact region cR. (aiii) A single surfling and the corresponding contact, where
cpos, cn and cR are explicitly labeled. (b) The surface segmentation has been
made more explicit for the purpose of illustration. An example two-fingered
grasping action is shown, which is triggered by two boundary surflings of the
top surface, highlighted in orange. The approach direction (ad ) is indicated by
the arrow.

the plane of the surfling, goes through contact point cpos, and
is perpendicular to the contact normal cn. The length of the
region is given by the size (sSL) of the surfling.

The following subsections describe the computation proce-
dures for the three grasping methods in detail.

4.1 Contour Elementary Grasping Actions –
c2EGAs

c2EGAs are two-finger grasps built upon 3D contour features
in a scene. As explained in the previous section, pairs of con-
tours belonging to the same surface of an object have been
matched. A number of grasping actions are generated for those
contour pairs.

As a first step, a common plane P is fitted to the positions of
line segments from both contours, see fig 6a. For each contour
we produce a parametrization using non-uniform rational basis
splines (NURBS) that allows for the extraction of the centers
of the contours and the local directions at these centers. We
project the contour centers and local directions to the common
plane P. For each grasp we need to define two contacts and a

Figure 6: Contour based EGAs. a) The figure shows the two contours Con1
and Con2 projected to the common plane P. The centers of the contours are
marked with the black dots and the corresponding vectors are marking the local
directions of the contours at the center points. The vector in the middle is the
normal of the common plane P. It is drawn at the center of the line connecting
the contour centers. b) c2EGAs1, c) c2EGAs2, d) c2EGAs3. The spheres mark
the contact positions cpos, the black vectors originating from the spheres mark
the contact normals cn, the white arrow marks the approach direction ad .

gripper approach direction, as explained below.

c2EGA1 is an encompassing grasp created by positioning
two contacts on the centers of the two contours, see Fig. 6b.
The contact normals cn are following the direction of the line
connecting both contour centers. The approach direction ad of
the gripper is the inverse of the common plane normal. This
type of grasp is only created when the two contours are oppo-
site to each other and close to parallel, otherwise the object is
likely to be slipped. With parallel we mean that the contours
have a similar local directions at the contact points. Contacts
are opposite to each other when the connecting line between
the contacts is close to orthogonal to the local directions at the
contact points.

c2EGA2 is a top pinch grasp assuming an opening between
the two contours. The aim is to grasp one of the contours, see
Fig. 6c. The contacts are positioned around the contour center,
along the direction that is orthogonal both to the local contour
direction and to the common plane normal. The exact positions
are given by the requirement of putting one gripper finger at the
center of the assumed opening. To achieve this, the contacts
are placed at a distance from the to-be-grasped contour that is
half the distance between the centers of both contours. The
approach direction of the gripper is the inverse of the common
plane normal.

c2EGA3 is a side pinch grasp that aims at grasping the sur-
face represented by the common plane. It assumes that there
is an opening just below the surface, see Fig. 6d. The contacts
are positioned at either side of the contour center, along the di-
rection of the common plane normal. As the placement of the
opening below the surface is not known, the exact placement
of the fingers is set to a fixed predefined value. The approach
direction of the gripper is orthogonal both to the local contour
direction and to the common plane normal.

For more details on the contour elementary grasping actions,
we refer to (Popović et al., 2010).
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4.2 Surface Elementary Grasping Actions –
sEGAs

The textural hierarchy presented in Sect. 3.1.2 identifies sur-
faces of the objects in the scene. This information is used for
two- and three-finger Surface Elementary Grasping Actions,
s2EGAs, s3EGAs). The grasping actions belong to one of the
two types shown on the bottom row of Fig. 1, where s2EGA1
and s3EGA1 are encompassing grasps and s2EGA3 is a pinch
grasp. In this work, we investigate two methods for generating
grasps based on surface features. The first method, discussed
in Sect. 4.2.1, relies on modeling an approximate shape of the
surface in a coarse way. It produces few two-finger grasps that
capture the surface as a whole. The second method, introduced
in (Popović et al., 2011), is explained in Sect. 4.2.2. This
method is more elaborate, and operates on individual bound-
ary surflings, which allows for a larger number of grasps and
moreover for grasps that involve three fingers.

4.2.1 The SVD Method – ssEGAs

For each extracted surface, ΨS, we perform a singular value
decomposition (SVD) on the 3D positions of the boundary sur-
flings, pSL

b . This provides the center of mass and the eigenvec-
tors, which we use to construct a local reference frame L . The
center of mass, M, is used as the origin of L and the eigenvec-
tors ordered by descending eigenvalues, x,y,z, form the x-, y-,
and z-axis of L , see fig 7b. The x-axis and y-axis also define a
plane P fitted through the positions of the boundary surflings,
while the z-axis defines the normal pn = z of the plane P.

In order to position the contacts, we need to estimate the di-
mensions of the area covered by the surface. We do so by mod-
eling the surface as a minimum rectangle covering the bound-
ary surflings projected to the plane P. The position of the pro-
jected boundary surflings is indicated as ppSL. The rectangle
is lying in the xy-plane and its orientation is aligned with the
x- and y-axis. See Fig. 7c for an illustration of the estimated
rectangle.

For each surface, we produce two encompassing and four
pinch grasps, G = ({c1,c2},ad), i.e. in total six grasps of the
surface along the main directions, see Figs. 7d and 8. For
encompassing (s2EGA1) grasps, the contact positions cpos are
located at the centers of two opposing edges of the estimated
rectangle. The contact normals cn are parallel to the x or y-
axis and are pointing towards the center of the rectangle. The
approach direction of the gripper is the inverse of the surface
normal: ad = −pn. For pinch grasps (s2EGA3), the contacts
are surrounding the centers of the boundaries such that c1 and
c2 are exactly above and below the centers of the edges (in the
local coordinate frame). The height above or below the xy-
plane is set to a predefined value depending on the scale of the
gripper. The contact normals cn are pointing vertically towards
the xy-plane, aligned with pn. The approach directions of the
gripper are parallel with either the x or y-axis, see Fig. 7d.

Figure 7: The SVD method explained. a) A segmented surface, boundary sur-
flings are highlighted, b) A local reference frame is derived by singular value
decomposition on the 3D position of the boundary surflings, c) A minimal rect-
angular covering the projected boundary surflings is used as an estimate of the
size of the graspable surface. d) Six grasps along main surface directions, see
also Fig. 8. The top row are the encompassing grasps. The second row are the
pinch grasps along the x-axis and the bottom row are pinch grasps along the
y-axis of the local reference frame.

Figure 8: Examples of the SVD grasps displayed in the visualization envi-
ronment. First row shows grasps for the top surface of the box from Fig. 5.
Bottom row shows grasps for the side surface.

4.2.2 The Boundary Method – sbEGAs

The ECV system provides information about the locations of
the boundaries of the surfaces. A boundary is represented in
a sparse way, through properties of boundary surflings ΨSL

b ,
see Sect. 3.1.2 and Fig. 5. In this method we fit a plane P
through the 3D positions of boundary surflings, with the plane
normal pn, in the same way as described in the Sect. 4.2.1.
We then project the boundary surflings to this plane. We notate
the projected values with a ’p’ in a preceding superscript, i.e.,
projected position ppSL, projected size psSL

b , projected bound-
ary normal pnSL

b , projected boundary edge point ppSL
E , and pro-

jected contact region pcR.
By projecting surflings to a plane, we touch upon the re-

search area of vision-based planar grasps, see e.g. (Morales
et al., 2006; Chinellato et al., 2005), where objects are repre-
sented by their contours in 2D. The contours are usually de-
rived from a single top-down view of the object and are an-
alyzed to estimate optimal top down grasps. Morales et al.
(2006) suggest numerous criteria for choosing the optimal con-
tacts of fingers with the selected boundary regions. These cri-
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Figure 9: The Boundary method explained. a) A segmented surface, bound-
ary surflings are highlighted, b) A local reference frame is derived by singular
value decomposition on the 3D position of the boundary surflings, the black
dots represent boundary edge points. c) Two examples of s2EGA1 encompass-
ing two finger grasps. d) Two examples of s2EGA3 two finger pinch grasps. e)
Two examples of s3EGA1 encompassing three finger grasps.

teria make use of parameters such as contour curvature, distri-
bution of forces and torques, and the deviations of predicted
forces and torques due to the kinematics of the robotic hands.

It is important to notice that although we make use of the
principles from the planar grasp methods, we overcome some
of the weaknesses connected to those methods. The purely 2D
method assume the top-down view of the object, and the an-
alyzed 2D plane is always parallel to the horizontal support
surface. In our method the graspable plane originates from any
surface of the object and can be in an arbitrary orientation. The
second weakness of the purely planar methods is that the con-
tour acquired from the top-down view does not inform about
the height nor about the 3D shape of the object, it does not nec-
essarily represent an existing surface of the object. In contrast,
our method is based on the 3D features of the ECV represen-
tation and the grasps are aimed at the specific segmented 3D
surfaces.

We now give the definition of s2EGA3 pinch grasps, fol-
lowed by the definition of s2EGA1 and s3EGA1 encompassing
grasps.

s2EGA3 Pinch Grasps

A pinch surface grasp, G = ({c1,c2},ad), is defined for each
non-corner boundary surfling ΨSL

b , (see Sect. 3.1.2). A grasp is
defined with a pair of contacts, where the contact positions cpos
are exactly above and below the surfling’s projected boundary
edge point ppSL

E (in the local coordinate frame), see Fig. 9d).
The height above or below the plane P is set to a predefined
value depending on the scale of the gripper. The contact nor-
mals cn are aligned with the plane normal pn and point from the
contact positions towards the plane. The approach direction of
the gripper is the inverse of the projected boundary normal:
ad =−pnSL

b .
The pinch grasps are defined analogous to the pinch grasps

in the SVD method, see Sect. 4.2.1). The difference is that
grasps are generated that target at each non-corner boundary
surfling, while in the SVD method, only the four rectangular
sides are grasped.

s2EGA1 and s3EGA1 Encompassing Grasps

The computation of encompassing grasps is more complex and
requires several steps. Firstly, we define potential contacts con-
nected to each non-corner boundary surfling, and secondly, we
analyze combinations of two or three contact points to main-
tain potentially stable grasps.

A contact is defined for each non-corner boundary surfling
ΨSL

b . It is placed at the projected boundary edge point: cpos =
ppSL

E . The contact normal is defined as the inverse of the sur-
fling’s projected boundary normal cn =−pnSL

b , see Fig. 5a-iii.
Encompassing s2EGA1 and s3EGA1 grasps are based upon

pairs and triplets of contact points and have an approach direc-
tion of the gripper that is the inverse of the surface normal, see
Fig. 9c),e):

s2EGA1 = ({c1,c2},−pn)

s3EGA1 = ({c1,c2,c3},−pn)

A typical surface will potentially have many contacts. Not
all of the possible combinations into pairs and triplets of con-
tacts will represent a valid grasp. Hence a task in the grasp-
generating procedure is to efficiently detect suitable contact
combinations, such that associated actions are likely to result
in a stable grasp that can resist forces and torques produced by
gravity and other external disturbances.

The selection criteria are based on gripper-specific kine-
matic constraints and on geometric constraints. We do not
apply the commonly used grasp-stability measures based on
the wrench space (Miller and Allen, 2004) because these mea-
sures usually assume perfect knowledge of the object’s shape.
Since we are dealing with visual observations of unknown ob-
jects in the real world, the derived shape representation will
be somewhat noisy and uncertain. We therefore apply less de-
tailed heuristics instead, with the purpose of maximizing the
grasp stability.

We apply the constraints in the order of increased compu-
tational complexity. The first constraint is the gripper-specific
constraint that filters out the contact combinations that are too
far apart, having in mind the maximal distance between the
gripper fingers. We apply two additional geometric constraints
both for two finger and three finger grasps.

The geometric constraints aim to prevent sliding and to min-
imize the torques. As one of the geometric constraints, we use
the Coulomb’s friction model Ff ≤ µ ·Fn to derive a friction
cone for each contact. The friction coefficient µ defines a fric-
tion half angle: β = arctan(µ), that is the maximum distance
in angle between the contact normal and the direction of the
force applied by the finger, at which sliding will not occur, see
Fig. 10a). Since the friction coefficient is not known, we em-
pirically set it to a conservative value of 0.3.

In the case of contact pairs, s2EGA1, we first require that the
angle between the contact normals is within n1 ·(−n2)< β , see
Fig. 10b). Additionally we project the contact regions cR in the
direction of the contact normals, and demand that at least one
of the projected regions intersects with the opposite contact’s
region, see Fig. 10c).
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Figure 10: a) Friction half angle. b) The constraint on mutual orientation for
contact pairs. c) The constraint on the mutual position for contact pairs for two
finger grasps. d) The constraint on the mutual position for contact pairs for
three finger grasps.

Figure 12: Detection of the supporting plane. The left column shows the orig-
inal left camera image. The middle column shows the features belonging to
the table plane in blue, those below the plane in red, and the features above
the table plane are given in their original color. The right column shows the
remaining features after filtering and the estimated plane model.

For triplets of contacts, s3EGA1, we first require that the
contact normals positively span the plane. This is the case if
each of the three vectors can be written as a linear combination
of the other two using only positive weights. Second, we re-
quire that the intersection of friction cones is not empty (Ponce
and Faverjon, 1995), see Fig. 10d).

4.3 Filtering of Features based on Supporting
Plane Detection

The ECV scene representation contains visual features of all
elements in the scene. For the grasping purposes, we are only
interested in the features of the objects that are placed on the
table in front of the robot. To filter out all irrelevant features,
we detect the dominant supporting plane in the scene and keep
those features that are above that plane.

All features that are more than 10 mm above the table plane
are kept and the rest is filtered out. Examples of this filtering
step are given in Fig. 12. The first column shows the original
left camera image. The middle column illustrates the plane

detection. In blue are all the features that belong to the detected
supporting plane, red features are those below the plane, and
the remaining features above the plane are displayed in their
original color. The last column shows the estimated plane in
green with the remaining features. This information is used to
predict collisions, as is described in Sect. 5.2.

5 Grasps Execution

This section describes how the grasps are executed. We first
describe how the robot hand configurations are derived from
the grasp definitions in Sect. 5.1. Section 5.2 explains how
collision detection is used to prevent grasp configurations that
are predicted to collide with objects in the scene. The execution
of the grasps is described in Sect. 5.3. Finally, we explain the
evaluation of the grasps in Sect. 5.4.

5.1 Inverse Kinematics

Once a general grasp has been defined through the set of con-
tacts and the approach direction, (see Eq. 3), the inverse kine-
matics is used to search for the feasible gripper configurations
that will place the gripper fingers at or close to the desired lo-
cations. The inverse kinematics makes the following mapping:

G = ({c1, . . . ,cn},ad) 7→ (Xhand,q)
where Xhand is the 6-dimensional Cartesian pose of the hand
base, and q is the joint configuration. For the parallel jaw
gripper, q is a one dimensional vector marking the distance
between the fingers. The Schunk dexterous hand has seven
degrees of freedom, and q = {q0, . . . ,q6} therefore gives the
angles of the seven joints.

The grasps are defined by the contact positions at the de-
tected features (contours or surface boundaries), which define
the extremities of an object. In order to generate stable grasps,
the end effectors of the gripper need to go beyond those points
and grasp with a certain depth in the approach direction to have
the fingers get a better grip on the object. We do this by trans-
lating the hand pose in direction of the approach vector:

X′hand = Xhand +d ·ad

where d is the depth of a grasp. In our experiments, we use
d = 20 mm both in simulation and in real experiments.

