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Contributing Partners: JSI, KIT, UGOE

Contractual Date of Delivery to the EC: 31-01-2013
Actual Date of Delivery to the EC: 31-01-2013



Contents

1 Summary 3

1.1 General Objective of WP2.2: Motor Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Summary of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Description of Results 5

2.1 Discovering New Motor Primitives in a Database of Robot Movements . . . . . . . . . . . 5

2.2 Planning Object Receiving Motions with Human Motion Database . . . . . . . . . . . . . 6

2.3 New Formulation for Encoding of Periodic Movements and their Transients . . . . . . . . 6

2.4 Modulation of Motor Primitives for Bimanual Tasks and Interaction with the Environment 6

2.5 Tightly-Coupled Agent Interaction Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2



Chapter 1

Summary

1.1 General Objective of WP2.2: Motor Actions

From the proposal : WP2.2 is primarily concerned with how to learn and obtain complex action sequences
and how to organize and structure the acquired data to 1) generate advanced motor behaviours, e.g.
by blending and sequencing of behaviours in the available data sets, and 2) interact with higher-level
cognitive processes that mainly use discrete representations, thus providing the bridge for planning to
access representations at the sensorimotor level and vice versa.

The proposed methods like imitation learning, reinforcement learning and other exploratory approaches,
which have been shown to be successful at the acquisition of motor knowledge, will be considered for
implementation.

1.2 Summary of the Results

Deliverable D2.2.1 describes our results on structuring of human (or robot) trajectories in an action
database. It also deals with representation, generation and adaptation of movement primitives. There
are five papers and manuscripts in preparation attached to it.

• The focus of the first paper is on how to search a hierarchical database of example movements to
discover new action sequences and generalize them [DU13], [2]. New action sequences are discovered
based on higher-level goals specified by a user. New movements are encoded and generalized using
dynamic movement primitives [5, 13].

• In the second paper we address the problem of generating cooperative movements [YRA13], which
is based on simultaneously storing the trajectories of two cooperating agents in a database. At exe-
cution time the movements of a robot are generated by first recognizing the motion of a human who
collaborates with a robot. The successful recognition of a human motion invokes the corresponding
motion from the database, which is executed by the robot.

• While it is possible to directly use raw trajectory data stored in the database of example movements
for the generation of the desired robot movements, it is often preferable to compute a more compact
representation of the generated movements for on-line execution with the robot and also for learning.
In the Xperience project we use dynamic systems to generate compact motor representations for
learning and execution. In this deliverable we present our work on combining discrete and periodic
movements in a single dynamic system [ERD+12].

• We also analyse tightly coupled dual agent systems where agents learn to cooperate and systems
where an agent comes into contact with the environment. In this context we address the problem of
adaptation of robot movements for robot-environment interaction and for bimanual tasks [GNv+13].
The convergence of the proposed adaptation process has been proven in the context of iterative
learning control paradigm [1]. In dual agent systems each agent has its own path plan defined
by a DMP. In a coupled system the agents have to equilibrate with respect to each other. We
have shown analytically that in a linear-spring-coupled DMP-based system agents equilibrate into
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a shared fixed point representing the two new trajectories [KBA+13]. By means of simulation we
show that learning can be employed to create a system, where both agents in the end “help each
other”. In a real robot example we show how a robot equilibrates to cooperate with a human.

All tasks described in WP2.2 are (partially) addressed in this deliverable. The works of Section 2.1
and 2.2 deal with the structuring of motor knowledge in action graphs (Task 2.2.2). The works of
Section 2.3, 2.4, and 2.5 address the problem of motor representations and motor learning with dynamic
systems (Task 2.2.1). The work described in Section 2.4 uses explorative learning to generate interactive
behaviors (Task 2.2.3). Finally, in Section 2.2 the same representation is used for the classification of
human actions and for the generation of robot movements, thus addressing Task 2.2.4.
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Chapter 2

