
Project Acronym: Xperience
Project Type: IP
Project Title: Robots Bootstrapped through Learning from Experience
Contract Number: 270273
Starting Date: 01-01-2011
Ending Date: 31-12-2015

XXPERIENCEPERIENCE..ORGORG

Deliverable Number: D2.3.1
Deliverable Title: Affordances and Categories (I): Report or scientific publication

on exploration-based learning object affordances by means of
semantic sensorimotor categories

Type (Internal, Restricted, Public): PU
Authors: D. Kraft, N. Krüger, S. Szedmak, J. Piater, F. Wörgötter, A.

Ude, M. Steedman, T. Asfour
Contributing Partners: SDU, UIBK, UEDIN, KIT, UGOE, JSI

Contractual Date of Delivery to the EC: 31-01-2012
Actual Date of Delivery to the EC: 06-02-2012

Contents

1 Executive Summary 3

2 Content of the Deliverable 4

2.1 Object Action Complexes and Structural Bootstrapping 4

2.1.1 Object Action Complexes . 4

2.1.2 Structural Bootstrapping . 5

2.2 Learning object affordances by means of semantic sensory–motor categories 6

2.3 Semantic visual scene representations and probabilistic action representations 8

2.3.1 Early Cognitive Vision (ECV) system . 8

2.3.2 Learning Probabilistic Manipulation Functions . 8

2.3.3 Learning in ECVxPMF . 9

2.4 Learning in ECV: Learning of interactions of entities based on statistical inference 10

2.5 Learning of PMFs . 11

2.5.1 Data-efficient approximation of PMFs with kernel methods 11

2.5.2 Probabilistic dexterous grasp function computed by dynamic simulation 12

2.5.3 PiH with flexible objects . 13

2.6 Learning in ECV x PMF . 14

2.6.1 Meta Learning: Learning kernels by statistics . 14

2.6.2 Learning grasping/manipulation affordances . 14

2.6.3 ECV feature to grasp associations . 15

2.7 Learning Action Representations from Change Data . 15

3 Conclusion 17

3.1 Links to other Workpackages . 17

2

Chapter 1

Executive Summary

This deliverable deals with the work in WP 2.3 in year 1. After giving a brief outline of the term ’Object
Action Complexes’ (OACs), we discuss the relation of OACs and ’structural bootstrapping’. We define
a number of concrete OACs which deliver the material for structural bootstrapping and describe some
learning tasks with associated learning spaces in the sensorimotor and symbolic domain.

In section 2.1, we briefly present the concept of Object Action Complexes (OACs) which is the frame-
work in which structural bootstrapping is taking place. OACs formalize adaptable sensorimotor schema
grounded in real world experience. These then provide the data for structural bootstrapping processes
as an outside-in process.

In section 2.2, we present concrete OACs that lead to the learning of object affordances. These cover

• explorative grasping with dexterous hands triggered by a deep hierarchical vision system,

• pushing behaviours in the context of object exploration and

• pushing in the context of learning by demonstration.

These OACs have been implemented on platforms at SDU, UGOE and JSI and are partly demonstrated
in D5.2.1.

In section 2.3, we discuss the cross space (ECVxPMF) of an Early Cognitive Vision (ECV) representation
and probabilistic manipulation functions (PMFs) as a basis for learning of sensory motor categories.
This space covers a functional abstraction of the human visual system in terms of a deep hierarchy and
a probabilistic action representation. In section 2.4 – 2.6, we give a number of examples of learning
problems in the ECV space, in the space of PMFs and in the cross space ECVxPMF. The aim is to
discover relevant substructures in the visual and motor domain as well as its cross space which can then
be exploitet in inside-out processes to predict possible action affordances in novel contexts.

In the first year of Xperience we made first steps exploring these spaces by

• applying the concept of probabilistic manipulation functions to dexterous grasping,

• exploring the transition of grasping affordances across different contexts,

• applying the concept of probabilistic manipulation functions in the context of peg-in-hole actions,

• learning optimal kernels for generalization,

• investigating statistically feature grasp associations in still rather simple cases.

In section 2.7 we present work on learning action representations from change data.

To this deliverable 6 accepted papers are attached, 2 of the attached papers are in revision and 3 papers
are in preparation for submission.

3

Chapter 2

Content of the Deliverable

In section 2.1, we briefly present the concept of Object Action Complexes and relate it to structural
bootstrapping. In section 2.2, we present some concrete OACs and in section 2.3, we discuss the cross
space (ECVxPMF) of an Early Cognitive Vision (ECV) representation and probabilistic manipulation
functions (PMFs) as a basis for learning of sensory motor categories. In section 2.4 – 2.6 a number of
examples of learning problems in the ECV space, in the space of PMFs and in the cross space ECVxPMF
are given. Finally, in section 2.7 we present work on learning action representations from change data.

2.1 Object Action Complexes and Structural Bootstrapping

In this section, we outline two basic concepts relevant for Xperience. In section 2.1.1, we introduce the
concept of Object Action Complexes (OACs) which has mainly been derived in the context of the PACO-
PLUS project. In section 2.1.2 we then explain how OACs and structural bootstrapping relate to each
other.

Attached is the paper [KGP+11] in which we give a formal definition of OACs. We put OACs in the
context of structural bootstrapping in the attached paper [KPB+11]. In the attached paper [GKKed], we
give a general review on the development of tool–use competences of infants as a basis for the modeling
of structural bootstrapping processes. Text passages in the main part of this section are partly taken
from these three attached papers.

2.1.1 Object Action Complexes

OACs formalize sensory-motor schemas [19, 5] and by that generate the required data for generalization.
An OAC is a dynamic entity that gathers together the perceptions and associated actions involved in
the performance of a habitual behaviour which is described in detail in the attached paper [KGP+11].
The schema represents knowledge generalised from all the experiences of the behaviour generated. It
also includes knowledge about the context in which the behaviour was performed as well as expectations
about the effects. During cognitive development, OACs are refined and combined.

An OAC’s definition is split into three parts, (1) a symbolic description consisting of a prediction function
defined over an attribute space, together with a measure of the reliability of the OAC, and (2) an execution
specification that defines how the OAC is executed by the embodied system and generates experience in
terms of ‘experiments’ and (3) a specification of how the learning associated with the OAC is realised
based on the ‘experiments’ generated by the executed OACs. More formally (see also Fig. 2.1):

Definition 2.1.1. An Object-Action Complex (OAC) is a triple

(id, T,M) (2.1)

where:

• id is a unique identifier for an execution specification,

4

Xperience 270273 PU

Figure 2.1: Graphical representation of an OAC and the OAC learning problems. This shows how the
actual state wsa (corresponding to sa in the model) resulting from the execution of the control program
CP diverges from the state sp predicted by the OAC’s prediction function T . This divergence drives the
learning (i.e. refinement) of the OAC. For further explanation see text.

• T : S → S is a prediction function defined on an attribute space S encoding the system’s beliefs as
to how the world (and the robot) will change if the control is executed, and

• M is a statistical measure representing the success of the OAC within a window over the past.

An execution function execute can map an OAC id to an ‘experiment’ which is defined the following
way:

Definition 2.1.2. Given an attribute space S and an OAC with identifier id defined on S, an experi-
ment is a triple

(so, sp, sa) (2.2)

where:

• so ∈ S, captures the state of world before execution

• sp ∈ S such that OAC id predicts that state sp will result from its execution in so, i.e., sp = Tid(so),
and

• sa ∈ S such that sa is observed as a result of actually executing OAC id in state so.

Thus, an experiment is an empirical event by which OACs will be grounded in sensory experience.

As an empirical grounded event, such experiments can be used to update OACs in cycles of execution
and learning based on evaluations of their success. Note that sometimes an experiment is actually not
used directly for learning but stored in some short term memory (see, e.g., [3]) until resources for learning
are available (e.g., during ‘sleeping phases’).

The definition of OACs as capturing both symbolic and control knowledge about actions highlights a
number of learning problems (addressing different aspects of the OAC as indicated in figure 2.1) that
must be addressed for OACs to be effective (for details, see [KGP+11]). We note that while each of
these learning problems can be addressed by recognising the differences between predicted states and
those states actually achieved, they may still require different learning algorithms (e.g., Bayesian, neural
network-like, parametric, non-parametric, etc.). It is up to the OAC designer to choose an appropriate
learning mechanism.

2.1.2 Structural Bootstrapping

Cognitive development proceeds at two different levels of abstraction. Fig. 2.2 shows two such parallel
tracks of development. On the bottom is the sensorimotor track which shows the development of sen-
sorimotor schemas or OACs, which are observable in infant behaviour. Each node in the lower track
corresponds to one OAC. A directed edge travels from each ancestor node to its descendents; for example

5

Xperience 270273 PU

N
u

m
b

e
r

o
f
b

e
h

a
v
io

u
rs

Age (spanning approx. 2 years)

C
O

N
C

R
E

T
E

p
e

rc
e

p
ti
o

n
-a

c
ti
o

n
 t
ra

c
k

A
B

S
T

R
A

C
T

re
p

re
s
e

n
ta

ti
o

n
 t
ra

c
k

sensorimotor schemas developing

representations developing

Figure 2.2: Conceptual diagram, overviewing infant developments on both a low level sensorimotor track
and a higher level representational track; for explanation see text.

the OAC for pulling a string descends from a basic grasping OAC (a number of examples are outlined
in [GKKed]). Some OACs have more than one ancestor. The top of Fig. 2.2 is the abstract track which
shows the parallel development of the underlying world knowledge. Nodes in the upper track correspond
to (for example) fragments of object knowledge which are common to a number of OACs, and fragments of
spatial relationships; these are gradually linked up as development progresses (to the right), to eventually
form a more comprehensive world knowledge.

Early fragments of object and spatial knowledge are likely to be very context specific, and are strongly
associated with the OACs they have been abstracted from. It is only after a long developmental process
(moving to the right in Fig. 2.2) that these fragments become more objective, and this developmental
process must involve some sort of “representational redescription” [4].

For the lower track we see a developmental process in which a small set of innately defined OACs lead
to a large variety of OACs through branching and specialisation. During this developmental process, the
effects of the OAC become increasingly predictable and can then be used more and more purposefully by
the cognitive agent for the planning of behaviour. In parallel to (and triggered by) the development of
individual OACs, more generic world knowledge is built up; as illustrated in the upper track of Fig. 2.2.
This is done through the abstraction of empirical data gained during the execution of the OACs.

There is a parallel development and interaction of observable behaviours and the increasing abstract
world knowledge which is based on the experiments generated by the OACs. Structural bootstrapping
addresses the process indicated by the red arrows (see figure 2.2) in which generated abstracted world
knowledge effects the behavioral track by means of establishing new OACs or modulating existing OACs:
More specifically, the dashed red arrows in Figure 2.2 illustrate bidirectional links between the abstract
and sensorimotor tracks. To avoid clutter only six links are shown, but in reality all representational
fragments will be linked to the OACs. In one direction (outside-in) representations are linked to the
OAC they have been generalised from (and hence can immediately link to actions which can manipulate
the represented object or spatial relation). In the other direction (inside-out), more advanced OACs
make use of the newly formed representations, for example in their description of the context in which a
behaviour may be performed, or its effects, or the control policy followed during execution of the schema.
These feedback processes are at the core of structural bootstrapping since they allow to apply abstracted
concepts generated in the outside-in process as an inside-out process facilitating cognitive behaviour based
on predictions derived from internal concepts.

2.2 Learning object affordances by means of semantic sensory–
motor categories

In the context of task 2.3.1, we introduce OACs in which exploration is triggered by initially predefined
behaviours ([20]) and two OACs in the context of learning by demonstration ([ADTW11], [USSM12]).
In [20] we provide an extended grasping reflex (as already introduced in D2.1.1) in the context of the
Early Cognitive Vision system [17]. The attached paper [USSM12] describes a pushing OAC in the

6

Xperience 270273 PU

Figure 2.3: Humanoid robot performing the pushing to built up object representations

context of exploration while the attached paper [ADTW11] describes pushing in the context of learning
by demonstration.

Explorative Learning by Pushing: Manipulation abilities of embodied agents enable them to learn
object representations and their affordances by active exploration. In the first year of the project, we
studied how a humanoid robot can exploit skills such as pushing to acquire new object knowledge (see
figure 2.3). Our premise was that if object manipulability is taken into account, it is much easier to define
the concept of an object than if only visual characteristics are used. We realized a system that uses a
reflex pushing behaviour to detect and learn about objects that afford pushing (where ”object affords
pushing” is defined as ”object moves when the robot attempts to push it”).

The pushing behavior was learned by coaching, more specifically by kinesthetic guiding. For this purpose,
the robot arm was guided through a number of configurations in space. Besides the demonstrated robot
arm configurations, we also stored the associated 3-D Cartesian space positions as estimated by the robot’s
active vision. This knowledge is sufficient to generate pushing movements using statistical generalization
and discrete dynamic systems. 3-D information extracted from the scene is used to generate initial
hypotheses about existence of the objects. These hypotheses are used to trigger reflex pushes and the
resulting image motion is used to either confirm or reject object hypotheses. We have shown in real-world
experiments that in this way we can fully explore previously unknown objects and train state of the art
classifiers that can be used for recognition. This work is described in the attached paper [USSM12].

Pushing in the context of learning by demonstration: This OAC deals with execution of a pushing
action by means of Semantic Event Chains (SECs). SECs are generic schemes for manipulations and
they basically encode object-action relations in spatiotemporal domain for further semantic analyses (e.g.
classification). Earlier we have shown that SECs can be used for both classifying actions and categorizing
objects considering their roles in actions [2]. Therefore, SECs are an important step in the context of
Object-Action Complexes (OACs). In this deliverable we aim at explaining how a SEC can be enriched
with motion information and how a (dual-object) pushing action can be executed directly from SECs.
This work was published in the attached paper [ADTW11].

SECs provide decisive temporal anchor points which define critical relational changes between object
pairs during the manipulation. In order to produce a SEC, we first segment the image sequence based
on color and depth cues and then represent each frame by a graph, nodes and edges of which represent
segments and their neighborhood relations, respectively1. Considering the topological changes (absence
and/or occurrence of new nodes/edges) in graph structures, we calculate decisive temporal anchor points
of the action. Movement segments between the temporal anchor points can be interpreted as meaningful
movement primitives. Fig. 2.4 shows the SEC as well as decisive temporal anchor points with original
frames, segments, and graphs of a sample pushing action performed by a 6 DOF Neuronics Katana robot
arm in the Webots simulation environment [16]. The robot arm is pushing a red box to a green box until
they touch each other. Each frame given in Fig. 2.4 corresponds to one column in the SEC, rows of which
hold relational changes (e.g. (T)ouching, (N)on-touching, (A)bsence) between object pairs (e.g. red box
and green box). The pushing action is encoded by a 3× 7 matrix.

In order to be able to execute the action from its SEC, in addition to symbolic information we record
motion information. For the pushing action start and endpoints of movements are important and are
recorded at each decisive temporal anchor point. Movement primitives in this pushing example are
defined as a motion vector from start point to the end point. The recorded start and end points defining
the motion vectors are stored in association with the SEC. To make the agent learn a SEC-model with
additional motion data we demonstrate the action 10 times. Fig. 2.5 illustrates learned motion vectors
of the robot arm for the demonstrated pushing action. Dots represent points provided by the training

1Note that - in contrast to the ECV system described in section 2.3.1 – SECs give a high level description of the scene.
In the cause of the Xperience projects we expect a tighter interaction of the ECV system and the SEC representation in
which the ECV system will support the lower levels of the SEC approach.

7

Xperience 270273 PU

Figure 2.4: Semantic event chain representation. (a) Original “Key Frames”. (b) Corresponding depth
maps. (c) Corresponding HSV color based segmented images with extracted main graphs. (d) Corre-
sponding semantic event chain, which is a sequence-table, where each entry encodes the spatial relations
between each segment pair at each main graph. T means that segments touch (denoted by red edges), N
means that there is no edge between two segments, and absence of a previously existing segment yields
A.

data set and starred points are the average locations. When executing the learned action, the robot
manipulator will travels along the path described by motion vectors V1, V2, V3 shown in the figure. Those
motion vectors are crucial and provide enough information to execute the pushing action. The approach
can also be extended to more general manipulation tasks, e.g. “pick & place” or “cutting a carrot with
a knife”. For more details see attached paper [ADTW11].

2.3 Semantic visual scene representations and probabilistic ac-
tion representations

The OACs introduced in section 2.2 deliver the material in terms of experiments learning and structural
bootstrapping is based on. The groups SDU and UIBK (and potentially also other groups) make use of
a special space for learning (called ECVxPMF) which is introduced here. In section 2.3.1 (backrefering
to D.2.1.1), we introduce the Early Cognitive Vision (ECV) system. In section 2.3.2, we present the
concept of probabilistic manipulation functions (PMFs) and in section 2.3.3, we discuss the advantageous
properties of the cross space of ECV and PMF (ECVxPMF) for a variety of learning tasks.

2.3.1 Early Cognitive Vision (ECV) system

The Early Cognitive Vision (ECV) system – as introduced in [17], [21] and deliverable D2.1.1 – is a
hierarchically organized visual representation providing rich information on different levels of granularity.
It represents appearance and geometric information as well as 2D and 3D information in a separate and
explicit format for different kinds of visual entities (i.e., contours, junctions, texture and homogeneous
areas). This system is a functional model of the human visual system and visual information can be
processed close to real-time based on GPU technology (see, e.g., [18]). Such a representation allows for
choosing an appropriate level of information for a certain task as outlined in [17]. This covers the use of
2D and 3D information as well as an appropriate level of granularity (for details see D3.1.1).

2.3.2 Learning Probabilistic Manipulation Functions

Objects can be grasped and manipulated in many ways. Human dexterity and robustness in handling
objects is largely due to the human flexibility of adaptively choosing appropriate grasp configurations. As

8

Xperience 270273 PU

Figure 2.5: Start (S1, S2) and end (E1, E2, E3) point distribution as provided by the training dataset.
Starred points are the average locations. Robot manipulator travels along the path given by vectors
V1, V2, V3. The coordinate origin is at the center of the red object. The motion vector for pushing is
depicted by the color-changing vector that connects red with green object. Distance ∆ is defines as
|E2 − S2| and vector V2 has length ∆.

a step towards this end, the concept of Probabilistic Manipulation Functions (PMFs) – developed as a co-
operation between UIBK and SDU (in which SDUs main focus is on the application of the PMF concept
in a variety of contexts) – seeks to represent the utility (success, robustness, . . .) of a manipulation as a
continuous function of grasp parameters. This offers the robot great flexibility in choosing and refining
grasps under task constraints. As a first instance of this paradigm, we recently described the concept of
grasp densities that model the spatial empirical distribution of successful grasps in object-relative pose
space [6].

Grasp densities are learned from exploration by drawing grasps from a known pose-space distribution,
performing them, and retaining successful grasps as importance-weighted particles of a nonparametric
representation of the target grasp density. From such grasp (success) densities and the corresponding,
analogous failure densities, posterior grasp success probabilities can in principle be estimated using Bayes’
theorem (see [6]). Other recent work explores learning such success posteriors directly by regression [13].

The Xperience project seeks to further develop PGFs in various ways, including more efficient use of
grasping experience by improving prediction and generalization capabilities, and going beyond grasping
towards manipulative actions.

2.3.3 Learning in ECVxPMF

The two representations, on the vision side the hierarchical ECV system outlined in section 2.3.1 and the
probabilistic manipulation function as outlined in section 2.3.2, span a space in which efficient learning of
actions and behaviors can take place. In particular important for facilitating the learning tasks relevant
in the Xperience context are the following properties:

The view point invariant representations of the ECV space reduce the complexity
of a number of learning problems: The problem of learning manipulation affordances from
visual cues involves a number of problems. Learning manipulation affordances from 2D information
faces the problem that a huge variation of visual input needs to be related to the same affordance
requiring the covering of this space in the learning phase. In contrast, the view point invariant
representations in terms of geometric and appearance relations in the ECV system reduce this
variation by means of a more complex feature processing. The same argument holds for the learning
of suitable representations for object recognition and pose estimation (see, e.g., D2.1.1).

The explicit coding of different aspects of visual information in the ECV space allows
for making use of only specific aspects for the learning of specific tasks: Human have to
solve multiple tasks (navigation, recognition, map-building, manipulation, etc.) at the same time.
This makes a general purpose representation (such as the ECV system) advantageous (in contrast
to, e.g., frogs which have fly detectors in the retina [14]) which in humans cover more than 2/3
of the visual cortex. For a specific task only certain aspects of this information are relevant. The

9

Xperience 270273 PU

Training Data Set

N number of ECV
features of
N scenes

Relations Statistics

Compuation of the
conditional probability of
feature relations

fs
As

Feature Operator

Feature prediction for
different tasks, e.g. :
- 3D feature from 2D feature
 (Monocular depth cues)
- feature to a feature
of different kind
- signal level feedback.

Figure 2.6: The Framework

explicit coding of this information makes these aspects separable (in contrast to, e.g., image feature
histogram approaches such as SIFT [15]), allowing for efficient learning.

The hierarchical organization allows to address the learning problem at an appropriate
level of granularity: Local features and their relations will quickly span a space that is so large
that learning is hardly possible due to the combinatorics. The hierarchical representation allows
for choosing a level of spatial extent that is appropriate for the specific learning problem.

The concept of Probabilistic Manipulation Functions allows for representing action
experience on different objects in a way that can be directly related to the ECV space:
PMFs are generally expressed in an object-centric reference frame. Thus, for rigid objects, they
are rigidly attached to the object representation. Hierarchical and part-based representations such
as the ECV system allow the association of PGFs at various levels, from an entire object down to
individual ECV features. Object-level PMFs describe how an object can be grasped and can in
principle be learned to a perfection limited only by the uncertainties inherent in perception and
manipulation, but they apply to the given object only. Feature-level PMFs apply wherever the
feature is found, but low-level features are not generally expressive enough to allow for learning
of predictive PMFs. Good practical compromises can likely be found at intermediate levels of
feature complexity that are sufficiently distinctive to be predictive of specific grasp configurations
but sufficiently general to be found on a variety of objects.

The addressing of different learning problems within the same visual and action rep-
resentation facilitates generalization across tasks: The transfer of experience across tasks
is facilitated when different tasks are performed in the same visual and action representation. In
this way, e.g., any knowledge on the computation of the object category can directly effect the
knowledge on the manipulation affordances of objects: For example, assume a cup having a cer-
tain shape sub-structure ’handle’ (object categorization) that can be used to lift it safely (object
manipulation). Since the handle representation in both tasks share the same features it can then
be reasoned on similar structures at other objects and their associated categories and affordances.
In other words, knowledge generalisation – crucial for any cognitive agent – is facilitated in deep
hierarchal structures.

2.4 Learning in ECV: Learning of interactions of entities based
on statistical inference

Feature extraction in ECV involves operations that do local reasoning (i.e., at a pixel level). This local
reasoning, in some cases, fails to extract features that are more likely to be extracted through a global
reasoning. The need for a global perspective comes also in line with Gestalt theory in psychology [7].

The aim is to fulfill the above concepts through a learning framework within the ECV system. The
framework will train the system on making task-specific predictions (operations) based on the statistical
properties of inter-entity relations (e.g., the conditional probability of the angle between two entities).
Which relations to use and how to compute their statistics can vary from task to task. Figure 2.6 shows
the proposed framework and the interactions of its different components. At the beginning, the framework

10

Xperience 270273 PU

Input Images

Image Processing

2D Primitives

3D Primitives

Left/Right Images

monogenic signal , gabor wavelet

linesegments, texlets, junctions

linesegments, texlets, junctions

S
ig

n
a
l
Le

v
e
l

Lo
w

-L
e
v
e
l

Fe
a
tu

re
s

3D Entities
contours, surflings, junctions (semantic)

H
ig

h
-L

e
v
e
l

Fe
a
tu

re
s

2D Entities
contours, surflings, junctions (semantic)

G
ro

u
p
in

g

3D information

filtering

Pr
oject

ion

m
o
n
o
cu

la
r

d
e
p
th

 c
u

e
s

inter-entities
learning
interaction

si
g
n
a
l
lo

o
p

preprossing

Figure 2.7: The ECV Hierarchy

needs to establish a large dataset of ECV features. From these relational statistics are computed. Finally,
we will define feature operators which make use of the gathered statistics to perform operations on the
input data. This is an example of structural bootstrapping in which abstracted world knowledge is
gathered in terms of relational statistics to influence lower-level vision processes.

Examples for feature operations are (1) obtaining a 3D feature from a 2D feature (i.e., monocular depth
cues) , (2) predicting features from features of different kinds (for completion and disambiguation) and
(3) feed-backing the signal-level feature extraction process (to steer the extraction process by a global
reasoning). During the first year we made first steps addressing item (2).

Depending on the operation, different ECV features will be required to interact with each other. This
interaction may also involve entities at different levels of the ECV hierarchy. Figure 2.7 shows the possible
ways of interaction within the hierarchy. The black arrows shows the normal flow of operations while the
red arrows shows possible operations within the proposed framework.

2.5 Learning of PMFs

This section presents current work on theory and applications of PMFs as introduced in Sec. 2.3.2. Section
2.5.1 addresses the approximation of PMFs from samples, section 2.5.2 addresses the computation of grasp
densities through simulation, and section 2.5.3 addresses the extension of probabilistic grasp functions to
manipulation grasp functions at the example of peg-in-whole actions with flexible objects.

2.5.1 Data-efficient approximation of PMFs with kernel methods

To a first approximation, the prediction of the success or failure of a grasping action can be formulated
as a binary classification problem. This classification can be built upon a set of tuples containing the
results and the parameters of earlier experiments. These tuples consists of the indicator of the success
and the object-relative position and orientation of the gripper. The objective of the learning task is then

11

Xperience 270273 PU

Figure 2.8: Distribution of the prediction of the successful grasping in the position space, R3. The target
object resembles the illustration on the right. Legend: green = true positive, red = false positive, blue=
false negative, yellow = true negative.

to predict the success in positions and orientations not observed in any experiment. To this end we need
to approximate the probability distribution of success of the grasping for all possible cases based on the
observed ones.

Our approach (described in detail in the attached draft [SKJP12]) is built upon a probability density
function based representation of the positions, orientations and the grasping results. This approach
assumes that the outcome of the grasping in an arbitrary position (orientation) with high probability
follows the results of those observed positions (orientations) situated nearby. To implement this idea we
apply a kernel-based approach, a generalization of the Support Vector Machine, where not only the input
data (positions and orientations) but also the output (success indicators) are represented by kernels.
The elements of these kernels are the value of inner products computed between the corresponding
density functions which are localized in the observed values of the input and output parameters. In this
setting, a point further away from an observed one has smaller probability of following the success of
that observation. In his way, the distribution of the success is a weighted mixture of the distributions
localized in the observations, where the weights are computed by a maximum margin based optimization
model. Indicative results are shown in Fig. 2.8.

2.5.2 Probabilistic dexterous grasp function computed by dynamic simula-
tion

Currently complete grasp affordences of objects have been computed based on specific environments with
very few geometric constraints, e.g., grasp attempts are simulated in a free floating environment without
any obstacles. These grasp affordances describe the likelihood of success of a 6D pose of the gripper
relative to the object. When the environment is changed, new simulations are required to compute
the new grasp affordances. This approach is very time consuming and when considering the possible
combinations of environments, simply infeasible.

Reusing simulations from a free floating environment is tempting (see figure 2.9. However, when consider-
ing the new constraints on an object (friction with other obstacles, blocked path, etc.) in a more complex

12

Xperience 270273 PU

Figure 2.9: The left image show successfull grasps generated in an free floating environment without any
obstacles. The right image show successfull grasps generated in an environment with gravity and a floor
on which the object is resting.

environment it is not trivial to argue that successful grasps in the new environment is also successful in
the lesser constrained environment. In [JKP+12] we present complete sets of grasp affordances for several
objects in several different environments which enable us to quantitatively evaluate the resemblance of
grasp affordances in different environments. We investigate the feasibility of reusing simulations run on
lesser constrained environments and present a method to efficiently recompute grasp affordances in new
environments without generating new simulations.

2.5.3 PiH with flexible objects

In [BFW+12] the concept of action learning based on kernel density estimation (see section 2.3.2) has
been extended to peg-in-hole actions with flexible objects. The shape of an undeformed object is detected
using a Kinect camera as in [11]. The depth information is subsequently used to create an triangular mesh
model of the object. Until now rather regularly shaped objects have been used, so that the Bernoulli-
Euler beam theory could be applied to model the deformation of the object due to gravity. Thereby the
computational burden is still feasible, which would not be the case when more complex models based on
finite-elements would be used.

In order use Kernel Density Estimation (KDE) for action learning, the action has been formulated such
that the trajectory which the robot has to perform is defined by Bézier curve based on three points: a
start point, one control point and the end point. The start point P0 is defined such that the free end
of the object is in front of the hole, the end point P1 is chosen such that the gripper is in front of the
hole with the object being in inserted. The remaining control point defines the trajectory from start to
end point and will be learned. Figure 2.10 illustrates the trajectory. Currently it has been found to be
sufficient to let the trajectory be defined by two-dimensional translations and one-dimensional rotation
such that the trajectory is in R2 × SO(2).