For evaluating grasps in the real setups, we need to compute
the inverse kinematics of the robot arm. i.e. find the configura-
tion of the robot arm Qarm that will place the robot hand in the
desired X′hand. We also make sure that the final hand configu-
ration is accessed from the approach direction, and thus define
an additional hand configuration Xa

hand that is to be accessed
before the final X′hand:

Xa
hand = X′hand−da ·ad ,

and search for the corresponding Qa
arm. The grasps for which

either of the {Qarm,Qa
arm} can not be found are discarded. In

our experiments, we use da = 30 mm both in simulation and in
real experiments.
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Figure 11: The mixed real-world and simulated experimental setup.

5.2 Collision Detection

Our methods do not consider all global information, but rather
generate grasps based on surface information. This potentially
can result in grasps where the robot would be penetrating other
objects in the scene. To prevent this, we predict collision of the
robot and elements in the scene using the models of the robot
and the hand, and the global scene representation illustrated
in the right column of Fig. 12, where the supporting plane is
estimated as described in Sect. 4.3. When in the pre-grasping
stage, the robot is expected to collide with or penetrate the sup-
porting plane, or any of the scene features, the grasp hypothe-
ses in question is discarded.

5.3 Grasp Execution

In order to execute a grasp, the system has to perform prepara-
tory movements. The gripper is first set to a pre-grasp con-
figuration qopen, where the gripper is opened more than q,
and the base of the hand is positioned at the approach pose
Xa

hand, which is a distance da away from the target hand pose
X′hand. Next, the hand is moved to the target pose X′hand and
the fingers begin to close. In the closing of the fingers, the
grasp-control policy guides the joint configuration from qopen
to qclosed, where the gripper is closed more than q. The grasp-
ing action is finished either when the joints settle in a static con-
figuration, or when the joint configuration qclosed is reached.

For the parallel jaw gripper, qopen = q+ a, and qclosed = 0,
that is, in the opening configuration, the fingers are a = 10
mm wider. For the Schunk dexterous hand, the joints at the
base of the fingers are changed in the opening and closing
configurations: qopen = q+ {α,0,0,α,0,α,0} and qclosed =
q+{β ,0,0,β ,0,β ,0}. In our experiments, we used α =−0.5
rad in case of one object, α = −0.3 rad for multiple objects,
and β = 0.2 rad. Note that in case of the top pinch grasps,
c2EGA2, a = 0 and α = 0, because one of the fingers is tar-
geted right in between the two contours.

5.4 Grasp Evaluation

The object is grasped when, after the grasp action is finished,
all fingers are in contact with the object. However, that does not
mean that the grasp is stable. In order to test the grasp quality,

we perform a dynamic evaluation of the grasp by lifting the
object and observing the outcome.

In the real-world experimental setup, a grasp is evaluated as
successful when the object is still in the hand after lifting it. In
case that the object drops from the gripper, is not grasped in
the first place, or a collision occurred, the grasp is evaluated as
failed. More details are given in Sect. 6.2 and Sect. 6.3.

The mixed real-world and simulated experimental setup al-
lows us to make a more elaborated evaluation. Apart from clas-
sifying the grasps as stable, slipped, dropped, or missed, we get
a continuous lift quality measure by observing how much the
object slipped from the hand during lifting. We furthermore
calculate the static grasp wrench-space measure. Details on
these measures are given in Sect. 6.1.

6 Experiments

The grasp-generation methods have been tested in two different
experimental setups. First, experiments have been performed
in a mixed real-world and simulated setup, (in following also
called the hybrid setup), using the VisGraB benchmark (Koot-
stra et al., submitted), see Sect.6.1. The benchmark provides
stereo images of a large set of real scenes, and the grasps are
performed using a dynamics based grasp simulator. This en-
ables extensive testing on real visual input and allows for a
comparison between methods under the exact same circum-
stances. Second, experiments have been performed in a real-
world setup to demonstrate the performance of the methods
running on real robotic systems. Here two scenarios have been
used, one using a parallel jaw gripper described in Sect.6.2, and
one using a three-finger dexterous hand described in Sect.6.3.

6.1 Hybrid Real-World and Simulated Setup

The methods have been tested on the VisGraB benchmark1,
which we have presented in Kootstra et al. (submitted). The
benchmark provides a hybrid real-world and simulated exper-
imental setup. Real camera images provide the input to the
ECV system and the grasp-generation methods. The produced
grasp hypotheses are then tested in a dynamic simulated envi-

1http://www.csc.kth.se/visgrab

11



1

2

3 4

5 6
7

8

9

10
11

12

13 14

15

16 17
18

Figure 13: The 18 objects used in the hybrid experimental setup. The figure is
taken from (Kootstra et al., submitted).

ronment2. Figure 11 gives an illustration of the hybrid real-
world and simulated setup. This setup gives us the possibility
to run a large number of trials and to repeat the experiments
in the exact same conditions, allowing for a fair comparison
among methods, while having to deal with the noise and un-
certainty of the real world. A total of 47,269 grasps have been
performed in our experiment.

Real stereo-camera images of a large number of grasp scenes
are provided by the benchmark. The 18 different objects used
are shown in Fig. 13. The objects have various shapes, sizes,
colors, and textures. The benchmark contains scenes with one
object and scenes with two objects. The single-object scenes
contain the 18 different objects in eight different poses, four
where the object stands upright, and four where the object lies
down. In the two-object scenes, 9 combinations of objects are
included, where the objects are in eight different configura-
tions, four with the objects placed apart, and four with the ob-
jects touching each other. All scenes are recorded in two con-
ditions, placed on a non-textured and on a cluttered/textured
table. This gives in total 2× (18× 8+ 9× 8) = 432 scenes.
Some example scenes are given in Fig. 14.

The VisGraB benchmark furthermore contains simulated
versions of all the real scenes in order to test the grasp perfor-
mance in simulation. The objects and models that are used are
part of the KIT Object-Models Web Database3. These mod-
els have been obtained using a laser scanner and therefore pro-
vide a realistic representation of the scene. Besides the objects,
also the table has been placed in the simulated scene. Fig-
ure 14 (bottom row) gives some examples of simulated scenes.

The grasps are evaluated in simulation using RobWork4.
RobWork is a simulator for robotic grasping with dynamic ca-
pabilities, which has been used in several related experiments
(Jørgensen et al., 2010). The simulator has been shown to be
very realistic in (Ellekilde and Jørgensen, 2011), where several
thousands of grasps with a parallel gripper in a real robotic
setup have been compared to the simulation. In the exper-
iments, we use a simulation of the Schunk dexterous hand,

2A movie illustrating the hybrid real-world and simulated setup is available
at http://covil.mmmi.sdu.dk/videos/visgrabCompressed.mp4

3http://wwwiaim.ira.uka.de/ObjectModels
4http://www.robwork.org

which allows for both two-fingered parallel grasping and flex-
ible three-fingered grasping, see Fig. 4.

Using a dynamic simulator allows us to not only look at
static quality measures of the grasp, but also to determine the
actual grasp success by observing the dynamical and physical
consequences of grasping and lifting the object. In an experi-
mental trial, the quality of the generated grasp is tested as fol-
lows: the hand is placed in the determined pose X′hand and the
fingers are opened in the opening configuration, qopen. The fin-
gers then close to the closing configuration, qclose. The object
is potentially grasped when the hand settles in a static config-
uration and the fingers touch the object. However, this does
not necessary mean that the grasp is stable. To test the stability
of the grasp, the hand attempts to lift the object. The result is
classified as follows:

Stable grasp The object was grasped and held after lifting,
with little or no slippage of the object in the hand.

Object slipped The object was grasped and held after lifting,
but there was considerable slippage of the object in the
hand.

Object dropped The object was grasped, but after lifting, the
object was no longer held by the hand.

Object missed The object was not grasped by the hand. This
is the case when the fingers are not in contact with the
object after the grasping action has finished.

In collision The initial hand configuration produced a situa-
tion where the hand was penetrating the object(s) and/or
the table.

The grasp is considered successful when the returned result is
either object slipped or stable grasp. In both cases, the object
is held in the hand after lifting.

In addition, the benchmark provides two grasp-quality mea-
sures: 1) the lift quality, Qlift ∈ [0,1], which is a dynamic mea-
sure of the grasp quality, inversely related to how much the
object moves with respect to the hand during lifting, and 2) the
grasp wrench-space measure, QGWS ∈ [0,1], which is a static
measure of stability. For more information, we refer to Koot-
stra et al. (submitted).

All three grasp-generation methods introduced in Sect. 4
have been tested on the complete benchmark. The results are
given in Sect. 7.1.

6.2 Real-World Setup – Parallel Jaw Gripper
Fig. 15 gives an overview of the real-world setup using the par-
allel jaw gripper. The setup consists of a Bumblebee2 color
stereo camera, an industrial six degrees of freedom Staubli
RX60 robot arm, a Schunk PG70 2-Finger Parallel Gripper,
and a force-torque sensor that is mounted between the robot’s
wrist and the gripper in order to detect collisions.

The nine objects used in the experiments are shown in
Fig. 16. Experiments have been performed both with nine
scenes containing a single object and with 56 cluttered scenes
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Figure 14: Example scenes of all conditions included in VisGraB. The real
camera images (left image of the stereo pair) are shown on the left and views
on the corresponding modeled scenes used for grasp simulation are given on
the right.

containing three objects. All three grasp-generation methods
introduced in Sect. 4 have been tested. From the set of sug-
gested grasping hypotheses we select one hypotheses of a given
method at random.

We performed 258 grasping trials with the single-object
scenes, approximately 10 trials per method, per object. The
objects were placed in a random orientation for each grasping
attempt, with the similar pose of the objects for the three dif-
ferent methods.

For the cluttered scene, we performed 168 grasping trials.
The 56 different scenes were reproduced three times, once for
every method, see Fig. 17. The grasp-generation methods pro-
duces grasps for the whole scene. Certain objects will trigger
more elementary grasping actions then others. Since the per-
formed grasps are selected at random, grasps for those objects
are attempted more than for the other objects.

The outcome of a grasp is labeled as successful when the
object is held in the hand after lifting. If the object is dropped,
missed, of if a collision occurred, the grasp is labeled as failed.
The results of these experiments are given in Sect. 7.2.

6.3 Real-World Setup – Three-Finger Dexter-
ous Hand

The hardware setup used for the experiments with the three fin-
ger hand consists of a six degrees of freedom industrial robot
arm Universal Robot (UR5), a static Bumblebee2 color stereo
camera, a force torque sensor mounted at the robot’s wrist and
a Schunk Dexterous Hand mounted on the Force Torque sen-
sor, see Fig. 18. The floor is covered with flexible foam layer.

The six objects used in the experiments are shown in Fig. 19.

Figure 15: Experimental setup with the parallel jaw gripper.

Figure 16: The nine objects used in the real-world setup - parallel jaw gripper.

Objects 1,2 and 5 are the objects from the KIT database, also
used in the hybrid real-world and simulated setup. Objects 3,4
and 6 are objects also used in the real-world setup with the
parallel jaw gripper.

In this setup the different grasping methods have been tested,
including three two-fingered and one three-fingered grasping
method. We performed 120 grasping trials for single-objects.
Five different scenes were produced for each object, three
where the object was standing up and 2 where the object was
laying down, see Fig. 20. Each scene was reproduced four
times, once for each grasping method.

For the two-object scenes we tested 72 grasps. The six ob-
jects were grouped in three pairs, and each pair was tested
withing six scenes, where in three scenes objects were close
together and in the remaining scenes objects were far apart.
As in the single-object case, each scene was reproduced four
times, once for each grasping method.

The results of these experiments are given in Sect. 7.3.
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Figure 17: Examples of cluttered scenes, each containing three objects.

7 Results
The results of the experiments are given below. We also dis-
cuss and compare the results from the different setups and sce-
narios. The hybrid setup gives the possibility to test a large
number of grasps. It also gives the possibility to test all the
suggested grasps for one scene. In the case of the real-world
experiments, only one of the suggested grasps can be tested per
scene since in general the scene is disturbed by the performed
grasp attempt. The large number of experiments performed in
the hybrid setup provides the in-depth view of the performance
of grasping methods and their sub-types, while the evaluation
from the real-world experiments discriminates only between
the general grasping methods.

7.1 Hybrid Real-World and Simulated Experi-
mental Setup

7.1.1 Distribution of Grasp Results

Fig. 21 shows the grasp results for the hybrid setup, intro-
duced in Sect.6.1. The bar plots give the distributions of all
grasps averaged over the scenes. The results are split up for
the different conditions: single objects standing up, single ob-
jects laying down, two objects far apart, and two objects close

Figure 18: Experimental setup with the three-finger dexterous hand.

Figure 19: The six objects used in the real-world setup with the three-finger
dexterous hand.

together. In general, it can be seen that the surface-based
grasp methods perform better than the contour-based meth-
ods. The encompassing grasps, i.e., EGA1 grasps, are more
successful than the pinch grasps. The three-finger surface-
boundary grasp, sb3EGA1 outperforms the two-finger surface-
boundary grasp, sb2EGA1. The surface grasps based on the
SVD method, ssEGA, perform similarly to those based on the
boundary method.

In general, all grasping methods perform better when the
single objects are standing upright than when they are laying
down. For the double-object scenes, the amount of successful
grasps is similar for the objects apart or close together, but in
the later case, there is a higher proportion of collisions.

On a large proportion of scenes, the contour-based encom-
passing grasp, c2EGA1, does not suggest any grasps. This is
due to the low number of detected contours and the strict re-
quirements of two contours to be parallel and the contact points
to be opposing.

For all conditions, the side pinch grasps, i.e., EGA3 grasps,
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Figure 21: Grasp results for the hybrid real-world and simulated experiments. The stacked-bar plots show the average distribution of all grasps over all scenes.
The stable and slipped grasps are considered successful grasps, where the object is held in the hand after lifting. The gray area shows the proportion of scenes
where the methods do not suggest any grasps.

result in more collisions compared to the related encompassing
grasps. This is caused by the lack of structural information
at the backsides of the object due to self occlusions, which
has the consequence that the grasps are not filtered out by the
collision-detection mechanism. This is especially the case for
the double-object scenes. For the laying objects, however, we
do correctly filter out most of the pinch grasps, leading to the
large number of scenes where no grasps are suggested. This
is because the height of the objects is less when laying down,
which reduces the size of the self-occluded part of the object,

making collision detection more successful.

7.1.2 Grasp Success as a Function of the Number of
Grasp Attempts

The average grasp success rates are somewhere between 0.3
and 0.6. This means that the robot will often not be able to
grasp an object at the first attempt. We want to stress that this
is a remarkably high performance since the system does not
make use of any object knowledge. Moreover, the robot can
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Figure 22: Grasp results for the hybrid real-world and simulated experiments. The plots show the average success rate as a function of the number of grasp
attempts for the different grasp methods. The black line shows the performance when the different methods are combined. The fact that the combined results
surpass the results of the individual methods shows that they are complimentary.

try another grasp if the first one fails. Fig. 22 shows the grasp
success as a function of the number of grasp attempts, N. For
a given scene, N grasps are taken at random from the set of
generated grasps. We define it as success if any of these grasps
is successful. The plots also show the combined success rates,
where the N grasps of the eight different elementary grasping
actions are taken together. The plots show the average success
rate for all scenes over 20 randomized runs. With the com-
bined success rates we investigate if the different grasp types
are complementary, i.e. if using more then one grasp type will

increase the success rates.

All curves indicate that the success rate increases when mul-
tiple grasps are attempted. The steeper the slope, the more
successful additional attempts can be employed. Especially of
interest is the black solid line, which shows the grasp success
when the different elementary grasping actions are combined.
For a single attempted grasp, the success rate is the average
of the individual method. However, when one grasp of all
eight methods are combined (at N = 8), the curve surpasses the
curves of the individual methods in all cases. This shows that
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Figure 20: Examples of experimental scenes for the real-world setup with the
three-finger dexterous hand.

the different methods are complimentary and that our total pro-
posed grasp method benefits from having different elementary
grasping actions based on different types of visual information.