Description of Results

2.1 Discovering New Motor Primitives in a Database of Robot
Movements

We developed a new approach for discovering motor primitives in a hierarchical database of example
trajectories. The example trajectories are obtained either by kinesthetic guiding as shown in Fig. 2.1
or by human demonstration. The acquired trajectories are clustered and organized in a binary tree-like
structure, from which transition graphs at different levels of granularity are constructed. By searching the
transition graphs and exploiting the interdependencies between the movements encoded in the graphs and
the hierarchical structure of the database, parts of new movements can be discovered. From these partial
paths complete new movements are constructed using optimized interpolation. The jerk of transitions is
minimized in a nonlinear optimization process. This way new sets of movements can be generated, thereby
reducing the amount of example trajectories that need to be demonstrated by a human teacher. By
combining the results of the search and optimized interpolation with statistical generalization techniques,
a complete representation of new, not directly demonstrated movement primitives can be computed.

The evaluation of the approach described above showed that it is possible to discover new movement
primitives in a database of example movements. Unlike many other approaches in imitation learning,
we assume that the training database consists of different types of movements. We combine them by
exploiting the interconnections between them. The implemented search process generates new movements
that are not part of the training database. Unlike previous approaches that utilized transition graphs in
robotics, we do not assume a direct connection between the desired start and end point in the transition

Figure 2.1: Our experimental setup consists of two Kuka LWR arms and a stereo camera. The sequence
of images shows the acquisition of example movements by kinesthetic guiding, which is possible because
both arms are compliant.
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graph. If the connection does not exist at the specified level, we take advantage of a hierarchical database
representation and look for parts of the desired path at higher levels of granularity. We combine these
parts through optimized interpolation that minimizes the jerk. As a result we obtain smooth, human-
like transitions in the newly generated trajectories. In our experiment, we constructed six new series
of trajectories from a database consisting of six smaller series. This way we expanded 30 demonstrated
reaching movements to 180 new reaching movements, each of them retaining the shape of movement and
precision needed for the task. These new movements were then used as input for statistical generalization,
which allowed us to synthesize movements from any starting object position. With the proposed approach
we reduced the burden of demonstrating many trajectories while preserving the needed precision, shape
and smoothness of movement.

More details can be found in the attached paper [DU13].

2.2 Planning Object Receiving Motions with Human Motion
Database

We developed a method for planning motions of a humanoid robot that receives an object from a human,
with focus on a natural object passing scenario where the human initiates the passing motion by moving
an object towards the robot, which continuously adapts its motion to the observed human motion in real
time. In this scenario, the robot not only has to recognize and adapt to the human action but also has
to plan its motion quickly so that the human does not have to wait holding an object. We solve these
issues by using a human motion database [14] obtained from two persons performing the object passing
task. The rationale behind this approach is that human performance of such a simple task is repeatable,
and therefore the receiver (robot) motion can be planned by looking up the passer motion in a database.
We demonstrate in simulation that the robot can start extending the arm at an appropriate timing and
take hand configurations suitable for the object being passed. We also perform hardware experiments of
object handing from a human to a robot.

2.3 New Formulation for Encoding of Periodic Movements and
their Transients

Present formulations of periodic dynamic movement primitives (DMPs) do not encode the transient be-
havior required to start the rhythmic motion, although these transient movements are an important part
of the rhythmic movements (i.e. when walking, there is always a first step that is very different from the
subsequent ones). An ad-hoc procedure is then necessary to get the robot into the periodic motion. In
this contribution we present a novel representation for rhythmic Dynamic Movement Primitives (DMPs)
that encodes both the rhythmic motion and its transient behaviors. As with previously proposed DMPs,
we use a dynamical system approach where an asymptotically stable limit cycle represents the periodic
pattern. Transients are then represented as trajectories converging towards the limit cycle, different tra-
jectories representing varying transients from different initial conditions. Our approach thus constitutes
a generalization of previously proposed rhythmic DMPs. Experiments conducted on the humanoid robot
ARMAR-III demonstrate the applicability of the approach for movement generation.