(a) (b)

P1

P0

cp

(c)

Figure 2.10: Illustration of (a) starting configuration P0 and (b) target configuration P1 for the peg-in-hole
action. (c) shows a projection of the 3D trajectory based on P0, P1 and the control point cp.

13

Xperience 270273 PU

2.6 Learning in ECV x PMF

In this section, we describe two works on structural bootstrapping learning . In the first example (section
2.6.1), statistics across a variety of objects is gathered to arrive at statistically motivated kernels in the
context of grasp probability functions (see section 2.3.2) as well as first steps towards the learning of
generic grasp affordances as described in section 2.6.2 and 2.6.3.

2.6.1 Meta Learning: Learning kernels by statistics

In the concept of grasp densities [6], kernel density estimation is used based on a six-dimensional kernel
representing grasps with given position and orientation. For this so far an isotropic kernel has been used
which exact shape has only been weakly justified. Instead in [BDPK11], we use an anisotropic kernel that
is statistically based on measured conditional probabilities representing grasp success in the neighborhood
of a successful grasp. The anisotropy has been determined utilizing a simulation environment that allowed
for evaluation of large scale experiments (results for one object are shown on figure 2.11). The anisotropic
kernel has been fitted to the conditional probabilities obtained from the experiments. Hereby it has been
detected that it is advantageous to align the grasping action with the local structure. This becomes also
explicit on figure 2.11 as the anisotropies are significantly pronounced when the actions has been aligned
(top row). We then show that convergence is an important problem associated with the grasp density
approach and we propose a measure for the convergence of the densities. In this context, we show that
the use of the statistically grounded anisotropic kernels leads to a significantly faster convergence of grasp
densities.

0

0.2

0.4

0.6

0.8

1

S
u
cc

e
ss

 l
ik

e
lih

o
o
d

0 1.10.6

0.6

1.1

X-axis

Y-
a
x
is

(a) Rotations (aligned axes)

0

0.2

0.4

0.6

0.8

1

S
u

cc
e
ss

 l
ik

e
lih

o
o
d

0 80.040.0

40.0

80.0

X-axis

Y-
a
x
is

(b) Translations (aligned axes)

0

0.2

0.4

0.6

0.8

1

S
u
cc

e
ss

 l
ik

e
lih

o
o
d

0 1.10.6

0.6

1.1

X-axis

Y-
a
x
is

(c) Rotations (original axes)

0

0.2

0.4

0.6

0.8

1

S
u

cc
e
ss

 l
ik

e
lih

o
o
d

0 80.040.0

40.0

80.0

X-axis

Y-
a
x
is

(d) Translations (original axes)

Figure 2.11: Histograms for the cone-object shows the success likelihood for grasping actions in the
neighborhood of successful actions. Translations and rotations are shown on separate histograms. The
top row shows the results when the axis of displacement have been aligned with the local edge, in the
bottom row no alignment has been done.

2.6.2 Learning grasping/manipulation affordances

Our task is to connect grasping affordances to target objects. We need to find proper grasping approaches
for given objects, and also to learn the classes of targets which can be grasped in a similar way. To this
end we need to find appropriate feature representations of both the grasping affordances and the targets.

The grasping affordance and the shape of the targets can be characterized by similar models. Both
types of models can be described by sets of points equipped with a proper internal structure. The points
correspond to observations, e.g. grasping experiments, and the structure represents the interdependencies
between these points for example the shape of the target objects.

14

Xperience 270273 PU

The learning problem which can connect the affordances to the targets requires feature representations
capable of capturing the real-world complexity of structures, e.g. shapes with holes, convex and concave
substructures. To this end we apply so-called functional features which are sufficiently flexible to capture
complex relations. In this approach the points correspond to functions, e.g. probability densities, and
the structures are expressed in Hilbert spaces comprising these functions. In this way we can apply inner
products, distances between these functions. Therefore we can create a complete geometry around the
complex objects and affordances.

The learning model is based on the maximum-margin principle, a generalization of the well-known Support
Vector Machine. Our model represents both the inputs and the outputs via kernels. Thus, relationships
between very complex-structured objects can be learned.

The general method is described in a technical report as part of Deliverable D2.1.1 [22] in the context of
shape learning. The same principles apply to represent the shape of probabilistic manipulation functions
(PMFs). Future work aims to couple shape and PMF representations in order to infer one from the other.

2.6.3 ECV feature to grasp associations

In the attached paper [Tho12] an investigation of the feature to grasp association space in terms of the
ECV (Early Cognitive Vision) high level features of 3D contours and 3D surfaces for single features. The
investigation involves grasp simulation utilizing the robotic framework of RobWork and feature extraction
relying in the ECV system (see figure 2.12). Simulations were performed with a two finger jaw gripper
in a number of scenes with features of interest. A variety of situations with 3D contours and 3D surfaces
has been designed and evaluated in order to expose the feature to grasp space (see figure 2.13). All the
situations is compared against the ground truth feature reference frame and a ECV feature extracted
reference frame showing that the surface extraction in particular seems promising. A qualitative analysis
has been performed on the different situations through explanation of the acquired results (see figure
2.13) and finally a discussion of the results and future work in terms of ECV feature to grasp associations
is carried out.

Figure 2.12: Visualization with a gripper in RobWork of successful grasps for a 3D contour situation.

2.7 Learning Action Representations from Change Data

Task 2.3.2 ’Learning high–level action descriptions’ is addressed in this subsection referring to the sub-
mitted paper [MZPS]. We focus on the problem of autonomous learning of relational action models
from experience in the world. Existing techniques can learn STRIPS [8] action models in noiseless, fully
observable worlds, but the problem is more challenging when observations of world state may be noisy
and incomplete. Here we present a method which firstly can learn preconditions and effects of STRIPS
actions in noisy, partially observable worlds, and secondly, can generate STRIPS action models suitable
for use by automated planning systems. We assume the agent has already learnt to identify objects,
and has acquired predicates to describe object attributes and relations between objects. Also we assume
that the agent has previously acquired primitive actions and their immediate arguments. For example,
it may have learnt to grasp an object. The specific sequence of motor actions to effect the grasp has a
unique identifier, and it is known that the action requires an argument, namely the object to be grasped.
What is unknown is the set of preconditions for the grasp action (e.g., an object is not already being
grasped), and the effects (e.g., any object under the grasped object is now clear). Experience in the world
is then developed through observing changes to object attributes and relations when motor-babbling with
primitive actions.

15

Xperience 270273 PU

Figure 2.13: Histograms depicting the distribution the successfully simulated grasps in terms of 6D pose
(for a detailed description see [Tho12]).

The task of the learning mechanism is to learn the associations between action-precondition pairs and
their effects. Our approach is to encode the learning problem in terms of the inputs and outputs of a set
of classifiers: for a particular action the effect on a single fluent can be predicted by a single classifier,
taking as input a state description (the action-precondition pair). States are described using a deictic
representation [1] which reduces the size of the state descriptions and supports generalization across
states. The full set of changes to a state as a result of an action can then be constructed by combining
(by conjunction) the changes predicted by each classifier. By using voted perceptrons [9] combined with
a k-DNF kernel [12], this learning mechanism is able to learn to predict when actions in STRIPS domains
will be successful and what their effects will be. However, the resulting action model is implicit to
the voted perceptron model and cannot directly be used by automated planning systems. We therefore
develop an additional step to extract STRIPS rules from the classifiers. First, we extract preconditions
from the classifiers for individual fluents, using a technique similar to feature extraction methods such
as SVM Recursive Feature Elimination (SVM-RFE) [10]. This results in a set of preconditions, where
each precondition predicts change to a single fluent. Then, we use a heuristic method to combine the
fluents into a set of effects, and the preconditions into a single precondition, giving a STRIPS rule for
each action. In experiments with International Planning Competition (http://ipc.icaps-conference.org/)
planning domains with noisy and incomplete observations, the resulting STRIPS action models are close
to the actual domain models, and therefore the approach is highly suitable for use in planning applications.

16

Chapter 3

Conclusion

3.1 Links to other Workpackages

Deliverable D2.3.1 is based on input from WP2.1 and WP2.2 and provides input to WP3 for higher level
structural bootstrapping tasks. The basic modules described here are the basis for the demonstration in
WP5.2 and WP5.3.

17

References

[1] Philip E. Agre and David Chapman. Pengi: An implementation of a theory of activity. In Proceedings
of the 6th National Conference on Artificial Intelligence (AAAI 1987), pages 268–272, 1987.

[2] E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and F. Wörgötter. Learning the semantics of
object-action relations by observation. The International Journal of Robotics Research, 30(10):1229–
1249, 2011.

[3] Alan D. Baddeley. Essentials of Human Memory. Psychology Press, Taylor and Francis, 1999.

[4] Andy Clark and Annette Karmiloff-Smith. The cognizer’s innards: A psychological and philosophical
perspective on the development of thought. Mind & Language, 8(4):487–519, 1993.

[5] Fernando J. Corbacho and Michael A. Arbib. Schema-based learning: Towards a theory of organi-
zation for biologically-inspired autonomous agents. In Agents, pages 520–521, 1997.

[6] Renaud Detry, Dirk Kraft, Oliver Kroemer, Leon Bodenhagen, Jan Peters, Norbert Krüger, and
Justus Piater. Learning grasp affordance densities. Paladyn Journal of Behavioral Robotics, 2:1–17,
2011.

[7] W.D. Ellis, editor. Gestalt Theory, A source book for Gestalt Psychology. 1938.

[8] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence, 2:189–208, 1971.

[9] Yoav Freund and Robert Schapire. Large margin classification using the perceptron algorithm.
Machine Learning, 37:277–96, 1999.

[10] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for cancer
classification using support vector machines. Machine Learning, 46(1-3):389–422, 2002.

[11] Andreas Jordt and Reinhard Koch. Fast tracking of deformable objects in depth and colour video.
In Stephen McKenna, Jesse Hoey, and Manuel Trucco, editors, Proceedings of the British Machine
Vision Conference, BMVC 2011. British Machine Vision Association, 2011.

[12] Roni Khardon and Rocco A. Servedio. Maximum margin algorithms with Boolean kernels. Journal
of Machine Learning Research, 6:1405–1429, 2005.

[13] Oliver Kroemer, Renaud Detry, Justus Piater, and Jan Peters. Combining Active Learning and
Reactive Control for Robot Grasping. Robotics and Autonomous Systems, 58(9):1105–1116, 9 2010.

[14] J. Y. Lettvin, H. R. Maturana, W. S. McCulloch, and W. H. Pitts. What the frog’s eye tells the
frog’s brain. Proceedings of the Institute of Radio Engineers, 47:1950 – 1961, 1959.

[15] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International Journal
of Computer Vision, 2(60):91–110, 2004.

[16] Cyberbotics Ltd. Webots reference manual, 2008. www.cyberbotics.com.

[17] Wail Mustafa, Mila Popović, Jeppe Barsøe Jessen, Dirk Kraft, Søren Maagaard Olesen, Anders Glent
Buch, and Norbert Krüger. Using surfaces and surface relations in an early cognitive vision system.
to be submitted.

18

Xperience 270273 PU

[18] S.M. Olesen and S. Lyder. Real time 3D texlet extraction using GPUs and CUDA.
Master thesis at the Cognitive Vision Lab at the University of Southern Denmark,
covil.sdu.dk/publications/ReportSimonSoerenRed.pdf, 2011.

[19] J. Piaget. The psychology of intelligence. 1976.

[20] Mila Popović, Gert Kootstra, Jimmy Alison Jørgensen, Kamil Kuklinski, Konstantsin Miatliuk,
Danica Kragic, and Norbert Krüger. Enabling grasping of unknown objects through a synergistic
use of edge and surface information. submitted, 2011.

[21] N. Pugeault, F. Wörgötter, and N. Krüger. Visual primitives: Local, condensed, and semantically
rich visual descriptors and their applications in robotics. International Journal of Humanoid Robotics
(Special Issue on Cognitive Humanoid Vision), 7(3):379–405, 2010.

[22] Sandor Szedmak, Hanchen Xiong, and Justus Piater. Learning shapes as directed closed surfaces.
Technical report, IIS, University of Innsbruck, 2011. Draft of paper to be submitted. Attachment to
Deliverable D2.1.1.

19

Attached Articles

[ADTW11] E.E. Aksoy, B. Dellen, M. Tamosiunaite, and F. Worgotter. Execution of a dual-object
(pushing) action with semantic event chains. 2011 IEEE-RAS International Conference on
Humanoid Robots, 2011.

[BDPK11] Leon Bodenhagen, Renaud Detry, Justus Piater, and Norbert Krüger. What a successful
grasp tells about the success chances of grasps in its vicinity. In First Joint IEEE In-
ternational Conference on Development and Learning and on Epigenetic Robotics (ICDL-
EPIROB), 2011.

[BFW+12] L. Bodenhagen, A.R. Fugl, M. Willatzen, H.G. Petersen, and N. Krüger. Learning peg-in-
hole actions with flexible objects. In 4th International Conference on Agents and Artificial
Intelligence (ICAART) – Special Session on Intelligent Robotics (SSIR 2012), 2012.

[GKKed] F. Guerin, N. Krüger, and D. Kraft. A survey of the ontogeny of tool use: from sensorimotor
experience to planning. IEEE TAMD, submitted.

[JKP+12] J. Jorgensen, D. Kraft, J. Piater, H.G. Petersen, and N. Krüger. The complexity and po-
tential of dexterous grasping examplified. Technical report, MMMI, University of Southern
Denmark, 2012. Draft of paper to be submitted.

[KGP+11] Norbert Krüger, Christopher Geib, Justus Piater, Ronald Petrick, Mark Steedman, Florentin
Wörgötter, Aleš Ude, Tamim Asfour, Dirk Kraft, Damir Omrčen, Alejandro Agostini, and
Rüdiger Dillmann. Object-action complexes: Grounded abstractions of sensorimotor pro-
cesses. Robotics and Autonomous Systems, 59:740–757, 2011.

[KPB+11] N. Kruger, M. Popovic, L. Bodenhagen, D. Kraft, and F. Guerin. Grasp learning by means
of developing sensorimotor schemas and generic world knowledge. Published at Convention
AISB 2011 (’Artificial Intelligence and Simulation of Behaviour’), 2011.

[MZPS] K. Mourao, L. Zettlemoyer, R.P. A. Petrick, and M. Steedman. Learning strips operators
from noisy and incomplete observations. submitted to AIII.

[SKJP12] S. Szedmak, N. Krüger, J. Jorgensen, and J. Piater. Kernel methods for learning graspability
function. 2012. Draft of paper to be submitted.

[Tho12] M.T. Thomsen. Introduction to feature to grasp association. Internal Report, 2012.

[USSM12] A. Ude, D. Schiebener, H. Sugimoto, and J. Morimoto. Integrating visual processing and
manipulation for autonomous learning of object representations. In Proc. IEEE Int. Conf.
Robotics and Automation, Saint Paul, MN, 2012.

20

Execution of a Dual-Object (Pushing) Action with
Semantic Event Chains

Eren Erdal Aksoy1, Babette Dellen1,2, Minija Tamosiunaite1 and Florentin Wörgötter1

1Bernstein Center for Computational Neuroscience
University of Göttingen

Friedrich-Hund Platz 1, D-37077
Email: [eaksoye,minija,worgott]@physik3.gwdg.de

2Institut de Robòtica i Informàtica Industrial (CSIC-UPC),
Llorens i Artigas 4-6, 08028 Barcelona, Spain

Email: bdellen@iri.upc.edu

Abstract—Execution of a manipulation after learning from
demonstration many times requires intricate planning and con-
trol systems or some form of manual guidance for a robot.
Here we present a framework for manipulation execution based
on the so called “Semantic Event Chain” which is an abstract
description of relations between the objects in the scene. It
captures the change of those relations during a manipulation and
thereby provides the decisive temporal anchor points by which a
manipulation is critically defined. Using semantic event chains a
model of a manipulation can be learned. We will show that it is
possible to add the required control parameters (the spatial anchor
points) to this model, which can then be executed by a robot in a
fully autonomous way. The process of learning and execution of
semantic event chains is explained using a box pushing example.

I. INTRODUCTION

If one wants to build robots which participate in everyday
human life, learning from demonstration is perhaps the most
practical paradigm. Although learning from demonstration has
much advanced in recent years [1], [2], manipulation learning
from demonstration has not yet come to its conclusion as
here one has to bring together a sequence of demonstrated
movements and task knowledge [3]. In our previous works
[4], [5] we have introduced the so-called “Semantic Event
Chain” (SEC) which is a compact and generic encoding
scheme for manipulations. We have shown that the SECs can
be used to allow an agent by observation to classify different
manipulations and to categorize the manipulated objects based
on their roles exhibited in the manipulation. Furthermore, we
have demonstrated that an agent can learn an archetypical
SEC model in an unsupervised way by watching about 10
demonstrations. The main advantage of this framework is that
SECs link the signal domain (observed image sequences) to a
symbolic rule-like domain encoding a manipulation in a highly
invariant way, where – for a given manipulation – objects,
poses, perspectives and trajectories can be interchanged to a
very large degree. Thus, SECs provide one possible, quite
efficient way to perform manipulation recognition and to learn
a manipulation model.

SECs are essentially a symbolic representation encoding the
manipulation by a temporal sequence of rules. Manipulations

appear now in an abstract form, stripped from all pose and
trajectory information and this makes it initially impossible “to
invert the process” using a SEC for executing a manipulation.
Thus, in the current paper we address the question how to
actually do this and perform a manipulation starting from a
SEC. Clearly, this requires that in the process of learning a
manipulation model (learning the SEC) additional information
must be stored, for example the start and endpoint of move-
ment trajectories. But, because the SEC provides a temporal
sequence of rules, we have well defined temporal anchor points
when we have to store the additionally required trajectory
information. Furthermore, as will be shown below, SECs also
provide us with exact instructions, which spatial coordinates
(spatial anchor points) are relevant for defining a movement.

The goal is to arrive at a fairly generic instruction set which
allows “bringing two objects in close contact”. Hence, to
perform a basic dual-object action. Pushing two objects against
each other but also pick one object up and placing it in contact
to a second object fall into this category. To do this we will
provide at the end a macro where we define an instruction
set (D1-D8) which produces the basic movement segments
for the execution. It is important to note that this macro will
be applicable for all dual-object actions using the semantic
event chains to structure and define the different execution
primitives.

The structure of the paper is as follows. In Section II we
discuss related works. In Section III, we briefly summarize our
own prior work on how to learn a SEC from observation. Here
we address the (new) problem, how to store information which
is additionally required for execution. Next, in section IV, we
describe how to actually execute a manipulation starting from
a SEC showing simulation results. In Section V, the results are
discussed and directions for future research are given. Finally,
the work will be concluded in Section VI.

II. RELATED WORK

In our previous works [4], [5] we have shown that SECs
can both, classify manipulations and categorize manipulated
objects in a model free way, needing prior representations
neither for objects nor for actions. In [6] the authors built

worgott
Text Box
This Paper acknowledges the EU-Projects IntellAct and Xperience.The work on Semantic Event Chains (SECs) pursued here is part of IntellAct.The work on executing pushing (using SECs) is part of Xperience

Fig. 1. Block diagram of the whole framework.

Fig. 2. Pushing action. (a) Original images from a movie recorded during the
action. (b) Corresponding depth map from a range finder. (c) Corresponding
HSV color based segmented images with extracted 3D scene graphs (See steps
(1-2) in Fig. 1). Note that each object is represented by a unique segment
label (e.g. 1, 2, 3, and 4 that represent table, red box, green box, and robot
arm, respectively). Graph nodes represent the segments’ centers and graph
edges encode whether or not two segments touch each other in 3D. In red are
indicated Touching relations between segments. The bottom part of the figure
shows a magnified view of frames 5 from above.

a kernel based vectorial representation of event chains, which
makes SECs more compatible with machine learning tech-
niques. However, they have not addressed object categoriza-
tion, learning and execution issues at all. Different from that,
in the current work we will focus on execution of a learned
pushing action by using SECs.

In the literature many works focus more on the (mechani-
cal) aspects of controllability and planning of stable pushing
actions [7], [8]. Such aspects are not in the core of our paper.

In [9] the authors showed how an agent can learn simple
pushing actions on a toy object and then execute them as goal-
directed behaviors. During the training phase, time evolution
of the initial hand position and the direction of object displace-
ment at the moment of contact were continuously recorded.
As will be shown below, this is to some degree similar to
our approach. In each trial the robot learns to map from
initial hand position to the direction of object movement.
However, the robot had only four possible initial positions
which restricts the flexibility of manipulations in the execution

phase of the learned maps. The high number of required trials
(approximately 70) is another unrealistic drawback of this
work.

In a different study [10] the problem of learning a general
pushing rule has been addressed. The rule represents the
relationship between the point and angle of push on the
object’s boundary and the observed object motion right after
the pushing action. In the learning case the robot experimented
with different pushing actions on different objects at different
positions. The normalized retinal images of the experimental
data served as input to a neural network to predict the object
velocity in all directions. However, the input images had to be
down-sampled to 20x15 pixels which causes much information
loss. Moreover, in the testing case the robot has to drive an
optimization process, the computational complexity of which
is relatively high.

In [11] the authors described an on-line learning method
for pushing an object to a desired (image) position. The
system used past pushing operations to estimate future pushing
actions. The main handicap of their approach is that the object
is connected to the robot with a rotational point contact.

III. METHODS

In the current study, we perform execution of a pushing
action by means of SECs. For this purpose we used the Webots
software that simulates a 6 DOF Neuronics Katana robot
arm. The experiment consists of two phases: Learning and
execution (Fig. 1). In the first phase we perform manipulation
demonstration. For this we already use the robot simulation
and program it by hard-coding to push a red box to a green
box on a table until they touch each other and then the robot
is going to a home position. We could have used human
demonstration instead, like in our older papers, but this is not
of any relevance. The only thing needed is that demonstration
is repeated using different setups.

Note, sophisticated object recognition is not part of this
work. This is a difficult additional problem for which there
are no generic solutions. In limited scenarios, such as those
commonly used in state of the art robotics experiments, one
could resort to conventional model-based object recognition
methods. This step is simplified in our study and we get object

Fig. 3. Semantic event chain representation. (a) Original “Key Frames”. (b)
Corresponding depth maps. (c) Corresponding HSV color based segmented
images with extracted main graphs (See step 3 in Fig. 1). (d) Corresponding
semantic event chain (See step 4 in Fig. 1), which is a sequence-table, where
each entry encodes the spatial relations between each segment pair ρi,j at each
main graph. T means that segments touch (denoted by red edges), N means
that there is no edge between two segments, and absence of a previously
existing segment yields A.

identities (boxes, robot arm) by a unique color code, as more
complex object recognition does not add to the relevant aspects
of this study.

We also do not require that the red and green box should
touch each other in some exact configuration. As a conse-
quence, relative pose information can be neglected. However,
it is also possible to store different touching types (i.e. pose
information) between boxes in addition at the exact touching
moment which is provided by the SEC. But, for the purpose
of demonstrating the process of macronizing execution from
a SEC it is sufficient to focus on the “ballistic push”.

From these demonstrations a SEC-model is then learned.
During learning also additional decisive information, for ex-
ample relative coordinate frames and information about motion
start and endpoints, is recorded. In the second phase (execu-
tion), we use the SEC and the additional information to let the
robot execute a similar pushing action regardless of the initial
state of the table.

A. Segmentation and SEC-generation (Steps 1-4)

Fig. 2 and Fig. 3 show a processing example of a manip-
ulation resulting in its semantic event chain representation.
We first extract all frames from the manipulation movie
(Fig. 2 (a)) with corresponding depth maps from a range
finder (Fig. 2 (b)). Frames are then segmented by a simple
HSV color based segmentation algorithm, which allows for
consistent marker-less tracking of each object (Fig. 2 (c)).
Note that each object is represented by a unique segment label
(e.g. 1, 2, 3, and 4). Once segments are calculated we drive
a simple color based object recognition algorithm to replace
those unique labels with object names (e.g. table, red box,
green box, and tip of robot arm instead of 1, 2, 3, and 4,
respectively). After this step the agent knows which segment
corresponds to which object. The scene is then represented
by undirected and un-weighted graphs (Fig. 2 (c)). Nodes

represent object center points and edges between nodes exist
whenever two objects touch each other in 3D. Note, during
a manipulation, graphs can change by continuous distortions
(lengthening or shortening of edges) or, more importantly,
through discontinuous changes (nodes or edges can appear
or disappear). This happens when objects touch (or un-touch)
each other. Such a discontinuous change represents, thus, a
natural breaking point: All graphs before are topologically
identical and so are those after the breaking point. Hence,
we can apply an exact graph-matching method [12] at each
breaking point and extract the corresponding topological main
graphs. The sequence of these main graphs represents all
structural changes (manipulation primitives) in the scene. The
movie frames that hold such changes are called “Key Frames”.
Fig. 3 (a-c) shows the “Key Frames” with corresponding depth
map, segments, and main graphs for the action in Fig. 2.
This type of graph representation is then encoded by the
semantic event chain (Fig. 3 (d)), which is a sequence-table.
Hence continuous time is now replaced by time-chunks where
the same main graph persists until in the next chunk a new
one appears. Each row in a SEC represents the temporally
changing relations between one pair of objects in the scene,
for example the first row in (Fig. 3 (d)) shows the relation
between the red box and green box. There are three possible
spatial relations defined between segments: absence (A), no
connection (N), and touching (T). N means that there is no
edge between two segments, corresponding to two spatially
separated segments, and T represents segments that touch each
other1. A special case exists when a segment has disappeared,
which will be denoted by A.

Consequently, the complete image sequence, which has here
roughly 320 frames, is represented by an event chain with
a size of only 3 × 7. Note that several spatial relations, for
example between green box and robot arm (ρ3,4), are not
included in this SEC since they do not contain any N-T or
T-N transitions, which are decisive for a manipulation. Thus,
we can always ignore such rows in the semantic event chain
since they do not describe any manipulation relevant event.

These aspects are represented by steps (1-4) in Fig. 1,
showing the block diagram of the complete algorithm.

B. Defining Temporal Anchor Points by Learning the SEC
Model (Steps 5,6)

For learning we record the same pushing action from 10
different perspectives by changing the camera positions and
extract the corresponding SECs. Fig. 4 shows the same, spe-
cific moment of the manipulation for each of the 10 different
manipulation instances which allows us to get an impression
of the level of perspective difference.

All movies used in this study can be found at
http://www.dpi.physik.uni-goettingen.de/∼eaksoye/Movies/
PushingAction/. As described elsewhere [4], [5], we
then calculate the pairwise percent-similarity between the

1In our older papers [4], [5] we had also used an overlapping relation (O),
which in general, however, is not needed and is omitted here.

Fig. 4. Differences between the same moment of the pushing manipulation
in all 10 different versions.

manipulations. Normally this step is used to classify different
manipulations; here we use it to show that indeed a high
mutual similarity exists between those 10 repetitions (see
Fig. 5 for the confusion matrix), where one outlier with only
54% similarity occurred due to some error in the image
segmentation.

Having assured that the individual SECs represent indeed
the same manipulation we are allowed to perform a weighted
average and extract all re-occurring rows and columns in the
ten SECs. The resulting SEC is shown in Fig. 6. Weights
ω represent the normalized occurrence frequency of a given
row or column and are sometimes less than 1.0 due to the
situation that not all rows and columns are present all the
time in the individual SECs. This is also visible by comparing
model (Fig. 6) with the single SEC in Fig. 3. Thus, the
model represents the archetype-SEC for this particular pushing
action.

Details of all those steps (Fig. 1) can be found in our
previous works [4], [5]. At this stage it is important to note
that the start points of each temporal chunk, given by the
time moments of the different columns in the model-SEC,
represent temporal anchor points (Key Frames of the movie
sequence). The SECs, thus, solve a difficult chunking problem
in a natural way: By these anchor points the different motor
primitives needed for a manipulation are defined. Furthermore,
these moments are also decisive for defining the spatial anchor
points at the objects, needed to define and actually execute an
action.

C. Defining Spatial Anchor Points

The temporal anchors tell us “what happened when?”, but
they do not yet answer the question “how did it happen?”. In
the most general case, we would also have to know, (1) which
objects are moved, (2) how the final spatial configuration (rel-
ative poses) of the objects looks like, and how the movement
trajectories are shaped requiring (3) start- and endpoints and
(4) trajectory shapes.

We will in the following section show that an analysis at
the temporal anchor points, hence of the Key Movie Frames,
suffices to extract components 1-3: 1) objects involved, 2)
required poses, and 3) movement start and end-points, which
define motion segments. Only when wanting information about

Fig. 5. Similarity values between 10 different versions of the pushing action.

Fig. 6. The learned SEC model for the pushing action with correspond-
ing normalized row (ωr

i) and column (ωc
i) weight values. Boxes indicate

important transitions during this manipulation.

(4) the complete movement trajectory we need to analyze also
movie frames between the key frames.