The plots in Fig. 22 also confirm some of the results given in
Sect. 7.1.1. The surface-based grasp (orange, red, and green)
outperform the contour-based grasps (blue). For the surface-
based grasps, the encompassing grasps (solid lines) have a
higher success rate than the encompassing grasps (dashed and
dotted). The contour-based encompassing grasp (solid blue),
however, gains little from multiple grasp attempts, which is
caused by the low number of grasp suggestions. The three-
finger contour-boundary encompassing grasp (solid red) out-
performs its two-finger counterpart (solid orange) and is the
most successful grasp type overall.

Although for the first grasp attempt, the surface grasps based
on the SVD method (green) have a similar success rate as those
based on the boundary method (orange), the later is superior
when more grasps are attempted. This can partly be explained
by the larger number of suggested grasps using the boundary
method.

Despite having lower average scores, the contour-based
method contributes to the overall system by complimenting the
surface-based methods when objects are low textured and sur-
face hypotheses based on texlets and surflings cannot be made.

Given the sparse representations of the scene and the heuris-
tics for grasp selection, the grasp-generation methods suggest
only a small number of grasps. On average 5-20 grasps are
generated per scene for the different methods. And as can be
seen in Fig. 22 good grasp results are generally achieved al-
ready after a few attempts, especially when the different grasp
methods are combined. The combination of sparseness, com-
plementarity, and high performance is the main contribution of
our method.

7.2 Real-World Setup – Parallel Jaw Gripper

Results of the real-world setup – parallel jaw gripper experi-
ments are shown in Fig. 23. The figure gives the average suc-
cess rates per object and grasping strategy, and illustrates the
supplementary nature of the different grasping methods. The
top figure shows the results for the single-object experiments,
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Figure 23: Grasp results for the real-world setup – parallel jaw gripper ex-
periments. Histograms show success rates for different grasping methods and
different objects, and an averaged success rate of different methods for all ob-
jects. Top figure gives results for the single-object scenes and the bottom figure
gives results for the cluttered scenes shown in Fig. 17. The average number of
experiments per one method and one object is 9 for single-object scenes, and
7 for the cluttered scenes. In case of cluttered scenes this numbers varies as lot
and in some cases only few grasps are tested.

and the bottom figure shows the results for the cluttered scenes
experiments.

Both results from the single-object and cluttered scenes in-
dicate that the contour method is the most successful method
in this scenario. This seems to contradict the results from the
previous Sect. 7.1 and can be explained with the fact that due
to the small gripper size, most objects chosen for this scenario
posses an opening (Fig. 16), and can often be grasped only by
using a pinch grasps on the sides of the opening. The contours
extracted from the top surface of an object often suggest good
grasps. In contrast, the majority of the KIT objects used in
the hybrid setup (Fig. 13) do not have an opening and can not
accommodate pinch grasps. In the real parallel jaw scenario
the gripper does not perform a great number of encompass-
ing grasps as the maximal distance between fingers is about 68
mm, which means that the graspable objects can not be bigger
then 50mm.

The fact that the surface grasps perform worse than contour
grasps can also be explained with fewer textured objects in this
scenario, compared to the objects used in the hybrid setup. It
can be observed both here and in the following Sect. 7.3 that
for the weakly textured objects, the contour-based grasps give
better results.

For two of the objects in the cluttered scenes no successful
grasps were produced. This is due to the relatively small num-
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ber of grasp trials for these objects, in average three to four
trials per object. Since a random grasp is selected for each of
the cluttered scenes, some objects were grasped less often than
others.

In general, the experiments show an overall performance
comparable to the results gained from the simulation. The sys-
tem is able to successfully grasp unknown objects, both for the
single-object and for the cluttered scenes, using the two-finger
parallel jaw gripper. In order to test and use all possible grasps
for the given size of objects, a bigger gripper would be needed.

7.3 Real-World Setup – Three-Finger Dexter-
ous Hand

For this scenario we have chosen three objects used in the
hybrid setup and three objects from the real parallel jaw sce-
nario, see Fig. 19. Both well-textured and weakly-textured ob-
jects are represented, as well as open and closed objects. The
Schunk three-finger dexterous hand matches well the size of
the objects and is able to perform both two-finger and three-
finger grasps. By using the same hand as in the hybrid setup,
we are able to directly compare results from the simulated and
real experiments.

Fig. 24 shows the outcomes of different grasping methods
for individual objects. It can be seen that for the weakly tex-
tured kitchen container, the contour method is the only method
that produces stable grasps. Also for the weakly textured red
basket, the contour grasps perform best, with over 80% success
when both stable and less stable grasps are taken into account.
Both in the case of the kitchen container and the red basket,
a big amount of collisions occurred, due to the fact that the
object surfaces are not detected.

For textured objects, the success of different methods varies
across objects, which once more confirms the supplementary
strength of different methods, as seen in the previous results
from Sect. 7.1 and Sect. 7.2. The difference compared to the
results from the hybrid setup is that the three-finger sb3EGA1
does not perform as well. The sb3EGA1 is an encompassing
grasp of the whole surface and this fits well with the objects
used in the simulated setup, objects that were mostly closed,
with well-textured top surface. Two such objects from the real
experiments are corny and marmalade, and the increase in the
performance of the sb3EGA1 method for the two objects can
be seen in Fig. 24.

In Fig. 25(top), the outcomes of different grasping meth-
ods are averaged over all objects. The success rate of the first
grasping attempt varies between 30-60%, in agreement with
results from the hybrid setup.

As can be expected, the results for the objects in the up-
right position are better than for the objects laying down. The
results for the two object scenes are better when the objects are
far apart, see Fig. 25(bottom).

One of the differences between the real world and simulated
three-finger setups is that in the case of simulations, all sug-
gested grasps are reachable, or in other words the simulated
hand can be placed in all positions with respect to the object. In
the case of the real setups, only the grasps that can be reached
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experiments. The top figure shows the distribution of outcomes of different
grasping methods for all experiments. The bottom figure shows the distribution
of outcomes for different types of scenes.

with the robot arm are feasible. In a setup where the stereo
camera and the robot arm are placed close together, analog to
the configuration of human body, the visible sides of objects
will also be the reachable sides of the objects. This means that
the grasps involving the occluded side of the object, that are
more likely to fail because of lack of information, are natu-
rally filtered out. Therefore the results show fewer number of
collisions in the real experiments Fig. 24 compared to Fig.21.

8 Discussion

In this paper, we presented a bottom-up vision system for gen-
eral scene interpretation in terms of hierarchies of visual de-
scriptors, and we used this system for grasping unknown ob-
jects. We continued our earlier work (Popović et al., 2010), by
extending the hierarchical representation of the Early Cogni-
tive Vision (ECV) system to the texture and surface domain,
and by using the representation to generate not only contour-
based, but also surface-based grasps.

The ECV system organizes multi-modal three-dimensional
visual information in a hierarchy of increasing level of abstrac-
tion. In the contour domain, local edge features on the lowest
level are grouped into contours, and contours belonging to the
same surface are further grouped together. In the texture do-
main, local textured patches on the lowest level are grouped
into larger surflings, which are then grouped to form surfaces.
This approach has three advantages: 1) it allows us to address
the grasping problem at a level in the hierarchy which suffi-
ciently narrows the search space for grasping possibilities, 2)
the vision system extracts rich visual information about sur-
faces of objects in the scene, which allows to extract grasp-
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Figure 24: Grasp results for the real-world setup – three-finger dexterous hand experiments. The figures show the distribution of outcomes of different grasping
methods for individual objects, and are averaged over different scene types. On average eight grasping attempts were made per method for each object.

ing hypotheses, and 3) by using lower levels of hierarchy we
can define good contact points. We proposed different ele-
mentary grasping actions, utilizing contour and surface infor-
mation present in the hierarchical representation made of the
scene.

We tested the system in different experimental setups. First,
we used a hybrid real-world and simulated setup. Based on
real stereo images, our method built a visual representation of
the scene and generated grasps. These grasps were then exe-
cuted in a dynamic simulator. This setup allowed us to test a
large number of grasps and get quantitative results, while still
dealing with the noise and uncertainty in the real-world visual
data. It allowed us, moreover, to compare the different meth-
ods under the exact same circumstances. Second, to show the
applicability of the proposed methods on real robotic systems,
we tested the proposed methods on two different real-world ex-
perimental setups, using a parallel and a three-finger dexterous
hand.

The results show a good average performance of the pro-
posed grasping methods, which is even further improved when
the different methods are combined. This shows that the
different methods, which are based on different types of vi-
sual information and apply different grasps to contact points,
complement each other so that a better performance can be
achieved. In particular, the contour-based methods perform
better in the situations where objects are not textured, while
different surface-based methods complement each other in the
situations where objects are textured. By combining both types
of information, the overall system can deal with both types of

objects.
We proposed two surface-based methods. The SVD method

uses a rectangular approximation of the surface, and therefore
suggests a limited number of grasps. The boundary method
suggests a larger number of grasps, based on a more general
representation of the surface, which can deal with a larger va-
riety of shapes.

If we compare the overall results of the single-object scenes
with the complex scenes, we see that the success rates are in
the same range. This shows that our hierarchical vision sys-
tem provides a powerful representation of the scene that can
be used to generate good grasps, even with increasing visual
complexity. Similarly, in the hybrid setup, the results for the
scenes with textured and non-textured background are similar,
which also indicates that the proposed methods are robust to
different levels of visual complexity.

An issue with the proposed method is that we cannot predict
collisions of the gripper with the back side of objects, because
of the lack of features due to occlusions. To deal with this,
we propose to extend the ECV to not only rely on bottom-up
processes, but to also let the system make top-down projections
about the shape of the object, in order to hallucinate the back
sides of objects.

The experiments from the hybrid setup provided an in-depth
analysis of the grasping methods and their sub-types. The ex-
periments from the two real-world setups confirmed that the
same level of success can be expected when grasping in real-
world scenarios. Performing the experiments on the different
setups and with different objects has helped to better under-
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stand the proposed grasping methods.
Since we are dealing with grasping unknown objects in un-

known scenes, a 100% success is not to be expected. How-
ever, the results show that a good average performance can be
achieved and that the grasp success strongly increases when
more attempts are made and different grasp types are com-
bined. In the current system, the different grasp hypotheses for
a scene are not ordered, but a hypothesis is selected at random
from the possibilities. Using developmental learning mecha-
nisms, such as proposed in (Kraft et al., 2008), a system can
learn to improve grasping success further based on acquired
grasp experience allowing to order the grasp hypotheses for
more efficient grasp selection.

The proposed grasping method can as well be used for
grasping known objects, provided that the pose of the object
can be estimated. In the case of dealing with known objects,
the increased performance can be expected. Due to the rel-
atively small number of grasps suggested by our system, an
on-line simulation can be used to select good grasps by testing
all proposed grasps. When provided with the complete model
of an object, the collisions can be detected also with the parts
of the object that are not visible from the given stereo view.

The VisGraB benchmark that we used in this paper is
open for scientific use. The stereo images, the simulated
environment, and the dynamic simulator are available on
http://www.csc.kth.se/visgrab.
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N. Krüger et al. Early cognitive vision as a front-end for cogni-
tive systems. In ECCV 2010 Workshop on ”Vision for Cog-
nitive Tasks”, 2010.

A. Miller and P. Allen. Graspit! a versatile simulator for
robotic grasping. Robotics Automation Magazine, IEEE, 11
(4):110 – 122, dec. 2004. ISSN 1070-9932.

A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen. Au-
tomatic grasp planning using shape primitives. In Proceed-
ings of the IEEE International Conference on Robotics and
Automation (ICRA’03), pages 1824–1829, 2003.

A. Morales. Learning to predict grasp reliability with a multi-
finger robot hand by using visual features. PhD thesis, Uni-
vertitat Jaume I, Castellón, Spain, 2004.

A. Morales, P. J. Sanz, A. P. del Pobil, and A. H. Fagg. Vision-
based three-finger grasp synthesis constrained by hand ge-
ometry. Robotics and Autonomous Systems, 54(6):496 –
512, 2006. ISSN 0921-8890.
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Learning Continuous Grasp Stability for a Humanoid Robot Hand
Based on Tactile Sensing

J. Schill and J. Laaksonen and M. Przybylski and V. Kyrki and T. Asfour and R. Dillmann

Abstract— Grasp stability estimation with complex robots in
environments with uncertainty is a major research challenge.
Analytical measures such as force closure based grasp quality
metrics are often impractical because tactile sensors are unable
to measure contacts accurately enough especially in soft contact
cases. Recently, an alternative approach of learning the stability
based on examples has been proposed. Current approaches of
stability learning analyze the tactile sensor readings only at the
end of the grasp attempt, which makes them somewhat time
consuming, because the grasp can be stable already earlier.

In this paper, we propose an approach for grasp stability
learning, which estimates the stability continuously during the
grasp attempt. The approach is based on temporal filtering
of a support vector machine classifier output. Experimental
evaluation is performed on an anthropomorphic ARMAR-IIIb.
The results demonstrate that the continuous estimation provides
equal performance to the earlier approaches while reducing the
time to reach a stable grasp significantly. Moreover, the results
demonstrate for the first time that the learning based stability
estimation can be used with a flexible, pneumatically actuated
hand, in contrast to the rigid hands used in earlier works.

I. INTRODUCTION

The sense of touch is essential to human grasping. The
work described in this paper considers robotic tactile sense as
a biomimetic replacement for the sense of touch, especially
when estimating grasp stability. Grasp stability in analyti-
cal sense is well defined and can be readily computed in
simulation where enough data of the grasp is available, i.e.
all contacts between the robotic hand and the object that
is grasped. Additionally, using a force closure metric for
grasp stability, one can compute a grasp that sufficiently
resists outside forces, such as gravity, thus allowing the robot
to manipulate the object, for example by lifting the object.
However, when using real hardware, the tactile sensor data is
imperfect, both in the sense of detecting contacts and in the
sense of determining the actual contact forces. In some cases
the proprioceptive information, i.e. joint configuration, is also
difficult to determine accurately, thus, causing uncertainty
in ascertaining the kinematic configuration of the hand.
All these described phenomena pave a difficult road for
computing the grasp stability analytically with real hands.

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme GRASP under
grant agreement n◦ 215821 and Xperience under grant agreement n◦ 270273
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In this paper, we focus on learning the grasp stability
instead of analytically solving it. Compared to the analytical
methods, learning requires training data, which needs to be
collected beforehand. As the training data, we can use any
pertinent data that can be collected from robotic hand, in
our case we use input from all tactile sensors and the hand
finger configuration. It is also important to notice that the raw
sensor data can be used in the learning, for example, there is
no need to know the kinematic configuration of the hand to
compute the true locations of the contacts when analytically
solving the grasp stability. This feature allows grasp stability
to be learned for many different robotic hands with only
minimum changes.

There has been a number of publications on learning
the grasp stability [1], [2]. These approaches evaluate the
stability after the hand finished closing around an object.
We extend the work presented in previous papers, so that
the decision on the grasp stability can be achieved during the
grasping instead of at the end of the grasp. We also demon-
strate that the learning of the grasp stability is possible with
the ARMAR-IIIb hand [3], [4] , a flexible anthropomorphic
hand operating on pneumatics.

The rest of the paper is divided into four sections. Sec-
tion II gives an overview on learning grasp stability as well
as other learning approaches that are grasp and manipulation
related. Section III introduces a theoretical background on
machine learning methods and how they can be applied to the
grasp stability problem. Section IV contains the experiments
made on data collected using the ARMAR-IIIb hand. We
conclude with discussion of the results in Section V.