2.4 Modulation of Motor Primitives for Bimanual Tasks and
Interaction with the Environment

Movements that take place in contact with the environment or with another agent cannot be learned in
advance from human demonstration or kinesthetic guidance. Instead of exploring a database of available
movements, the previously learned movements need to be adapted on-line to account for contacts affecting
the motion as they occur during the task execution. The framework of dynamic movement primitives
[5, 4] allows the generation of discrete and periodic trajectories, which can be modulated in various
aspects. In the attached paper [GNv+13] we propose and evaluate a modulation approach which extends
the framework to allow interaction with objects and the environment. It is a variant of iterative learning
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Figure 2.2: Adaptation of colliding movement (left) and synchronization of the left arm movement with
the right arm movement (right).

control method, which is based on the notion that a performance of a system that executes the same
task multiple times can be improved by learning from previous executions [1]. The developed algorithm
enables the coupling of independently executed robotic trajectories and thus simplifies the performance
of bimanual and cooperative tasks. In a few iterations the algorithm learns the necessary coupling term
to modify the trajectory in accordance to the desired position or external force. In the attached paper
we show that both the coupling and the learning algorithms are numerically stable.

One of the advantages of the proposed algorithm is that it builds an internal environment model. Once
the appropriate behavior has been learned, it can act also without sensors, e. g. without a force-torque
sensor. On the other hand, sensory feedback assures that it will gradually adapt to new situations as
they occur and improve the performance of the task after a few task executions. The strengths of the
algorithm, which fits in the scope of the iterative learning control theory, are shown in bimanual and
two-agent obstacle avoidance tasks, where no higher-level cognitive reasoning or planning is required.
Two KUKA LWR arms and the ARMAR-III humanoid robot (see Fig. 2.2) were used to verify the
effectiveness of the approach.

2.5 Tightly-Coupled Agent Interaction Learning

Novel trajectory generation methods such as Dynamic Movement Primitives (DMPs, [5]) or Gaussian
Mixture Models (GMMs, [6, 7]) can generalize over different start and end points of the movement
trajectory and they can efficiently emulate different trajectory shapes also allowing to combine them in
a dynamic way [9, 8]. Such methods also allow an on-line alteration of the trajectory, if need be. For
example, it is clearly useful to alter the trajectory of an agent as soon as an obstacle (a path disturbance)
is sensed. Such problems have been addressed by using sensory feedback and applied in a variety of
different applications. So far DMPs and GMMs have mainly been used for uncoupled agent systems. In
this study, we analyse tightly coupled dual agent systems where each agent has its own path plan defined
by a DMP. In a coupled system the problem exists that both agents might not cooperate. This leads to
the situations that agents will first have to equilibrate with respect to each other. Only on top of this
any sensor influence – for example for obstacle avoidance – and/or learning can take place. As shown
here analytically both agents will indeed equilibrate into a shared fixed point representing the two new
trajectories. This leads to the situation that sensor reactions and learning can operate in a stable way
also in the dual agent system. Specifically, we show that learning can be employed to create a system,
where both agents in the end “help each other”. Probably one interesting aspect of this approach is that,
due to the intrinsic attractor properties of DMPs, these systems do not need any conventional active
control-components (impedance control, servoing, etc.), while still performing remarkably well.

To describe the movement trajectory of an agent we use the method for generating movement sequences
proposed in [8] (for more details see [KBA+13]) which is a modification of the original dynamic movement
primitives (DMPs, [5]). Here we use modified DMPs since they have faster convergence at the end-point
compared to the original DMP formulation and allow smooth joining of movement sequences with non-
zero velocities at the joining point [8]. We model the two agent system as two point particles coupled by
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Figure 2.3: Results from interaction learning obtained with a real robot. A) Signal development from
six trials (separated by dashed lines). Trial T0 is a control case - path-persistence behavior (no learning).
A1) Displacement signal D; A2) predictive force signal F ; A3) weight ρ; A4) output signal uI . Learning
rate was µ = 0.04. B) Trajectories for control case (T0), learning process (T1-T3) and post-learning (T4,
T5). Dashed and solid lines represent planned and actual paths, respectively.