To keep the algorithm general we assume that only one
prime mover exists (usually the robot arm), bimanual manip-
ulations need a different treatment. As the robot arm can only
do “one thing at a time” we can in general state that for all
possible manipulations the manipulation is started when the
robot arm produces the first N-T (non-touching to touching)
transition in the SEC and that it ends when the arm produces
a T-N transition. Thus, we first have to find the prime mover
by analyzing the image segments. Furthermore, it is evident
that all other existing N-T transitions are decisive for the
manipulation. Hence, we need to analyze those – one after
the other – too. Somewhat more unusual, we will also make
use of the fact that continuous contact of prime mover with
another object effectively makes the other object a secondary
mover allowing us to use vector addition in task space for
defining the complete motion path. For example, as long as the
robot arm remains in contact with the red object (unchanging
T relation), we can neglect the robot arm and just consider
the newly resulting spatial relations of red object with other

Fig. 7. Start (S1, S2) and end (E1, E2, E3) point distribution as provided by the training dataset. Starred points are the average locations. Robot manipulator
travels along the path given by vectors V1, V2, V3. The coordinate origin is at the center of the red object. The motion vector for pushing is depicted by the
color-changing vector that connects red with green object. Distance ∆ is defines as |E2 − S2| and vector V2 has length ∆.

objects (here the green object) as spatial anchors2. Note, this
reflects also the aspect of a robot using a tool. As long as the
machine holds the tool, the robot’s body is essentially extended
and the tool defines now the end-effector of the machine [13].

Analyzing the Demonstration Examples: Let us first ana-
lyze the 10 demonstration pushes to see how the movement
segments actually looked like. By D1-D8 we denote in the fol-
lowing those constraints which are used to actually define the
movement segments for execution. As we do not need poses
(ballistic push!), we did not implement any pose estimation
steps.

To find the prime mover, we take the first N-T transition
(N2,2 − T2,3) in the model-SEC (Fig. 6). Here we use con-
ventional row,column indices just for making it easier to find
the entries in the SEC. Now we subtract the image segment
configuration at key frame at N2,2 from that at T2,3, leading
to a difference image only at the robot-arm image segment as
the red box has not yet moved.

D1:Thus, we obtain as prime mover the “robot arm seg-
ment”.

Then we consider the actual start points of the movement
(red points in Fig. 7), which are widely distributed. The
average is given by the starred red point.

D2: Hence there are essentially no constraints on the
starting point S1 of the complete sequence.

Next, we record at key frame at T2,3 the coordinates of the
red object at the touching point (see green points in Fig. 7).

D3: This defines the endpoint E1 for this specific motion
segment V1.

2There might be some complicated manipulation actions where the arm
(or hand) touches (or picks up) a second object before releasing the first.
In this case, the argument about secondary mover would not hold. But such
manipulations are uncommon and even for a human quite difficult. Hence,
we do not consider them.

We need to make sure that execution can cope with all kinds
of different spatial configurations of robot arm and object.
This requires defining a coordinate system which allows for
such a generalization. To this end we use as the coordinate
origin the segment center of the first touched object. This
definition holds true for all conceivable basic single- or dual-
object manipulation actions as relations between objects are
decisive for the manipulation(s). Hence, we can always fix the
origin on the first one touched and define coordinates relative
to this3, where we use any generic cartesian coordinate system
just keeping it fixed for the remainder of the process.

D4: Thus, the center of the first touched object defines the
coordinate origin.

The second found N-T transition concerns the red and the
green object (N1,3−T1,4). As there is no change between the
relation of robot arm and red object (relation remains T2,4)
we have indeed found a “secondary” mover (the red box) and
a second touched object (the green box).

The segment center of the green object (the second touched
object) defines together with the coordinate origin (center of
red object) the so-called dual object connection vector (short:
connection vector). Also this definition holds for all dual-
object manipulations where a first object is supposed to make
contact with a second object. In all these cases the first object
must travel along a path (vector) that connects it to the second
one. Clearly, in many dual-object manipulations additional
difficult pose-constraints may arise, but the general connection
vector will remain the same.

D5: Thus, the connection vector is spanned between the

3Most basic, uni-manual manipulations are performed either at one object,
leading to some configuration change at the object, or at two objects, where the
first touched object is combined with the second one. Other manipulations,
where more objects are directly involved are very rare (e.g. grasping two
objects keeping both in the hand and combining them with a third one) or
they can be considered as a chain of single- or dual-object manipulations.

Fig. 8. Start and end points as given by demonstration (A), and as calculated
for execution (B).

centers of the first and second touched object. Movement
segment V2 should follow the direction of this vector.

Now we need to define the path length. So far the definitions
do not require any prior knowledge about the actual action to
be performed. They hold for pushing as well as, for example,
for pick-and-place actions. The fact that we want to perform a
pushing action only comes in now: Similar to above, we record
for key frame at T1,4 the coordinates of the red and green
objects at their touching point. They are shown back-projected
onto the start frame in Fig. 7 (pink and blue). One can see
that for a push, start and endpoints E1, S2, E2 of the motion
segments are roughly aligned with the connection vector (see
Fig. 8 A and Fig. 7).

D6: Points E1, S2, E2 can be computed from the 3D-
coordinates representing the intersection of the connection
vector with the edges of the objects (Fig. 8 B).

D7: From this, we also note that the distance ∆ = |E2 −
S2| defines the length of the second motion segment V2. Its
direction is given by the connection vector.

The core of the manipulation ends at the T2,4 − N2,5

transition of robot arm with red object. The final homing
motion of the robot arm, which follows thereafter, is not
relevant for the manipulation and can be performed in any
possible way. We look at the now following N2,5 − A2,6

transition at the prime mover and plot the end points E3

from A2,6 (black points in Fig. 7) producing a set of actually
observed final endpoints of the robot arm, which are also
widely distributed.

D8:Any endpoint for the motion can be used as long as the
robot arm withdraws from the red object in a collision free
way.

D. Execution (Step 8)

The actual execution now is simple. For this, the model-SEC
is used and every transition is treated like a rule. Constraints
D1-D8 are attached to the transition rules as defined above.

For example the first N-T transition corresponds to a rule
that demands that some movement by the prime mover should
take place such that at the end the robot arm touches the red
box and so on.

Thus, a new visual scene is presented to the system and
segmented as usual. Robot arm, red box, and green box are

recognized by their color or by any other object recognition
algorithm. The model-SEC is split into its rules and the actual
movement sequence is prepared by calculating the movement
segments relative to the target objects. Start point S1 is given
by the momentary location of the robot arm. Again we use
as coordinate origin the center of the red object and the
connection vector points to the center of the green object.
This origin- and vector-definition holds for all dual-object
manipulations. For the specific purpose of pushing, and as
explained above, the respective start and endpoints E1, S2, E2

are now computed from the 3D-coordinates representing the
cross-section of the connection vector with the edges of the
objects (Fig. 8 B). The movement amplitude for the second
N-T transition is in the same way given by ∆ = |E2 − S2|.
We note that the touching point of the second object can be
a bit over-estimated by this procedure if the diagonal of the
object is aligned with the connection vector. In this case we
will get a bit of a “push-second-object-away” when executing
the action. This shows that pose estimation will at some point
have to be added, too. Movement from S1 to E1 is defined
by any collision free trajectory all other motion segments are
straight. The last motion segment is a homing movement to
any desired endpoint (E3).

Without having to explain the details, execution now pro-
ceeds by following the N-T or T-N transitions from the model-
SEC using conventional inverse kinematics for the Katana arm
by vector addition of all motion segments until the sequence
of motion segments has been consumed.

It is important to note the the robot has now immediately
also a means to check whether the outcome of its actions are
correct. After each movement of the arm, the machine needs
to check the resulting relational changes between the image
segments. These should match the changes in the model-SEC
(see [5] for an example).

IV. SIMULATION RESULTS

We let the agent realize the pushing action considering
the learned model-SEC, and the motion segments as defined
above. Fig. 9 (a-c) shows how the robot arm pushes the red
box to the green box even if the object locations are different.
In Fig. 9 (d-e) we used a red sphere and a bigger red box as
pushable objects. In such cases the robot arm can still execute
the manipulation. In Fig. 9 (f) a red cone and one more blue
sphere were used. Finally, the robot arm chose and pushed the
red conic to the bigger green box. All those simulation results,
with corresponding depth, segment, and graph representa-
tions, can be found at http://www.dpi.physik.uni-goettingen.
de/∼eaksoye/Movies/PushingAction/. Finally we performed a
self-check and Figure 10 shows the SEC obtained from the
last execution example in Fig. 9, which is very similar to the
model-SEC by which the robot can accept its own execution
as correct. This is true for all executed examples.

These results show that with such a semantic representation
the agent can learn and imitate a ballistic pushing manipulation
independent of object shapes and positions.

Fig. 9. Execution results. (a-c) Robot arm pushes the red box to the green box even if the object locations are different. (d-e) A red sphere and a bigger red
box are used as pushable objects. (f) A red cone is used as a pushable object and one more blue sphere is added in the scene.

Fig. 10. SEC obtained from execution of the last example in Fig. 9.

V. DISCUSSION

In this paper we have introduced a novel representation for
the execution of manipulations by using the semantic event
chains, which focuses on the spatial relations between objects
in a scene. The representation generates column vectors in
a matrix where every transition between neighboring vectors
can be interpreted as an action rule, which defines which
object relations have changed in the scene. In the first step, the
approach learns from demonstration an archetypal event chain
(model-SEC) consisting only of consistently repeated rows
(spatial relations) and columns. Apart from the demonstration
no other supervision is needed in this step, hence SECs are
learned in a model-free way. In the second step, the learned
rules are enriched by determining the movement segments
by which the manipulation can be executed regardless of the
configuration of the objects in a scene. Execution can then
follow the enriched SEC rules and the robot can test its own
success by checking the SEC, which results from execution,
against the model-SEC.

To our knowledge this is the first approach which uses
a learnt abstract symbolic representation for manipulation
learning, execution, and self-recognition. We are aware of the

fact that the algorithm uses some simplifications such as no
object dynamics and pose estimations. Due to this fact, in some
cases it was observed that the object could not be pushed in
the desired direction, because of wrong object and/or gripper
poses and the frictional restrictions both on the background
and object surface.

It is important to note that this procedure can be macronized
for all dual-object manipulations. In a very abbreviated form
the instructions for such a macro would read:

1) Identify prime mover.
2) Identify first touched object by first

N-T transition and set coordinate origin.
3) Define first motion segment
4) (Extract relative poses between prime

mover and first object, if needed).
5) Identify second touched object and fix

connection vector and coordinate system.
6) Define second motion segment for

second N-T transition relative to this
coordinate system. (For pushing do this
by cross-sectioning with object borders).

7) (Extract relative poses between objects
involved, if needed).

8) Define third motion segment (home).

Such a macro can be enriched by adding pose information
from a pose estimation algorithm where required. This would
be needed for a pick&place manipulation (which is also a dual
object manipulation), where the final resulting relative pose
of the two combined objects is most of the time important.
Aspects of grasping an object (e.g. grasp preparation and
the performing of a grasp) are not considered at all in this

Fig. 11. SEC for the action “cutting a carrot with a knife”.

framework. Grasping is a very difficult technical problem but
for manipulation actions it takes usually just a preparatory role.
We do not wish to downgrade the importance of this role but
the actual outcome of the manipulation is in most cases only
in a secondary way affected by the way an object is grasped.
Clearly, if the grasp is totally unsuitable a pick&place action
will fail. But these considerations must happen before the first
N-T transition in the SEC and are not part of this paper.

Note, the presented approach can also be extended to more
general manipulation tasks, e.g. “cutting a carrot with a knife”.
In such a SEC we would observe more relational changes
compared to the pushing example as the newly cut carrot
pieces have to be also included into the representation. The
SEC for cutting two pieces off the carrot is given in Fig. 11.

For execution purposes we again have to analyze N-T and
T-N transitions, which in given cutting scenario will emerge
only between hand and knife, knife and carrot, and knife and
the two new appearing pieces. Therefore, fourth, sixth, and
seventh rows of the SEC given in Fig. 11 can be ignored for
clarity. In addition to the discussed pushing example, for the
cutting scenario grasping of a knife will be required, where
the SEC will provide the temporal anchor point for extracting
relative pose between hand and knife at the hand-knife N-
T transition. The relative pose between knife and carrot will
be important at the transitions N-T in the relation knife-carrot.
Also movement trajectory information for the cutting (actually,
sawing) movement should be attached to the SEC between the
N-T and T-N transitions in the relation knife-carrot, which will
then be used in execution. This shows that the same anchoring
process can also be performed for other actions. Clearly, this
involves very difficult technical steps of pose estimation and
trajectory shaping.

VI. CONCLUSION

In the current study we have shown how a learnt SEC can
be used to “push one object against another one.” We tried
to make clear that this example generalizes to all dual-object
actions, where for different instantiations different pieces of
information (e.g. addition pose information, etc.) have to be
stored. The anchor points for this information, however, exist
as demonstrated in the current study and the inversion of
an event chain is possible. Work has started to address this
problem for a large ontology of manipulation actions [14].

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 (Specific Programme Cooperation,
Theme 3, Information and Communication Technologies) un-
der grant agreement no. 270273, Xperience and grant agree-
ment no. 269959, IntellAct. B.D. acknowledges support from
the Spanish Ministry for Science and Innovation via a Ramon
y Cajal Fellowship.

REFERENCES

[1] A. Billard, S. Calinon, and F. Guenter, “Discriminative and adaptive
imitation in uni-manual and bi-manual tasks,” Robot. Auton. Syst.,
vol. 54, pp. 370–384, 2006.

[2] T. Asfour, P. Azad, F. Gyarfas, and R. Dillmann, “Imitation learning of
dual-arm manipulation tasks in humanoid robots,” Int. J. Hum. Robot.,
vol. 5, pp. 183–202, 2008.

[3] M. Pardowitz, S. Knoop, R. Dillmann, and R. D. Zollner, “Incremental
learning of tasks from user demonstrations, past experiences, and vocal
comments,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B, vol. 37, no. 2, pp. 322–332, 2007.

[4] E. E. Aksoy, A. Abramov, F. Wörgötter, and B. Dellen, “Categorizing
object-action relations from semantic scene graphs,” in IEEE Interna-
tional Conference on Robotics and Automation, ICRA2010 Alaska, USA,
2010.

[5] E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and F. Wörgötter,
“Learning the semantics of object-action relations by observation,” The
International Journal of Robotics Research (IJRR), Special Issue on
’Semantic Perception for Robots in Indoor Environments’ (In press),
2011.

[6] L. Guoliang, N. Bergström, C. H. Ek, and D. Kragic, “Representing ac-
tions with kernels,” in IEEE/RSJ International Conference on Intelligent
Robots ans Systems (IROS), 2011, (To appear).

[7] K. Lynch and M. Mason, “Stable pushing: Mechanics, controllability,
and planning,” in Algorithmic Foundations of Robotics. Boston, MA:
A. K. Peters, 1995, pp. 239–262.

[8] Q. Li and S. Payandeh, “Manipulation of convex objects via two-
agent point-contact push,” Int. J. Rob. Res., vol. 26, pp. 377–403,
April 2007. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1274664.1274673

[9] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, G. Sandini, and G. S,
“Learning about objects through action - initial steps towards artificial
cognition,” in In Proceedings of the 2003 IEEE International Conference
on Robotics and Automation (ICRA, 2003, pp. 3140–3145.

[10] D. Omrcen, C. B. T. Asfour, A. Ude, and R. Dillmann, “Autonomous
acquisition of pushing actions to support object grasping with a hu-
manoid robot,” in IEEE/RAS International Conference on Humanoid
Robots (Humanoids), Paris, France, 2009.

[11] M. Salganicoff, G. Metta, A. Oddera, and G. Sandini, “A vision-based
learning method for pushing manipulation,” in In AAAI Fall Symposium
Series: Machine Learning in Vision: What Why and, 1993.

[12] M. F. Sumsi, “Theory and algorithms on the median graph. application to
graph-based classification and clustering,” Ph.D. dissertation, Universitat
Autonoma de Barcelona, 2008.

[13] F. Wörgötter, A. Agostini, N. Krüger, N. Shylo, and B. Porr, “Cognitive
agents - a procedural perspective relying on ”predictability” of object-
action complexes (oacs).” Robotics and Autonomous Systems, vol. 57(4),
pp. 420–432, 2009.

[14] F. Wörgötter, E. E. Aksoy, N. Krüger, J. Piater, A. Ude, and M. Tamo-
siunaite, Robotics and Autonomous Systems, (submitted).

What a successful grasp tells about the
success chances of grasps in its vicinity

Leon Bodenhagen, Renaud Detry, Justus Piater and Norbert Krüger

Abstract—Infants gradually improve their grasping
competences, both in terms of motor abilities as well
as in terms of the internal shape grasp representations.
Grasp densities [3] provide a statistical model of such
an internal learning process. In the concept of grasp
densities, kernel density estimation is used based on a
six-dimensional kernel representing grasps with given
position and orientation. For this so far an isotropic
kernel has been used which exact shape have only
been weakly justified. Instead in this paper, we use an
anisotropic kernel that is statistically based on measured
conditional probabilities representing grasp success in
the neighborhood of a successful grasp. The anisotropy
has been determined utilizing a simulation environment
that allowed for evaluation of large scale experiments.
The anisotropic kernel has been fitted to the conditional
probabilities obtained from the experiments.

We then show that convergence is an important prob-
lem associated with the grasp density approach and we
propose a measure for the convergence of the densities.
In this context, we show that the use of the statistically
grounded anisotropic kernels leads to a significantly
faster convergence of grasp densities.

I. INTRODUCTION

When using already made grasping experience with
a specific object there is no way to repeat the exactly
same grasp due to uncertainties on pose estimation as
well as the actual grasping process as such. Hence
assumptions about grasps likely to be successful in the
vicinity of grasps already tested and memorized are
required even when exactly the same grasp is repeated
for the same object in a new situation.

To tackle this, recently the concept of grasp densities
[3] has been introduced which describes grasp affor-
dances associated with specific objects in a probabilis-
tic way. It is based on a kernel density estimation [9]
in which the success likelihood of already tried grasps
is described by 6-dimensional kernels (illustrated in
figure 1 bottom left). The set of all grasp affordances
associated with an object can then be expressed as the
sum of these spatially extended 6D kernels (see figure
1 top right). Grasp densities have proven very useful
in applications since they allow for the formulation of
optimal grasps under constraints (see figure 2). In addi-
tion, since grasp densities reflect success likelihoods of
each grasp, these can be used in higher level processes
such as action sequence planning.

L. Bodenhagen and N. Krüger are at University of Southern Den-
mark. Email: lebo@mmmi.sdu.dk
R. Detry is at the Royal Institute of Technology, Sweden
J. Piater is at the University of Innsbruck, Austria

Fig. 1: Illustration of the parallel-jaw gripper (top left)
and the 6D-kernel associated with the grasp (bottom
left). And a visualization of a grasp density associated
with an artificial object (top right). The left part shows
all kernels, the right part only 10% of the kernels in
order to provide a better overview. The original object
is shown at the bottom (right).

However, currently two severe problems exist when
using grasp densities. First, the exact shape of the
kernels being used in previous work is only weakly
motivated and is in particular isotropic (see figure 1
bottom left). Nonetheless high structural dependencies
can be assumed to exist in the space of grasps as-
sociated with objects due to the intrinsic regularities
of objects. The understanding of these regularities and
how they can be expressed in kernels is an interesting
topic in itself. In this context the first contribution of
our paper is to give a statistical justification of the
shape of the success likelihood of grasps in the vicinity
of already successfully tested grasps. This is done by
means of statistically derived conditional probabilities
in grasp simulations.

As we will show in this paper, a second problem
of the grasp density approach [3] is a rather slow
convergence of the algorithm when the complete set
of affordances is supposed to be represented as it
requires a large set of grasp attempts. In this paper
we give evidence that by using the statistically derived
anisotropic kernel, we can speed up the convergence
of the algorithm significantly.

The paper is structured as following. In section
II, we introduce basic notations and methods used
in this paper. In section III, we introduce the results
on our statistics which motivate the choice of a new
anisotropic kernel. The adaption of the new anisotropic
kernel to the statistical results is outlined in section III

Fig. 2: Grasp success likelihoods learned by means
of exploration are represented in green. A local max-
imum indicates optimal grasp points. Constraints of
graspability (e.g., on invoked by workspace constraints
as indicated by the sharp green border) can be easily
integrated.

as well as its application to grasp density estimation.

II. METHODS

In the following we provide a detailed overview of
the different methods used throughout this paper. In
section II-A our parametrization of grasping actions
is defined, the association from actions to objects
using grasp densities is described in section II-B. Two
different designs for anisotropic kernels are outlined
in section II-C. The simulation environment wherein
actions are performed is introduced in section II-D
and in section II-E the choice of bandwidths for an
isotropic kernel is discussed.

A. Grasps and their transformations

A grasping action, A, is in this context defined as a
point in the special Euclidean space, A ∈ SE(3) and
defines the transformation from the object reference
frame to the tool which performs the grasp. In this
work, the tool is considered to be a parallel finger
gripper — the setup is illustrated in Fig. 3.

Based on a set of evaluated and successful grasps,
S = {A1, . . . , An}, for one specific object it is
investigated if a grasp still would be successful when
it becomes transformed locally:

P (TRBM (A) is successful|A is successful)

where TRBM (x) denotes a rigid body motion applied
to the action A, thus

TRBM : SE(3)→ SE(3)

Note that A and TRBM , although both elements of
SE(3) have two separate meanings, A representing a
grasp and TRBM a rigid transformation.

The success of a transformed action, TRBM (A), is
estimated by comparing it with all grasps in S using
the grasp density (introduced in section II-B). To be

able to do a reasonable comparison it is required that
the density covers the entire object. It is not feasible
to evaluate every TRBM (A) physically or even in a
simulator as this still would be far too time consuming.

B. Grasp Densities

A grasp density models the distribution of successful
grasps relative to an object. A density is defined as a
probability density function, pX|O=s (x), where X ∈
SE(3) represents a gripper pose and O ∈ {s, f} is
the outcome of a grasp which can be either success
or failure. The value of a grasp density at a concrete
pose x ∈ SE(3) is proportional to the likelihood of a
successful grasp when the gripper is moved to this pose
and closed. A typical applications for grasp densities
is for example the search for a local maximum which
provides the user with a grasp hypothesis with a high
likelihood of being successful (see figure 2). External
constraints, e.g. due limited workspace of a robot, can
easily be integrated by limiting the search space (see
figure 2).

A grasp density d(x) is estimated using kernel
density estimation (see also [2], [9]):

d(x) =

n∑
i=0

wiKµi,σ(x) (1)

where wi is a weight that compensated the impact
of the sampling strategy. The kernel K is defined
as a product of a trivariate Gaussian kernel, N, for
the position and a orientation kernel Θ defined on
SO(3) by the von-Mises-Fisher distribution [5] (see
also figure 1):

Kµ,σ(x) = Nµt,σt(λ)Θµr,σr (θ) (2)

where

Θµr,σr (θ) =
1

2
C4(σr)

(
eσr cos(β) + e−σr cos(β)

)
(3)

β = cos−1
(
µTr θ

)
(4)

where σt denotes the width of the kernel for the
position and σr denotes the width of the kernel for the
orientation. Similar µt and µr denote the mean values
in SE(3). λ and θ are the pure positional respectively
orientional part of x = (λ, θ) — orientations are in
all cases represented using quaternions. C4(σr) is a
constant which ensures that the density integrates to
one. Note that Θµr,σr (θ) basically depends on the
angle between two quaternions which is a scalar (for
further details, see [3]).

C. Anisotropic kernels

One property of the kernel K as introduced in
equation 2 and in more detail in [3] is that both
the position and the orientation are modeled isotropi-
cally (see figure 1a). Different strategies to model an
anisotropic kernel, K̂, which expresses the structural
properties of successful grasps in a neighborhood have

been considered. Note that an anisotropic kernel can
be defined as a sum of multiple isotropic kernels with
constant widths:

K̂S
µ,σ(x) =

m∑
j=0

wjKµj ,σj (x) (5)

allowing for an approximation d̂(x) of d(x) by

d̂(x) =

n∑
i=0

wiK̂
S
µ,σ(x) (6)

Although the approach in equation (5) is computa-
tionally not optimal it can be used to investigate the
impact of using anisotropic kernels for the generation
of grasp densities and it does not imply any restriction
on the shape of the anisotropic kernel.

The alternative is an analytic expression of K̂µ,σ(x).
Remembering that the value of original kernel used
for the orientation is dependant on the angle between
two quaternions (see equation 3). This angle can be
weighted which leads to the following formulation of
the kernel:

Θ̂µr,σr (θ) =
1

2
C4(σr)

(
eσr cos(wµr (θ)β)

)
+

1

2
C4(σr)

(
e−σr cos(wµr (θ)β)

) (7)

where the angle is weighted by wµ(θ), which is similar
to Mahalanobis distance measure [8]:

wµr (θ) =

√
(θ − 0)S−1Rµr (θ − 0)

′ (8)

where S is a diagonal matrix that describes a 4D-
ellipsoid and Rµr represents the rotation that aligns
the ellipsoid with the mean-orientation of the kernel.
Similarly the Gaussian kernel N can be defined using
a covariance matrix to use the Mahalanobis distance
rather than the Euclidean. In this paper we describe
the basis for such an approximation as outlined in the
discussion.

D. Simulator and Simulations
As a large set of evaluated grasps is required to

achieve complete coverage of grasp affordances a sim-
ulator [7] has been used (in total we simulated about
10.000.000 grasps). The setup is illustrated in figure 3.
The use of a simulator allows us to evaluate large sets
of grasps efficiently while avoiding the overhead of
using a real setup and circumventing the introduction
of errors by usage of a pose estimation algorithm to
obtain the pose of the object.

In the simulator both objects and grippers are de-
fined by geometric models as well as mass and fric-
tion information. While the material of the gripper is
known, we estimate the mass of the objects and assume
them to be made of plastic. For the gripper it is in
addition ensured that the realistic constraints on the
position, velocity and acceleration of the fingers are
maintained.

Fig. 3: Screenshot from the simulator.

The positions of the grasps that are to be simulated
are obtained by defining a 6D grid covering all the
poses that are in the vicinity of the object. The resolu-
tion of this grid needs to be limited in order to ensure
that simulation still is tractable. In our simulation, we
used a grid of 10mm and approximately 15 degrees.

The simulator models the interaction between the
tool, a simulated Schunk PG70 parallel-jaw gripper
with a maximum finger distance of 70mm, and the
object during the grasping process using a physics
engine. The execution of a grasp is finished when either
the gripper is closed entirely or the object prevents
it from doing so (see figure 3). Grasp hypotheses
that would lead to collisions between gripper and
object beforehand are discarded. Whether a grasp is
successful or not is estimated by calculating the grasp
force wrench and determining whether the grasp can
counteract gravity (see also [4]). If that is the case, the
grasp is considered to be successful. We only consider
the force wrench as the simulation is based on hard
contacts. Therefore a stable grasp may consist of only
two contact points, although the object might rotate
freely on the axis defined by the two contact points.

The four different objects used in our simulations are
shown in figure 4. The screwdriver and the coffee-mug
have been found on the web1. Their size matches the
size of common real world objects. The screw driver is
approx. 280mm long and up 30mm wide, the body of
the cup is approx. 60mm wide and 80mm high. The
elongated D-shaped object (top right in figure 4) and
the cone are purely artificial objects. The width of the
cone is 80mm at it’s base and 20mm at the top while
the overall length is 400mm. The dimensions of the
elongated D are approx. 140mm× 140mm× 350mm.

Figure 5 shows a visualization of a grasp density
that has been created for the cone. For the projections
of the density a plane has been defined that contains
the main axis of the cone and is parallel to the image

1http://sketchup.google.com/3dwarehouse/

Fig. 4: The different objects used for the simulations.
Some of the objects have been scaled for illustrative
purposes.

(a) (b)

Fig. 5: An example of a grasp density. The more
opaque the red color is, the higher the values of the
density is at this point. (a) illustrates the distribution of
all grasps, (b) illustrates the distribution of all grasps
that are oriented vertical to the image plane and aligned
with the main axis of the object.

plane of a virtual camera. Subsequently the density has
been projected on the plane in red. The opaqueness of
the color indicates the value of the density where com-
pletely opaque refers to the maximum and completely
transparent regions indicate that no successful grasps
have been experienced there. Note that the projections
have been normalized individually to guarantee that
the highest value of projection saturates the red colore
channel. In figure 5a all grasps have been projected
showing that most successful grasps occurred at the
narrow end of the cone. Figure 5b show the distribution
of all grasps that are oriented vertical to the image
plane and aligned with the main axis of the object.

E. Optimal isotropic kernels

The grasps obtained using the simulator are used
to create a grasp density. This process requires that a
suitable kernel width is selected. There is a trade-off
between having small kernels requiring a fine-grained
density using a large number of kernels to reach a full
coverage but allows to have relatively sharp borders
separating successful and non successful grasps and
having wide kernels which ensure that entire graspable
part of the object is covered by the density using fewer
samples with the cost that borders between successful

Number of samples

S
im

ila
ri

ty
 [

0
;1

]

Fig. 6: Bootstrapping applied to a density using three
different kernel widths.

and non-successful grasps are blurred. In this section
we discuss this trade-off aiming at estimating a suitable
kernel width.