II. RELATED WORK

Grasp stability analysis by analytical means is a well es-
tablished field. However, to analytically determine the grasp
stability, the kinematic configuration of the hand and the
contacts between the hand and the object must be perfectly
known. Previous studies on this subject are numerous and [5]
gives a detailed review. However, the references are useful
only in cases when conditions described above are true.
When this is the case, it is possible to determine if the grasp
is either force or form closure grasp [6], which ensures the
stability. Compared to this body of work, we wish to learn
the stability from existing data, i.e. the tactile data.

The research on use of tactile and other sensors in a
grasping context has increased in last few years. Felip and
Morales [7] developed a robust grasp primitive, which tries to
find a suitable grasp for an unknown object after a few initial



grasp attempts. However, only finger force sensors were used
in the study.

Apart from using tactile information as a feedback for
low level control [8], tactile sensors can be used to detect or
identify object properties. Jiméneza et al. [9] use the tactile
sensor feedback to determine what kind of a surface the
object has, which is then used to determine a suitable grasp
for an object. Petrovskaya et al. [10] on the other hand use
tactile information to reduce the uncertainty of the object
pose, upon an initial contact with the object. In their work, a
particle filter is used to estimate object’s pose, but the tactile
sensor used to detect contact with the object is not embedded
in the gripper performing the grasping.

Object identification has been studied by Schneider et al.
[11] and Schöpfer et al. [12]. Schneider et al. show that it is
possible to identify an object using tactile sensors on a paral-
lel jaw gripper. The approach is similar to object recognition
from images and the object must be grasped several times
before accurate recognition is achieved. Schöpfer et al. use
a tactile sensor pad fixed to a probe instead of a gripped or
hand. They also study on different temporal features which
can be used to recognize objects. Similar object recognition
systems have been presented in [13], [14].

The approach used and extended here has been published
in [1]. Similar approach was used in [2]. However, in this
paper we show that we can use described methods with a
more complex hand, the ARMAR-IIIb humanoid hand, and
that we can extend the single time instance classifier by
means of filtering.

III. SUPERVISED LEARNING OF GRASP STABILITY

A. Learning Grasp Stability

Our notation of observations follows [1]:
• D = [oi], i = 1, . . . , N denotes a data set with N

observation sequences.
• oi = [xit], t = 1, . . . , Ti is an observation sequence with
Ti samples.

• xit = [f it jit], each sample consists of f , the features
extracted from tactile sensors and j, the joint configu-
ration.

To learn grasp stability, the training data is collected from
series of grasps, noted by the observation sequences oi.
Each observation sequence is labeled with a label indicating
either a stable or unstable grasp. Then, from each observation
sequence the last sample, xiTi

, is used for the training. This
captures the time instant on which the decision of stable or
unstable grasp is based on. Both unstable and stable grasp
must be included in the training data so that sufficient data
is available to discern the stable grasps from the unstable
grasps.

We use Support Vector Machine (SVM) [15] to classify
the grasp as either stable or unstable. Compared to force
closure metric from the analytical methods for computing the
grasp stability, the binary classification is not as informative
as the continuous value given by the force closure metric,
however the classification result reflects the stability criteria

in the training data directly. Another benefit of SVM is that
it is computationally efficient, so that it can be used on-line
during grasping.

B. Learning Temporal Changes in Grasp Stability

In [1], the temporal information collected during a grasp
is used in conjunction with a hidden Markov model (HMM)
to decide whether the grasp is stable or not. But for the
method to be able to decide, the grasp must be completed.
The second method presented in [1] was based on the idea
depicted in III-A. We propose to extend the instantaneous
SVM-based method by applying the learned stability model
on-line to each sample x1, . . . , xT we obtain during the
grasp, contrary to the previous approach, where only the final
sample, xT , is is used to determine the stability of the grasp.
This extension allows quicker decision making on the grasp
quality in the case of a stable grasp.

As the method described in III-A does not remember any
of the previous time instances and does not consider the
whole grasp sequence from t = 1, . . . , T , the classification
result over time may oscillate. One pathological example is
shown Figure 1. Through the use of filtering and threshold-
ing, the oscillations can be effectively removed.

(a) (b)

Fig. 1: (a): Each time instance of a stable grasp classified
with a SVM classifier; (b): The classification result filtered
with an exponential filter and thresholded.

We study two different filter types: a mean filter and an
exponential filter. The results of the experiments with the
filters are shown in Section IV. The input for the filters are
the results from the classifier, either 0 or 1. The mean filter
can be defined as a sliding window, with window size w. The
mean of the data in the window is then calculated, and this
result is the output of the filter. Exponential filter is described
by

y(t) = (1− α) · y(t− 1) + α · x(t) . (1)

Equation 1 consists of y(t) and y(t−1), filter output at time
instances t and t−1, of x(t) the binary stability at time t and
of α which a weighting factor. An examples of both filters
are shown in Figure 2 which depicts the same sequence as
in Figure 1.

Introducing the filters requires setting more parameters in
addition to the parameters for SVM. These include w for the



mean filter window width, and α for the exponential filter.
In addition both require the threshold, thr, for the binary
decision of stability. After the threshold has been crossed, the
grasp is deemed stable. Close to optimal parameters can be
found experiementally and we have done that for the datasets
used in this paper.

In addition to the filters, we ran experiments without
using any filters, thus, the output from the classifier is taken
directly. This approach provides a quicker response to stable
grasps but can also misclassify unstable grasps as stable
grasps more frequently than the filter based approach.

(a) (b)

Fig. 2: (a): Filter output of mean filter; (b): Filter output of
exponential filter.

C. Feature Extraction

Each of the tactile sensors on the ARMAR-IIIb platform
produces a tactile image. An example image showing all six
tactile images is shown in Figure 3. This imaging property
of the sensors allows us to use image feature extraction
techniques. In this case we have chosen the image moments
as our feature extractor, which have been shown to perform
well in this task [16]. The hand comprises of two different
sizes of tactile sensors which contain 4x7 or 4x6 tactile
elements or taxels.

Fig. 3: Tactile images from ARMAR-IIIb.

Raw image moments are defined as

mp,q =
∑
x

∑
y

xpyqI(x, y) , (2)

where I(x, y) is the force measured by the taxel. The
moments are computed up to order two, that is (p + q) =
o, o = {0, 1, 2}. These are related to the total pressure, the
mean of the contact area, and the shape of the contact area,
indicated by the variance in x- and y-axes. Moments are
computed for all tactile sensors individually, thus f ∈ R36.

In addition to the tactile images, the joint angle sensors
provide a source of information relevant to the stability of the
grasp. However as the number of fingers and joints is usually
much less than the number taxels (tactile sensing elements)
in tactile sensors, it is reasonable to use the data from the
joints directly. In this case, 8 joint angle sensors are available,
thus j ∈ R8. All feature vectors, xit, were normalized to zero
mean and unit standard deviation.

IV. EXPERIMENTS
A. Hardware Platform

We used the humanoid robot ARMAR-IIIb as a test
platform for the experiments with our stability classifier.
ARMAR-IIIb consists of several kinematic subsystems: The
head, the torso, two arms, two hands, and the platform. The
head has seven degrees of freedom (DoF) and contains four
cameras, i.e. two cameras per eye. The torso has 1 DoF in the
hip, allowing the robot to turn its upper body. Each of the two
7 DoF arms consists of a 3 DoF shoulder, a 2 DoF elbow and
a 2 DoF wrist. At the tool center point (TCP) of each arm a
FRH-4 Hand [17] is mounted. The hands are pneumatically
actuated using fluidic actuators. For the experiments in this
paper, we used ARMAR-IIIb’s right hand, (see Fig. 4), which
is equipped with joint encoders and pressure sensors. This
allows a force position control of each DoF [18]. The hand
has 1 DoF in the palm, and 2 DoF in the thumb, the index
and the middle finger, respectively. Apart from that, there is
1 DoF for combined flexion of the pinky and ring finger.
Furthermore the hand contains 6 tactile sensors from Weiss
Robotics [19]. One tactile sensor is mounted on the distal
phalanges of the thumb, the index and the middle finger,
respectively. Three tactile sensors are mounted at the palm,
in the area between the thumb and the index and middle
fingers. The tactile sensors have a resolution of 4 × 7 taxel
(phalanges) and 4 × 6 taxel (palm). They use a resisitive
working principle to measure the pressure applied to the
sensor. Therefore an array of electrodes is covered with a
layer of conductive foam. When a pressure is applied to the
sensor the resistance between the electrodes decreases, which
is measured by an microcontroller. Further information can
be found in [20], [21], [22].

B. Data Collection

In order to provide sensor input for the training and the
validation of the classifier, we needed to treat two distinct
cases:

• Collect data for successful, stable grasps.
• Collect data for unstable grasps.

The second case also includes data for the cases where the
hand cannot close completely or not at all,due to obstacles,
and cases where the hand closes emptily, i.e. it does not



Fig. 4: ARMAR’s right hand. Tactile sensors are mounted
on the palm and the distal phalanges of the thumb, the index
and the middle finger.

experience contact to any object at all. Yet in all these
cases one gets sensor readings that have to be considered
for training and validating the classifier. We collected data
from the following two types of sensors:

• Tactile sensor data
• Joint angle data of the hand joints

Fig. 5: The basket with our test objects.

For data collection, we executed grasps on a set of household
items located in a box (see Fig. 5). The configuration of
the objects in the box was modified between the individual
test runs in order to allow the hand to reach a large variety
of different end configurations. We used the following data
collection procecure: First, we placed the box with the
objects in front of the robot. Then we moved ARMAR’s
right hand to a pre-grasp pose near the target object. Different
possible pre-grasp poses included the following:

• Grasps from the top where the hand would move
vertically down.

• Grasps from the top, but with tilted approach directions.
• Grasps from the side.
• Varying roll angles of the hand with respect to the

approach direction, for each of the three cases above.
After moving the hand to the pre-grasp pose, we started the
data recording which means we began to read and store the

tactile sensor data and joint angle data once during every
pass of ARMAR’s control loop. All data were labeled with a
time stamp. In the next step, we moved the hand towards the
object until the tactile sensors in the palm reported contact
with the object. Then we closed the hand and waited until the
pressure on the hand’s actuator stabilized and would not grow
anymore. The finger forces are set to the maximum to create
a strong tactile image on the sensors. Due to the compliant
characteristic of the hand, the hand adapts to the shape of
the object. In this context we point out that we considered
only three-fingered grasps, i.e. we only closed the thumb,
the index and the middle finger during grasping. We did not
close the ring and small finger, as they are not equipped
with tactile sensors and thus they would not contribute to
the tactile sensor input of the classifier. After closing the
hand, we stopped the recording of the sensor data. Finally, we
tried to lift the object by moving ARMAR’s hand up. Then,
we reported the result of the experiment, i.e. whether the
grasp was successful or not. We repeated the above procedure
until enough samples had been collected. We collected two
separate sets, D1 and D2. D1 contained 71 stable grasps
and 94 unstable grasps. D2 comprised of 82 stable grasps
and 76 unstable grasps. By collecting two separate sets with
different grasps, we can get an idea of the generalization
capability of the classifier which was tested in the validation
tests. Figures 6 and 7 show some successful grasps from the
validation tests. The left column shows the situation after
closing the hand. The right column shows the grasps after
lifting the respective object.

C. Experimental Results

We have divided the experiments into two parts. The first
part consists of synthetic tests, which presents the reliability
and accuracy of the classification of the grasp stability and
comparisons between different filter types. The second part
is validation test, using a learned stability model with the
real ARMAR-IIIb platform.

1) Synthetic tests: In the synthetic tests, we used both
datasets D1 and D2. For most experiments, confusion matrix
is presented, showing how the classifier performs in terms
of true positives (stable, predicted stable), false positives
(unstable, p. stab.), true negatives (unstable, p. unstab.) and
false negatives (stable, p. unstab.).

In Table I, the SVM was trained with data from corre-
sponding dataset, only the last sample from each observation
sequence was classified, to enable comparison to earlier
works. The reported results are averages from 10-fold cross
validation. The results show that the performance across
datasets is similar. These results can be compared with
reported results in [1], [2], showing that the ARMAR-IIIb
hardware is able to reach similar performance as the Schunk
Dextrous Hand (SDH) or the Barrett hand in this task.

Contrary to results in Table I, in Tables II, III and IV
the whole observation sequence was classified using the
methodology presented in Section III-B. In Table II, the mean
filter was used with window width of 25 and with threshold
of 0.61, Table III shows result with an exponential filter with



Fig. 6: Some example grasps. Left column: situation imme-
diately after closing the hand. Right column: After lifting the
object.

TABLE I: Confusion matrix for classification rates of grasps
when classifying only the last sample, for datasets D1 and
D2.

D1 P. Stab. P. Unstab. D2 P. Stab. P. Unstab.
Stable 0.79 0.21 Stable 0.72 0.28

Unstable 0.28 0.72 Unstable 0.26 0.74

α = 0.056 and threshold of 0.61. These parameter values
were searched for using grid search and produced the best
results for both datasets. Results in Table IV were obtained
without using a filter.

Overall, when using a filter with the classification, the
overall classification rate is similar to the last sample classifi-
cation, but classification rate of the unstable grasps is better.
This can be explained through the use of the filter which
filters out the effect of the last sample, thus, leading to a
better classification result. In the case where no filters are
used, in Table IV, the stable grasps are predicted well, but
this translates also to falsely predicting that unstable grasps
are stable. On average, the filter based classification is better
in predicting the stable and unstable grasps across the two
datasets.

One interesting possibility that comes with the method
described in Section III-B is that the grasp sequence can
be stopped when the classifier decides that a stable grasp

Fig. 7: Some example grasps. Left column: situation imme-
diately after closing the hand. Right column: After lifting the
object.

TABLE II: Confusion matrices for classification rates of
grasps using mean filter (w = 25, thr = 0.61).

D1 P. Stab. P. Unstab. D2 P. Stab. P. Unstab.
Stable 0.77 0.23 Stable 0.74 0.26

Unstable 0.24 0.76 Unstable 0.16 0.84

TABLE III: Confusion matrices for classification rates of
grasps using exponential filter (α = 0.056, thr = 0.61).

D1 P. Stab. P. Unstab. D2 P. Stab. P. Unstab.
Stable 0.79 0.21 Stable 0.73 0.27

Unstable 0.23 0.77 Unstable 0.16 0.84

TABLE IV: Confusion matrices for classification rates of
grasps without a filter.

D1 P. Stab. P. Unstab. D2 P. Stab. P. Unstab.
Stable 0.90 0.10 Stable 0.87 0.13

Unstable 0.46 0.54 Unstable 0.21 0.79



TABLE V: Confusion matrices for validation tests.

Mean filt. P. Stable P. Unstable
Stable 0.77 0.23

Unstable 0.39 0.61
Exp. filt. P. Stable P. Unstable

Stable 0.76 0.24
Unstable 0.38 0.62
No filter P. Stable P. Unstable
Stable 0.90 0.10

Unstable 0.46 0.54

has been achieved. Using a mean filter, the decision time
was 68.6 % of the whole grasp sequence on average, with a
exponential filter, the time was 66.9 % and without a filter
the time was 59.6 % For example, if a whole grasp sequence
is 1000 time steps long, the classification using a mean filter
can stop the grasp at time step 686 on average, if the grasp is
a stable grasp. Without a filter, the average time goes down
as expected but with a cost of overall classification rate as
seen in Table IV.

2) Validation tests: To mimic a real world usage scenario,
dataset D1 was used to train the SVM classifier. Then
using the trained classifier, dataset D2 was classified. Each
observation sequence in the dataset was classified with mean
and exponential filters and without filtering. The results are
show in Table V. Compared to results in Table I, the number
of false positives rises. This effect might be due to tactile
sensor hysteresis, i.e. the output from the sensors changes
between the collection of datasets which in turn means that
dataset D1 does not represent the data in D2 and leads to
worse results.