a spring. Here we treat agents with equal mass. Each agent is subject to a primary force generated by a
dynamic movement primitive, which can be viewed as the control signal. We denote the i-th coordinate
(i=1,2,3 correspond to X, Y and Z-coordinates, respectively) of the j-th particle (j=1,2 correspond to
agent P and Q, respectively) as yi,j and the corresponding velocities as zi,j . Assuming the particles have
mass m Newton’s equation of motion is

mżi,j = FS
i,j + FD

i,j , (2.1)

where FS
i,j are the forces acting due to the spring coupling and FD

i,j the forces from the DMP. The spring
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forces can be written as

FS
i,1 = −k

(
yi,1 −

(
yi,2 + d

yi,1 − yi,2√∑
l(yl,1 − yl,2)2

))
= −FS

i,2. (2.2)

Here d denotes the spring length when relaxed and k is the spring constant. As explained above, the
position of the agent is defined by a DMP and we denote its force FD

i,j by

FD
i,j = m (α (β (ri,j − yi,j) − zi,j) + fi,j + uA + uI), (2.3)

where uA and uI additional terms for obstacle avoidance and interaction learning, respectively. For more
details please see [KBA+13]. Also we have for the accelerations and velocities:

żi,j =
1

m
(FS

i,j + FD
i,j), (2.4)

ẏi,j = zi,j . (2.5)

Obstacle avoidance is implemented in the conventional way (potential field approach, [10, 3, 11]) and is
used to create realistic situations for interaction learning. In the interaction learning scenario, as explained
above, we have two agents which are physically coupled via the linear spring. Initially the agents are
going to follow their planned path, so in case the agents have different paths or the path gets changed
due to obstacle avoidance forces between agents will increase due to the coupling. The goal is to learn to
interact in a way that the forces between agents are minimized. For example, if agent P is going to avoid
the obstacle, then agent Q has to learn interacting and helping agent P by moving to the same direction.
For learning we make use of the physical fact that the position signal follows the acceleration-dependent
signal. Hence force (acceleration-dependent) is predictive for a displacement (position-dependent) that
will arise later. We can use the displacement signal to learn a predictive reaction in response to the
(earlier occurring) force signal. Thus, for learning the sensor signal D (displacement) is paired with the
sensor signal F (force) [12]. Learning stops as soon as D = 0, i.e., as soon as the displacement sensor is
not triggered any more and the predictive response has fully taken over (see [KBA+13] for more details).

We present results from interaction learning with obstacle avoidance obtained on a KUKA light-weight
robot arm, where we let a human and a robot interact carrying a tray with bottles. The goal is to avoid
the red bar (left) not hitting it with the tray when moving along a curved trajectory (see Fig. 2.3 B,
T0). The robot has to learn to move in the same direction by reacting to the force sensor and help the
human avoiding the obstacle. Signals and resulting trajectories are shown in Fig. 2.3. Note that here
the learning was applied only for Y-coordinate. In this case learning stopped and weights stabilized after
three learning trials (T1-T3, see also supplementary video). Similar experiments can be performed with
the KUKA arm also in more dimensions but the behavior does not changes in any significant way.

In summary, in this study we stressed the importance of combining sensory information with dynamic
movement primitives and learning in a dual tightly-coupled agent system where the behavior and coop-
eration of agents is purely based on low level sensory information without any advanced planning. We
believe that the here arising attractive properties, like fast adaptation, mutual equilibration, and coop-
erative interaction, can be very helpful for designing reactive, DMP-based motor control for cooperative
tasks. It should also be easier to introduce planning as well as other (higher) cognitive traits into such
systems as their sensory-reactions and low-level learning makes them already “well-behaved” from the
beginning.
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