Since the set of true grasp affordances is not di-
rectly accessible, it is difficult to select proper widths.
Therefore the concept of bootstrapping (see [6]) is
utilized in order to achieve a convergence measure
s. Bootstrapping is in general a strategy to estimate
statistical properties of any measurement by estiming
these properties directly on samples of the distribution
that approximates the measurement. The measurement
in our case is the overall graspability of the object,
estimated by a grasp density. Each grasp is considered
to be a sample of the overall graspability. Given a
grasp density based on N samples, N new samples are
drawn randomly with replacement and a new density
is created based on these samples. This procedure is
repeated B times and the similarity s of the B re-
sampled densities is estimated:

s =
1

B

B∑
b=1

BC (dµ (x) , db (x)) (9)

where BC() denotes the Bhattacharyya Coefficient [1]
and dµ(x) is the mean density over the B sets. Given a
large value for B, d(x) is used as an approximation of
dµ(x) in equation (9). Note that although s is defined
similarly to the variance, the variance approaches zero
when s approaches the value of one, which is inter-
preted as the density being fully converged.

The more the individual kernels of a density overlap,
the smaller the variance of the re-sampled densities is
expected to be and as a consequence the similarity s
will approach 1. Figure 6 shows the convergence of
three densities which are based on the same samples
but using different widths. Although it is obvious
that the larger kernel leads to a faster convergence,
it is important to keep in mind that the densities do
not converge to the very same density as each larger
kernel covers a larger region, even though this does
not necessarily reflect the true grasp density. When
samples are drawn randomly (and not obtained by
the search for a maximum) from the final densities,
the average success ratios of the samples have been
found to be 9.76% (45mm), 18.18% (30mm) and
30.08%(15mm). Note that these numbers do present

Object successes failures ratio
Cone 166.690 3.331.043 5.0 %
Elongated D 2.898 99.764 2.9 %
Screwdriver 159.947 1.574.709 10.1 %
Mug 19.051 4.127.861 0.46 %

TABLE I: Overview over the number of successful and
failing grasps for the individual objects and the success
ratio.

results in a very sub-optimal use of grasp densities
in which also grasps are tested which are known to
have a low success likelihood (i.e., where the grasp
density has low values). This can be very useful, when
we want to explore grasps corresponding to areas in
SE(3) where there are unstable grasps. It is a quality
of the grasp density also to represent these kind of
areas appropriately. However, one needs to be aware
of the trade–off discussed here.

III. RESULTS

The estimated conditional probabilities
P (TRBM (A) is successful|A is successful) of the
success of the displaced successful grasps for various
objects is given in section III-A. Results in the context
of the adaption of an anisotropic kernel to these
statistics is outlined in section III-B. results on the
convergence using this anisotropic kernel are given in
section III-C.

A. Statistical Results

A feasible method for an investigation of the results
of the statistical investigation are multidimensional his-
tograms where one axis covers the likelihood of a grasp
to be successful and each direction of displacement
leads to an additional axis. As it is hard to visualize
high-dimensional histograms, only two dimensions of
displacements will be covered in a single histogram
and the mean success likelihoods of the grasps associ-
ated with the individual bins are computed.

Given an object that can be grasped at its edge, it
is expected that successful grasps can be translated
along the edge (see figure 7a where the green marker
represents a successful grasp and the orange ones
represent grasps we would expect to succeed as well).
However, grasps will also be translatable on the two
orthogonal directions depending on the finger-width of
the gripper (in conjunction with the thickness of the
edge) as well as the length of the fingers. Further it
is expected that grasps can be rotated around the axis
defined by the normal of the surface ending at this
edge (illustrated in figure 7b). Figure 7c indicates the
associated coordinate system.

The numbers of succeeding and failing grasps for
the different objects are listed in table I. Note that the
success likelihood is very different for the different
objects. The screwdriver is relatively easy to grasp,
even a random grasp has a success chance of more

(a) (b)

xy

‐z

(1) (2) (3)

(c)

Fig. 7: (a) and (b):Given that the green grasps (visual-
ized in 2D) have been found to be successful and the
gray box represents the grasped object, it is expected
that the orange grasps would be successful as well. (c)
Illustration of the gripper (1), a simplified view (2) and
the 3 axes of the associated frame (3).

than 10%. For the ’Elongated D’ a random grasp has
a probability of success of less than 3% while for the
the cone the success likelihood is 5%. For the mug
a random grasp has a very low success chance of
only 0.5%. Note that for the mug only few grasps will
succeed since there are only few graspable positions,
and these need to be approached with carefully aligned
grasp orientation. For each object an individual grasp
density has been created based on the successful grasps
(see, e.g., figure 5). Note that the kernel K does not
handle the fact that the gripper is mirror-symmetric
around its approach axis. Therefore each sample is
used to create the density both unaltered and rotated
180 degrees around the approach-axis of the gripper
(the Z-axis, illustrated in figure 7c).

Subsequently each successfully tried grasp is used
to generate a set of samples in its vicinity. For each
of these samples the grasp density associated with
the object is used to estimate the likelihood of graps
corresponding to the new sample to be successful. As it
is intractable to sample the complete 6D neighborhood
for every tried grasp, a kernel is defined at the location
of a tried grasp. Subsequently this kernel is sampled.
Thereby the entire neighborhood of grasps can be
covered, without exhausting it with every single tried
grasp.

The average success likelihoods of the trans-
formed grasps relative to the transformation (i.e.,
P (TRBM (A) is successful|A is successful)) for the
object ’Elongated D’ is shown on the histograms in
figure 8. The color of each bin reflects the success-
likelihood of the grasps, 0 at the scale indicate 0%
success likelihood, 1 indicates 100%.

The histograms in the top row cover the translations
— each histograms covers the translations in the X-
and Y- axis (horizontal resp. vertical axis on the
histogram). Further, each histogram is accumulated
over a range of displacements of 16mm in the Z-axis
(−24mm to −40mm in the leftmost histogram, 24mm
to 40mm in the rightmost). Each histogram in the
bottom row covers two axis of rotations. The relation
between a grasp and the different axes is shown in

P (TRBM (A) is successful|A is successful), object not aligned

0 90 180
0

90

180

ro
t

z

[D
e

g
re

e
]

Fig. 8: Results for the object ’Elongated D’ for both rotation and translation using the grasp densities with
30mm wide kernels for position.

figure 7c.
Results indicate that successful grasps are more

robust towards translation in x– and z–direction and
rotations around their y-axis than the two remaining
axes. This confirms our expectations visualized in fig-
ure 7. Note that when rotations are applied symmetries
become explicit (see bottom row in figure 8). When a
grasp for instance is rotated 180 degrees around both
it’s x- and y-axis, the resulting configuration will be
identical with the initial one, just mirrored around the
Z-axis which is identical with the approach-vector of
the tool. Due to symmetry of the gripper the resulting
grasp is considered to be identical with the initial one.

However, the results are not as explicit as one might
have expected. It can be observed that a wide range
of different orientations may still lead to a successful
grasp at the very same position. Hence grasps do
not have to be aligned with the edge of the object
in order to be successful. But when the grasp and
the object are not aligned, the translations we apply
are not aligned with the object either and will lead
to likely to be unsuccessful grasps. This becomes
evident when we look at the corresponding statistics
when we align the kernel with the main orientation
of the object (see figure 9): It can be seen that the
anisotropic structure is much more expressive both in
translation and orientation. As a consequence of this
investigations we can conclude that it is important to
align an anisotropic kernel with the visually extracted
edge shape structure.

In figure 10 - 12 we see the analog statistics (only
the two center sub-figures corresponding to figure 9
and 8 are displayed). As we can see, the results for
the screwdriver (figure 10) and the cone (see figure
12) look similar to the object ’Elongated D’. However,
the structure of the conditional probabilities is different
for the mug (figure 11). The reason is that the mug
has only highly curved edges for which only slight

translations of successful grasps lead to errors. Here
also an alignment to the actual curved object shape
would be appropriate.

0

0.2

0.4

0.6

0.8

1

S
u
cc

e
ss

 l
ik

e
lih

o
o
d

0 1.10.6

0.6

1.1

X-axis

Y-
a
x
is

(a) Rotations (aligned axes)

0

0.2

0.4

0.6

0.8

1

S
u
cc

e
ss

 l
ik

e
lih

o
o
d

0 80.040.0

40.0

80.0

X-axis

Y-
a
x
is

(b) Translations (aligned axes)

0

0.2

0.4

0.6

0.8

1

S
u
cc

e
ss

 l
ik

e
lih

o
o
d

0 1.10.6

0.6

1.1

X-axis

Y-
a
x
is

(c) Rotations (original axes)

0

0.2

0.4

0.6

0.8

1

S
u
cc

e
ss

 l
ik

e
lih

o
o
d

0 80.040.0

40.0

80.0

X-axis

Y-
a
x
is

(d) Translations (original axes)

Fig. 10: Histograms for the screwdriver

0

0.2

0.4

0.6

0.8

1

S
u
cc

e
ss

 l
ik

e
lih

o
o
d

0 1.10.6

0.6

1.1

X-axis

Y-
a
x
is

(a) Rotations

0

0.2

0.4

0.6

0.8

1

S
u
cc

e
ss

 l
ik

e
lih

o
o
d

0 80.040.0

40.0

80.0

X-axis

Y-
a
x
is

(b) Translations

Fig. 11: Histograms for the mug (not aligned)

P (TRBM (A) is successful|A is successful), object aligned

0 40 80
0

40

80

0 90 180
0

90

180

ro
t

z

[D
e

g
re

e
]

Fig. 9: Results for the object ’Elongated D’ when the grasps are translated aligned with the object structure.

0

0.2

0.4

0.6

0.8

1

S
u
cc

e
ss

 l
ik

e
lih

o
o
d

0 1.10.6

0.6

1.1

X-axis

Y-
a
x
is

(a) Rotations (aligned axes)

0

0.2

0.4

0.6

0.8

1

S
u
cc

e
ss

 l
ik

e
lih

o
o
d

0 80.040.0

40.0

80.0

X-axis

Y-
a
x
is

(b) Translations (aligned axes)

0

0.2

0.4

0.6

0.8

1

S
u
cc

e
ss

 l
ik

e
lih

o
o
d

0 1.10.6

0.6

1.1

X-axis

Y-
a
x
is

(c) Rotations (original axes)

0

0.2

0.4

0.6

0.8

1

S
u
cc

e
ss

 l
ik

e
lih

o
o
d

0 80.040.0

40.0

80.0

X-axis

Y-
a
x
is

(d) Translations (original axes)

Fig. 12: Histograms for the cone

B. Adapted kernel

When using the definition of a kernel given in
equation (5) the anistropic kernel is defined as a sum
of isotropic kernels. This sum of kernels can directly
be obtained by drawing are sufficiently large number
of samples from the results that form the basis for the
histograms in section III-A. Figure 13 illustrates the
similarity between the results used for the histograms
and the anisotropic kernel with respect to the number
of samples used for the kernel estimation. The results
show that a rather high number of samples are required
in order to achieve estimate of the anisotropich kernel.
In order to limit the computational costs we limit the
kernel to consist of 900 samples which leads to a
similarity of approximately 0.8, estimated using the
Bhattacharyya Coefficient [1].

0 200 400 600 800 1000 1200 1400 1600 1800

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of samples

S
im

ila
ri

ty
 [

0
;1

]

Fig. 13: Comparing the sampled kernel with the full
data set used for the histograms for different numbers
of samples.

C. Convergence

The usage of the anisotropic kernel does not imply
significant changes to the learning of a grasp density.
Independent on the type of the kernel, one kernel is
added to the density every time a successful grasp is
experienced. When the anisotropic kernel is used all
kernels that it consists of are transformed according
to the pose of experienced grasp and subsequently
the composition of kernels is added to the density.
Figure 14 shows a comparison of the convergence of
two densities (both are based on the set of grasps
learned for the elongated D), one using the anisotropic
kernel and one using the isotropic kernel with a similar
width. It becomes explicit the density that is using the
anisotropic kernel converges significantly faster.

IV. CONCLUSION AND DISCUSSION

In this paper we have investigated the conditional
probabilities of grasps in the vicinity of an already
performed successful grasp for a number of objects.
We found a large degree of structure in these condi-
tional probabilities with large anisotropies. We have
used these anisotropies to derive statistically justified
kernels for grasp density estimation [3] and we have

50
150

250
350

450
550

650
750

850
950

1050
1150

1250
1350

0.75

0.8

0.85

0.9

0.95

1

isotropic
anisotropic

Number of samples

S
im

ila
ri

ty
 [

0
;1

]

Fig. 14: Comparing convergence of the isotropic kernel
and the anisotropic kernel. The vertical bars indicate
the standard deviation of the individual similarity mea-
surement.

shown that based on these kernels a faster conver-
gence of grasp densities can be achieved. By that
the statistical experience made during grasping can
influence the actual learning approach on a meta level.
We believe that the efficient use of such statistically
derived conditional probabilities is one of the main
reasons for successful development of cognitive agents.
We have also shown that it is important to align the
derived kernels with the actual structure of the object
shape: Considering the scenario in [3] where local 3D
edge-descriptors of the scene have been used to create
a proposal grasp density describing potential grasps.
We imagine that the introduction of anisotropic kernels
allows us to utilize the edge information further. Rather
than generating a proposal density consisting of a vast
number of kernels, anisotropic kernels can be fitted
to edge segments, thereby covering structural similar
regions. As a consequence less samples are needed
to formulate a proposal density and less samples are
required to sample the entire object.

In future work we will finalize the experiments with
the analytically defined anisotropic kernel. Further-
more we aim at comparing the simulation data with
real robot data and to derive higher order conditional
probabilities associated with more complex feature
grasp associations such as coplanar and/or parallel edge
and surface structures.

V. ACKNOWLEDGMENTS

This work was supported by the EU Cognitive
Systems project XPERIENCE (FP7-ICT-270273).

REFERENCES

[1] A. Bhattacharyya. On a measure of divergence between two
statistical populations defined by probability distributions. Bull.
Calcutta Math. Soc., 1943. p. 99 - 109.

[2] R. Detry, E. Başeski, N. Krüger, M. Popović, Y. Touati,
O. Kroemer, J. Peters, and J. Piater. Learning object-specific
grasp affordance densities. In Int. Conf. on Development and
Learning, 2009.

[3] R. Detry, D. Kraft, O. Kroemer, L. Bodenhagen, J. Peters,
N. Krüger, and J. Piater. Learning grasp affordance densities.
Paladyn Journal of Behavioral Robotics, (accepted), 2011.

[4] C. Ferrari and J. Canny. Planning Optimal Grasps. In IEEE Int.
Conf. on Robotics and Automation, pages 2290–2295, 1992.

[5] R. Fisher. Dispersion on a sphere. Royal Society of London.
Series A, Mathematical and Physical Sciences, Volume 217
Issue 1130:295–305, 1953.

[6] R. W. Johnson. An Introduction to the Bootstrap. Journal of
the Royal Statistical Society, 23:49–54, 2001.

[7] J. A. Jørgensen and H. G. Petersen. Usage of simulations to plan
stable grasping of unknown objects with a 3-fingered Schunk
hand. In IEEE Int. Conf. on Intelligent RObots and Systems
(IROS), Workshop - Robot simulators: available software, sci-
entific applications and future trends, 2008.

[8] P. C. Mahalanobis. On the generalised distance in statistics.
Proceedings of the National Institute of Science of India, 12:49–
55, 1936.

[9] B. W. Silverman. Density Estimation for Statistics and Data
Analysis. Chapman and Hall/CRC, 1986.

LEARNING PEG-IN-HOLE ACTIONS WITH FLEXIBLE OBJECTS

Leon Bodenhagen1, Andreas R. Fugl1,2, Morten Willatzen2, Henrik G. Petersen1 and Norbert Krüger1

1Maersk McKinney Moller Institute, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
2Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark

{lebo, arf, hgp, norbert}@mmmi.sdu.dk, willatzen@mci.sdu.dk

Keywords: Peg-In-Hole, Flexible Objects, Action Learning

Abstract: This paper presents a method for learning Peg-In-Hole actions with flexible objects. To learn the actions we
parametrize the entire trajectory by a single point and use Kernel Density Estimation to reflect the different
variations of the action and the object characteristics. The object is characterized by its elastic behaviour rather
than geometric properties. Thereby an action learned for one object can be transferred to a new object that
behaves similarly although it might have different elastic properties, dimensions and geometries. To bootstrap
the learning mechanism, the system performs simulated actions and utilizes the detailed information obtained
from the simulation environment. Subsequently Peg-In-Hole actions are tested successfully on the real life
setup.

1 Introduction

Humans can perform a huge variety of different and
apparently simple tasks, but often such tasks are diffi-
cult for robots to perform. The Peg-In-Hole problem
is one of these tasks and has been studied in numer-
ous works with different perspectives and objectives,
often as an example of an assembly task.

One of the aspects investigated is for instance, in
addition to the insertion of the peg, the exact align-
ment of the peg with the hole (Bruyninckx et al.,
1995). Assuming that the shape of both the (rigid) peg
and the hole is known, the contact forces during the
operation can be predicted (Meitinger and Pfeiffer,
1996) and used to optimize the action. More recent
approaches often focus on sub-aspects of the classic
Peg-In-Hole task. Elastic contacts have for instance
been utilized in (Xia et al., 2006) to avoid wedging.

However, to our knowledge only little work has
been done with flexible objects in the context of Peg-
In-Hole operations or assembly tasks in general (see
also (Jiménez, 2011)). In (Villarreal and Asada, 1991)
the concept of flexible objects has been used to model
finite collision forces between the object and the rim
of the hole and thereby aid the motion planning by
providing it a “buffer“, but in general the shape is
considered to stay roughly constant. Path planning
with simple, flexible 3D objects like tubes that change
their shape during operation are done by (Anshelevich
et al., 2000). They model the objects by mass-spring

models and perform a random search for the path with
the minimal energy. Such an approach is however
not feasible when a variety of non-trivial 3D shapes
is considered.

In general it is intractable to model and plan the
entire action when the deformation of the object has
to be considered during the action, therefore this pa-
per investigates an approach that avoids heavy online
calculations. Furthermore a classic force-torque sen-
sor can hardly be utilized as any contact will, in addi-
tion to measurable forces, cause a deformation of the
object - hence standard approaches used for Peg-In-
Hole actions with rigid objects cannot be applied.

In this paper we propose a system that learns how
to perform the Peg-In-Hole operation with flexible
objects (see Figure 1). The learning mechanism has
only little prior knowledge about the object; instead
the learning utilizes a physical modelling from the
elastic properties of the object. The elastic behaviour
is derived from calculating the deformation of the bot-
tom surface in the object. By this surface the ob-
ject is implicitly deformed in the learning stage. This
allow us to handle non-trivial 3D shapes in a low-
dimensional way. Further a learned action can be
transferred to a similar but not necessarily identical
object. This leads to a system that can perform in real
time as the demand for servoing or online modelling
becomes minimized, assuming that most objects in
e.g. a production scenario indeed are similar.

The overall system that forms the context for the

action learning is outlined in section 2 and the applied
methodology is described in section 3. Section 4 sum-
marizes the experiments that have been done in order
to investigate the usability of the suggested approach.

2 System Setup

The overall system, presented in more detail in (Jordt
et al., 2011), corresponds to a short production line:
Objects are transported by a conveyor belt, a 3D scan
of the travelling object provides a 3D triangular mesh
of the object. Assuming that the material properties
are known, the elastic behaviour of the object is mod-
elled. At the end of the conveyor this knowledge is
used to grasp the object. Subsequently an additional
action can be performed. The Peg-In-Hole operation
is investigated in this paper as it has been considered
to be characteristic for many tasks where some sort of
object is inserted into a machine in order to be pro-
cessed.

This paper (in contrast to (Jordt et al., 2011)) fo-
cuses primarily on the modelling of deformations as
well as the learning of Peg-In-Hole actions. The robot
arm with an 1-degree of freedom gripper attached is
shown on Figure 1 with a close-up of a Peg-In-Hole
operation.

Figure 1: The physical setup used for the experiments.

3 Methods

In the following a detailed overview of the compo-
nents which this papers focuses on is given. The mod-
elling of the deformations of objects is described in
section 3.1, in section 3.2 the physical modelling is
condensed into a feature vector and the formalization
and learning of actions is defined in section 3.3.

3.1 Deformation Modelling

Deformation modelling in the context of Peg-In-Hole
operations, is concerned with modelling the flexible
objects in the scene and solving for their behaviour.
We restrict the problem to the situation of the peg be-
ing substantially more flexible than other objects in
the scene. Thus the boundary of the plate, defining
the hole for insertion is assumed to be a rigid body, as
are the jaws of the robot gripper grasping the peg.

For the flexible peg we want to determine the me-
chanical response, i.e. how do material points in the
peg change as a function of time and external influ-
ences (modelled as forces). We assume the elastic
parameters such as stiffness and mass density to be
available with reasonable accuracy.

In the following, the approach to model deforma-
tion for the purpose of learning Peg-In-Hole actions
will be outlined.

3.1.1 Deformation description

Let x be a material point in the undeformed object.
The object deforms and the new position of the point
after deformations are added is x′. The displacement
vector for some point is thus u = x′−x , or in compo-
nent form:

ui = x′i− xi (1)

where i = 1,2,3 refers to the x,y,z components. The
displacement vector is a dense and very general de-
scription as it explicitly provides the deformation of
every material point in the flexible object. How-
ever directly using the deformation vector of material
points for the parametrization of general 3D objects
becomes prohibitively expensive. For the purpose of
reducing the time required for sampling when learn-
ing Peg-In-Hole actions with flexible objects, it is cru-
cial to have a sparse but still accurate representation
of a deformed surface.

(Samareh et al., 1999) reviewed several shape
parametrization techniques, including discrete, poly-
nomial and spline representations. Their goal was to
investigate the applicability of the techniques to de-
scribe aircraft airfoils with the minimum amount of

parameters. This is important for the purpose of au-
tomatic optimization, where the shape of the wing is
deformed in small increments to find the best possible
aerodynamic design. In this process a large parame-
ters space must be searched, and thus having a small
amount of parameters is crucial for the feasibility of
the approach.

The parametrization by the discrete approach cor-
responds to sampling the displacement vector at regu-
lar intervals at the boundary. It is the most straightfor-
ward method, and can approximate any shape. How-
ever as (Samareh et al., 1999) points out, this degree
of freedom is rarely useful due to the inherent smooth-
ness of many objects. For instance smooth, curving
features will require many discrete points and accord-
ingly the number of parameters can increase to unac-
ceptable sizes.

Parametrization by polynomia and splines on the
other hand exploits the smoothness of the original
shape. For smooth shapes they will reduce the number
of parameters considerably. The non-uniform ratio-
nal B-spline, NURBS (Piegl and Tiller, 1997), is best
suited for handling a large set of shapes, including an-
alytical shapes such as cylinders, cones and scanned
unstructured 3D data (Samareh et al., 1999; Bardinet
et al., 1995).

As demonstrated by (Jordt et al., 2011) a real-
time tracking of a detailed 3D mesh, using depth and
colour video from a Kinect camera, can be coupled to
a low-dimensional NURBS surface, see Figure 2.

Figure 2: A scanned 3D mesh of an object and its associ-
ated NURBS surface (Figure courtesy of (Jordt et al., 2011),
with kind permission by the authors)

Similarly we decouple the geometry from the de-
formation. Only the deformation of the control points
in the NURBS surface is used as a a parameter in the
learning stage.

The deformation modelling is thus reduced to the

problem of finding the deformation for the control
points of the NURBS surface. When at some point
the whole surface deformed geometry is needed (for
instance for collision detection), it is derived from the
deformed control points. Having a deformation that
models to the NURBS surface also enables easier cou-
pling to the NURBS based deformation tracking.

3.1.2 Choice of model

The Bernoulli-Euler (BE) beam theory has since its
development in the 18th century, been a core element
in structural engineering. Its’ formulation and param-
eters are readily understandable, and many problems
have analytical solutions. It is a simple model how-
ever, as it only accounts for the bending moment and
lateral displacement of the beam.

x

z

y fixed end free end

Figure 3: A cantilevered beam.

Several additional models have been developed
during the years to improve on the BE model. Most
noteworthy of these is the Timoshenko model (Timo-
shenko, 1921), which takes into the account both ro-
tation inertia and shear deformation.

To account for the additional effects, the Timo-
shenko model adds a dependent variable to account
for the angular displacement and a parameter known
as the shape factor. The shape factor is a function of
Poisson’s ratio for the material, the wave frequency
and the shape of the cross section. For the static case,
the shape of the cross section is the most dominant
effect on the shape factor1.

The slenderness ratio is the ratio of the beam
length to the radius of gyration, calculated as
L/
√

I/A. It characterizes the magnitude of differ-
ent forces involved in the beam equations. In the
work of (Seon M. Han, 1999) they recommend the
use of the simple BE model for large slenderness ra-
tios (s > 100), and the Timoshenko model for smaller
ratios where second order effects of rotation and shear
become important.

For our present experiments, we target moderately
slender objects (100 < s < 150). Accordingly we use
the BE beam theory.

1Poisson’s ratio varies for normal materials only be-
tween 0 and 0.5 (Landau et al., 1986)

3.1.3 Bernoulli-Euler beam theory

The governing equation for the dynamic BE beam can
be formulated as a partial differential equation in the
deflection w of the beam

∂2

∂x2

(
EI

∂2w
∂x2

)
=−µ

∂2w
∂t2 +q (2)

where w(x, t) is the deflection as a function of position
x on the beam and time t. E is Young’s modulus, I is
the second moment of inertia and q the is body load.

Young’s modulus, E is a material dependent pa-
rameter and represents the stiffness of the material.
It may be either measured or derived from tabulated
data. For homogeneous materials it is a constant.

The second moment of inertia, I is a geometry de-
pendent parameter, quantifying resistance to bending
at a given cross section. It is defined as I =

∫
A z2dA,

where z is the height of the cross section, being per-
pendicular to the bending. For a geometry that has a
constant cross section (e.g. a simple beam) it is a con-
stant. For the special case of a rectangular cross sec-
tion with height h and width b, I is equal to bh3/12.
This suggests a strong dependence of the thickness of
such a beam, to the resulting deformation, i.e. varying
the thickness will give the strongest resulting change.

The body load, q represents an external force act-
ing upon the beam. It is defined as a force per unit
length. Point forces may be modelled with the use of
the Dirac delta function.

For the static case of a homogeneous beam with
constant cross section, Equation 2 reduces to the or-
dinary differential equation (ODE)

EI
d4w
dx4 = q(x) (3)

where w(x) is the deflection now only as a function of
position, and E and I are both constants.

The static beam equation, Equation 3 is a fourth-
order ODE. In order to find a unique solution for
the deformation profile w(x), four boundary condi-
tions must be prescribed. Assuming that the gripper
is placed such that the left end of the object at x = 0 is
fixed in space (both deflection and slope equal to zero)
we have the boundary conditions for the clamped end

w|x=0 = 0 ;
∂w
∂x

∣∣∣∣
x=0

= 0 (4)

For the other end of the object at x = L, we pre-
scribe the boundary conditions (both the bending mo-
ment and the shear force in the beam is zero) corre-
sponding to that this part of the object is free to move

∂2w
∂x2

∣∣∣∣
x=L

= 0 ;
∂3w
∂x3

∣∣∣∣
x=L

= 0 (5)

The ODE Equation 3 together with the boundary
conditions Equation 4 and Equation 5 form a bound-
ary value problem. The solution gives the deflection
of a fixed-free/cantilevered beam, as depicted on Fig-
ure 3.

This boundary value problem, along with the re-
striction that the load is uniformly distributed i.e.
q(x) = constant, has the analytical solution to the de-
flection w(x) of the beam

w(x) =
qx2(6L2−4Lx+ x2)

24EI
(6)

3.2 Object Description

One aim of the action learning is to be able to apply
an action learned with one object to another object
that behaves similarly. The behaviour of an object is
considered to be defined by the deformation that oc-
curs when a specific grasp is applied and the object is
affected by gravity - these deformations can be mod-
elled as outlined in section 3.1.

In the following the condensation of the high-
dimensional information that is intrinsic to the defor-
mation modelling into a feature vector of lower di-
mensionality is described. Ideally two different ob-
jects, e.g. with different shapes, maps to the same
feature vector if they behave identically, such that the
same action can be applied.

In order to achieve a feature-vector that is compa-
rable across objects, the NURBS surfaces describing
the undeformed object Su(u,v) and the object in a hor-
izontal orientation, affected by gravity Sd(u,v). The
length of the objects is normalized.

The difference between the two surfaces describes
how much the object has deformed at the individual
locations:

Ŝ(u,v) = Su(u,v)−Sd(u,v) (7)

Based on a regular grid g of size I× J, the defor-
mations are obtained at a set of discrete locations and
for a feature vector f :

f =
[
‖Ŝ (g00)‖, ...,‖Ŝ(gi j)‖,,‖Ŝ(gIJ)‖

]
(8)

where gi j refers to the a point of the grid at the posi-
tion (i, j). An simplified example for the calculation
of f is shown in Figure 4. It correspond to a deflect-
ing beam where the deflections can be described by a
NURBS curve instead of an entire surface.