V. CONCLUSIONS

In this paper, we focused on learning grasp stability from
labeled data, similar to approaches in [1], [2]. We utilized a
well-known classifier, SVM, and trained it using grasp data
acquired from the sensors of the humanoid hand of ARMAR-
IIIb. We showed that we are able to reach similar results
with ARMAR-IIIb as previously reported on other types of
hardware, such as Schunk Dextrous Hand or Barrett hand.
We also extended the SVM based grasp stability classifier
with use of filters to whole grasp sequence instead of just
the end of the grasp sequence. This allows faster decisions
for stable grasps.

REFERENCES

[1] Y. Bekiroglu, J. Laaksonen, J. A. Jørgensen, V. Kyrki, and D. Kragic,
“Assessing grasp stability based on learning and haptic data,” Robotics,
IEEE Transactions on, vol. 27, no. 3, pp. 616 –629, 2011.

[2] H. Dang, J. Weisz, and P. K. Allen, “Blind grasping: Stable robotic
grasping using tactile feedback and hand kinematics,” in Robotics
and Automation (ICRA), 2011 IEEE International Conference on, may
2011, pp. 5917 –5922.

[3] T. Asfour, K. Regenstein, P. Azad, J. Schröder, N. Vahrenkamp, and
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1 Introduction

One of the central problems in capturing the environment by a robot is to
interpret the objects observed. This interpretation can serve as a starting
point to the potential activities. For example: can those objects be grasped,
moved and reordered? The interpretation should not stick a label to those
objects saying: this is a chair or that is a mug, but it should provide knowl-
edge enough to act in a proper way. A mug or a glass, even a bottle, can
be grasped in the same way, thus some common properties are really rele-
vant among those objects, but others, e.g. colors, texture, some details of
the shape can be ignored. Some parts, segments of the entire shape of the
objects, carry activity-related properties that need to be captured.

The shapes of an object as an entity can not be directly observed by
the known machine vision systems. Those systems can yield several differ-
ent local feature items and the task is to build an abstract shape out of
those features. Within that procedure we need to discover how those local
items can relate to each other, what is the three dimensional graph connect-
ing them, and recognize those items which can characterize the shape and
separate them from those which can relate to something else, e.g. texture.

In learning shapes we assume features which can be characterized by two
properties, a 3D position and an orientation, e.g. a surface segment, a patch,
etc. These properties can be translated relatively easily into the properties
of the potential activities. To collect this kind of features we need proper
vision systems which can provide them with sufficient accuracy. Here we
assume that these features are available for shape learning.
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1.0.1 Shape model

We assume that the shape can be described as a manifold in the three dimen-
sional space. This manifold, we might say surface, is an almost everywhere
smooth one allowing to model edges and corners with high curvature, but
otherwise it can be partitioned into relatively large connected smooth seg-
ments. This assumption expresses the need to eliminate irrelevant small
details. Another requirement we should satisfy relates to the potential com-
plexity of the shape, namely it can be a topologically higher order manifold
with holes, with a mixture of segments with positive and negative curvature,
and convex and concave parts.

To model a surface with complex structure and in the same time forcing a
certain high level of smoothness we apply an infinite dimensional parametric
representation exploiting the fact that a complex low dimensional manifold
can be approximated by a hyperplane in a sufficiently high dimensional
space.

The representation space we have chosen is an infinite dimensional Hilbert
space of the square integrable functions. Within this space we can apply the
probability density functions as features defined on the low dimensional 3D
space to be modeled. This mathematical framework allows us to synthesize
the probabilistic generative models and the robustness of the maximum mar-
gin based discriminative methods. Furthermore, the advantage of the kernel
methods in expressing nonlinear relations can be exploited as well. The dis-
crimination happens between the shape and the non-shape points, and the
generative, density function based features provide certain local confidence
measures on the shape approximation.

The shape modeling is considered as a machine learning procedure where
the shape is extracted from local vision features. The learning task is to force
a certain type of manifold to closely fit to the parameters, position and
orientation, of the visual feature items, and in the same time it has to be
as smooth, say simple, as possible which can be achieved via regularization
constraining the complexity of the manifold applied.

The outcome of the learning method is an infinite dimensional vector,
a combination of probability density functions. This kind of representation
admits direct comparison of different objects to express their similarities and
dissimilarities. This representation can be reused in other learning method
to discover common parts within a given group of object, e.g. by applying
Kernel Principal Component Analysis.

The derived shape models can be transformed by any affine transforma-
tion, e.g. translation or rotation, via acting on the parameters, expected
values and/or covariance matrices, of the density functions used in the ex-
pression of the vectors describing the models.

The robot activities, e.g. grasping, can be modeled in a similar frame-
work, thus both the shape models and the actions applied on those shapes
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as abstract vectors can be located in a common vector space. In this way
potential connections between shapes and actions can be predicted for a new
shape and for a new action. To do that the relationships between the novel
items and the known ones needs to computed in the common vector space.

2 Learning task

We are facing the following learning task; given a set of 3D objects charac-
terized by feature representation of different sources

• some visual features, e.g. collection of edges, texlets, surflings, see
details about these features in [4],

• grasping properties, e.g. grasp densities,

and based on these data sources we need to learn that how to predict the
grasp densities from the visual features. The inverse prediction could pro-
vide information to the generalization of the properties of an object to be
important in grasping, but in the first case it is not as central as predicting
the grasp densities.

To solve this learning task a two-phase model will be introduced; in the
first phase so called shape model is computed of a sample of visual features.
The parameters derived from the shape model is then used as feature rep-
resentation of the object to predict the grasp densities. In the first case the
shape model can be interpreted as a mixture of density functions, however
the optimization framework allows us to further generalize the model, see in
Section 5. The shape model can be applied on the grasp densities, since they
are given by entities similar to the surflings type visual features, i.e. they
are given by position and orientation. The two-phase model is summarized
by (1)
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(1)
Here we will focus on the surfling type visual features. These features

constitute a collection of approximate tangent plane segments of the surface
of the 3D objects. The centers and the normal vectors of these segments
can be exploited to reproduce the entire surface. In this way the first task
in the full learning procedure is to learn these surfaces. To this end we need
to create a model of these surfaces such that

• the parameter vectors to be derived of the surface of each object have
to live in the same space and in this way they can be compared, and
distances, similarity measures can be computed between them,

• the parameter space needs to be sufficiently reach to express the po-
tential complexity of the surfaces,

• since the surflings are only approximation of the real surface, therefore
the parameter space should allow to estimate the confidence of the
surface model.

To fulfill these requirements the representation space of the surfaces is
chosen as a linear vector space containing the probability densities functions.
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In this space a surface is expressed as a mixture of densities. The base
family of these densities can be chosen as multivariate Gaussians but any
other family which allows computationally feasible representation can be
considered.

Remark 1. In this model we are working with linear combination of prob-
ability densities that might produce negative probabilities, but this issue is
rather technical and will not influence the learning model itself.

After fitting the surflings based surface model to the objects we can
apply the derived surface representations to learn how these features relate
to the grasp densities. If in both cases, the surfaces and the grasp densities,
are expressed as probability mixture models then the relationships can be
revealed not only between the entire models but their parts as well. This
kind of analysis can compare the contribution of the elements of the bases
spanning the corresponding feature spaces since the elements of these bases,
e.g. Gaussian densities, are common among the spaces.

In what follows we assume that there is a preprocessing step of surflings
which can separate the surflings of an object from the surflings of the occa-
sional background, hence an object related collection of surflings expresses
the properties of an object and only that.

3 Shape model

The shape model of three dimensional objects is built upon the following
assumptions:

• The shape S of an object O can be expressed by a smooth manifold
M embedded into a Euclidean ambient space X . The dimension of
the ambient space is denoted by n.

• The manifold M is supposed to be closed and all points of the object
S fall inside, with respect to a given orientation of the manifold, or
on the manifold.

A smooth manifold can be characterized by an atlas, a collection of the pairs
{Uα, ϕα}, where {Uα}, called charts, is a set of open sets covering M, and
{ϕα} is a set of mappings such that for each α ϕα : Uα → Rn, i.e. they
map the open sets of the manifold into open sets of a Euclidean space, and
these maps and their inverses are differentiable. A surfling at a given point
x of the manifold M can be interpreted as a segment of the tangent plane
at x. A tangent plane is a local linearization of the manifold and it is built
upon the charts covering the point x. The definition and properties of the
tangent plane can be found for example in [3].
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The normal vector to the tangent space can be defined in the ambient
space X as the normal vector of the corresponding tangent plane in X . An-
other, a more general, way of that which eliminates the need of the ambient
space, by considering the normal vector as an element of the linear func-
tionals defined on the tangent plane at a given point of the manifold. The
orthogonality then can be expressed by setting the value of these functionals
to 0 on all vectors of the corresponding tangent vectors. The elements of
the set of these linear functionals are generally called as cotangent vectors.

4 Shape learning

There are given a sample set S of vector pairs {(xi,vi)}, i = 1, . . . ,m, where
for each i xi ∈ X ⊂ Rn, is a vector assigned to a point of the manifold
M in the ambient space X , and vi ∈ Rn is a vector, the normal vector of
the tangent space of M at xi in the ambient space X . We may refer to
the pairs (xi,vi) as surface elements as well. These surface elements are
fundamentally based on a sub-sample of charts covering the manifold M

Let φs : X → Hs be a feature representation of the elements of the
manifoldM in a Hilbert spaceHs. The inner product ofHs will be expressed
by the kernel function κ : Hs ×Hs → R. Here we allow to map all vectors
of the ambient space of the manifold into the feature space to avoid some
technical difficulties.

In the sequel we use the notations 〈 , 〉X and 〈 , 〉H to denote, and to
distinct, the inner products in spaces X and in Hs respectively. In some
cases the subscript is omitted that refers to the inner product in the feature
space Hs.

Suppose the manifold M can be well approximated by surface of Rn,
and this surface can be embedded as a hyperplane into the space Hs, thus
the implicit function

F (x) = 〈u,φs(x)〉H − 1 = 0 (2)

describes the surface, where the vector u ∈ Hs gives the parametrization,
and since it is as element of Hilbert space it can be used as identifier of a
shape entity.

If the parameter vector u is given then the manifold can be recovered
by inverting the hyperplane from the feature space back into the space X .

4.1 Including normal vectors

To exploit the information coded into normal vectors {vi} of the surface
elements we need to force that for every i the vector vi is orthogonal or
at least approximately orthogonal to the tangent plane of M at xi. If
the surface corresponding to the smooth manifold M is given in X by the

6



implicit function F (x) = 0 then the direction of the normal vector at any
x ∈ X is given by the gradient of F

∇xF =

(
∂F

∂x1
, . . . ,

∂F

∂xn

)
, (3)

where (x1, . . . , xn) the scalar components of the vector x. To force the
orthogonality between∇xF (x)|x=xi and vi we have several alternatives, here
three of them are enumerated those which lead to linear constraints.

• The following constraints imposes exact orthogonality on the function
F

∇xF |x=xi = βivi, i ∈ {1, . . . ,m} (4)

saying the vectors on left and the right hand sides have to be parallel.

• One can eliminate the the coefficients {βi} by another form

∇xF |x=xi ∧ vi = 0 i ∈ {1, . . . ,m}, (5)

where ∧ marks the exterior, sometimes called as wedge, product of
two vectors. Here we exploited the fact that the exterior product of
any two parallel vectors is equal to 0.

• The strict orthogonality constraints can be relaxed by suitable approx-
imations

〈∇xF |x=xi ,vi〉X ≥ D, i ∈ {1, . . . ,m}, (6)

where D is a positive lower bound of the inner products. Since the
inner product can attain its maximum value when the estimated nor-
mal vectors of the manifold are parallel to the given set of observed
normal vectors, therefore maximizing the lower bound forces the cor-
responding normal vectors to be closely and uniformly parallel. This
type of constraint fundamentally forces the directional derivatives of
F in the directions given by {vi} to be large, and the maximum can
be obtained when the vectors are parallel within the inner product.

4.2 Optimization problem

The assumption that the manifold covering an object is closed means that
the points of the object is within or on the surface of the volume for which the
manifold is the collection of the boundary points. This fact can be expressed
as one-class classification problem where the points of the object constituting
the class are separated from all other parts of the space containing the object,
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therefore the surface can be modeled by the following optimization problem:

min 1
2‖u‖

2
2 + Cξ1

′ξ + Cη1
′η

w.r.t. u ∈ Hs, ξ ∈ Rm, , η ∈ Rm,
s.t. 〈u,φs(xi)〉H ≥ 1− ξi, ## fitting the points

〈∇xF (x)|x=xi ,vi〉X ≥ E − ηi, ## fitting the normal vectors
ξi ≥ 0, ηi ≥ 0, i ∈ {1, . . . ,m},

(7)
where E > 0 is margin scaling parameter for trading between the fitting
of the surface points and the normal vectors. This formulation is short
symbolic summary of the manifold approximation. To the one-class classifi-
cation problem one can find introduction in [7] and applications for complex
structured learning problems [1], [10], [5] and [11]. An approach similar to
that which is presented here is published in [9] and [8]. In the [9] a one-class
classification approach is mentioned as well. The main differences between
that and our approach can be summarized in two points:

• The incorporation of the normal vectors into the surface approxima-
tion is carried out by a maximum margin based regression technique,
see further details in Section . This approach allows us to include
other characteristic properties of the surface, e.g. curvature, via ker-
nelization.

• The representation of the surface elements is built upon infinite di-
mensional functional features. This representation can express a prob-
abilistic model which can provide confidence estimation as well.

To transform (7) into a computable form the gradients∇xF (x)|x=xi need
to be unfolded. To this end we need to compute the derivative

∇xF (x) = Dx(F (x))′ = Dx(〈u,φs(x)〉)′
= Dx(φs(x))′u.

(8)

If we assume that the dimension of the feature space is finite then
Dx(φs(x)) is equal to the Jacobian matrix of the partial derivatives of the
vector valued function φs(x) with respect to the vector x. An approach to
handling the infinite case is described in Section 4.3.

The primal problem, (7), can be written as

min 1
2‖u‖

2
2 + Cξ1

′ξ + Cη1
′η

w.r.t. u ∈ Hs, ξ ∈ Rm, , η ∈ Rm,
s.t. 〈u,φs(xi)〉 ≥ 1− ξi, ## fitting the points

〈Dx(φs(x))′|x=xiu,vi〉X ≥ E − ηi, ## fitting the normal vectors
ξi ≥ 0, ηi ≥ 0, i ∈ {1, . . . ,m}.

(9)
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The solution to this problem can be derived from the Karush-Kuhn-
Tucker(KKT) conditions, see details in [2] and references therein. Let the
following Lagrangian coefficients be introduced for all i:

αi : 〈u,φs(xi)〉 ≥ 1− ξi,
βi : 〈Dx(φs(x))′|x=xiu,vi〉X ≥ E − ηi,
γi : ξi ≥ 0,
δi : ηi ≥ 0

(10)

Since the constraints are inequalities all Lagrangians have to be nonnegative.
The Lagrangian functional of (9) reads as

L(u, ξ,η,α,β) = 1
2 〈u,u〉+ Cξ1

′ξ + Cη1
′η

−
∑m

i=1 αi 〈u,φs(xi)〉+
∑m

i=1 αi −
∑m

i=1 αiξi
−
∑m

i=1 βi 〈Dx(φs(x))′|x=xiu,vi〉X + E
∑m

i=1 βi −
∑m

i=1 βiηi
−
∑m

i=1 γiξi −
∑m

i=1 δiηi
s.t. αi ≥ 0, βi ≥ 0, γi ≥ 0, δi ≥ 0 i = 1, . . . ,m.

(11)
The partial derivatives of the Lagrangian with respect to the primal variables
and the corresponding KKT conditions are given by

∂L(u, ξ,η,α,β,γ, δ)

∂u
= u−

∑m
i=1 αiφs(xi)−

∑m
i=1 βiDx(φs(x))′|x=xivi = 0,

∂L(u, ξ,η,α,β,γ, δ)

∂ξ
= Cξ1−α− γ = 0,

∂L(u, ξ,η,α,β,γ, δ)

∂η
= Cη1− β − δ = 0.