3.3 Action Learning

The exact 6D trajectory of a Peg-In-Hole operation
depends both on the elastic behaviour of the object,
the grasp applied to the object and the shape of the
object. However, although the 6D trajectory for in-
stance varies with the size of the object, it might still
share similarities with other Peg-In-Hole actions. The
parametrization of the action aims to reduce the com-
plexity of the learning problem and eases the transfer
of a learned action from one object to another as the
object does not need to be identical, but only to share
certain properties. The following sections cover the
parametrization of Peg-In-Hole actions as well as the
structure and strategy for learning them.

3.3.1 Action Parametrization

The Peg-In-Hole action is defined by a trajectory
which the robot executes. The endpoint P1 is known
as it is directly in front of the hole. The startpoint P0
is obtained online utilizing the deformation prediction
and ensures that the end of the object is horizontal and
in front of the hole (see Figure 5). The trajectory from
the start to the endpoint is considered to be approxi-
mated by a curve defined by two-dimensional trans-
lations and one-dimensional rotations. The points P0
and P1 are therefore both points in R2×SO(2).

The curve P(t) is defined using a rational Bézier-
curve (Piegl and Tiller, 1997) based on three control
points: the start and endpoint as well as one additional
controlpoint which will be obtained by learning:

P(t) = P0 +B(t)(P1−P0) for t ∈ [0;1] (9)
with

B(t) =
∑

n
i=0 bi,n(t)Piwi

∑
n
i=0 bi,n(t)wi

(10)

where bi,n(t) is the Bernstein polynomial with n = 2
and Pi refers to the i’th controlpoint for the curve:

Pi ∈ {0,cp,1} (11)
The weights are fixed, w = [1,2,1], which ensures

that the second control point, cp, has an increased im-
pact. Thereby also motions that lead to a significant
overshoot can be learned.

Figure 4: Illustration of the differences between the unde-
formed mesh (straight dashed line) and the deformed mesh
(bent dashed line) used for the feature vector in a 2D case.
The resulting feature vector will be 5-dimensional.

Note that the control points do not depend on the
scale of the motion or the object (see Equation 9).
Therefore a learned control point will lead to mean-
ingful trajectories for any object, although it is not
guaranteed that the performed action will be success-
ful.

3.3.2 Action Learning Framework

The set of potentially successful Peg-In-Hole actions
is modelled using Kernel Density Estimation (Silver-
man, 1986). Every time a control point that leads to a
successful action has been obtained, it is added to the
density d. However, contrary to the situation in (De-
try et al., 2011) where grasp affordances are learned
for a specific object, we cannot assume the objects to
be identical. Therefore a kernel, Kµ,σ(cp, f), which is
a compound of two kernels is used: one reflecting the
Peg-In-Hole action as such, the other reflecting the
object features specified in section 3.2.

Kµ,σ(cp, f) = NPiH
µp,σp(cp)NOb ject

µo,σo (f) (12)

where NPiH and NOb ject are isotropic multivariate
Gaussian kernels located at the mean positions µp
resp. µo and with bandwidth of σp resp. σo. The
density is given by a weighted sum of the m kernels:

d(cp, f) =
m

∑
i=0

wiKµi,σ (cp, f) (13)

where the weights wi ensure that the density integrates
to one, hence ∑

m
i wi = 1.

During the learning every controlpoint that leads
to a successful action will contribute to the density
with one particle. Assuming that an action is either
successful or not, all particles of the density have
equal weights. Given an uniformly sampled search
space, the value of the density at a given point will
be proportional to the likelihood of the corresponding
action for being successful.

(a) (b)

P1

P0

cp

(c)
Figure 5: Illustration of (a) starting configuration P0 and
(b) target configuration P1 for the Peg-In-Hole action. (c)
shows a projection of the 3D trajectory based on P0, P1 and
the controlpoint cp.

Here, we choose the points for the feature vector
f as those illustrated in Figure 4. It should be no-
ticed that the point P0 is scaled with respect to object
length (see Figure 4). Thus, two objects with differ-
ent lengths having the same feature vector then have
equivalent shapes and may be handled in the same
way except for choosing the appropriate length scaled
P0. Thus, the parameters cp and f covers a given con-
trol point and shape for all object lengths.

Assume now that we wish to solve a Peg In Hole
action for a hitherto unstudied object. The deflection
model is then used to compute the feature vector fO.
Then the control point with the highest probability for
success can be obtained by searching for the maxi-
mum of the density d(cp, fO).

3.3.3 Action Learning Strategy

The system is not provided with any prior knowledge
to bootstrap the learning strategy. Therefore a 2-step
learning mechanism has been considered. First, an
exhaustive search on the controlpoints is performed
in a simulated environment. As the controlpoints are
3-dimensional it is feasible to explore the space with
a reasonable resolution. The outcome of the sim-
ulated experiments leads to a density as defined in
Equation 13. Examples for the clouds of particles are
shown in Figure 7. Finally, the density achieved by
simulation can be sampled and evaluated on the real-
world setup, leading to a new density.

Utilizing a simulator does not only allow the eval-
uation of large set of experiments, it also provides a
detailed feedback about the performed action. The
outcome of an experiment is therefore not only a bi-
nary, namely success or failure, but also the minimal
clearance c between the object and rim of the hole that
is experienced during the individual experiment. A
bigger clearance implies that the action is more robust
to external disturbances and modelling errors. This
fact is reflected by the weights:

wi j =
1
N

ci j

∑
M
j=0 ci j

(14)

where ci j is the minimal clearance of the j’th out of M
successful experiments with the i’th object, given N
objects in total. Thereby the maximum of the density
does not only reflect the success likelihood, based on
the statistics of the samples, but directly corresponds
to the action that is expected to be the most robust in
the given situation.

θ0 θ1

Figure 6: Approximation of a flexible object using a rigid
device. Self-collisions within the simplified object model
are ignored.

4 Experiments

In the following the simulated experiments used to
bootstrap the learning are described in section 4.1.
Experiments on the real setup are described in section
4.2.

The test specimens are cuboid pieces of silicone
rubber, cut from a sheet of 2.0 mm thickness, into
pieces of 15 mm width. The density of the silicone
sheet as given by the manufacturer is 1.15 g/cm3 and
the shore A hardness is 60±5 (which corresponds to
a Young’s modulus of approximately 3.6 MPa).

4.1 Simulated experiments

For the simulation, based on a simulation environ-
ment from (Ellekilde and Jørgensen, 2010), a flexi-
ble, cuboid object is approximated by a rigid device
consisting of a set of consecutive boxes as illustrated
in Figure 6. This approximation allows for efficient
collision detections as well as clearance calculations
- the precision can be controlled easily by adjusting
the number of joints in the device. The angles of the
joints connecting the boxes are obtained from the ob-
ject deformation modelling which takes the orienta-
tion of the grasped object with respect to gravity into
account.

Minimal clearance [mm]

Object collision 0 - 2 2 - 4 4 <

80 mm long 6899 258 288 555
60 mm long 4711 416 524 2349
40 mm long 3418 678 1267 2637

Table 1: Overview over the different outcomes experienced
in the simulator.

Simulations have been done for three different ob-
jects, testing Peg-In-Hole actions for each object with
8000 controlpoints. The outcomes of the experiments
(summarized in Table 1) indicate that it is easier to
insert short objects rather than long ones: a higher
proportion of all actions succeeded and the average
minimal clearance of the succeeding actions is larger.

This has been expected as long objects lead to large
deflections and can thus not be inserted by a close to
straight-line motion in contrast to short objects.

All controlpoints learned for the short resp. long
object are shown in Figure 7. In both cases the so-
lutions form a close to convex area which indicates
that the complete density can be approximated with a
sparse density consisting of fewer particles, but with
larger bandwidths. As the costs of the search for a
maximum within the density depend on the number
particles that need to be evaluated, densities based on
fewer particles ease the implementation of a real-time
system.

0

22

2

0

1

1

1
theta

z-direction

x
-d
ir
e
ct
io
n

(a) 40 mm

0

22

1

1
theta

z-direction

2

0

1

x
-d
ir
e
ct
io
n

(b) 80 mm
Figure 7: Illustration of the 3D point clouds of the control-
points that lead to successful actions for the (a) 40 mm long
object and (b) the 80 mm long object.

4.2 Real experiments

In the following the validity of the modelled deflec-
tions as well as the learned Peg-In-Hole actions are
assessed by real-world experiments.

4.2.1 Deformation validation

To validate the modelling, the maximum deformation
of each test object have been measured in a separate
experimental setup.

Measured max. deflection [mm]
Object O1 O2 O3 O4 Sim.

80 mm 29 28 30 30 33.5
60 mm 10 10 10 11 10.5
40 mm 2 2 3 2 2.5

Table 2: The maximum deflection of the respective test
objects. The last column shows the deformation as calcu-
lated by the modelling, assuming a shore A hardness of 60.
For each object, 4 different orientations have been indepen-
dently measured.

For the test objects of 80,60 and 40 mm, the mean
values for the deformations are respectively 29.25,
10.25 and 2.25 mm. Using the tabulated shore A
hardness of 60 for the silicone rubber (correspond-
ing Young’s modulus 3.6 MPa), the deformation is

overestimated. This trend is clear for the larger de-
formations of the piece 80 mm in length. Using an
extrema of the hardness, shore A 65 (Young’s mod-
ulus 4.4 MPa) the maximum calculated deflection of
the piece reduces to 28.3 mm, which is closer to the
observed mean of 29.25 mm.

4.2.2 Peg In Hole actions

Based on the results of the simulated experiments,
Peg-In-Hole actions with the simulated objects have
been evaluated on the real setup. The controlpoints
have been obtained by searching the density obtained
by simulation for a maximum. The resulting actions
have been observed to be successful, the last step of
the insertion of the longest object is shown on Fig-
ure 1. However manual measurements of the mini-
mal clearance have been done in order to investigate
the robustness of the learned actions. Especially for
the longest object, the clearance has been observed to
be approximately 1 mm (for the 80 mm long object)
which is lower than expected according to results in
Table 1.

A potential reason for smaller clearance might be
caused by alignment errors between the grasped ob-
ject and the hole as even small errors seam to have a
significant effect. Further the most significant differ-
ence between measured and expected clearance has
occurred for the 80 mm long object, which might be
correlated with the fact that the deflection modelling
for this object had the bigger error than the others (see
Table 2).

5 Future Work

The overall system discussed so far is, as no sen-
sor input is used to correct for modelling errors, an
open-loop system. However, when the complete sce-
nario is considered where an object becomes scanned,
modelled, grasped and inserted multiple error sources
arise. If the object-relative location of the grasp is sig-
nificantly different than expected, this would have an
impact on the modelling and might cause the Peg-In-
Hole action to fail.

To counteract potential errors an additional Ki-
nect-camera is introduced, enabling the system to su-
pervise the Peg-In-Hole operation. We foresee that
the additional feedback can be used to:

• Improve the deflection modelling over time.

• Correct for inaccuracies during the grasping.

• Correct the starting position of the Peg-In-Hole
action.

6 Discussion

In this paper we presented a system to perform
Peg-In-Hole action with flexible objects. The sys-
tem utilizes a physical modelling of the elastic be-
haviour of the objects and an action learning mech-
anism based on kernel density estimation. Objects
are identified by a distinctive feature vector that en-
ables the system to recognize objects with similar
behaviours as known objects. Thereby previously
learned actions can be applied to new objects, with
similarly behaviour as known ones. This enables the
system to perform in real time as the demand for time
consuming modelling operations is minimized.

ACKNOWLEDGEMENTS

This work was co-financed by the INTERREG 4 pro-
gram Syddanmark-Schleswig-K.E.R.N. by EU funds
from the European Regional Development Fund. The
presented work has also received funding from the EU
Seventh Framework Programme under grant agree-
ment no. 270273, Xperience.

REFERENCES

Anshelevich, E., Owens, S., Lamiraux, F., and Kavraki,
L. E. (2000). Deformable volumes in path planning
applications. In IEEE International Conference on
Robotics and Automation.

Bardinet, E., Cohen, L. D., and Ayache, N. (1995). A para-
metric deformable model to fit unstructured 3d data.

Bruyninckx, H., Dutré, S., and Schutter, J. D. (1995). Peg-
on-hole: A model based solution to peg and hole
alignment. In International Conference on Robotics
and Automation.

Detry, R., Kraft, D., Kroemer, O., Bodenhagen, L., Peters,
J., Krüger, N., and Piater, J. (2011). Learning grasp
affordance densities. Paladyn Journal of Behavioral
Robotics, 2:1–17.

Ellekilde, L.-P. and Jørgensen, J. A. (2010). RobWork: A
Flexible Toolbox for Robotics Research and Educa-
tion. In International Symposium on Robotics,

Jiménez, P. (2011). Survey on model-based manipula-
tion planning of deformable objects. Robotics and
Computer-Integrated Manufacturing, In Press.

Jordt, A., Fugl, A. R., Bodenhagen, L., Willatzen, M.,
Koch, R., Petersen, H. G., Andersen, K. A., Olsen,
M. M., and Krüger, N. (2011). An outline for an in-
telligent system performing peg-in-hole actions with
flexible objects. In The International Conference on
Intelligent Robotics and Applications (Accepted).

Landau, L. D., Pitaevskii, L. P., Lifshitz, E. M., and Kose-
vich, A. M. (1986). Theory of Elasticity. Butterworth-
Heinemann.

Meitinger, T. and Pfeiffer, F. (1996). The spatial peg-in-
hole problem. In Proceedings of the Second World
Automation Congress, Montpellier, France.

Piegl, L. and Tiller, W. (1997). The NURBS book. Springer-
Verlag New York, Inc., New York, NY, USA, 2. edi-
tion.

Samareh, J. A., Samareh, J. A., and Polynomial, B. B.
(1999). A survey of shape parameterization tech-
niques.

Seon M. Han, Heym Benaroya, T. W. (1999). Dynamics of
transversely vibrating beams using four engineering
theories. Journal of Sound and Vibration, 225:935–
988.

Silverman, B. W. (1986). Density Estimation for Statistics
and Data Analysis. Chapman and Hall/CRC.

Timoshenko, S. P. (1921). On the correction for shear of
the differential equation for transverse vibrations of
prismatic bars. Philosophical Magazine, 41:744–746.

Villarreal, A. and Asada, H. (1991). A geometric represen-
tation of distributed compliance for the assembly of
flexible parts. In Intematiod Conference on Robotics
and Automation.

Xia, Y., Yin, Y., and Chen, Z. (2006). Dynamic analysis for
peg-in-hole assembly with contact deformation. Inter-
natiol Journal of Advanced Manufacturing Technolo-
gies, 30:118–128.

1

A Survey of the Ontogeny of Tool Use: from
Sensorimotor Experience to Planning

Frank Guerin, Norbert Krüger and Dirk Kraft

Abstract—In this paper we review current knowledge on the
development of tool use in infants in order to provide relevant
information for cognitive developmental roboticists aiming to
design artificial systems which develop tool use abilities. This
information covers (1) sketching developmental pathways leading
to tool use competences, (2) the characterisation of learning and
test situations, (3) the crystallisation of six mechanisms under-
lying the developmental process and finally (4) the formulation
of a number of challenges and recommendations for designing
systems that are able to exhibit tool use abilities in complex
contexts.

Index Terms—IEEEtran, journal, LATEX, paper, template.

I. INTRODUCTION

This survey paper is targeted at researchers in Artificial
Intelligence1 (AI) who are interested in pursuing a devel-
opmental approach2 to achieve robust object manipulation
competence and basic tool use in their systems. The paper
presents relevant research from studies in developmental psy-
chology (mostly of human infants). In addition to reporting
individual results the paper identifies core mechanisms which
we believe to be in operation during the development of
tool use in infants; based on these we then present general
recommendations which may be useful for those who wish to
build artificial systems which exhibit a similar development.

From a roboticist’s perspective a central question is how
to reach a point in development where planning complex
actions with objects is possible. Planning ability relies on a
knowledge of planning operators which describe preconditions
and postconditions of actions. How the knowledge of such
operators develops is a key question for this paper. In the
developmental psychology literature there are some constructs
which are reasonably close to planning operators, for example
the sensorimotor schema3 [2], [6]. A sensorimotor schema
gathers together the perceptions and associated actions in-
volved in the performance of a habitual behaviour. The schema

Frank Guerin is with the University of Aberdeen, Department of Computing
Science, Aberdeen AB24 3UE, Scotland. (e-mail: f.guerin@abdn.ac.uk)

Norbert Krüger and Dirk Kraft are with the University of Southern
Denmark, Mærsk Mc-Kinney Møller Institute, Campusvej 55, 5230 Odense
M, Denmark. (e-mail: {norbert,kraft}@mmmi.sdu.dk)

Manuscript received April ??, 20??; revised January ??, 20??.
1This paper will use the term Artificial Intelligence (AI) in the broad sense

of the discipline concerned with any type of intelligent information processing
in artificial systems, including as subdisciplines cognitive robotics, computer
vision, and all areas within computational intelligence.

2We will not attempt to argue for the developmental approach here, as that
has been done elsewhere (e.g. [1]).

3“Sensorimotor schema” comes from Piaget [2], but similar ideas called
“sensorimotor process” [3], “skill” [4], or “perception-action routine” [5] are
used by other psychologists. We use the term in a broad sense to capture the
general idea shared by these works.

represents knowledge generalised from all the experiences of
that behaviour. It also includes knowledge about the context
in which the behaviour was performed as well as expectations
about the effects. This paper will trace the development of
sensorimotor schemas from their origins in the first months
through to the point where they represent sufficiently abstract
knowledge that they can be recruited for planning operations.

We take the Perception-Action Perspective on tool use
development [5], which sees a continuous trajectory of devel-
opment from early exploratory interactions with objects and
surfaces through to more advanced manipulations including
tool use. From this perspective, developments in perceptual
and motor skills are potentially very relevant to understanding
the abilities which precede tool use and which might serve
as foundations for it. Therefore this survey will also devote
some attention to these “precursors” to tool use. This is in
line with the trend in modern AI to shift the focus away from
“high-level” cognitive skills and more towards “lower-level”
control of actions in the world [7]. This is not a denial of the
existence of high-level skills, but rather a realisation of the
need to build them from low-level sensorimotor skills.

Tool use is an interesting phenomenon because it is a very
obvious demonstration of intelligence, and it is relatively easy
to analyse due to its external manifestation. In addition its
ontogeny is particularly interesting because it shows a devel-
opment from simple sensorimotor behaviours to behaviours
exhibiting the hallmarks of advanced cognition. In its simplest
forms tool use requires no more than simple context-specific
sensorimotor knowledge, such as an expectation about the
effect of an action. In its advanced forms tool use requires
knowledge of objects, distances, forces, and their interactions,
and the ability to manipulate some form of internal representa-
tions of these. Furthermore, it is surmised that this knowledge
of the physical world may be crucial as a foundation for more
advanced cognition [8]. Therefore a study of the development
of this foundational knowledge, through tool use, would be an
important step towards understanding advanced cognition.

This paper presents concrete examples of infants’ be-
havioural developments as well as some theorising about
the mechanisms underlying these. Developmental psychology
does not yet have a complete theory of cognitive develop-
ment4, therefore roboticists do not have an abstract mathemat-

4There exist interesting considerations of design principles connected to
developmental processes (see, e.g., [9]) which can guide design processes.
However, a complete theory should account for developments in all domains;
it should explain how the same mechanism can develop different types
of knowledge depending on the environment it interacts with; it should
be detailed enough to allow for the computer modelling of a complete
longitudinal developmental sequence.

2

ical “theory of development” which they could apply to any
task (contrast with, e.g., Shannon’s mathematical theory of
communication [10]). In the absence of such a theory, roboti-
cists who wish to build systems which develop in a similar way
to human infants may need to follow the same concrete tasks
that human infants do. If a roboticist builds a robot to follow an
infant’s developmental sequence of increasingly sophisticated
tasks, then this increases the chance that the roboticist may
discover similar mechanisms of development.

The contribution of this paper is summarised as follows5

• It sketches the development paths along which several
examples of simple tool use may be acquired. This means
we describe a sequence of increasingly sophisticated
behaviours which lead to some examples of tool use. This
is valuable as it often reveals pathways which simplify the
acquisition of a behaviour, and intermediate competences
which one might not have considered.6

• It gives concrete examples of simple tool use and their
precursors. These simple tasks are good candidate tasks
for experimentation with artificial systems because they
help to avoid the danger of attempting an overly advanced
task (which might force a solution to be coded in a non-
developmental way).

• It gives some insight into how knowledge (of actions
and object relationships) may be represented; this comes
from our analysis of the sensorimotor basis for such
knowledge, which begins with subjective sensorimotor
experiences, and gradually becomes generalised to cap-
ture more objective knowledge about the effects of certain
operations when applied in certain situations.

• It gives some insight into general mechanisms of sen-
sorimotor development, and how they apply in the
development of tool use (see list of mechanisms towards
end of this introductory section).

We capture our view of the ontogeny of tool use in humans
with the conceptual diagram of Fig. 1. The diagram shows two
parallel tracks of development. On the bottom is the “concrete”
track which shows the development of sensorimotor schemas,
which are observable in infant behaviour. On the top is the
“abstract” track which shows the parallel development of the
underlying representations which the infant uses. In this paper,
we will describe mainly the “concrete track”. For the abstract
track we stress that we know very little; psychology is mostly
the study of behaviour, and conjectures of cognitive models
are quite limited at the present time7.

The lower (concrete) track shows a directed acyclic graph8;
each node represents a newly created sensorimotor schema
(which corresponds to a new observable behaviour arising at
this time). The directed edges of the graph have the meaning
“is a necessary precursor”; i.e. the later behaviour builds on
the previous one(s). Acquisitions are (mostly) accumulative,

5The first two points are purely from behaviour, but the last two are delving
into the internal mechanism and hence are more speculative.

6This is similar to the way in which the fossil record can reveal pathways
along which complex organs developed, whereas in the absence of the fossil
evidence the evolutionary development seems difficult to explain.

7For example, limited to isolated episodes or aspects development [11].
8This graph has a strong similarity with Fischer and Hencke [12, Fig. 2].

e.g. babies suck things less as they get older, but in general
they don’t forget: Most behaviours that we deal with can still
be elicited in older infants. For the concrete track we can
categorise the behaviours as belonging to three consecutive
and overlapping stages9 (indicated by the overlapping curves),
described as follows.

1) Behaviours Without Objects: This stage starts with the
development of a small number of innate behaviour patterns
which are in general not linked to any object. The vision and
motor system become calibrated, leading to the ability to grasp
seen objects, which facilitates the transition to the next stage.
In parallel with this on the (upper) abstract track we initially
have isolated fragmentary representations which function in
limited environmental contexts; these develop and become
gradually connected (e.g. across different senses), allowing for
transfer of knowledge (see e.g. Sec. V-B5).

2) Behaviours with Single Objects: In this stage accidental
events start a linking process between action and object
perception; this leads to specification and branching of sen-
sorimotor schemas concerned with single objects; their effects
become increasingly predictable. In parallel, extensive training
data is generated on concrete object-action experiences; this
allows the abstract track to find connections between similar
experiences, and so to generalise across them; this constitutes
the beginnings of the construction of more general object and
affordance representations, which become increasingly task
independent (by virtue of the fact that they generalise across
multiple tasks). We begin to have a generic and powerful world
model which constitutes itself as an independent entity which
is shared by the different sensorimotor schemes. Unfortunately,
this internal world model is only indirectly deducible from the
observation of behaviour and constitutes a big challenge to
roboticists (see also [13]).

3) Object-Object Behaviours: Further branching and refine-
ment of the schemas continues in this stage, but the new
element is that the sensorimotor schemas are extended to
deal with relationships among objects, which deliver the basic
units for tool use. Because schemas now necessarily deal
with relationships among objects, the representation of spatial
locations and transforms within space begins to be constructed
(abstract track). Object representations become elaborated to
integrate parts of objects and different perspectives, as well
as physical properties influencing their interaction. In the
abstract track we also have some connected fragments of
representations which may be reformulated to form a new
more general representation subsuming the old versions (the
process of representational redescription [14]). In addition,
at this stage simple examples of planning can already be
observed. The schemas are now usable in a wider variety of
contexts, and their effects increasingly predictable; therefore it
is possible to plan a sequence of actions while still maintaining
a high degree of predictability of the effects of such action
sequences. These developments (on both tracks) are ongoing
and do not stop where our figure stops.

9Our choice to group things in three stages is somewhat arbitrary, as it suits
the observations we want to describe; Piaget uses six stages [2], and Fischer
uses four [4], for the same period.

3

N
u
m
b
e
r
o
f
b
e
h
a
v
io
u
rs

Age (spanning approx. 2 years)

c
o
n
c
re
te
 t
ra
c
k

(s
e
n
s
o
ri
m
o
to
r
b
e
h
a
v
io
u
r)

a
b
s
tr
a
c
t
tr
a
c
k

(r
e
p
re
s
e
n
ta
ti
o
n
)

sen
sorim

otor
 sch

ema
s de

velo
ping

repr
esen

tatio
ns d

evel
opin

g

representational

redescription

Link 1

Link 2

Sta
ge
1

Stag
e 2

Stag
e 3

Fig. 1. Conceptual diagram, overviewing infant developments leading to tool use; for explanation see text.

Perhaps the greatest mystery in cognitive development is
how abstract general knowledge can come from concrete
experiences in specific situations; e.g. infant practice with
specific concrete tasks leads to the development of abstract
general knowledge of the physical world, such as improving
representations of objects and space. We can only give some
small insights into this in this paper, and to this end the
figure also illustrates (with dashed curves) links between the
abstract and concrete tracks; these links are bidirectional.
To avoid clutter only a few links are shown, but in reality
all representational fragments will be linked to sensorimotor
schemas.

In one direction (Link 1 in Fig. 1) representations may be
built up (or existing fragmentary representations linked up)
from the action of sensorimotor schemas; when a schema acts
in a variety of contexts it discovers sensory abstractions which
predict its success, and these abstractions are preliminary
representations (e.g. representations of shape for grasping
(see Sec. IV-A). Such representations can immediately link
to actions which can manipulate the represented object or
spatial relation. In the other direction (Link 2 in Fig. 1), more
advanced schemas make use of the newly formed representa-
tions, for example in their description of the context in which
a behaviour may be performed, or its effects, or the control
policy followed during execution of the schema.

This development process (Fig. 1) allows us to deduce
guidelines for how to set up an artificial developing system.
In particular the developments on the concrete track are
reasonably well studied and observable, allowing us to deduce
some of the mechanisms underlying them:
M1 Repetition: each sensorimotor schema seeks to repeat

itself opportunistically (this explains play, Sec. II-B),
leading to its own refinement, and also to the acci-
dental discovery of new effects in new situations (such
accidental discoveries can subsequently be intentionally

exploited).
M2 Variation and selection: actions are performed with

high variability in order to discover new results, and
understand the effects of parameter variations, and later
those results that give desired outcomes are selected.

M3 Differentiation: sensorimotor schemas are differentiated
when an unexpected result is sufficiently interesting to
warrant its own specialised schema.

M4 Decomposition: a single schema may be broken into a
number of sequential chunks so that refinements of the
individual parts can take place, as well as flexible re-
assembly (see e.g. Secs. V-B1,V-D); this can increase the
predictability and maturity of the schema.

M5 Composition: sensorimotor schemas can be composed
to form simple composite sequences, or higher or-
der schemas which control relationships among lower
schemas.

M6 Modularisation: composite schemas may be initially
crudely connected sequences, but can then be refined by
repetition, variation and selection, to produce a “smooth
atom” [15], which could then be put under control of
another (further composition).

We will give concrete descriptions of how these mechanisms
are exemplified through different behaviours in the course of
the paper. These mechanisms are crucial for the development
of planning competences: M1 and M2 are important to in-
crease the predictive power of the schemas, and by means of
M3–M6 new schemas (= planning operators) can be generated.

In this paper, we are not addressing the mechanisms under-
lying the development of the abstract track, but we want to
point out that there is a need for a mechanism that synchronises
the development of both tracks:
M7 Representational redescription: when similarities are

noted among a set of sensorimotor schemas, a new more
abstract representation can be created, which can refor-

4

mulate the knowledge captured in the former schemas
within a more generic framework.

The largest part of the paper is Sec. V which goes through
examples of tool use and precursors, before this it is necessary
to first cover some more general preliminaries. Sec. II sets
forth our perspective on the problem of tool use and how
competence develops. Sec. III overviews various perspectives
on cognitive development in order to explain the different
psychological approaches and to put the later results in context.
Sec. IV gives an overview of sensorimotor schemas (which is
the unit of knowledge we will use in analysis in this paper).
Sec. V is the main part of the paper and presents the evidence
from various behavioural studies. Sec. VI briefly looks at
developments on the abstract track. Sec. VII reflects on these
results and draws conclusions relevant for cognitive roboticists.

II. THE PROBLEM OF TOOL USE

Tool use is an example of problem solving. It involves
selecting the right tool or tools, spatially arranging the right
relationships between tools and target objects, and performing
the appropriate manipulations to solve the problem. It may
be solved by advance planning, or by a simpler trial-and-
error in the world (thus we can consider planning as a special
case of problem solving). This section defines the problem,
and outlines the techniques which human infants (and some
animals) seem to apply to simplify the search for solutions.

We distinguish between (i) the general problem solving
abilities (such as planning and search techniques) and (ii) the
domain specific knowledge of specific actions’ preconditions
and effects in different situations (i.e. what AI would call
planning operators, and which we call sensorimotor schemas);
this section focuses on general abilities while we will look at
the development of specific abilities in terms of sensorimotor
schemas in Sec. V.

Sec. II-A looks at the size of the problem space and how
it can be reduced by various techniques. Secs. II-B and II-C
look at research on infants’ competences in general problem
solving and planning, and how these develop. Sec. II-D looks
at the role of social learning in problem solving. Sec. II-E
sums up what we have learned about the general development
of infant problem solving that could be of importance for
cognitive roboticists.

A. Managing the Problem Space

A mathematical formulation of the complete problem in a
tool using scenario can consider all the degrees of freedom
of the actor, and the objects involved (typically a tool and
a target object, but possibly other objects as well). The
spatial-temporal relation between objects which are to interact
is of prime importance; this can be described by a set of
relative parameters [16]. Firstly to determine if an object is
suitable as a tool for operating on another object to attain
a certain goal, the actor needs to monitor, and possibly
react to changes in these relative spatial parameters [16];
this implies consideration of the objects’ shapes and possible
spatial relationships. Secondly in order to use one object as a
tool on another, the values of these relative parameters must be

appropriately controlled. One must also consider whether these
relative parameters [17] (i) must be produced or maintained
sequentially or concurrently (sequentially is easier), (ii) require
active monitoring for their maintenance, and (iii) are managed
by direct contact or through the intermediate action of an
object. Furthermore a consideration of required forces and
velocities is necessary (which are also parameters).

From this perspective many tool use problems have a very
large problem space. In practice there are a number of ways
in which the total degrees of freedom are greatly reduced,
by dealing with the problem space via smaller manageable
subspaces (as exemplified in the next paragraph). This happens
because infants (and other animals) tend not to tackle the
whole problem space to find a solution, but rather their search
is constrained by prior experience, habits, and knowledge.
The space reduction methods include (i) sequencing, (ii)
stereotypic behaviour, and (iii) sensory abstraction.

Firstly tasks are usually solved by a sequence of actions,
where each step need only consider (and control) a limited
number of degrees of freedom. Consider a capuchin monkey
who cracks a nut by first transporting it to a large “anvil”
stone, next retrieving a suitable “hammer” stone, and then
raising the hammer high to strike the nut [17]. In total there
are three objects being put in a relationship, and the number
of degrees of freedom is large, but the sequencing of actions
leads to a series of smaller problems. It is not necessary to
contemplate the relative positions of all three objects; instead
one may consider only a pair at a time. To enact a sequence
discovered perhaps by chance coordination of components
does not require that the whole problem space be considered
at one time (composition, M5, Sec. I).

Secondly, within any step, the motor actions and the sensory
elements considered do not include all those available to the
animal, but are constrained by existing sensorimotor “units”
which often manifest themselves as stereotypic behaviours. An
easily identifiable sensorimotor unit is the knowledge related
to any habitual behaviour, for example the banging action of
an infant. This is what we called a sensorimotor schema in
Sec. I (see also Sec. IV), associating perception and action.
Infants (and other animals) tend to constrain the actions which
they try out on objects to a limited repertoire of stereotypical
behaviours [18], even though their motor apparatus has a far
greater range of possibilities. This restricts their motion, but
they can perform their behaviours with high variation, so
there is a distribution of actions associated to each stereotypic
behaviour. With the mechanisms of repetition (M1) as well
as variation and selection (M2), these schemas lead to a
reasonably constrained exploration of the problem space, while
still allowing for less constrained exploration when desired (to
provoke new results, and lead to differentiation, M3).

Thirdly, sensory abstractions constrain the space; for ex-
ample five-month-old infants use only depth and motion to
determine object boundaries (and not colour for example),
probably because these have higher ecological validity [19, p.
149]. This perceptual simplification means that such infants
face a “smaller” problem than adults in many scenarios,
because it is surmised that objects that have lost their depth
boundaries are not seen as objects ([20], but see also [21]).

5

In terms of development these units of knowledge may be
partially predetermined by genetics, and/or composed by the
organism from other units and fragments (see e.g. Sec. VI).
This paper will sketch this development where possible.

We have sketched above strategies for facilitating the search
in the problem space. The fact that humans (or animals)
typically do not consider the whole solution space means that
they will often arrive at suboptimal solutions, and this is to be
expected in a developmental approach. In many cases when
a solution is first assembled the animal will tend to perform
component parts in a habitual way (i.e. the way in which those
components had been performed before they were recruited to
solve the current problem), but over time these may be refined
to be more efficient for the task at hand. However an engineer
considering all degrees of freedom available to the animal
may be able to find a more efficient solution which would
not occur to the animal. The cost of the animal’s approach is
suboptimality, but the benefit is tractability, because the search
for a solution may be intractable if all degrees of freedom are
considered10.

The most important fact, for a roboticist, is that the infant
system seems to start with mechanisms which ensure rather
simple state and action spaces, which then are extended over
time. Providing a rather simple initial state space seems also to
be reasonable in an artificial developing system and this might
even be crucial to make learning and development possible.

B. Planning and Playing

In looking at infant behaviour and development from a
“zoomed out” perspective we could see three types of be-
haviour: reflex, play, and problem solving (these are also
overlapping waves). Reflexes seem to happen in early stages of
development and serve to bootstrap the development process.
Play could be described as an affordance-based activity, where
affordances of objects in the environment suggest certain
behaviours. There is a close relationship between problem-
solving and free-play with infants seamlessly switching be-
tween the two; Bruner says [23] “In play, ends are altered to
suit means, rather than means being altered to achieve an end
held constant, as in problem-solving.” Infants sometimes lack
the capacity to hold ends in mind, and so the means may take
over in some problem solving attempts (e.g. see lifting the
barrier in Sec. V-C5). Free play is an effective way for infants
to learn about means-end relationships, so it is an important
part of the development of planning operators. In this section
we focus more on problem solving, but also highlight some
connections with play (see Sec. V-C8 for more on play).

Problem solving and planning are very evident in the second
year, and to a lesser extent before. These are complex activities
requiring task analysis, monitoring of the solution, memory to
retain goals and subgoals, organisation of successive attempts,
and the use of discovered information to guide further attempts
[24]. This search of the space of actions can happen via (at
least) three mechanisms11: simple forward search, forward

10Apart from tool use, the same strategy of degree of freedom reduction is
seen in pure motor control problems (see [22] Sec. 3.4).

11These are well known from AI [25, p. 375-416]

search with heuristics, or means end subgoaling (discussed
below). The first step in problem solving is to choose a
goal which is not immediately attainable. The simplest case
is where the goal is seen, such as an out-of-reach object.
Alternatively the goal may be recently seen, such as an object
that has just been hidden. Sometimes the goal is unseen, but it
may be triggered by the sight of something which is often used
as an element in a procedure leading to the achievement of
that goal; for example an infant sees a coat which triggers the
desire to be taken outside. Finally the goal may be internally
triggered by a physical need, for example by hunger.

1) Forward Search: This is where actions are tried out in
the real world, in an effort to achieve the goal. This does not
require any mental simulation of future states or actions. It
is required that the infant have the ability to pursue a goal,
and in order to avoid exhaustive search of all possibilities, the
infant should have some knowledge of how to “use information
about the difference between what was achieved and what
was intended to guide subsequent activity” [24]. According to
studies cited by Willatts, newborns have these abilities, with
evidence of some goal directed search with hand to mouth in a
limited region. With external objects, goal-directed behaviour
may appear as early as three months; this was shown for
shaking a mobile hanging above a crib, furthermore these 3-
month-olds were able to hold a relatively complex goal in
memory (the achievement of a certain amount of shaking in a
mobile) [24, see studies cited].

2) Forward Search with Heuristics: Heuristics can give
an estimate of how likely a potential candidate action is to
lead to the goal. An example heuristic could be the reduction
in distance between a desired object and the infant; actions
which the infant expects will reduce this distance will be
chosen in preference to others. If forward search is used
with appropriate heuristics it can lead to a very sophisticated
problem solving behaviour, and could explain a great deal of
the problem solving observed in infants, even for some of
those behaviours which had been thought to be the result of
a high-level representation involving mental simulation [24].
For example, the use of a long stick to retrieve an out-of-reach
object could be accounted for by a trial and error search, with
appropriate heuristics.

Heuristics may also aid in the search for the appropriate
parameters for an action (for example the force to be exerted
on an object). After varying a parameter the infant may under-
stand if the variation is “going in the right direction”. Evidence
that such relationships could be deduced comes from [26]
who showed that by 15 months (and not before) infants can
predict object weight from size (evident from results on grasp
development); given that they only have experience of having
lifted a certain finite set of objects, they must interpolate for
previously unseen objects; this suggests that in general if they
have sufficient experience with the effects of some values of
a particular parameter or dimension (in perception or motor
control) they could interpolate for unseen cases. The kind of
knowledge acquired from such interpolation can help greatly
in constraining forward search for problem solving, where an
action with variable parameters is being used as a means; given
a few trials, the relationship between parameters of the action

6

being applied, and its effects, could be recognised, and so
the range of search can be narrowed considerably. This is an
example of the mechanism of variation and selection (M2)
which allows the relationships between initial conditions and
effects to be studied.

3) Means-Ends Behaviour: Here one starts with the goal
and searches for a means to achieve it. The simplest form is
where a single means action makes the goal action possible.
An example is pulling a cloth in order to bring an object
resting on it within reach (where grabbing this object is the
goal). Simple means-end behaviour has been described by
Piaget [2] as emerging about 8 months, and Willatts [24]
showed a transition from accidental retrieval to intentional
retrieval from 6 to 8 months (see Sec. V-C3). Furthermore,
by 9 months it was shown that infants can adjust the means
action (cloth pull) as appropriate to the goal, in situations
where the goal may be far or near. Willatts argues that the
basic ability to perform means-end behaviour is present in the
first 6 months, but only appears for manual tasks between 6-
8 months because the infant has just acquired new manual
skills, and is learning about their effects. In terms of planning
operators (or sensorimotor schemas), their preconditions and
postconditions are becoming refined via this practice.

What is special about means-end behaviour here is that
it generally involves a composition (M5) of schemas, one
acting on the means object and one on the goal, and so the
composition implicitly captures a relationship among these
objects, and through practice the infant learns this relationship
(i.e. learns situations where the composition works or does
not); the pattern here is one of fortuitous success, followed
later by understanding (see Sec. V-C3). This type of accidental
discovery of relationships among objects could explain the
emergence of relational play (i.e. using object-object relation-
ships, see Sec. V-C8) shortly thereafter.

More complex means-end behaviour involves working back-
wards from the goal to find a series of subgoals which will
lead to eventual solution. This requires mental representation
of intermediate states (whereas forward search can in principle
be done without such representation). Forward search can also
be done with mental representation where courses of action
are tried out mentally before being tried in the world. As
noted above, forward search can also make use of sophisticated
heuristics to guide the search, and in observing an infant
solving a problem by a sequence of actions it may not be
possible to determine if forward search or means-end analysis
is being used during that particular episode; Willatts [24] states
that he does not know of any empirical way of distinguishing
the two alternatives.

4) Affordance-Based Activity within Planning: In addition
to simulating forwards (by heuristic search) or backwards
(in a hierarchically directed means-end fashion) there is also
evidence to suggest that some fragments of solutions in the
middle of a possible sequence may be so compelling that
children feel obliged to use them. A study of older children
(average 32 months) by Cox et al. [16] required them to move
a disk (with a duck, a swan, a frog, or a fish painted on top)
from the centre of a circular table towards the boundary (which
had a trough painted blue for water). In order to move the

disk the children were required to use a cane with a hooked
shape at the end. They were presented with the cane in a
variety of different starting orientations. Despite the fact that
the children could have easily swept the disk to the edge of
the table in a single motion, on 79% of the trials the children
chose to enclose the disk in the hook, and children almost
always chose to move the object closer to them. This suggests
that the fact that the hook fitted very well with the shape of
the disk triggered a fragment of an action sequence that was
too compelling for the children to ignore, even though it did
not lead to the most efficient solution of the problem. This is
an example of where problem solving and affordance based
play are not separated.

In summary, for complex problems, it seems plausible that
a child may see the scene, and trigger the simulation of
many fragmentary sequences of actions; these may be actions
from the current state forwards, or from the goal backwards,
or parts in the middle of a sequence; these will then be
assembled in some sequence which is expected to achieve the
goal; this may happen at run-time, or in advance if sufficient
knowledge of actions and effects is available. The important
message for cognitive roboticists is that there is evidence that
basic planning mechanisms are applied at very early stages
of development and hence are likely to a substantial degree
innately coded but that the library of planning operators is
very limited in the beginning, and this explains why not much
planning is observed in younger infants.

C. Domain-General Abilities in Problem Solving
The above has descried the main strategies infants seem

to use in planning, but has not addressed how the general
planning abilities develop over time. Willatts holds that there
are no major discontinuous changes in strategy, but he does
describe some of the developments in underlying generic
cognitive abilities which would lead to improved search in
older infants [24]:

• Memory of what has already been tried: this has been
tested with search tasks, to see that the infant does not
return to a location has already been searched. This shows
improvement from 14 to 16 months [24].

• Backtracking if there has been failure: this has been
tested in a task involved nesting cups. Children from 18
to 30 months were unlikely to backtrack to a previous
configuration, but from 30 to 42 months there was a
significant increase in this behaviour [24].

• Memory of goals: younger children may get distracted
and forget the goal, the potential depth of their search is
therefore limited [24].

• Organisation of search: if the order of search is organ-
ised systematically it means there is no need to remember
what has been tried; for example, infants seem try easy
actions first, and later harder ones. The evidence for this
organised strategy increases from 12 to 24 months, but it
may well be innate, and not very apparent in 12-month-
olds simply because they only have simple actions in their
repertoire [24].

• Inhibition of errors (for example the tendency to repeat a
previously successful action, in the wrong situation [27]):

7

this does seem to improve throughout infancy, but task
specific effects are very strong.

It is not clear if the delay in these developments simply
reflects limitations of the maturing brain, or if it is important to
ensure that a high variation in testing of sensorimotor schemas
happens before more sophisticated planning is attempted. In
any case, cognitive roboticists might be reminded not to try
to trigger complex planning with sensorimotor schemas at too
early a stage of development but to focus on the grounding of
these schemas.

D. A Brief Note on Social Learning

Most examples of tool use which we cover rely on social
learning, either directly or indirectly (for learning precursors
to the behaviour). In most socially learnt examples of a skilled
behaviour there is an element of imitation and an element of
self-exploration. For example, in infant learning of self-feeding
with the spoon, the infant initially imitates the behaviour
demonstrated by the adult, but the result is quite crude, and the
infant shows little understanding of the various components
in the sequence of behaviour. Over time (several months),
in addition to observing adults, the infant experiments with
the constituent parts, and refines the behaviour, eventually
producing an effective behaviour. There is also an ongoing
interaction between social learning and exploratory learning;
there is a limit to how much a learner can advance through
learning socially from a master demonstrating a skill, and
when the learner does further self-exploratory learning, they
subsequently can profit more from the same demonstration
(because they now have a greater understanding of the rela-
tionships among relevant parameters in the constituent parts).

In this paper we focus on the self-exploration part of
the problem rather than the social learning. A great deal of
literature exists on social learning in infancy [28], [29], [30],
and would warrant a survey of its own. In a robotics scenario it
is relatively easy to provide input from a teacher. For example,
a human can take hold of the robot’s arm and perform an action
with it, or the robot can be given a handcrafted example of the
correct motion to solve a certain tool use problem in a specific
situation. After this the challenge is to make the robot adapt
this appropriately in new situations. This requires the robot
to develop an understanding of the relevant parameters and
relationships among them in the task, as well as appropriate
representations, which is what we focus on in this survey.

E. Conclusion for cognitive Roboticists

From the preceding subsections we can draw some impor-
tant conclusions. First, Sec. II-A suggests that constraints on
the complexity of state and action spaces can be designed
at the beginning of development, and can help to bootstrap
learning and development (and avoid the posing of unrea-
sonably large learning tasks). Secondly, for domain-general
aspects we have sketched in Sec. II-B the main strategies
(e.g. forward search, means-end) which appear to be in use
in early infant planning. It seems that the basic (domain-
general) infrastructure for planning is in place relatively early
on, but that the library of (domain specific) planning operators

is relatively empty, so that not much planning will be observed;
this library becomes filled during ongoing development by
increasingly accurate planning operators developing from the
sensorimotor schemas. Finally, the domain-general aspects of
development include the gradually developing abilities listed
in Sec. II-C (for example memory); it is possible that following
such a schedule of development is advantageous so that the
younger infant is presented with simpler more manageable
problems (much like degrees of freedom are constrained in
early tool use, see Sec. II-A).

Based on this, planning would seem to be relatively easy
to emulate in a robot as it matches techniques which are
already mature in AI. However, a proper grounding of planning
operators in sensorimotor experience seems to require a long
development with a great deal of experiences of the causes and
effects of sensorimotor schemas, which must be learnt by test-
ing them in many different contexts (by playing). This poses a
real challenge to roboticists because it requires a huge amount
of meaningful experiences; this is still difficult to achieve by
means of real robots nowadays due to unstable hardware and
limited sensors, and inadequate representational structures for
interpreting and assimilating the data. The remainder of this
paper will mainly focus on the development of these (domain
specific) planning operators (i.e., Figure 1 lower track).

III. PERSPECTIVES ON DEVELOPMENT

This section overviews different psychological approaches
to understanding infant development. Sec. III-A looks at
maturation and learning during the process of development;
Sec. III-B overviews Piaget’s theory, which is probably the
most well-known theory of cognitive development; Sec. III-C
looks at Siegler’s overlapping waves theory (which we have
already borrowed for our three “stages” in Fig. 1); Sec. III-D
looks at the more recently popular dynamic systems perspec-
tive on development; finally we look at how a consistent
picture of development could be found in these theories.

A. Development: Maturation and Learning

Development includes both maturation and learning. Matu-
ration is a change due to biological growth (or aging) in the
organism without the need for environmental influences [31,
p. 3], e.g. growth of certain centres in the brain. Learning is a
change due to information processing; for example a change
in the organism’s competence resulting from the processing of
information from the environment. An extreme nativist view-
point would posit that all development is due to maturation,
with new brain structures unfolding according to a pre-set plan
hardwired by the genome. An extreme empiricist viewpoint
would posit that all development is due to learning, with
new mental structures being constructed due to the processing
of new information from the environment (i.e. the software
is changing but not the hardware). Contemporary viewpoints
lie between the extremes. The evidence from the literature
suggests a very complex bidirectional interaction between
physical changes (in brain and body) and mental changes
due to learning [32]. The impact of changes in the body
has been studied in the development of locomotion [32], and

8

body changes must also pose problems for infants learning to
use tools, but we know of no studies addressing this. In this
paper we cannot address brain or body changes in any detail
since we are mainly concerned with the description of the
observable development of sensorimotor schemas. The issue
of interaction between innate structure and learning is only
indirectly observable (as with the interaction of the concrete
and abstract track as indicated in Fig. 1). This problem is also
fundamental for roboticists since they need to determine the
prior structures of the systems they design.

There is quite some research on the innateness of certain
kinds of knowledge in neurophysiology (see, e.g., [33], [34])
and developmental psychology (see, e.g., [19]) which allows
for postulates on reasonable innate structures in robot systems
(see also [35]). In Sec. V-A, we in particular point to a number
of innate behaviours that are used to bootstrap the develop-
mental process (Sec. V-B); we have also given evidence for a
certain degree of innate machinery for planning in Sec. II-B.

B. Piagetian Schema Development

Piaget’s theory is called constructivism and is based around
the idea of the infant gradually building up knowledge struc-
tures as he/she interacts with the environment. On the na-
ture/nurture spectrum it is closer to nurture (i.e. the empiricist
viewpoint in Sec. III-A). Piaget uses the sensorimotor schema
(see Sec. I) as the unit of knowledge. Piaget defined six
sequential stages during sensorimotor development (approx 0-
2 years) [2], [20], with a qualitative difference between the
sensorimotor schemas in use in each stage. Piaget’s early
stages roughly map to the three stages we outlined in Sec. I.

Piaget’s Stages I-II roughly correspond to our Stage 1
(Sec. V-A), including reflexes such as sucking and grasping,
as well as integrating different modalities (auditory, tactile,
visual), and mastering reaching to grasp. Each behaviour is
associated with its own global schema which generalises from
experiences where the action happens, and recognises the
situations where the action is triggered, and the expectation of
what sensory impressions arise while the action is in progress.

Piaget’s Stage III roughly corresponds to our Stage 2
(Sec. V-B), and involves repeating results fortuitously dis-
covered with objects in the environment, such as shaking a
rattle. During this stage there is a rapid growth in the number
of schemas in the infant’s repertoire, as new schemas are
differentiated (M3) from previous ones in order to repeat inter-
esting discoveries (e.g., squeezing, shaking, striking, scraping,
rubbing, and pulling).

Piaget’s Stages IV-V roughly correspond to our Stage 3
(Sec. V-C); means-end sequences of actions are performed.
For example, the infant will intentionally displace an obstacle
in order to retrieve a desirable object which is visible behind
it. This requires two distinct sensorimotor schemas; one for
the means action (displace the obstacle), and one for the end
(grab the desired object). This implies that the sensorimotor
schemas must now incorporate relatively advanced knowledge
of the world; they must capture the effect of an action on the
relationships between objects (for example the relationship “in
front”). Schemas are also intentionally varied (Piaget’s Stage

V) so that the relationships between initial conditions and
effects can be studied. Piaget’s Stage VI (roughly from eigh-
teen to twenty four months) involves internal representation of
objects, actions, and effects; this gives rise to covert planning
(though Willatts is sceptical and sees a more continuous
development in planning abilities [24]).

Through all this progression there is a gradual increase in
the abstractness and objectiveness of the knowledge captured
by sensorimotor schemas; earlier schemas capture subjective
knowledge locked in particular contexts, while later schemas
abstract away from these contexts and capture knowledge
about relationships between objects and actions in the world.

Piaget’s stages do not have crisp boundaries between them,
and some behaviours are intermediate; the stages also have
significant overlap, so that a child who acquires his first Stage
V behaviours will also be spending a significant proportion of
his time engaging in behaviours belonging to earlier stages.
However the sequential ordering is strict, i.e. a child who ex-
hibits behaviour from stage n must have previously exhibited
some behaviours from stage n− 1.

In Piaget’s theory development happens either through
the modification of individual schemas or the relationships
between them. Within each of his six sensorimotor stages
schemas individually develop; by being executed in varied
situations they refine the motor action of the schema, and
also refine their knowledge of the various effects produced
in various contexts. Transitions between stages are explained
through coordinations among schemas. For example, means-
end behaviour emerges in his fourth sensorimotor stage, and
this development is explained as a process of coordination
between the schemas of previous stages. For example, the
schema of hitting an obstacle (means) could be coordinated
with the schema of grabbing an object (end) in order to remove
an obstacle to prehension.

In the last few decades a great deal has been written about
where Piaget was right and wrong; Siegler gives a good brief
account [36]. In summary, sometimes Piaget overestimated
infants’ abilities, and sometimes he underestimated them.
However possibly the biggest problem from a computational
point of view is simply the vagueness of his theory; it gives a
rough sketch of how the development happens, but leaves the
mechanism of development very underspecified. Despite all
the criticisms, Piaget’s theory remains one of the few attempts
to explain the whole of development, and quite probably is a
reasonable sketch of the outline of how the mechanism of
development works.

C. Overlapping Waves Theory

Siegler’s “overlapping waves” theory of development [37,
see p. 7] holds that at a particular age a child will have
a number of different strategies for tackling a problem (for
example this could be ways of approaching a particular tool
use problem); these different ways of thinking are all active at
the same time, and may give rise to different conclusions, thus
explaining how a child may approach the same problem in dif-
ferent ways on successive days. The different ways of thinking
continue to compete with each other over long timescales (e.g.

9

several months); with development there are gradual changes
whereby more successful ways of thinking become used more
frequently, and others are used less frequently.

When compared with a logical/adult approach, this seems to
be a “sloppy” way of thinking; for example, if one strategy is
clearly leading to failure and another to success, it would seem
logical to abandon the first; however, children tend to continue
using “wrong” strategies (albeit less frequently) for some time.
It is possible that this approach leads to increased robustness,
because typical interactions in real world situations have many
uncontrolled variables and do not give such clear cut results
as a science experiment would. In such situations it may make
sense not to abandon any alternative for quite some time, so
that there are always alternative strategies to fall back on if
the one that first appeared promising eventually proves not to
be. Furthermore, it has been shown that children who exhibit
more varied ways of thinking learn more from training [38],
and more generally, variability in psychological development
may play the same critical role that it plays in evolutionary
development. This is reflected in the overlapping waves drawn
on the lower part of Fig. 1, and these overlapping waves
apply equally well to the representational redescriptions in the
upper part of the diagram; i.e., older (more context specific)
representations will not be immediately retired when newer
(more generic) representations come online; the alternative
representations will continue to operate in parallel for some
time, with one or the other being used depending on the task.

Siegler broadly agrees with Piaget’s constructivist theory,
but he also highlights the importance of aspects which might
be neglected by an excessive focus on constructivism, for
example the acquisition of associative knowledge (learnt in
specific contexts) or more generally, the issue of knowledge
retrieval processes [38]. Siegler points out that it may not make
sense to ask “whether children ‘have’ a concept or strategy
or theory at a given age”; instead it may make more sense
to investigate “the set of conceptualizations and strategies and
theories that children know and the mechanisms by which they
choose among them” [38].

D. Dynamic Systems Approach

Piaget gives the impression of a rational infant that will
take sensible actions if he/she has the relevant knowledge. The
dynamic systems view [32] attempts to explain behaviour at a
lower level, via the activation and interaction of various low
level processes such as perceiving, moving, and remembering;
the eventual behaviour observed is explained in terms of these
processes, and may not always appear rational from a more
global perspective. This can lead to different conclusions being
drawn from behavioural studies: for example, according to
Piaget’s view, if an infant knows where a hidden object is,
then the infant can be expected to attempt to retrieve it from
there; however, in the dynamic systems perspective, an infant
may reach to the wrong location because of an inability to
suppress a response performed earlier [27], or simply because
some alternative action has a higher activation (even though
the infant might at the same time have an expectation of
perceiving the object in the new location). The folk psychology

concept of “knowledge” is at too coarse a grain for dynamic
systems explanations, so that the question of whether or not
an infant really “knows” something (e.g. the location of an
object) is not meaningful; the behaviour emerging from the
infant’s lower level processes may seem to demonstrate knowl-
edge under some circumstances and not others (i.e. context
dependent). This relatively new approach to understanding
development helps to explain earlier observations which often
noted infants’ considerable difficulty in inhibiting “obvious”
actions, or actions in progress [15]. It also could explain
some of Siegler’s observations of the context specificity of
knowledge, and the switching between different strategies in
different circumstances.

E. Conclusion on Developmental Theories

The theories sketched above are not entirely consistent on
all details, but it is possible to find a consistent theory which
incorporates their major aspects, with some adjustments.
From Piaget’s theory we can take the notion of sensorimotor
schemas, and a mechanism of development which builds new
schemas by operations such as differentiation or composition
of old schemas (see mechanisms M1–M6). The overlapping
waves theory can be accommodated by ensuring that older
behaviours will not be replaced at once when newer more
sophisticated behaviours develop; instead both will continue
in parallel, and may be elicited in different contexts. The
dynamic systems approach impresses on us the necessity to
model at a fairly low level, so that sensorimotor schemas may
be quite context specific, and triggered in certain situations,
without a global overview ensuring consistency and rationality
in behaviour. This means that developments to new “stages”
do not happen all at once, but include a protracted phase
of intermediate behaviours where behaviours in some do-
mains are more advanced than others. Abstract domain-general
knowledge and representations may be very slow to arise. The
brief review above also supports some of the mechanisms we
identified in Sec. I as underlying development. For example,
the mechanism of variation and selection (M2) is very evident,
and is believed to be a primary mechanism in development
both at low levels such as learning motor synergies [39] and
also at higher levels in selecting which strategies to use [38].

IV. SENSORIMOTOR SCHEMAS (BACKGROUND)

Throughout cognitive development there is an ongoing
process of acquiring knowledge; there must exist some organ-
isation for this knowledge. One possible unit of organisation
is the sensorimotor schema (as discussed in Sec. I). It includes
knowledge about the context in which the behaviour was
performed as well as expectations about the effects. In this
way it is somewhat similar to an AI planning operator be-
cause it gathers together the preconditions and postconditions
associated with an action. We have seen in Sec. II-B that much
of what is happening during an infant’s development towards
planning abilities is the acquisition of the planning operators;
this acquisition process is a major challenge to model since it
requires the grounding of sensorimotor schemas in sensorimo-
tor experience by means of the mechanism M1–M6 as well as

10

the linking to the abstract track by ongoing representational
redescriptions (M7). In this paper we are taking the perspective
of someone who wants to build an artificial system which
develops the capability to plan with simple tools, and for
this reason we will trace the development of sensorimotor
schemas in our analysis of example behaviours. This section
will briefly overview how the sensorimotor schema has been
used in psychology and AI.