(12)
Thus we have

u =
∑m

i=1 αiφs(xi) +
∑m

i=1 βiDx(φs(x))′|x=xivi,
α ≤ Cξ1,
β ≤ Cη1,

(13)

where in the last two lines the nonnegativity of the components of γ and δ are
exploited. After replacing primal variables in the Lagrangian functional with
the expressions containing only the Lagrangians we have the dual problem
of (9) where the maximization is turned into minimization.

min
1

2

[
α
β

]′ kernel matrix︷ ︸︸ ︷[
Kα,α Kα,β

Kβ,α Kα,α

] [
α
β

]
−
[

1
E1

]′ [
α
β

]
w.r.t. α ∈ R+, β ∈ R+,
s.t. 0 ≤ α ≤ Cξ1,

0 ≤ β ≤ Cη1,

(14)
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The submatrices of the kernel matrix are obtained by

(Kα,α)ij = 〈φs(xi),φs(xj)〉 , i, j ∈ {1, . . . ,m},
(Kα,β)ij = 〈φs(xi), Dx(φs(x))′|x=xjvj〉 , i, j ∈ {1, . . . ,m},
(Kβ,α)ij = [Kα,β]ji, i, j ∈ {1, . . . ,m},
(Kβ,β)ij = 〈Dx(φs(x))′|x=xivi, Dx(φs(x))′|x=xjvj〉 , i, j ∈ {1, . . . ,m}.

(15)

4.3 Evaluation of the kernels

When we are going to represent the vectors of the ambient space X we
need to choose a feature space in which a complex surface of X can be
approximated with high fidelity by a hyperplane. A candidate space could
be the so called “functional feature” space where each feature vector is
represented by a function. These spaces are generally infinite dimensional,
thus very high flexibility can be guaranteed.

To realize an infinite dimensional feature space the following construction
is proposed. Let F : X × X × Θ → R be a real valued function equipped
with these properties:

1. F is a nonnegative function,

2. F is square integrable on its full domain,

3. For a fixed x ∈ X and θ ∈ Θ∫
X
F (t,x, θ)dt = 1. (16)

One can consider function F as a probability density function defined on
X and parametrized on the sets X and Θ. The parameters taken of X can
be interpreted as localization, e.g. mean, and the parameter θ as scale, e.g.
variance. After taking the second and third variables as parameters in F ,
we can define the following class of functions

F = {f |f : X → R, f(t) = F (t,x, θ), t ∈ X ,x ∈ X , θ ∈ Θ}. (17)

We might denote these functions for a parameter pair x and θ by f(.|x, θ).
Now the feature mapping is given by

φs : X → F , (18)

and defined via the formula

φs(x) = f(.|x, θ),∀x ∈ X , (19)

thus the elements of the original ambient space are used as localization of
the corresponding density functions, and the scale parameter, θ, is shared
among all these densities.
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We need to emphasize that the feature mapping is a function valued func-
tion.

The value of the function φ at t is denoted by φ(t|x), where for sake of
simplicity the parameter θ which is fixed for all t and x is omitted.

4.4 Representation by Gaussian densities

To compute the elements of the kernel matrix in (15) we need to assign
concrete representations to the points in the ambient space. Let the fea-
ture representation be chosen from the family of the multivariate Gaussian
probability density functions

φs(t|x) = f(t|x, θ) =
1

(2π)n/2 det(θ)1/2
e−

1
2
(t−x)′θ−1(t−x), (20)

where x serves as mean vector and θ as covariance matrix. To force the
parsimony of our model the covariance matrix is supposed to be diagonal,
and all diagonal elements are equal to σ2, therefore we have

φs(t|x) = f(t|x, θ) =
1

(2π)n/2σn
e−

1
2σ2
〈t−x,t−x〉X

=
1

(2π)n/2σn
e−

1
2σ2
‖t−x‖2

=
1

(2π)n/2σn
e−

∑n
r=1(tr−xr)

2

2σ2 .

(21)

The differential operator for general multivariate Gaussian case reads as

Dxφs(t|x) = DxF (t,x, θ) =
∂F (t,x, θ)

∂x

=

∂

(
1

(2π)n/2 det(θ)1/2
e−

1
2
(t−x)′θ−1(t−x)

)
∂x

=
1

(2π)n/2 det(θ)1/2
e−

1
2
(t−x)′θ−1(t−x) ⊗ θ−1(t− x)

= φs(t|x)⊗ θ−1(t− x),

(22)

and in case of the reduced diagonal case we have

Dxφs(t|x) =
1

σ2
φs(t|x)⊗ (t− x), (23)

where we need to be aware on the fact that φs(t|x) is a function of t as well.
Before the inner products are computed some notations and reformula-

tions are being introduced. For sake of simplicity the following abbreviation
is introduced

CG =
1

(2π)n/2σn
. (24)
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We are going to exploit the well known identity connecting the tensor
and inner products, namely

〈⊗nr=1ur,⊗nr=1vr〉 =
n∏
r=1

〈ur,vr〉 , (25)

further details can be found in Appendix A.
The xir denotes the rth component of the vector xi and similar notation

is used for the vectors vi as well.
The next simple assertion can eliminate plenty of technical details of the

kernel derivation.

Lemma 2. Assuming that the feature representation given in (21) then the
point wise product of any two feature vectors can be expressed as a product
of two functions

φs(t|xi)φs(t|xj) = g(‖xi,−xj‖2, σ)h(t, (xi + xj)/2, σ/2
1/2), (26)

such that the function g depends only on the distance ‖xi,−xj‖2 and scale
σ but not on t, and the function h is a multivariate Gaussian density func-
tion defined on the domain (t ∈)X with mean

xi,+xj
2 and with a diagonal

covariance matrix with the same diagonal elements being equal to σ2/2.

Proof. The proof is based on a straightforward reformulation of the point
wise product, namely

φs(t|xi)φs(t|xj) = C2
Ge
− ‖t−xi‖

2

2σ2 e−
‖t−xj‖

2

2σ2

= C2
Ge
− 2‖t−

xi+xj
2 )‖2+

‖xi−xj‖
2

2
2σ2

= C2
Ge
−
‖xi−xj‖

2

4σ2 e−
‖t−

xi+xj
2 )‖2

σ2

= C2
G

(2π)n/2σn

2n/2
e−
‖xi−xj‖

2

4σ2
2n/2

(2π)n/2σn
e
− ‖t−(

xi+xj
2 )‖2

2(2−1/2σ)2

=
1

(2π)n/2(21/2σ)n
e−
‖xi−xj‖

2

4σ2︸ ︷︷ ︸
g(‖xi,−xj‖2,σ)

2n/2

(2π)n/2σn
e
− ‖t−(

xi+xj
2 )‖2

2(2−1/2σ)2 ,︸ ︷︷ ︸
h(t,(xi,+xj)/2,σ/21/2)

(27)

where the last line shows the decomposition claimed.

From this statement we can conclude that
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Corollary 3. The inner product between any two feature vectors can be
computed by

〈φs(t|xi),φs(t|xj)〉 =
∫
X φs(t|xi)φs(t|xj)dt

= 1
(2π)n/2(21/2σ)n

e−
‖xi−xj‖

2

4σ2

∫
X

2n/2

(2π)n/2σn
e
− ‖t−(

xi+xj
2 )‖2

2(2−1/2σ)2 dt︸ ︷︷ ︸
=1

= 1
(2π)n/2(21/2σ)n

e
−
‖xi−xj‖

2

2(21/2σ)2 ,

(28)

which is a Gaussian kernel function with scale, or width, parameter 2(21/2σ)2

multiplied with the scalar 1
(2π)n/2(21/2σ)n

It is worth mentioning that the inner product in Corollary 3 can be inter-
preted as a multivariate Gaussian density function if one of the parameters,
xi and xj , is taken as a variable and the other as mean.

4.4.1 Computation of kernel elements

In the derivation of the dual problem we end up with four types of sub-
kernels, see in (15). Two of them are just transpose of each other, thus we
need to deal with three types only.

• Based on Corollary 3 we have in the first case

(Kα,α)ij = 〈φs(t|xi),φs(t|xj)〉 = 1
(2π)n/2(21/2σ)n

e
−
‖xi−xj‖

2

2(21/2σ)2 . (29)

• The cross kernels between the two types of constraints relating to the
positions and the surface normals can be computed by

(Kα,β)ij = 〈φs(t|xi), Dx(φs(t|x))′|x=xjvj〉
= 〈φs(t|xi),

1

σ2
[
φs(t|xj)⊗ (t− xj)

′]vj〉
=

1

σ2
〈φs(t|xi), 〈(t− xj),vj〉X φs(t|xj)〉

=
1

σ2
〈φs(t|xi), (〈t,vj〉X − 〈xj ,vj〉X)φs(t|xj)〉

=
1

σ2
(
〈φs(t|xi), 〈t,vj〉X φs(t|xj)〉 − 〈φs(t|xi), 〈xj ,vj〉X)φs(t|xj)〉

)
.

(30)
In computing this expression by parts we can exploit Corollary 3 again

〈φs(t|xi), 〈xj ,vj〉X φs(t|xj)〉 = 〈xj ,vj〉X
∫
X φs(t|xi)φs(t|xj)dt

= 〈xj ,vj〉X
1

(2π)n/2(21/2σ)n
e
−
‖xi−xj‖

2

2(21/2σ)2 ,

(31)

13



and

〈φs(t|xi), 〈t,vj〉X φs(t|xj)〉 =
∫
X 〈t,vj〉X φs(t|xi)φs(t|xj)dt

= 〈vj ,
∫
X tφs(t|xi)φs(t|xj)dt〉X .

(32)

After applying the decomposition of Lemma 2 note that the expression
in the integral can be interpreted as an expected value computation

〈vj ,
∫
X tφs(t|xi)φs(t|xj)dt〉X

= g(‖xi,−xj‖2, σ) 〈vj ,
∫
X th(t, (xi,+xj)/2, σ/2

1/2)dt〉
X

= g(‖xi,−xj‖2, σ) 〈vj , (xi,+xj)/2〉X

= 1
(2π)n/2(21/2σ)n

e
−
‖xi−xj‖

2

2(21/2σ)2 〈vj , xi+xj
2 〉

X
.

(33)

Then putting together the sub-expressions an element of the cross
kernel is given by

(Kα,β)ij = 1
σ2

1
(2π)n/2(21/2σ)n

e
−
‖xi−xj‖

2

2(21/2σ)2 〈vj , xi−xj2 〉
X
. (34)

• We have also the transpose of the previously computed sub-kernel.

(Kβ,α)ij = [Kα,β]ji = 1
σ2

1
(2π)n/2(21/2σ)n

e
−
‖xi−xj‖

2

2(21/2σ)2 〈vi, xj−xi2 〉
X
.

(35)

• The computation of kernel items relating to the normal vectors follows
a schema resembling to those mentioned above.

(Kβ,β)ij = 〈Dx(φs(t|x))′|x=xivi, Dx(φs(t|x))′|x=xjvj〉
=

1

σ4
〈〈(t− xi),vi〉X φs(t|xi), 〈(t− xj),vj〉X φs(t|xj)〉

=
1

σ4
〈〈(t− xi),vi〉X 〈(t− xj),vj〉X φs(t|xi),φs(t|xj)〉

=
1

σ4

[
〈〈t,vi〉X φs(t|xi), 〈t,vj〉X φs(t|xj)〉

+ 〈〈xi,vi〉X φs(t|xi), 〈xj ,vj〉X φs(t|xj)〉
− 〈〈t,vi〉X φs(t|xi), 〈xj ,vj〉X φs(t|xj)〉
− 〈〈xi,vi〉X φs(t|xi), 〈t,vj〉X φs(t|xj)〉

]
.

(36)

Except the first term we can apply almost the same unfolding steps
on the sub-expressions that have been used above thus we have

〈〈xi,vi〉X φs(t|xi), 〈xj ,vj〉X φs(t|xj)〉
= 〈xi,vi〉X 〈xj ,vj〉X 〈φs(t|xi),φs(t|xj)〉

= 〈xi,vi〉X 〈xj ,vj〉X
1

(2π)n/2(21/2σ)n
e
−
‖xi−xj‖

2

2(21/2σ)2 ,

(37)
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〈〈t,vi〉X φs(t|xi), 〈xj ,vj〉X φs(t|xj)〉
= 〈xj ,vj〉X 〈〈t,vi〉X φs(t|xi),φs(t|xj)〉

= 〈xj ,vj〉X 〈
xi+xj

2 ,vi〉X
1

(2π)n/2(21/2σ)n
e
−
‖xi−xj‖

2

2(21/2σ)2

(38)

and
〈〈xi,vi〉X φs(t|xi), 〈t,vj〉X φs(t|xj)〉

= 〈xi,vi〉X 〈φs(t|xi), 〈t,vj〉X φs(t|xj)〉

= 〈xi,vi〉X 〈
xi+xj

2 ,vj〉X
1

(2π)n/2(21/2σ)n
e
−
‖xi−xj‖

2

2(21/2σ)2 .

(39)

The first term requires a little bit more care, where we have

〈〈t,vi〉X φs(t|xi), 〈t,vj〉X φs(t|xj)〉
=
∫
X 〈t,vi〉X 〈t,vj〉X φs(t|xi)φs(t|xj)dt.

(40)

If we apply the decomposition of Lemma 2 again and the identity
relating to the inner product of tensor products, see (25), we receive
the following chain of equalities

〈〈t,vi〉X φs(t|xi), 〈t,vj〉X φs(t|xj)〉
= 〈(vi ⊗ vj),

∫
X (t⊗ t)φs(t|xi)φs(t|xj)dt〉Frob

= 〈(vi ⊗ vj),
∫
X (t⊗ t)g(‖xi,−xj‖2, σ)h(t, (xi,+xj)/2, σ/2

1/2)dt〉
Frob

= g(‖xi,−xj‖2, σ) 〈(vi ⊗ vj),
∫
X (t⊗ t)h(t, (xi,+xj)/2, σ/2

1/2)dt〉
Frob

.
(41)

Note the integral expression is equal to the second, non-centralized,
moment of the multivariate Gaussian variable with density function h.
Based on the identity

cov(t) = E(t⊗ t)− E(t)⊗ E(t) (42)

which displays that how the covariance can be expressed by the first
the second moments of vector valued random variables, thus we can
write

〈〈t,vi〉X φs(t|xi), 〈t,vj〉X φs(t|xj)〉
= g(‖xi,−xj‖2, σ) 〈(vi ⊗ vj), cov(t) + E(t)⊗ E(t)〉Frob
= g(‖xi,−xj‖2, σ) 〈(vi ⊗ vj),

σ2

2 In +
xi,+xj

2 ⊗ xi,+xj
2 〉

Frob
,

(43)

where In denotes the n-dimensional identity matrix. Now we can
reverse Identity 25

〈〈t,vi〉X φs(t|xi), 〈t,vj〉X φs(t|xj)〉
= g(‖xi,−xj‖2, σ)(σ

2

2 〈vi,vj〉X + 〈vi, xi,+xj
2 〉

X
〈vj , xi,+xj

2 〉

= (σ
2

2 〈vi,vj〉X + 〈vi, xi,+xj
2 〉

X
〈vj , xi,+xj

2 〉
X

) 1
(2π)n/2(21/2σ)n

e
−
‖xi−xj‖

2

2(21/2σ)2 .