A. Sensorimotor schemas in developmental psychology
Piaget’s theory [2] uses the sensorimotor schema as the

unit of knowledge. In this section we look at other related
works to show that the sensorimotor schema is not confined
to Piaget, but is consistent with ideas in non-Piagetian work,
and therefore it is a valid concept to use in our analysis; we
also look at some shortcomings of the schema if it is to be
treated as the only unit of knowledge, and we describe how
we can accommodate these extra aspects in our analysis.

The following four post-Piagetian works are consistent
with the idea of sensorimotor schemas: (i) There is a close
relationship between sensorimotor schemas and the Gibsonian
notion of affordances [40]. The visual perception of a handle of
a cup for example can be associated with the action of grasping
it and the effect of having a stable grasp. (ii) There is evidence
that humans do learn action-effect associations which are bi-
directional (i.e. the action triggers an expectation of the effect,
and the effect triggers recall of the action) and can be used
for planning goal-directed actions [41]. (iii) The perception-
action routines of Lockman [5] are also very similar to the
idea of sensorimotor schemas. (iv) Neuroscientific evidence
from monkeys shows that object shape is coded in a motor
area of the brain which is involved mostly in the control
of hand movements [42]; the authors of this study conclude
that “every time an object is presented, its visual features are
automatically (regardless of any intention to move) ‘translated’
into a potential motor action. This potential action describes
the pragmatic physical properties of the objects.” This lends
credibility to the idea of a sensorimotor schema as a unit
of knowledge which links a particular perception with an
appropriate action.

The sensorimotor schema however always lumps together
issues of perceptual, motor, and cognitive development, and
in this it is not always compatible with contemporary views.
For example, in Piaget’s view perception tends to be built
up by experience with acting in various contexts. While this
has clearly been shown to be the case in an experiment with
cat locomotion for example [43], there is less evidence to
support all the cases in which Piaget held that the same
process occurs. A classic example is in the case of the
means-end action of retrieving a hidden object. Piaget held
that it was through experiences with acting on objects in
relationships such as “in front” that the perceptual competence
and representational competence to understand about hidden
objects was constructed. Contemporary views hold that many
perceptual competences may be more independent from action
competence, and that in many cases perceptual competence
might come first [19, p. 247,260]. Nevertheless, even if percep-
tual competence does lead, there may still be a place for action

to help with the interpretation of that perception [31, p. 176]. It
seems that the idea of sensorimotor schemas is not completely
invalidated by later results, but the schema is not the only unit
of knowledge and may need to be complemented with pure
perceptual or motor competences which may mature according
to some internal developmental processes (for example the
onset of stereoscopic depth perception [19, p. 96], or the
arrival of stereotyped behaviours (see Sec. V-A)); once they do
become available it seems plausible that sensorimotor schemas
may again come into play to integrate them [44, p. 148]. Fig. 1
(lower part) shows some nodes which do not have precursors,
and these correspond to sensorimotor schemas that integrate
newly matured perceptual or motor competences.

The use of sensorimotor schemas in analysis does not
necessarily mean that we need to bring along all the Piagetian
baggage which many have criticised.12

It is not clear if the sensorimotor schema can also ac-
count for high-level representations of objects, for example
3D models that can be manipulated mentally. Knowledge of
objects, which is abstracted from any particular action, would
seem to be a prerequisite for the more advanced type of
planning. In particular the fact that older children and adults do
have excellent generalisation abilities across domains indicates
that representations which are independent of particular tasks
must arise during development, however the developmental
evidence suggests this is a long and protracted process. This
is what is illustrated in the upper (abstract) track of Fig. 1.

B. Sensorimotor schemas in robotics/AI

A number of works in AI and robotics have borrowed
the idea of sensorimotor schemas, or very similar structures.
STRIPS-like planning operators [45] bear some similarity to
schemas and have been used to do planning in closed and
deterministic worlds. Every action has clearly defined binary
pre- and post-conditions, everything is assumed to be observ-
able and only the agent’s actions can change the state space in
which operations take place. STRIPS-like planning operators
(and later extensions [46]) have been used successfully in
restricted domains but the major problem is the reliance on
human programmers to predefine all operators. Neither the
actual action execution by the robot (which can highly vary
with the scene context) nor the pre- and post conditions are
subject to any learning. As a consequence they require a
completely designed world; the limits of this approach have
been accurately pinpointed by Brooks [7] and Sutton [47].

There have been a number of works explicitly modelling
Piagetian sensorimotor schemas ([48], [49], [50], [51]). These
all have three-part schemas of the form context/action/result.
Unlike the STRIPS planning these especially focus on al-
lowing schemas to be learnt autonomously from experience,

12E.g. Fischer [4] says Piaget’s schema is too general, because according
to Piaget’s theory two skills using the same schema should happen at the
same time, and this cannot explain the phenomenon of horizontal décalage
(for example that conservation of liquid is acquired long before conservation
of mass). This can be circumvented simply by making schemas less general.
We may have context specific schemas for each skill, which need not arise
together (although some process such as Representational Redescription [14]
may later recognise the similarity).

11

and also to facilitate the composition of schemas (M5), and
the construction of higher order schemas from lower order
ones (see esp. Chaput [49]). These examples mostly work in
simplified simulations, and none have attempted tool use.

The concept of affordances [40] has been used to describe
behaviours which are triggered by scene or object properties.
AI implementations inspired by Gibsonian affordances arrive
at knowledge structures very similar to the implementations
of Piagetian schemas [52]. Modayil and Kuipers show in [53]
how the effects of a physical robot’s actions on its perception
can be learned. Fitzpatrick and Metta [54] learned affordances
for pushing objects and made initial steps towards learning
categories (e.g., roll-able). Stoytchev [55] is able to learn tool
affordances for a set of tools by correlating the tool used, its
movement and the effects on other objects in the scene. Hart
and Grupen [56] show how generalisable control programs can
be learned and how they can evolve from one task to the next.
These generalisable control programs could be understood as
the action core of a sensorimotor schema.

The major challenge in formalising sensorimotor schemas
is probably to capture the dynamic properties of its actual ac-
quisition process. This acquisition requires us to (i) ground the
sensorimotor schemas in sensorimotor experience (meaning to
learn suitable pre- and postconditions as well as associated
success likelihoods) by means of the mechanisms M1 and
M2, (ii) define processes that lead to the creation of new
sensorimotor schemas by means of the mechanisms M3–
M6, and (iii) integrate the sensorimotor schemas into the
dynamically changing abstract world knowledge by means of
representational redescription (M7). This in particular requires
the performance of a huge amount of meaningful actions
providing the required experience to feed the developmental
process in a complex cognitive architecture. This architecture
is likely to be equipped with a not insignificant degree of
innate structure such as innate behaviours and a rudimentary
planning machinery (see Sec. III-A) based on which the
still to be acquired planning operators develop from initial
sensorimotor schemas. In this context, we recently introduced
the concept of so called “object-action complexes” (OACs)
[57] as one possibility to formalise the complex acquisition
process associated to sensorimotor schema.

In this paper we give evidence that the development and
enriching of sensorimotor schemas can be directly linked to the
development of tool use, and hence provides a means to tackle
the same problem in robotics. Insight into the development
of sensorimotor schemas in infants hence can also guide the
design of artificial agents which learn to use tools.

V. THE BEHAVIOURAL STUDIES (CONCRETE TRACK)

[in this section: NK and DK to add links to robotics work
that is close to the abilities described in infants]

This section looks at behavioural developments in the first
two years which we believe to be relevant to the development
of tool use. The section is organised roughly in order of de-
velopments which build on each other, including the supposed
precursors to tool use, and simple examples of tool use of
increasing complexity. These behaviours are summarised in

Fig. 1 where there are three overlapping waves for the three
types of behaviour: behaviours without objects (Sec. V-A),
behaviours with single objects (Sec. V-B), and object-object
behaviours (Sec. V-C). These subsections cover the precursors
to tool use, and then Sec. V-D takes an in depth look at one
particular example of tool use which is common in the second
year of infancy: self-feeding with a spoon. Fig. 2 graphs the
individual behavioural developments covered in this section.

A. Behaviours without objects

Here we analyse some typical behaviour patterns of infants
which do not require manual contact with objects or surfaces.
Firstly there are a number of “reflexes” such as reaching,
or rooting for the breast; however von Hofsten [59] cites
evidence showing that these and other examples of supposed
reflexes do not in fact share the expected properties of reflexes
(e.g. elicited, and automatic) and in fact turn out to be under
voluntary control. He states that as with other mammals it
should not be surprising to find sophisticated prestructured
actions in human neonates. Secondly there are “rhythmical
stereotypical behaviours” which Thelen describes as being
more complex than reflexes, but less variable and flexible than
full voluntary behaviour [18]. This lack of variability may be
an example of the strategy of initially reducing the degrees of
freedom of the motor control problem (see Sec. II-A). Thelen
[60] observed infants longitudinally during the first year, and
recorded all rhythmical stereotypical behaviours; this meant
any movement that was repeated at least three times at regular
short intervals of about a second or less. Forty seven distinct
behaviours were observed, appearing at different times. We
will describe eight of these, involving arms, hands and fingers,
which seem most relevant as precursors to tool use (rather than
leg movements, or whole body movements etc.). The numbers
in parentheses describe the percentage of sampled infants who
exhibited the behaviour.

1) Arm wave (100%): a rapid flapping of the arm verti-
cally from the shoulder. This leads to surface slapping
behaviour (Sec. V-B6), and also waving of objects and
banging them on surfaces (Sec. V-C1).

2) Finger flex (100%); flexion and extension of all four fin-
gers simultaneously, and often the thumb. This probably
leads to exploratory behaviours with objects (Sec. V-B5).

3,4) Hand rotate (90%) and flex (80%): a rhythmic rotation,
bending and extending of the wrist. This is subsequently
performed with objects; possibly it is used in object
exploration (Sec. V-B5).

5) Clap hands together (75%) (which Thelen calls Pat-a-
cake): This later leads to stereotyped banging objects
together (Sec. V-C8) (85%).

6,7) Arm fly together (20%) and Plucking (15%): these were
similar to clapping, but the hands were not extended
to slap palms together; hands were brought together
and then thrown apart; these may also be precursors to
banging objects together (Sec. V-C8).

8) Finger rotate (15%): similar to “the movement used in
turning a large dial, where the fingers are rotated slightly
outward” [60]; this may lead to rotation of lids/dials.

12

 grasp track: reflex voluntary pincer grasp

pre-reach

support: accidental intentional with understanding

short stick

open and close grasp in a kneading pattern (haptic exploration) (V-B5)

rotation: accidental intentional

gradually improving spoon use (self feeding) (V-D)

0 6 12 18 24

radial spoon graspadjust, put bowl in mouth

gradually improving posting objects in holes (V-C11)

medium stickstick: contact

gradually improving rotate lever to get toy (V-C6)

interest in toys with parts to be independently manipulated (V-C7)

bimanual contour following exploration (V-C7)

role differentiated bimanual activities (V-C7)

relationaltype of play with objects: functionalsimple relationalstereotypical

retrieve behind transparent lid: bimanual retrievalone-hand wormbang lid

bang hammer on surface (V-C1)

verticalhorizontal

place held object in storage

hand-surface: discriminatory slapping, picking, rubbing, and pressing (V-B6)

object-surface: discriminatory banging, rubbing, and pressing (V-C1)

knock two objects together (V-C8)

radial p. scissor grasp

pre-adjust to object size (gordon)

improved reach competent reach+grasp

preorientation of hand, 2-handed grasp only for large objects

attempts to keep toy in motion by repeated movements (II-B1)

transitory behaviour

visual inspection of object (V-B5)

hit objects (V-B4)

 manual/visual examination of objects

differentiating schemas for different objects (V-B5)

shake objects (V-B4)

no reach

string:

single object

behaviour

additional objects:

dominant

pattern of play

basic reach

and grasp

0 6 12 18 24
Age (months)

object-surface

or

object-object

behaviour

 stereotypical behaviours without objects (V-A)
no object

behaviour
(V-B3)

(V-B1,2)

(V-C8)

(V-B4)

(V-B5)

(V-C5)

(V-C2)

(V-C3)

(V-C4)

(V-C9)

(V-D)

take 2nd object

Fig. 2. Behaviours at various ages. The left hand side of each rectangle indicates the age at which the behaviour appears; the right hand-side is meaningless.
Cross references to the part of this paper which describes the behaviour are given in parentheses. The arrows show an example of a chain of supposed
precursor behaviours. Some of the ages here come from Uzgiris and Hunt [58] with the warning that they “should not be interpreted as typical for infants in
general”, they are provided to indicate an order of progression, rather than precise timings.

Other stereotypical behaviours relevant to tool use are only
performed with objects, and so are covered in Sec. V-C1.

The percentage of the infants’ time spent engaging in these
movements rose during the period from about 1 month of age
through to 6-7 months [18], after which it plateaued and then
fell off towards the end of the first year. The average time spent
engaging in the movements at the peak was approximately
9%. Although the overall frequency of stereotyped behaviours
declined in the second half of the year, the number of different
types of behaviours rose, because new behaviours were added
without the loss of older ones (unfortunately the study did not
report on which specific behaviours appeared at which times).
Behaviours tended to be more variable around the time of their
first appearance than later (which may be the mechanism of
variation followed by selection, (M2)).

Since the behaviours described above have no obvious
precursors, and given that older children and adults do not
perform these behaviours, it is not possible that they were
imitated, and it is surmised that they are innate. Furthermore
Thelen states that “the onset of particular stereotypies is
largely dependent upon events intrinsic to the infant” [60].
Thelen suggests that the behaviours are not much affected by
the environment, but rather “internally guided” [60]. Thelen
suspects that the behaviours may emerge as by-products of

the normal maturation of motor control circuits, but that they
may be opportunistically used by infants for the purpose of
bootstrapping further development, for example by encourag-
ing actions which will at some point lead to interesting results.
Evidence that spontaneous behaviour such as kicking can be
transformed into an instrumental behaviour comes from Rovee
and Rovee [61] (as early as ten weeks) and also Piaget’s work
(his second sensorimotor stage, approx. 4 months). The general
feature of this is accidental discovery followed by intentional
exploitation, and is a theme we have already seen in Sec. II-B
(for means-ends behaviour) and which we will see arise in
many later behaviours. Furthermore Thelen [18] speculates
that these stereotyped movements may be incorporated in
hierarchically structured advanced skills (composition, M5),
where the stereotyped movements form low-level subunits.

Apart from stereotypical movements, calibration of the
vision, motor, and proprioceptive systems seems to also take
place in the first months. Infants may regard their hands
moving in the second month, but the vision does not guide the
hands [2, p. 102]. Subsequent to this, vision augments the ac-
tivity of the hand. Infants engage in extensive self-exploration
by 2-3 months [62]. Young infants, when viewing their own
movements, are sensitive to visual-proprioceptive contingency;
infants of 3 months are able to discriminate between direct

13

and delayed views of self-produced leg movements13. Rochat
[62] concluded that there is evidence for a perceptual based
body schema at this time. It would be interesting to know how
this body schema can predict interaction with seen objects.
Bower [63, p. 123] has shown that there seems to be an innate
knowledge14 of when a primitive reach should contact a seen
object because infants were distressed by a “virtual object”
which they could see and reach for, but which produced no
tactile sensation. However this expectation of contact is likely
to be very specific to reaching for a target; we are not aware
of any experiments which determine when the infant displays
knowledge of expected collisions with objects which are not
the targets of reaching.

In summary these behaviours without objects give some of
the initial sensorimotor schemas which form the beginning of
the developmental story illustrated in Fig. 1; together with
the basic mechanisms M1–M6 they start the developmen-
tal process, and become differentiated (M3) and composed
(M5) to produce new schemas. This happens because these
initial behavioural patterns cause interesting events to occur
(touch, sound etc.), leading to differentiation of schemas
(M3); subsequent variation and selection (M2) helps to fine–
tune these new schemas, so that they become increasingly
predictable (and potentially intentional). Additionally, some
of these innate patterns seem to trigger multi-sensory expecta-
tions indicating an innate multi-sensory experience space [64].
These behavioural patterns play an important role in learning
a body schema.

B. Behaviours With Single Objects

1) Learning to Reach: Reaching is an obvious precursor
to dealing with objects, but also it is probably particularly
relevant to simple tool use because similar problems seem
to be involved: For example in learning to control a stick
there is a similarity between learning to bring the hand in
contact with a seen object, and learning to bring the stick
(which could be viewed as an extension of the hand, see, e.g.,
[65]) in contact with an object. One needs to solve a degrees
of freedom problem to control joints, and a scaling problem
to apply the correct force to each element; furthermore there
may be visual feedback (servoing) to control the movement to
the target. It is probable that evolution has developed innate
routines to bootstrap the development of reaching, and it is
plausible that some of that innate machinery may be reused
for tool use.

Neonates seem to have a very premature reach and grasp
mechanism which reduces in frequency over the first two
weeks, and is hard to elicit in the period from four to 20
weeks [63], [66, Ch. 6]. The neonate primitive reach motion
is visually elicited, and ballistic, with no visual feedback
to correct the reach motion while it is in progress [31,
p. 38]; it has a relatively low success rate (9-40 percent [19,
p. 250],[63]). Bruner [67] suggests that this type of innate
response is coded in by evolution to serve as a ”launching

13Leg movements are also included in Thelen’s stereotypical behaviours,
but we have omitted them above because they seem less relevant to tool use.

14His youngest experimental subject was 4 days old

stock” from which skilled actions can then be constructed.
The mechanism of variation and selection (M2) seems to
be important in building on such innate patterns to develop
mature reaching, as shown by Thelen et al.’s [68] detailed
study. One striking result of their study was that there were
dramatic differences in how four different infants first reached
for toys, and how they developed; each seemed to have their
own developmental pathway15. There is little evidence that
the capability to grasp accurately is present in the first month,
although some elements such as hand opening are present [31].
The hand opening disappears at about two to three months, and
the behaviour becomes more of a swiping with a closed fist,
which is then replaced by an open-handed reaching, but with
no grasp [69]. The reduction in reaching at about 7 weeks
seems not due to any loss of interest in near objects, because
visual fixation increases; it is possible that the reduction is
because of the excitement of looking inhibiting the motor
response, but also there must be some reorganisation of the
motor control to explain how the hand opening becomes
separated from reaching [70].

It is not until about the fourth month that proper visually
elicited grasping will commence, and that the infant will bring
the hand into view to grasp seen objects even when the hand
is not initially in view [58, p. 110]. The more mature reach
and grasp which appears at about five months has about an 80
percent chance of contacting the target, with the possibility of
visual feedback to correct the reach in progress, although the
grasp coordination appears to have regressed [63]. It seems
that the primitive reach-grasp was undifferentiated (i.e., the
reach and grasp are coupled), and by 20 weeks two separate
motions have replaced it (decomposition, M6), which can now
be executed independently, or coordinated. Gordon [71] also
notes that this type of regression followed by advancement is
common: reorganisations can initially result in a decline of
the motor skills, before improvement. After this period the
coordinated reach and grasp develops rapidly; Bower reports
100 percent accuracy on visually elicited reaching [63, p. 174]
at six months.

Studies with prisms which distort the infant’s vision show
that the infants can use the visual feedback to correct their
reaches [72]. However, the visual feedback does not seem to be
necessary for normal successful reaching; studies of reaching
for glowing objects in the dark [72] conclusively show that
sight of the infant’s limb is not necessary either at the onset
of successful reaching or in succeeding weeks; proprioceptive
information must therefore be employed. Nevertheless, vision
does seem to be important in normal infants’ development
of a common mapping system for auditory, proprioceptive,
and visual information, because reaching in blind infants is
substantially delayed [72].

2) Refining the Reach and Grasp movement parameters:
Bruner [67] sees a commonality between the development of
reaching to grasp, and the development of other goal-directed
skilled actions. In each case the behaviour starts out with a

15Such development pathways give useful material which helps in the
discovery of the underlying mechanisms of development. Also, they illustrate
a degree of robustness and generality in these mechanisms, in that they can
cope with a variety of different configurations.

14

series of component acts (for reaching these include raising
of arms, ballistic flinging, and closing hand), but the sequence
is not correct and the acts are crude; once the sequence
becomes correct each component is “drastically altered to fit
task requirements”. With more practice the whole sequence
becomes energy efficient, which suggests that there may be
a feedback in the system based on efficiency. Eventually the
whole sequence becomes modularised (M6), so that it can
appear as a component in new higher order sequences.

There is a developmental progression in the infant’s use
of information about the size of objects, for grasping; infants
as young as eight weeks make more reaches to a graspable
ball than one that is too large [31, p. 43]); 5-month-olds
tend to reach with two hands regardless of size, whereas 7
to 8-month-olds use two hands for large objects more often
than for small ones, and at 11 to 12 months reaching closely
reflects the object’s diameter [73]. A similar pattern appears
for the thumb-index finger angle opening during the reach,
which increases after 7 to 8 months, as well as the adjustment
of the angle to the object diameter, and the proportion of the
object within hand opening at touch [73]. In studies of 5, 9 and
13-month-old infants [31, p. 44] it was found that all infants
began hand closure before contact, but younger infants began
closure later.

For orientation, it was found that 9-month-olds rotated
their hand to adjust to the orientation of a stick before
grasping, whereas 5-month-olds did most of the adjustment
after contact. A detailed longitudinal study [69] has shown a
qualitative change in grasp preorientation occurring between 5
and 7 months, which is roughly inline with other results [74].
Investigations of the importance of vision to preorientation
[75] have shown that 7-month-olds could preorient correctly
to grasp a glowing rod in the dark, showing that visual
monitoring of the hand’s orientation was not necessary. For
9-month-olds it was shown that they could orient correctly
and grasp the rod if shown the rod only before reaching,
but the rod remained darkened during reach onset and grasp.
Again (as in the previous section) proprioception must be used
here, and the authors suggest that vision is used to calibrate
the proprioceptive information from the limbs, and thereafter
vision is not necessary.

These results on size and orientation show that fragments
of a practical object representation are present at this early
stage (see also Sec. VI); by “practical” we mean that it may
be encoded via the motor action which can grasp it. Such
representations allow for the distinction of object size and
orientation, while the strategies to adapt grasping appropriately
evolve over time. We surmise that these early fragments of
representation form the basis for later more complete and
action-independent representations (see Fig. 1 upper track).
FG: can we link to related robotics work?

3) Development of grasping competences: Infant grasping
abilities develop throughout the first year. There is an initial
reflex “neonatal palmar grasp” present from birth, where the
fingers close on stimulation of the palm; there are conflicting
results [76] about whether this disappears gradually over the
first year, or disappears after two months, or gradually merges
into voluntary grasping.

(a) (b)

(c)
(d)

(e)

Fig. 3. Developing grasps: (a) palmar grasp; (b) radial palmar grasp; (c)
scissors grasp; (d) inferior pincer grasp; (e) pincer grasp.

For voluntary grasping, Touwen [76] in his longitudinal
observations of 27 male infants noted a development through
five different phases of grasping: the voluntary palmar grasp
(Fig. 3 (a)) uses the whole hand (appearing on average at 4
1
2 months); the radial palmar grasp (Fig. 3 (b)) is performed
mainly with the area of the palm between the thumb and the
second and third finger (i.e. with thumb opposed) (average 7
months); the scissor grasp uses the volar sides (volar = the
lower surface of the hand, i.e. which includes the palm) of
the extended thumb and index finger (average 8 1

2 months), or
alternatively the side of the curled index finger [77] as shown
in Fig. 3 (c); there follow some intermediate stages before
the proper pincer grasp: the scissor-pincer grasp uses the tip
of the index finger and the volar side of the extended thumb
(average 11 months), an alternative inferior pincer uses the tip
of the thumb and volar surface of index finger ([77], Fig. 3
(d)); the pincer grasp (Fig. 3 (e)) uses the volar surfaces of the
tips of the thumb and index finger almost exclusively (average
12 months). Development is by no means finished here; the
second year will see an improvement in the use of appropriate
forces, and the grasp will not approximate adult performance
until 6 to 8 years, with further subtle improvements in ad-
justments of force and anticipatory control continuing until
adolescence [71]. This gives potentially valuable indications
for roboticists how the control of artificial dexterous hands
can be learned in some hierarchical scheme starting from a
coarse to a fine grained representation. FG: can we link to
related robotics work?

4) Developing the Stereotypical Behaviours with Objects:
Once reaching and grasping are mastered (c. 5 months) the
stereotypical movements of Sec. V-A (without objects) can
easily be performed when an object is grabbed, and this is
exactly what happens (due to the mechanism of repetition
(M1)). Thus arm waving becomes waving with an object
held in the hand, such as a rattle. The opening and closing
of the fingers can be done with an object, either to catch
(and release) it or scratch it. These behaviours lead to new
interesting effects, and so are reinforced (corresponding to
Piaget’s third stage which occurs from about 4 to 8 months).
This is quite a clear example of the process of differentiation
of schemas (M3), which can be followed by variation and
selection (M2) to refine the newly differentiated schema. Other
behaviours appearing include rubbing an object with the hand,
or squeezing an object, or crushing (e.g. paper).

15

Some developments with a superficially similar appearance
to tool use can also appear at this time, for example an infant
can pull strings to shake something tied to the end, or if the
infant is in possession of a stick and it accidentally hits an
object, then this action can be repeated (this “accidental to
intentional” pattern is a feature of the repetition mechanism
M1). However the combination is discovered by accident and
the relationship between the objects is not understood; this
is shown by the fact that strings which are close, but not
connected to the object, will also be pulled [2], and in the
stick example, there is no ability to control the direction in
which the stick is pointing.

Infants may also rotate an object during random exploration
at 6 months [2], although it is doubtful that it is done with
the intention of seeing the other side, as they are incapable of
fully turning objects to find a hidden desired side until about
9 months [58, p. 120]. They may however intentionally half-
rotate an object to bring a seen desired part to the mouth [2].

5) Multi-sensory Object Exploration: There is an obvious
progression in the sophistication of the infant’s object manipu-
lation abilities, but in parallel with this there is the less obvious
development in the infant’s perceptual abilities. It is surmised
that in some instances the behavioural developments help the
perceptual development [78], [79]; this has been studied in
the case of haptic perception: Before reaching to grasp is
mastered, objects are manipulated, and information about them
is gathered haptically. Infants haptically perceive object size
probably during the first months of life [78]. Newborns have
been shown to discriminate objects by haptic exploration (e.g.
cylinder vs. prism) based on shape [64]. More specifically,
infants of 2 months can gather partial knowledge of shape
from clues such as points, curves, presence or absence of a
hole [64]. We saw in relation to grasping (Sec. V-B3) that a
visually-based object representation was forming, now we see
here that a haptic based representation is forming in parallel.
FG: can we link to related robotics work/haptics?

There is also evidence of cross-sensorial transfer in neonates
[64]; i.e., infants who were habituated by haptically exploring
an object were subsequently able to visually discriminate
between that object and another novel object. This transfer
from touch to vision has also been shown to be present at 2
months, but transfer in the other direction is absent (i.e., infants
do not haptically discriminate between two objects if they
have just seen one of them) [64]. Interestingly, at 5 months
(when reaching and grasping are coordinated) the reverse has
been shown: infants transfer from vision to touch, but no
longer from touch to vision [64]. It has been surmised that the
two senses may have their own representations developing at
different rates, and at certain times the level of representation
in each one might not facilitate transfer; the haptic system
seems to be present very early and to mature slowly, whereas
the visual system appears later but develops more rapidly [64].

Infants can perceive hardness or compliance by 6 months
and possibly earlier; the development of such perception may
be facilitated by the main action performed with objects for
about the first three months, which is to grasp in a fist and
open and close in a kneading pattern. Infants can perceive

tactile texture16 by 6 months, but not earlier [78], [80]; this
may be because it relies on practice with exploratory rubbing
movements. In normal contexts infants perceive weight prob-
ably about 9 months, which notably comes after they have
experience with waving objects, although there are exceptions
[80]. In darkness, when infants are seated upright on the
parent’s lap, 3-month-olds can perceive weight; the darkness
removes visual stimuli that may be consuming the infants’
attention, and the infants’ posture means that as soon as they
have possession of the objects they have to support their
weight (as opposed to fingering them on a table) [81]. There is
also some evidence that properties of temperature, texture, and
compliance may be perceived by 3 months if in the dark [81].
These advanced results in darkness highlight the difficulty of
determining the competences of infants; failure to perform a
task might not reflect a lack of ability, but rather it may be
simply because a competing stimulus was more exciting.

The above examples show how behaviour may facilitate
a perception. In the other direction infants’ behaviours with
objects are affected by their haptic perception. Lockman
presented infants at ages 6, 8, and 10 months with hard and
soft objects [82]. Infants at all ages squeezed the soft object
significantly more than the hard object, but squeezing of the
soft object increased significantly with age.

To model similar behaviours in artificial systems, sensors
comparable to the human system are required. While powerful
visual sensors are readily available nowadays the selection of
available complex tactile sensors is very limited. These sensors
show a significantly worse performance compared to human
abilities in some or all of the following dimensions: spatial
resolution, sensitivity, disparity between capabilities of hands
and capabilities of sensors, long term stability and system
integration [83]. In this sense, further progress on tactile sensor
development needs to me made before similar behaviours can
be replicated in artificial systems.