(44)
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After combining the sub-expressions we arrive at

(Kβ,β)ij = 1
σ4

1
(2π)n/2(21/2σ)n

e−
‖xi−xj‖

2

4σ2(
〈xi,vi〉X 〈xj ,vj〉X − 〈xj ,vj〉X 〈

xi+xj
2 ,vi〉X − 〈xi,vi〉X 〈

xi+xj
2 ,vj〉X

+σ2

2 〈vi,vj〉X + 〈vi, xi,+xj
2 〉

X
〈vj , xi,+xj

2 〉
X

)
= 1

σ4
1

(2π)n/2(21/2σ)n
e
−
‖xi−xj‖

2

2(21/2σ)2 (σ
2

2 〈vi,vj〉X + 〈xj−xi2 ,vj〉X 〈
xi−xj

2 ,vi〉X).

(45)

5 General description of the learning model

The learning task that we are going to solve is the following. There is a set,
called sample, of pairs of output and input objects {(yi, xi) : yi ∈ Y, xi ∈
X , i = 1, . . . ,m, } independently and identically chosen out of an unknown
multivariate distribution P(Y,X). Here we would like to emphasize the in-
put and output objects can be arbitrary, e.g. they may be graphs, matrices,
functions, probability distributions etc. To these objects there are given
two functions φ : X → Hφ and ψ : Y → Hψ mapping the input and output
objects respectively into linear vector spaces, called in the sequel, feature
space in case of the inputs and label space when the outputs are considered.

The objective is to find a linear function acting on the feature space

f(φ(x)) = Wφ(x) + b (46)

and produces a prediction of every input object in the label space and in
this way could implicitly give back a corresponding output object. Formally
we have

y = ψ−1(ψ(y)) = ψ−1(f(φ(x))). (47)

The learning procedure can be summarized by the following table:

Embedding
φ :

X︷ ︸︸ ︷
input space →

Hφ︷ ︸︸ ︷
feature space,

ψ :

Y︷ ︸︸ ︷
output space →

Hψ︷ ︸︸ ︷
label space,

Similarity W̃ = (W,b)⇒ ψ(y) ∼ W̃φ(x),
transformation

Inversion
ψ−1 :

Hψ︷ ︸︸ ︷
label space →

Y︷ ︸︸ ︷
output space .

In the framework of the Support Vector Machine the outputs represent
two classes and the labels are chosen out of the set yi ∈ {−1,+1}. The
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aim is to find a separating hyperplane, via its normal vector, such that
the distance between the elements of the two classes, called margin, is the
possible largest measured in the direction of this normal vector. This base
schema can be extended allowing some sample items to fall closer to the
separating hyperplane than the margin. This is demonstrated on Figure 1

Margin

Figure 1: The schema of the Support Vector Machine. There are two classes
that we are going to separate by using a hyperplane maximizing the distance
between the classes and minimizing the potential errors

This learning scenario can be formulated as an optimization problem
similar to this:

min 1
2 w′w + C1′ξ

w.r.t. w : Hφ → R , normal vector

b ∈ R , bias
ξ ∈ Rm, error vector

s.t. yi(w
′φ(xi) + b) ≥ 1− ξi

ξ ≥ 0, i = 1, . . . ,m.

5.1 Reinterpretation of the normal vector w

The normal vector w formally behaves as a linear transformation acting on
the feature vectors which makes rise the idea to extend the capability of the
original schema. This reinterpretation can be characterized briefly in the
following way
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SVM ExtendedView
• w is the normal vector

of the separating hyper-
plane.

• W is a linear opera-
tor projecting the fea-
ture space into the label
space.

• yi ∈ {−1,+1} binary
outputs.

• The labels are equal to
the binary objects.

• yi ∈ Y arbitrary outputs

• ψ(yi) ∈ Hψ are the la-
bels, the embedded out-
puts in a linear vector
space

If we apply a one-dimensional normalized label space invoking binary la-
bels {−1,+1} in the general framework one can restore the original scenario
of the SVM, and the normal vector is a projection into the one dimensional
label space.

The extended form of the SVM tries to find an affine transformation
which maps the configuration of the input items to gain the highest similarity
between the image of the inputs and the outputs.

In summarizing the learning task we end up in the following optimization
problem presented parallel with the original primal form of the SVM to
emphasize the similarities and dissimilarities between the original and the
extended form.

Primal problems for maximum margin learning
Binary class learning Vector label learning
Support Vector Machine(SVM) Maximum Margin Regression(MMR)

min 1
2 w′w︸ ︷︷ ︸
‖w‖22

+C1′ξ 1
2 tr(W′W)︸ ︷︷ ︸

‖W‖2F

+C1′ξ

w.r.t. w : Hφ → R, normal vec. W : Hφ → Hψ, linear operator,

b ∈ R, bias, b ∈ Hψ, translation(bias),

ξ ∈ Rm, error vector, ξ ∈ Rm, error vector,

s.t. yi(w
′φ(xi) + b) ≥ 1− ξi, 〈ψ(yi),Wφ(xi) + b〉Hψ ≥ 1− ξi,

ξ ≥ 0, i = 1, . . . ,m, ξ ≥ 0, i = 1, . . . ,m.

In the extended formulation we exploit the fact the Frobenius norm and
the Frobenius inner product correspond to the linear vector space of matrices
with the dimension being equal to the number of elements of the matrices,
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hence it gives an isomorphism between the space spanned by the normal
vector of the hyperplane occurring in the SVM and the space spanned by
the linear transformations.

One can recognize that if no bias term included in the MMR problem
then we have a completely symmetric relationship between the label and
the feature space via the representations of the input and the output items,
namely

〈ψ(yi),Wφ(xi)〉Hψ = 〈W∗ψ(yi),φ(xi)〉Hφ = 〈φ(xi),W
∗ψ(yi)〉Hφ .

Thus, in predicting the input items as the image of the corresponding linear
function defined on the outputs the adjoint of W, W∗, need to be used.
This adjoint is equal to the transpose of the matrix representation of W
when both the label space and the feature space are finite.

5.2 Dual problem

The dual problem of the MMR presented in the right column of (5.1) is
given by

min
∑m

i,j=1 αiαj

κφij︷ ︸︸ ︷
〈φ(xi),φ(xj)〉

κψij︷ ︸︸ ︷
〈ψ(yi),ψ(yj))〉−

∑m
i=1 αi,

w.r.t. αi ∈ R,
s.t.

∑m
i=1(ψ(yi))tαi = 0, t = 1, . . . ,dim(Hψ),

0 ≤ αi ≤ C, i = 1, . . . ,m.

κφij kernel items corresponding to the feature vectors,

κψij kernel items corresponding to the label vectors

The objective function contains no direct reference to the implicit rep-
resentation either the label or the feature vectors, only the corresponding
kernel elements appear. The symmetry of the objective function is clearly
recognizable showing that the underlying problem without bias is completely
reversible.

The constraints

m∑
i=1

(ψ(yi))tαi = 0, t = 1, . . . ,dim(Hψ) (48)

appear in the dual only if the bias term is included into the primal model.
The explicit occurrences of the label vectors can be transformed into

implicit ones by exploiting that the feasibility domain covered by the con-
straints:

m∑
i=1

(ψ(yi))tαi = 0, t = 1, . . . ,dim(Hψ),
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coincides with a domain

m∑
i=1

κψijαi = 0, j = 1, . . . ,m

referring only to inner products of the label vectors.

5.3 Simple solution for the unbiased case

The unbiased case of has the form

min
1

2
α′Kα′ + q′α

w.r.t. α,
s.t. 0 ≤ α ≤ C,

(49)

where K = Kψ(y) •Kφ(x) is the point wise product of the output and input
kernel, and q = 1 a vector with every component equals to 1

The next simple, coordinate descent, approach seems to be over sim-
plified but when the sample size is really large, > 10000 then the inherent
simplicity becomes superior when the matrix Q is dense. We would like
to emphasize another approach, e.g. interior point methods, could perform
better in smaller problems, but the difference not much significant.

Step 1 Let α0 = 0 a feasible initial solution, εα an error tolerance, and
k = 0 a counter.

Step 2 k = k + 1, αk = αk−1, and set the component index of αk, i to 0.

Step 3 Solve the unconditional problem:

minτ (αk + eiτ)′K(αk + eiτ) + q′(αk + eiτ), (50)

where ei is a vector with 0 components except the component i which
is equal to 1. Problem (50) has a closed form optimal solution τ∗ which
reads as

τ∗ =
−qi − e′iKα

k

Qii
=
−qi −Kiα

k

Qii
, (51)

where Ki denotes the ith row of Q.

Step 4 Set the ith component of αk to αki = αki + τ .

Step 5 If αki > C then αki = C, and if αki < 0 then αki = 0; which operations
is the projection of an infeasible solution back into(onto) the domain
of the box constraint.

Step 6 i = i+ 1, go to Step 3!

Step 7 If ‖αk −αk−1‖22 ≤ εα then Stop, otherwise go to Step 2!
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The reasonable advantage of this coordinate descent method is that: it
requires only a row of the matrix K in an iteration step, furthermore the
division by Qii is a numerically well controllable operation, since Qii has a
constant value during the procedure and if the kernels are normalized it has
value 1 eliminating the need of any division in the computation process.

5.4 Prediction

After solving the dual problem with the help of the optimum dual variables
we can write up the optimal linear operator

W =
∑m

i=1 αiψ(yi)φ(xi)
′.

Comparing this expression with the corresponding formula which gives the
optimal solution to the SVM, i.e.

w =

m∑
i=1

αiyiφ(xi),

we can see that the new part includes the vectors representing the output
items which in the SVM were only scalar values but we could say in the
new interpretation they are one-dimensional vectors. With the expression
of the linear operator W at hand the prediction to a new input item x can
be written up by

ψ(y) = Wφ(x)

=
∑m

i=1 αiψ(yi) 〈φ(xi),φ(x)〉︸ ︷︷ ︸
κφ(xi,x)

.

It involves only the input kernel κφ and provides the implicit representation
of the prediction ψ(y) to the corresponding output y.

If only the implicit image of the output is given we need to invert the
function ψ to gain the y. This inversion problem is sometimes called as pre-
image problem as well. Unfortunately there is no general procedure to do
that efficiently in case of complex and non-invertible mapping. We mention
here a schema that can be applied when the set of all possible outputs is finite
with a reasonable small cardinality. The meaning of the “reasonable small”
cardinality depends on the given problem, e.g. how expensive to compute
the inner product between the output items in the label space where they
are represented.
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At the conditions mentioned above we can follow this scenario

y ∈ Ỹ ⇐ Set of the possible outputs,
y∗ = arg max

y∈Ỹ ψ(y)′Wφ(x),

= arg max
y∈Ỹ

∑m
i=1 αi

κψ(y,yi)︷ ︸︸ ︷
〈ψ(y),ψ(yi)〉

κφ(xi,x)︷ ︸︸ ︷
〈φ(xi)

′φ(x)〉,

y ∈ Ỹ = {y1, . . . ,yK}, K �∞.

The main advantage of this approach is that it requires only the inner prod-
ucts in the label space, in turn, it is independent from the representation
of the output items and can be applied in any complex structural learning
problem, e.g. on graphs. A suitable candidate for Ỹ could be the training
set.

5.5 One-class SVM interpretation

Let us reformulate the inner-product occurring in the constraints whilst the
bias term being dropped

〈ψ(yi),Wφ(xi)〉Hψ = tr
(
ψ(yi)

′Wφ(xi)
)

= tr
(
Wφ(xi)ψ(yi)

′) = 〈W,
[
ψ(yi)⊗ φ(xi)

]
〉Hψ⊗Hφ

thus, we have a one-class SVM problem living in the tensor product space
of the feature and the label spaces, where ⊗ denotes the tensor product.

One can extend the range of applications by using not only tensor prod-
uct but more general relationship between the output and input items, i.e.,

〈W,Ψ(yi,xi)〉HW , Ψ : Hψ ×Hφ → HW .

If dim(HW ) > dim(Hψ) + dim(Hφ) then the support of the distribution of
one-class sample items is restricted on a manifold in HW . Further details of
the extensions beyond the tensor product can be found in [12].

6 Preliminary results on shape estimation

On Figures 2 and 3 some preliminary results are presented. The first figure
shows the sample of points of a torus, an object with hole, and the predicted
surface learned of those sample points. The number of smaple point is equal
to 200. To these point the corresponding normal vectors are computed and
used in the prediction. The points are randomly and uniformly subsampled
from the parametric representions of the torus.

The second figure demonstrates a complex object which consists of parts
with significantly different geometries. The sample points of the shape is
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Sample points The predicted surface
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Figure 2: Learning the shape of a torus, an object with hole, of randomly,
uniformly sampled surface points

provided by the Microsoft Kinect device. To those point the normal vectors
are estimated by the Point Cloud Library, an open source package, see details
[6]. Within Figure 3 on the first image the points and the Support Vectors
are shown, the second image additionally presents the confidence region
around the point cloud.
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A Use of operators in the derivation of the kernels

When the kernels are derived we intensively exploiting the following rules
connecting vectors of different vector spaces.

From two vectors of two distinct Hilbert spaces, uα ∈ Hα and uβ ∈ Hβ
we can create an operator

[uα ⊗ uβ] : Hβ → Hα, (52)

which action on a vector vβ of Hβ is defined by

[uα ⊗ uβ]vβ
def
= 〈uβ, vβ〉uα. (53)

The conjugate of this operator is defined and denoted by

[uα ⊗ uβ]∗
def
= [uβ ⊗ uα], (54)
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Kinect points + Original+Support Vectors
Support Vectors Estimation on confidence

Figure 3: Learning the surface of an armchair from a Kinect provided point
set. On the left the sample points(blue) and the Support Vectors(red) are
presented, on the right to those points on the left the confidence region is
added(green)

which maps Hα into Hβ.
The product of two operators

[uα ⊗ uβ][vβ ⊗ vγ ] : Hγ → Hα, (55)

where
[uα ⊗ uβ] : Hβ → Hα
[vβ ⊗ vγ ] : Hγ → Hβ

(56)

is defined as

[uα ⊗ uβ][vβ ⊗ vγ ]wγ
def
= 〈uβ, vβ〉 〈vγ , wγ〉uα (57)
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Abstract. We present a novel way of performing pose estimation of
known objects in 2D images. We follow a probabilistic approach for
modeling objects and representing the observations. These object mod-
els are suited to various types of observable visual features, and are
demonstrated here with edge segments. Even imperfect models, learned
from single stereo views of objects, can be used to infer the maximum-
likelihood pose of the object in a novel scene, using a Metropolis-Hastings
MCMC algorithm, given a single, calibrated 2D view of the scene. The
probabilistic approach does not require explicit model-to-scene corre-
spondences, allowing the system to handle objects without individually-
identifiable features. We demonstrate the suitability of these object mod-
els to pose estimation in 2D images through qualitative and quantitative
evaluations, as we show that the pose of textureless objects can be re-
covered in scenes with clutter and occlusion.

1 Introduction

Estimating the 3D pose of a known object in a scene has many applications in
different domains, such as robotic interaction and grasping [1,6,13], augmented
reality [7,9,19] and the tracking of objects [11]. The observations of such a scene
can sometimes be provided as a 3D reconstruction of the scene [4], e.g. through
stereo vision [5]. However, in many scenarios, stereo reconstructions are unavail-
able or unreliable, due to resource limitations or to imaging conditions such as
a lack of scene texture.

This paper addresses the use of a single, monocular image as the source of
scene observations. Some methods in this context were proposed to make use of
the appearance of the object as a whole [6,13,15]. These so-called appearance-
based methods however suffer from the need of a large number of training views.
The state-of-the-art methods in the domain rather rely on matching characteris-
tic, local features between the observations of the scene and a stored, 3D model
of the object [1,7,17]. This approach, although efficient with textured objects or
otherwise matchable features, would fail when considering non-textured objects,
or visual features that cannot be as precisely located as the texture patches or
geometric features used in the classical methods. Hsiao et al.’s method [8] seeks
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to better handle multiple possible correspondences between the model and scene
features, but still requires a large fraction of exact matches to work efficiently.

The proposed method follows a similar approach to the aforementioned refer-
ences for modeling the object as a 3D set of observable features, but it is different
in the sense that few assumptions are made about the type of features used, and
in that it does not rely on establishing specific matches between features of the
model and features of the observed scene. For this purpose, we represent both
the object model and the 2D observations of a scene as probabilistic distributions
of visual features. The model is built from 3D observations that can be provided
by any external, independent system. One of the main interests of the proposed
method, in addition to the genericity of the underlying principles, is its ability
to effectively handle non-textured objects. The general method itself does not
make particular assumptions about the type of features used, except that they
must have a given, although not necessarily exact, position in space, and they
must be potentially observable in a 2D view of the object.

In order to demonstrate the capabilities of the proposed method at handling
textureless objects, we apply it to the use of local edge segments as observations.
Practically, such features cannot be precisely and reliably observed in 2D images,
e.g., due the ambiguity arising from multiple close edges, 3D geometry such as
rounded edges, or depth discontinuities that change with the point of view.
Such problems motivate the probabilistic approach used to represent the scene
observations.

The 3D observations used to build the model are provided by an external
system that performs stereopsis on a single pair of images. Such a model can
thus be quickly and automatically learned, at the expense of imprecision and
imperfections in the model. This again motivates the use of a probabilistic dis-
tribution of features as the object model. Other model-based methods proposed
in the literature have used rigid learned [7,17] or preprogrammed (CAD) models
[9,19], but such CAD models are, in general, not available. Our approach for
object modeling is more similar to the work of Detry et al. [5], where an object
is modeled as a set of parts, themselves defined as probability distribution of
smaller visual features. The main contribution of this paper is the extension of
those principles to the use of 2D observations.

The representations of the object model and of the scene observations that
we just introduced can then be used to perform pose estimation in monocular
images, using an inference mechanism. Algorithms such as belief propagation
[5] and Metropolis-Hastings MCMC methods [4] were proposed in the literature
to solve similar problems, and we adapt the algorithm presented in that last
reference to our specific type of model and observations.

Finally, our method provides a rigorous framework for integrating evidence
from multiple views, yielding increased accuracy with only a linear increase of
computation time with respect to the number of views. Using several views of
a scene is implicitly accomplished when using a stereo pair of images, together
with a method operating on 3D observations [5]. However, our approach does not
seek matches between the two images, as stereopsis does, and can thus handle
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arbitrarily wide baselines. Other methods for handling multiple views with a 2D
method have been proposed [2,14]. In these methods however, the underlying
process relies on the matching of characteristic features.

2 Object Model

Our object model is an extension of earlier work [4]. For completeness and clarity,
the upcoming sections include essential background following this source.

2.1 General form

We use a 3D model that allows us to represent a probabilistic distribution of
3D features that compose the model. These features must be characterized by a
localization in the 3D space, and can further be characterized by other observable
characteristics, such as an orientation or an appearance descriptor. The model
of an object is built using a set

M =
{(
λ`, α`

)}
`∈[1,n] (1)

of features, where λ` ∈ R3 represents the location of a feature, and α` ∈ A is
a (possibly zero-element) vector of its other characteristics from a predefined
appearance space A. When learning an object model, the set of features M is
decomposed into q distinct subsets Mi, with i ∈ [1, q], which correspond ideally
to the different parts of the object. This step allows the pose estimation algorithm
presented below to give equal importance to each of the parts, therefore avoiding
distinctive but small parts being overwhelmed by larger sections of the object.
The procedure used to identify such parts is detailed in [4].

Our method relies on a continuous probability distribution of 3D features
to represent the model. Such a distribution can be built using Kernel Density
Estimation (KDE), directly using the features of Mi as supporting particles
[5,18]. To each feature of Mi is assigned a kernel function, the normalized sum of
which yields a probability density function ψi(x) defined on R3×A. The kernels
assigned to the features of Mi will depend on the type of these features.

Reusing the distribution of 3D features of part i, ψi, and considering an
intrinsically calibrated camera, we now define ψ′i,w as the 2D projection onto
the image plane of that distribution set into pose w, with w ∈ SE(3), the group
of 3D poses. Such a distribution is defined on the 2D appearance space, which
corresponds to R2 × B, where B is the projected equivalent of A. For example,
if A is the space of 3D orientations, B would be the space of 2D orientations
observable on an image. Similarly, if A is a projection-independent appearance
space of 3D features, B would be the simple appearance space of direct 2D
observations of such features.

Practically, ψ′i,w can be obtained by setting the features of Mi into pose w,
and projecting them onto the image plane (Fig. 1c). The resulting 2D features
∈ R2×B can, similarly to the 3D points, be used as particles to support a KDE
on that space, using an equivalent projection of the kernels used in 3D.
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2.2 Use of edge segments

This paper presents the particular application of the object model presented
above to the use of local edge segments as visual features. Those features basically
correspond to 3D oriented points, which are characterized, in addition to their
localization in 3D, by an orientation along a line in 3D. Therefore, reusing the
notations introduced above, the space A, on which the elements α` are defined,
corresponds to the half 2-sphere S2

+, i.e. half of the space of 3D unit vectors. The
kernels used to compose a 3D probability distribution ψi can then be decomposed
into a position and an orientation part [5,18]. The first is chosen to be a Gaussian
trivariate isotropic distribution, and the latter a von Mises-Fisher distribution
on S2

+. The bandwidth of the position kernel is then set to a fraction of the
size of the object, whereas the bandwidth of the orientation kernel is set to a
constant. The 2D equivalent of those distributions are obtained using classical
projection equations. Fig. 2 depicts the correspondence between the 2D and 3D
forms of a particle corresponding to an edge segment and its associated kernel.

The visual features used in our implementation are provided by the external
Early Cognitive Vision (ECV) system of Krüger et al. [12,16]. This system ex-
tracts, from a given image, oriented edge features in 2D, but can also process a
stereo pair of images to give 3D oriented edge features we use to build object
models (Fig. 1b).

3 Scene observations

The observations we can make of a scene are modeled as a probability distribu-
tion in a similar way to the model. The observations are given as a set

O =
{(
δ`, β`

)}
`∈[1,m]

(2)

of features, where δ` ∈ R2 is the position of the feature on the image plane, and
β` ∈ B are its observable characteristics. These characteristics must obviously
be a projected equivalent to those composing the object model. Here again, the
features contained in O can directly be used as particles to support a continuous
probability density, using KDE.

In the particular case of edge segments, the observations correspond to 2D
oriented points (Fig. 1e). They are thus defined on R2 × B with B = [0, π[.
As mentioned before, the uncertainty on the position and orientation of visual
features like edge segments can arise from different sources, and no particular
assumptions can thus be made on the shape of their probability distribution. The
kernels used here are thus simple bivariate isotropic Gaussians for the position
part, and a mixture of two antipodal von Mises distributions for the orientation
part. The sum of those kernels, associated with each point of O, then yields a
continuous probability density function φ(x) defined on R2 × [0, π[ (Fig. 1f).
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Fig. 1: Proposed method applied to edge segments (orientation of segments not
represented). (a) Stereo images used to build object model; (b) 3D edge seg-
ments that compose the model; (c) probabilistic model (ψi) in pose w, spheres
representing the position kernel (their size is set to one standard deviation), and
its simulated projection in 2D (ψ′i,w; blue and red represent resp. lowest and
highest probability densities); (d) image of a scene; (e) 2D edge segments used
as observations; (f) probabilistic representation of observations (φ).

Fig. 2: Correspondence of 3D edge segment and associated kernel, with their 2D
projection on image plane. Orange boundaries represent one standard deviation.

(a) (b) (c) (d)

Fig. 3: Results of pose estimation; model features reprojected on input image. (a)
Good result (close to ground truth); (b) good result; (c) same frame as (b) with
incorrect result, orientation error of about 80◦, even though the reprojection
matches observations slightly better than (b); (d) incorrect result, insufficient
observations extracted from pan bottom, and orientation error of about 180◦.
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4 Pose estimation

The object and observation models presented above allow us to estimate the
pose of a known object in a cluttered scene. This process relies on the idea that
the 2D, projected probability distribution of the 3D model defined above can be
used as a “template” over the observations, so that one can easily measure the
likelihood of a given pose.

Let us consider a known object, for which we have a model composed of q
parts Mi (i ∈ [1, q]), which in turn define ψi and ψ′i,w. On the other hand,
we have a scene, defined by a set of observations O, leading to a probabilistic
representation φ of that scene. We model the pose of the object in the scene with
a random variable W ∈ SE(3). The distribution of object poses in the scene is
then given by

p(w) ∝
q∏

i=1

mi(w) , (3)

with mi(w) being the cross-correlation of the scene observations φ(x) with the
projection ψ′i,w of the ith part of the model transformed into pose w, that is,

mi(w) =

∫
R2×B

ψ′i,w(x)φ(x) dx . (4)

Computing the maximum-likelihood object pose arg maxw p(w), although an-
alytically intractable, can be approximated using Monte Carlo methods. We
extend the method proposed in [4], which computes the pose via simulated an-
nealing on a Markov chain. The chain is defined with a mixture of local- and
global-proposal Metropolis Hastings transition kernels. Simulated annealing does
not guarantee convergence to the global maximum of p(w), and we thus run sev-
eral chains in parallel, and eventually select the best estimate. In practice, a
strong prior is usually available concerning the distance between the camera and
the object, e.g., as information on the scale at which the object can appear in
an image. The global transition kernel can benefit from this prior to favor more
likely proposals, and therefore drive the inference process more quickly towards
the global optimum.

As mentioned above, the proposed method naturally extends to observations
from v multiple views. We define mi,j(w) similarly to Eq. 4 but relative to specific
views j, j = 1, . . . , v. Accounting for observations from all available views, Eq. 3
then becomes

p(w) ∝
v∏

j=1

q∏
i=1

mi,j(w) , (5)

which is handled by the inference process similarly to the single-view case.

5 Evaluation

This sections presents the applicability of the proposed method for estimating
the pose of objects on two publicly available datasets [3,10].
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5.1 Experimental setup

In this work, each model is built from one manually segmented stereo view of
the object (such as Fig. 1a). The models used here are typically composed of
between 1 and 4 parts, containing around 300 to 500 observations in total. Pose
estimation is performed on single 1280× 960 images taken with an intrinsically
calibrated camera. The number of parallel inference processes (see Section 4) is
set to 16. On a typical 8-core desktop computer, the pose estimation process on a
single view typically takes about 20 to 30 seconds. Also, as proposed in Section 4
and detailed below, a crude estimate of the distance between the camera and
the object is given as an input to the system.

The ECV observations we use (see Section 2.2) can be characterized with an
appearance descriptor composed of the two colors found on the sides of the edge.
This appearance information does not enter into the inference procedure. How-
ever, in the following experiments we use it to discard those scene observations
whose colors do not match any of the model features. This step, although not
mandatory, helps the pose estimation process to converge more quickly to the
globally best result by limiting the number of local optima.

5.2 Rotating object

We first evaluated our method on a sequence showing a plastic pan undergoing
a rotation of 360◦ in the gripper of a robotic arm [10]. The ground truth motion
of the object in the 36 frames of the sequence is thus known. The estimate of the
distance to the object, given as input to the system, is the same for the whole
sequence, and is a rough estimate of the distance between the gripper and the
camera (about 700 mm). Let us note that, for some images of the sequence, this
estimate is actually quite different from the exact object-camera distance, since
the object is not rotating exactly around its center.

This publicly available dataset is composed of stereo images, and we used
the frame corresponding to a rotation of 50◦ to learn the model, as it gives a
good overall view of the object. Four types of experiments were then performed
(Fig. 4). First, the pose of the object was estimated in each frame of the sequence,
using one single view. One can observe that correct pose estimates can mostly
be made close to the viewpoint used for learning the model (Fig. 4). A number
of results have an orientation error of almost 180◦, which correspond to a special
case (Fig. 3d) that can be explained by the flat and almost symmetrical object
we consider. Indeed, if very few observations are extracted from the bottom
of the pan, only the handle and the top rim of the object can be matched to
the image. Another large number of incorrect pose estimates have orientation
errors of 70–110◦; most of them correspond to ambiguities inherent to a 2D
projection, as illustrated on Fig. 3b–c. Similarly, most of the translation errors
occur along the camera-object axis, as an inherent limitation of 2D observations.
The percentage of correct pose estimates, defined by orientation and translation
errors of less than 10◦ and 30 mm resp., and evaluated over the whole sequence,
is only 20%. Second, the same experiment is performed using two views. Some



8 Damien Teney and Justus Piater

of the ambiguities can then be resolved, and this percentage rises to 60%. This
result can be compared to the evaluation of Detry et al. [5] on a similar sequence,
which achieved a score of only 40–50%. We stress that the latter method relied
on 3D observations computed from stereo, whereas our method uses one or more
2D images directly, and is not limited to short-baseline stereo pairs.

Finally, we used our framework to track the pose of the object over the
whole sequence, using one and two views, respectively. The pose is initialized
with ground truth information for the first frame, and is then tracked from one
frame to the next, using the same process as outlined in Section 4, but without
the use of global proposals in the chain, and thus limiting the inference process
to a local search. These experiments yield very good results (see Fig. 4), the
remaining error being mostly due to the limitations of the model, learned from
a single view of the object.
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Fig. 4: Results of the“rotating object” sequence. For pose estimation, one marker
represents one run of the algorithm (the same number of runs are executed for
each frame). For pose tracking, the lines represent means over multiple runs.

5.3 Cluttered scenes

We evaluated the robustness of our method to clutter and occlusions by com-
puting the pose of various objects in several cluttered scenes [3], using a single
input image. The estimate of the distance to the objects, used as input, is the
same for all scenes and objects, and roughly corresponds to the distance between
the camera and the table on which the objects are placed (about 370 mm). Here
again, this is an only crude estimate, as the actual distance to the objects varies
from 200 to 600 mm.

Several of these scenes are presented in Fig. 5, with object models superim-
posed in the estimated pose. Sometimes, insufficient observations are extracted
from the image, and the pose cannot be recovered (e.g. second row, last image).
However, the reprojection error achieved by our algorithm is clearly low in most
cases; the models generally appear in close-to-correct poses. A perfect match be-
tween the reprojected model and the observations is not always possible, which
is a limitation of the sparse observations and object models we use. Small differ-
ences in the reprojection on the image plane may then correspond to large errors
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in the actual 3D pose recovered. Most of these errors can be greatly reduced by
using additional views of the scene, which is easily done with our method.

Fig. 5: Results of pose estimation (using a single view), with model features
reprojected onto the input image. Most remaining errors are a limitation of the
simple object models used, each learned from a single stereo pair.

6 Conclusions

We presented a generic method for 3D pose estimation of objects in 2D images,
using a probabilistic scheme for representing object models and observations.
This allows the method to handle various types of observations, including fea-
tures that cannot be matched individually; here we use local edge segments. Us-
ing these principles, we showed how to use Metropolis-Hastings MCMC to infer
the maximum-likelihood pose of a known object in a novel scene, using a sin-
gle 2D view of that scene. The probabilistic approach makes the pose estimation
process possible without establishing explicit model-to-scene correspondences, as
opposed to existing state-of-the-art methods. Together with the use of edge seg-
ments as observations, the method allows us to effectively handle non-textured
objects. Further, the method extends to the use of multiple views, providing a
rigorous framework for integrating evidence from multiple viewpoints of a scene,
yielding increased accuracy with only a linear increase of computation time with
respect to the number of views. We validated the proposed approach on two
publicly-available datasets. One dataset allowed quantitative evaluation; the re-
sult of an experiment was compared to the results of an existing method, and
showed an advantage in performance for our method. The pose estimation pro-
cess was also evaluated with success on scenes with clutter and occlusion. Future
work will extend the current implementation to the use of other visual features,
thereby extending the types of objects that can be handled.
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