6) Hand to Surface Interactions: Hand to surface inter-
actions tend to occur after manipulation of objects because
the infant usually needs to be seated (with some assistance,
about 6 months [78]) in order to access surfaces. Interactions
between the hand and a surface can be considered to be quite
similar to the hand with an object, and again the rhythmic
flexion and extension of fingers (described above [60]) was
also often performed to scratch a surface. Lockman specifically
studied surface interactions; he presented infants at ages 6, 8,
and 10 months with surfaces which were liquid, discontinuous
(net), flexible (sponge), or rigid [82]. He recorded actions
of slapping, picking, rubbing, and pressing; these actions
may themselves be derived from stereotypical behaviours (e.g.
slapping from waving) or recently acquired grasping actions
(e.g. picking).

He found that infants discriminate, for example they pressed
a flexible surface more than the other three, and rubbing was
more prevalent across liquid; furthermore the discrimination
develops with age, becoming more pronounced. Overall then

16Texture here means the fine grained property distinguishing same-shaped
blocks if they were covered with, e.g., a towel, rubber, smooth cloth, or plain
wood. Two objects appearing the same to the eye may have different textures,
so the term is not synonymous with its use in computer vision.

16

we see that once infants are grasping and acting on objects
(or surfaces), they begin to discriminate the properties of
those objects, and this must link to developing object rep-
resentations, which are beginning to be formed. By now the
infant understands something of the properties of individual
objects (as a result of differentiation, M3); this means that the
sensorimotor schemas (e.g. for banging, pressing) include sen-
sory abstractions which discriminate between different objects
and surfaces (in order to predict different consequences for
the action being executed on each one). This discriminating
knowledge forms a substrate which will allow the infant to
progress to learning about the effects of actions involving
relationships among these objects and surfaces.

C. Object-Object Behaviours

This section covers the early object-object interactions
which involve controlling relationships among objects, and
through which knowledge is acquired about relationships
between objects.

1) Object to Surface Interactions: Of Thelen’s stereotypical
movements [60], two were only performed as an object-surface
interaction. One movement consisted of an infant holding an
object and rubbing it (horizontally) against the surface of a
table or floor, with movement from the shoulder. The second
was a push-pull movement from the elbow (flex and extend)
with the arm parallel to the floor or table. This was typically
done for an object too heavy to be lifted, so instead it was
pushed back and over on the surface. Thus it seems that this
arises due to the interaction between an innate motor behaviour
(push-pull of elbow) and constraints of the physical world.

The stereotypical waving action has been performed with
objects, as noted in Sec. V-B6; now when a hard surface is
present this can lead to the behaviour of banging on the surface
and producing an interesting sound. Lockman has studied
how this banging action becomes discriminatory (a result of
differentiation, M3). Again, he presented infants at ages 6, 8,
and 10 months with surfaces which were liquid, discontinuous
(net), flexible (sponge), or rigid, and also with hard and soft
blocks [82]. In this case there was an inability of the younger
infants to discriminate some of the relationships. All infants
banged differentially, banging more frequently with the hard
block on the net and rigid surfaces, but only the 10-month-olds
banged the hard block more than the soft one. Also only the
10-month-olds differentially rubbed across surfaces, rubbing
over the rigid one for longer. This again suggests that infants
develop by first focusing on the exploration of individual
objects and only at a later stage on object relations. As a
consequence by 10 months there is a general improvement in
the ability to handle relationships between a grasped object
and a surface it acts on. Possibly the limitation of younger
infants is important because it prolongs the period of dealing
with simple relationships, so that they can be learnt thoroughly.

A further study [84, Ch. 21] tested infants monthly from
8 to 10 months with hammers to bang surfaces. The hammer
heads were hard, soft, or half hard/half soft. The surfaces were
hard or soft. Infants at this age were able to hold a hammer by
its handle, to use as a tool. It was found that all ages banged

the hard hammer more than the soft hammer, on the hard, but
not soft surface. Furthermore there were more hits with the
hard side of the mixed hammer.

This action then is almost tool use, however, orienting a
hammer to a surface is easier than directing it at a specific
object. When an infant is presented with two surfaces on
a table side by side, and is able to selectively bang on
one surface, then the infant shows awareness that these two
surfaces are distinct. This is very close to selectively banging
against another object, and forms a possible bridge to banging
a held object against a stationary one.

Overall the path we have traced shows how the original
stereotypical movements could help to bootstrap the devel-
opment of object-object actions primarily via the mechanism
of differentiation (M3), which is itself triggered by accidental
discovery following repetition (M1).

2) Taking an Additional Object: As soon as infants can
grasp one object they will inevitably face situations where they
want to grab another even though they are already holding one.
Bruner [15] examined the way infants respond to being handed
multiple toys, one after the other. Infants from five different
age groups were tested.

At 4-5 months some infants could not even get the first toy,
and some could not hold it for long. Some infants succeeded
in taking the second toy, but only because they inadvertently
dropped the first before taking the second. In general infants
tended not to grab the second toy if the first toy was already
in the process of being taken to the mouth.

At 6-8 months good command of the grasp was attained.
On being presented with the second toy these infants often
transferred the first toy to the other hand to free the preferred
hand for reaching. The development of this behaviour came
from taking the first object to the midline in order to hold it
with the two hands, and then reaching out with the nearest
hand; and this then evolved into an anticipatory handover.
Sometimes instead of the transfer the infant would reach across
with the empty hand.

At 9-11 months one fifth of the trials successfully dealt with
3 to 4 objects. The strategy employed was to put one in reserve
storage (in the lap, or beside the infant) to free the hand for
the second, although this often (50%) triggers another grasp
attempt immediately, i.e., the infant forgets why he put down
the first object and/or cannot inhibit the action of retrieving it
again immediately (see again Sec. II-B on affordance based
to goal based action). To overcome this difficulty requires
a capacity to delay the retrieval response, and to maintain
the intention for grasping the new object. These abilities are
obviously also important for more complex problem solving
requiring planning (Sec. II-B).

At 12-14 months the storage strategy was well developed,
and furthermore the infants can place an object in storage
before a third or fourth are handed to them. At 15-17
months the mean number of objects which the infant can
take possession of has gone from 3.0 to 3.7, and objects are
stored in one way consistently. Overall from 6-17 months
there is a gradual increase in leaving it there, rather than
a sudden step change. The development shows a process of
integration of the constituent acts into a successful behaviour

17

(see modularisation, M6) [15]. We can also see that knowledge
of space and special locations is necessary for dealing with
more than one object. In the earlier interactions with a single
object the reach and grasp were triggered, and then the infant
manipulated the object. Location was implicitly coded in the
reach behaviour, but the infant was not forced to be aware
of this. However, when two objects are being handled the
infant is forced to become aware of locations apart from the
location implicit in a reach. We have mentioned the beginnings
of object representation before; we see here the beginnings
of spatial representation, which becomes more abstract in a
similar way (see abstract track of Fig. 1).

3) Pulling the Supporting Object: Willatts analysed the
task of pulling a towel to retrieve a supported toy from 6
to 8 months [85]. He recorded not only success or failure
on the task, but also monitored the infant’s gaze, in order to
have an objective measure which could discriminate between
accidental success, or intentional success. Younger infants
(about six months) tend to give up on the toy and play with
the towel instead, but in doing so they often accidentally bring
the toy into reach. Willatts was able to monitor the infant’s
gaze, and to show that there was a transition: whereas the
younger infants (6 months) gave up on looking at the toy, as
they got older, there were more glances towards the toy (8
months), suggesting that pulls of the towel were intentional in
order to retrieve the toy. These kinds of accidental discoveries
lead the child to understand the effects of various actions on
object-object relationships, and lead to the development of
a repertoire of “means” actions which can be employed to
achieve goals [2], [20]. It is an example of the mechanism
of repetition (M1) leading to accidental discovery followed
by composition (M5) of the means-end behaviour, which then
allows intentional exploitation.

Note that in the case of the support the necessary relation-
ship (on top of) is not understood at 8 months, and up until 10
months or later the infant will still pull a support even if the
desired object is held above it and not touching it [58, p.111],
or resting on an object close to the support [2, p.283].

4) The String: A string is tied to an object and must be
pulled in order to bring the object within reach. The string is
particularly easy because of its unbreakable contact with the
object [86]; it is hard to go wrong (in contrast to the stick,
Sec. V-C9), if the string is shaken wildly the object will still
not be lost from the end of it, and is quite likely to be brought
closer. Uzgiris and Hunt [58] tested two different string
situations; the easier situation is on a horizontal surface where
retrieval of the desired object can be performed by repeatedly
pulling the furthest part of the string towards oneself, and then
letting go. The more difficult string behaviour is when the
object must be raised vertically; the horizontal strategy fails
here because the object falls if the string is released; success
requires bimanual control, typically with one hand pulling,
and then passing control to the second hand which prevents
the object from falling, while the first hand stretches again.
Uzgiris and Hunt observed the horizontal string task at 12
months, and the vertical string task at 13 months [58, p. 111].

5) Obstacle Removal/Avoidance: This behaviour is a step
towards tool use because the relationship between two objects

must be acknowledged (obstacle and desired object), and one
must either remove the obstacle or detour around it. Learning
the means-end coordination to remove an obstacle in the way
of grasping is one of the first means-ends behaviours described
by Piaget [2, p.217], which he places at 7 1

2 months; as with the
support, it may be learnt by an accidental discovery followed
by intentional exploitation. This is a difficult problem for
infants at this age because they are not used to dealing with
two objects, and so it hard for them to execute an action
on an object (obstacle) which is not the current goal; Piaget
speculates that other two object behaviours such as placing
one object aside in order to take another (Sec. V-C2) may
derive from obstacle removal [2, p.217].

Bruner [15] looked at the task of retrieving a toy from
behind a transparent lid. The lid could be easily lifted, but fell
down if not held open. The behaviours observed in infants
were very much in line with Siegler’s multiple strategies in
overlapping waves (Sec. III-C); infants used various strategies
each of which had peak at a certain ages and decreased only
gradually. The youngest (6- to 8-month-olds) went directly for
the toy and then engaged in banging of the (closed) lid, which
may have become an end in itself; this behaviour gradually
decreased with age, but still appeared in some trials for the
oldest infants. Infants of 9 to 11 months predominantly used
two different strategies: (i) raising and closing the lid, which
also seemed to become an end in itself; (ii) raising the lid
with one hand and carefully “worming” the same hand into
the opening so that the hand (and arm) prevent the lid from
closing. The fourth strategy was two-handed: the lid is opened
with one or two hands, followed by a reach with one or two
hands, but the lid is not held open long enough for efficient
retrieval. This behaviour had some presence in all groups,
gradually increasing and peaking for the oldest (15 to 17
months). The final strategy involved holding the box open with
one hand while the other hand retrieved the toy; this increased
sharply after 12 months. Thereafter there was no new strategy,
but this strategy became less effortful and quicker. Progress to
the final strategies depends on advances in bimanual control,
and so this is an example of where progress to a node (i.e.
behaviour) in Fig. 1 (concrete track) may have to wait for all
its necessary precursors to be ready.

6) Rotate a Lever: This task involves a 42 inch lever which
can rotate about its centre on a table. One side of the bar is
within reach of the child, but the far side is inaccessible. An
attractive toy is tied to the far side. The child must rotate the
bar in order to bring the toy around to the reachable area. This
is difficult because the child must take the unusual action of
pushing the bar away in order to bring the toy closer.

Koslowski and Bruner [87] tested children of three age-
groups (12-14, 14-16, and 16-24 months) and categorised the
strategies they used as follows: (i) Linear: reaching directly
for the toy, trying to push the bar in a straight line towards
or away, pulling the table. (ii) Oscillation: pushing the bar
back and forth, but never rotating more than 45◦ from the
midline, and tending to return it to midline after rotation. (iii)
Partial rotation: rotating 45◦ and then stopping to consider the
new position, but not making a concerted effort to reach for
the toy. (iv) Absorbed in the rotation activity, often rotating

18

the toy within reach, but ignoring the toy (see comments on
affordance-based play in Sec. II-B). (v) Rotate and capture.

There was a progression towards more advanced strategies
with age. Younger children found it difficult to suppress the
linear strategy, and this explains the oscillation strategy: after
rotating a bit, they resort to pulling the bar straight towards
them (hence returning it to midline). Repeated failure with
this almost forces the child to consider unidirectional rotation.
Thereafter the child can pay attention to two aspects of
the apparatus: either the relation between movement of the
bar and the position of the goal, or the way in which the
movement of the bar can be effected. The authors suspect that
both cannot be attended to simultaneously due to information
processing capacity limits (Sec. II-C); therefore they must be
first modularised (M6). While focussing on looking at the toy,
little progress is made in unidirectional rotation, on the other
hand focusing on the rotation leads to strategy (iv). Eventually
the fact that the goal is within reach is noted; this sort of
accidental discovery bears some similarity to the discovery of
the support (Sec. V-C3). The change in strategies used was
inline with Siegler’s overlapping waves theory (Sec. III-C);
there was a marked increase in the use of strategy (iii) by the
14- to 16-month-olds, and the 16- to 24-month-olds had the
largest number of children using strategies (iv) and (v), but
older strategies had not died away completely. This is also
inline with the idea of schemas being the unit of behaviour:
the novice child has a well developed schema for pulling in a
straight line, but is only developing the schema for rotation;
the child must ignore the goal in order to focus on developing
the rotation schema further, so that it can be later used as a
means action (see Sec. II-B). The child’s modular approach
to the problem has a major benefit: “Not only is the problem
solved, but it is solved for a wide variety of circumstances
and forms in which it is likely to be encountered, wherever
the lever may point, whatever its shape, and so forth. Transfer,
so to speak, is built into the solution.” [87]

7) Advancing Bimanual Control, and Object Manipulation:
Bimanual control is required in many tool use scenarios, and it
is reckoned to be an important component in explaining why
human tool use capabilities exceed those of other animals [84,
Ch. 24]. Behaviours such as holding an object in one hand,
and striking or stroking it with the other are the beginnings
of “role differentiated bimanual activity”, and appear as early
as 7 months [88]. Some toys are more likely to elicit biman-
ual activities than others at particular ages, but overall the
frequency of bimanual activities increases linearly with age
[88]. Infants of 7 months were as likely to execute bimanual
activities on toys with no movable parts, as those with moving
parts, but from 9 months onwards toys with no movable parts
elicited few responses, and infants seemed more interested
in toys with parts to be independently manipulated [88]. It
is surmised that these developments require a combination
of neural developments, as well as having the appropriate
objects, and also understanding the properties of those objects
[88]. More sophisticated bimanual actions appear towards the
end of the first year. For example “contour-following” can be
observed at 12 months, which involves holding the toy in one
hand and manoeuvering it, while the fingertips of the other

hand are moved smoothly over its edges [89], or employing a
single finger or pincer action for manipulation with the second
hand at 11 or 13 months [88].

8) Relational play: Apart from intentional problem solv-
ing, there is also a natural progression towards object-object
interactions in infants’ free play. An overview of infant free
play is shown Fig. 2 (just below the grasping track). When
infants of various ages were presented with a wide variety of
toys, three categories of play were observed [90]: stereotypical
play was dealing with a single object (mouthing, fingering,
waving, banging) and dominated at 9 1

2 months; relational play
dealt with associations of two or more objects and dominated
at 13 1

2 months; functional play was using a toy in a manner
deemed appropriate to an adult, such as using a comb to comb
a doll’s hair; it dominated at 15 1

2 months. This study shows
that by 13 1

2 months most infants prefer to explore relationships
among objects, rather than exploring objects individually. A
further study [91] gave more insight into the precursors to full
relational play; at 7 months the very simple relational action of
banging two objects together was common, and by 9 months
infants could do very simple relational acts such as touching a
spoon to the base of a pot; it was between 9 and 13 months that
most infants made the transition from these simple relational
acts to “accommodative” relational acts such as putting a lid
on on a pot or a spoon in a cup. It is around 10-11 months that
infants begin to establish the links between particular objects
and their “canonical actions”, e.g. a hammer is for banging, a
brush is for sweeping, and also the spatial relationships that
must be established between tool and target object; e.g. the
relations “in” (key or screwdriver in a slot), on (one block on
another), under (put a spatula under a pancake) [80].

In conclusion there is a significant advancement in the
infant’s knowledge of spatial relationships during this period.
It begins as a very practical knowledge of a relationship
between two concrete objects discovered during play, but it is
quickly generalised to other similar objects, and thus becomes
a more abstract knowledge (increasing abstraction is shown
by moving to the right on Fig. 1, abstract track).

9) The Stick: The behaviour of the stick entails using a
stick to move an out-of-reach object and bring it within reach
of the hand There is in fact a spectrum of behaviours under
the broad umbrella of “the stick”. The simpler end of the
spectrum consists of using a short stick to retrieve a barely-
out-of-reach object with a single sweep of the arm; the arm
is initially extended so the stick reaches beyond the object,
and then it is brought towards the body (which may happen
towards the end of the first year). The more complex end of
the spectrum includes behaviours using a long object (e.g.
a long stick or mop) to knock an object from side to side
until it can be reached (which may be placed at about 3
years [92]). Uzgiris and Hunt tested a medium-length stick
(18 inches long) [58, p. 150]; They place the behaviour at 15-
18 months [58, p. 111]. It is a relatively difficult behaviour
when compared to strings and supports because the tool is not
given in the appropriate relationship from the outset; the infant
must create the appropriate relationship.

Brown [92] tested children ranging from 17 to 36 months
old for transfer ability in retrieval tasks with a variety of stick-

19

like tools, some of which had a hook or rake at the head. Tools
varied in length, rigidity, colour pattern, and type of head.
Children never selected non-rigid tools. Overall the children
seemed to understand quite well the properties required of an
effective tool for the task. Brown makes a strong case for the
ability to transfer being very much domain specific, and related
to the child’s understanding of causality in the particular task.

10) Perceptual aspects in retrieval tasks: Bates et al. [86]
looked at perceptual aspects in retrieval tasks for 10-month-
olds using support, string, stick, and also a hoop and crook
(stick with semi-circular hooked end). It was found that if the
tool and desired object both had the same colour and texture,
then it was particularly difficult for the infant to succeed. It
was surmised that the perceptual difference may help the infant
to discriminate the two objects and to keep them both in mind
as separate entities. A difference in both colour and texture
was no more helpful than a difference in one or the other.

The effect of the spatial configuration of the objects as pre-
sented to the infant was also investigated. Four types of spatial
configuration were presented: unbreakable contact (support
and string), breakable contact (hoop, or crook, presented in
contact so that the tool only needs to be pulled), behind
(hoop, or crook, surrounding object, but behind and not in
contact so that the tool only needs to be pulled), beside (hoop,
or crook, or stick, presented beside each other, so that the
tool needs to be brought into contact before it is pulled). It
was found that difficulty increased as follows: unbreakable
contact, breakable contact, behind, beside. The four tasks in
the “breakable contact” and “behind” groups all required the
same motor action (pull the tool), yet there was a significant
difference in success on them with the hoop in contact being
significantly easier than the crook behind. This suggests that
the infant understands the causal relation when two objects
are connected and the physical contact may help the infant
to remember this. It is not likely that the infant conceives of
the connected objects as a single entity, because perceptual
similarity of the objects is a hindrance.

11) Fitting Shapes into Slots (peg-in-hole task): The task of
inserting a cylindrical peg in a cylindrical slot can be done by
almost 50% of infants at 12 months, but they do not preorient
the cylinder for insertion [93]. Instead, they press one end to
the hole, and then move around the other end until they find
the right orientation. By 16 months infants do preorient the
cylinder, but not other shapes, until later (note: context specific
skill, see Secs. III-C, III-D). The 12-month-olds seem to use
the reduction in degrees of freedom (DOF) strategy described
in Sec. II-A: they first hold the peg in a fixed orientation in the
hand, and move the far end of it into contact with the hole. This
is a three DOF problem (which is very similar to controlling
the hand in a reach towards an object). The second step is to
orient the peg to be parallel to the slot, while pressing it into
the hole so that the end in contact with the hole maintains
contact. This is a two DOF problem. The cylinder itself has
five degrees of freedom, but the sequential approach reduces
the problem space. Repeated practice helps the infant to learn
the correct orientation, and so the infant tends to approach the
hole with a gradually better preorientation in successive trials.

The cylinder is relatively easy as it can be inserted with its

cross section in any orientation. Shapes of non-circular cross-
section (e.g. triangular or rectangular) must additionally be
oriented so their cross section matches the opening. Children
are remarkably bad at this task until about 26 months [93].
This seems to reveal something about the object representa-
tions they are using (see Sec. VI). In addition, insertion of
disks in slots shows that 18-month-olds fail to preorient, even
though they can well preorient their hand for insertion in a
slot [94], showing context specificity of representations.

12) Objects With Handles: McCarty et al. [95] studied how
infants deal with an object with a handle, and in particular
what way they grasp it. These experiments were done with a
spoon pre-loaded with food and toys with a handle (bell, rattle,
cow, pig). Each object has a handle and a goal-end (e.g. the
goal-end is the bowl of the spoon, or the toy). Three different
grasps were categorised as shown in the following sketch:

(a) (b) (c

c)

Fig. 4. (a) Grasp the handle with the thumb towards the goal-end of the
object (hereafter called radial grip); (b) grasp the goal-end itself (goal-end
grip); (c) grasp the handle with thumb towards the non-goal-end (ulnar grip).

This study looked at how infants develop the ability to use
the radial grip (Fig. 4(a)) at the start of the task. The preferred
hand of the infants was identified in a pre-test. In the results
67% (for toys) to 70% (for spoons) of grasps used the preferred
hand. The objects were presented to 9, 14, and 19-month-old
infants, on a stand, with the handle alternately oriented to the
left and right; trials could then be categorised as easy if the
object was presented in an orientation which would allow an
overhand grasp with the preferred hand to achieve a radial
grip (otherwise it was difficult; i.e. an overhand grasp with
the preferred hand would achieve an ulnar grip). The most
interesting results then concern how the infant dealt with the
difficult case: 9-month-olds tended to use any of the three
grasps indiscriminately; when they used a non-radial grip, they
often (more than half of trials) put the handle in their mouth,
and typically corrected afterwards. 14-month-olds were less
likely to grasp the goal end and more likely to use an ulnar
grip; however, when they used a non-radial grip they never
put the handle in the mouth; instead they corrected either by
rotating the wrist awkwardly, or changing to the other hand.
19-month-olds used the radial grip on 86% of difficult trials,
which meant that they had to suppress the tendency to use
their preferred hand and use the other instead (see also [96]
for the training experience which accelerates this).

Following from these results the authors formulated a model
of the development of planning in this task: (i) Feedback-based
strategy: after an indiscriminate grasp the end of the spoon
near the thumb is brought to the mouth first, and if this turns
out to be the wrong end, then a correction is made and the
other end put in the mouth; (ii) Partially planned strategy: as
soon as the spoon has been grasped its orientation is noted, and
if it is incorrect an adjustment is made before bringing it to the
mouth (this entails inhibiting the preference to bring it straight

20

to the mouth); (iii) Fully planned strategy: the orientation
of the spoon is noted before grasping and a grasp which is
appropriate to the goal of feeding is selected. This model
predicts that infants’ actions should be slower when planning
is taking place; some evidence for this was found in that the
action of bringing the spoon to the mouth, when the ulnar grip
had been used, was slower in 14-month-olds than in 9-month-
olds [95]. Reflecting on development in this task we see a
striking lack of planning at the earlier ages, which is inline
with the idea that behaviour is more affordance-based before
the second year (see Sec. II-B); i.e. an affordance-to-grasp
suggests itself and is immediately acted on without regard for
later steps.

Further work has shown that the radial grasp generalises to
other tools with self-directed goals (e.g. hairbrush on self), but
not to other-directed goals (spoon to feed a toy lion, hairbrush
to brush toy, hammer to object) [97]. This reinforces the ideas
about the context specificity of knowledge (Secs. III-C,III-D).
We suspect that developments on the abstract track (Fig. 1)
are necessary before the common deep structure in such tasks
is obvious to the child (see Sec. VI).

D. Tool Use Example: Transport Using a Spoon and Bowl

Many of the behaviours described so far have been building
up the necessary knowledge for tool use by understanding the
properties of individual objects (Sec. V-B), and the effects of
various actions on various objects in relationships (Sec. V-C).
Self-feeding from a bowl using a spoon is “proper” tool use,
and is common in human cultures. Connolly and Dalgleish
[98] studied two groups of infants longitudinally, at monthly
intervals; one from 12-16 months, and the other from 18-23
months. They outlined four stages in the development of this
behaviour: (i) repeating one part of the feeding sequence, such
as putting the spoon into and out of the bowl, or into and out
of the mouth; (ii) performing the outline of the correct action
sequence spoon-to-dish-to-mouth, but not effectively loading
food on the spoon or unloading in the mouth; (iii) effective
performance of loading and unloading within the sequence;
(iv) incorporation of correction routines, e.g.: check if food
has been successfully loaded; if not, return to the bowl; or
pick up food that has dropped during the transfer to mouth.

The behaviour of stage (i) can be called play, where the
goal of feeding was not pursued, and the means is done for
its own sake (mechanism of repetition, M1); in addition, the
infant would sometimes pass the spoon from hand to hand,
bang it in the dish, or on the table, or drop it to the floor, or
rub it against his/her own head (mechanism of variation and
selection, M2). Though these activities were not directly in
the service of feeding, they did serve to increase the infant’s
knowledge of these actions, and their effects in the feeding
context (this is the role of play, as described in sec. II-B).
Sometimes goal directed behaviour was observed, but there
was a lack of understanding of the purpose of the spoon:
the younger children were sometimes observed putting their
spoon into and out of the dish repeatedly, while taking food
from the dish with their other hand. In the behaviour of
stage (ii) the younger infants did not seem to understand the

need to load the spoon. The behaviour is learned by imitation
(Sec. II-D), so they have some knowledge of the sequence of
the operations before understanding their individual purposes.
To effectively learn a component part (iii) is an example of
means-end behaviour which tends to follow the pattern of
accidental success leading to acquisition of the appropriate
schema (where M1 leads to M3), followed by intentional
repetition with variation and refinement (M1 and M2), and
later understanding (see Sec. II-B3). The correction of errors
in the sequence occurs first for those elements at the end of the
sequence, and latest for those at the beginning of the sequence;
e.g., by 18 months the remaining errors are only in the earlier
stages [99]; this is probably due to the younger infants’ limits
in general planning abilities as noted in Sec. II-C.

In terms of the component skills, the authors outlined four
principal problems for the infant: controlling the spoon in the
hand, loading food on the spoon, taking it to the mouth without
losing the food, and unloading in the mouth. A number of
“behaviour categories” were devised to code the observations
of the infants in various activities such as grasp employed,
trajectory to mouth, loading method, etc.; e.g., for the loading
of the spoon these included: (i) dipping-in motion (spoon
lifted and lowered, sometimes repeatedly); (ii) side-to-side
motion across the dish; (iii) scooping motion towards the
infant; (iv) dropping the spoon in the bowl and sometimes
picking it up. Overall the results showed that younger infants
had more varieties of hand grasps, and less stable movement
strategies; with age came increasing consistency in the ac-
tions used (mechanism of variation and selection, M2). Also
the behaviour categories used changed; e.g., for loading the
spoon, younger infants preferred dipping-in, while older ones
preferred scooping with a wrist rotation, or the side-to-side
motion (which was often effective in trapping food against the
side of the bowl) (see Siegler’s changing strategies, Sec. III-C).
The overall pattern of movements became smoother and more
direct, and the time needed to perform individual components
of the action decreased (see modularisation, M6). In terms of
hand grasps, older infants used fewer inappropriate grasps (e.g.
ulnar grasps are inappropriate because the arm gets in the way
when trying to bring the food to the mouth), and furthermore
older infants used more flexible grasps; flexible here means
that the spoon can be manipulated with finger movements, as
opposed to a rigid grip which only permits wrist movement
(these general features are also seen in the progression from
novice to expert in adults [84, Ch.4,5]).

We also note a strong similarity with the task of learning
to drink from a cup [15, p.72]. Initially the child grabs the
cup and pulls it to the mouth in a single step. With practice
the child slows this down and puts in a number of stopping
points to rebalance the cup so the liquid doesn’t spill, and also
adjusts the head position, bringing head to cup, and monitoring
how the cup is moving towards mouth (see decomposition,
M6). With more practice it becomes a smooth motion where
monitoring of the level is done continuously during the motion
(see modularisation, M6).

In this behaviour we see how the mechanisms of schema
development need to work together over a relatively long time
to eventually produce efficient spoonfeeding skill. We should

21

also point out that this task is relatively simple because it does
not require mental representation of unseen parts, which poses
more severe difficulty for infants (see e.g. [100]).

VI. INTERNAL REPRESENTATIONS (ABSTRACT TRACK)

This section briefly looks at changes in internal representa-
tions (upper track, Fig. 1), using observable ability to transfer
as a way to deduce what representations may be in use. Trans-
fer of specific skills to similar, related scenarios or objects is
very important for robust tool use. The evidence from Sec. V
suggests that improvements in this ability during development
can be explained by increases in the world knowledge within
the system, rather than some generic developing “transfer
ability”. We have seen from Brown’s study on retrieval [92]
(Sec. V-C9) that children transfer very well when they un-
derstand the causal relationships in the particular task; Brown
has also shown that they do not transfer on more abstract tasks
where the relationships are not understood according to any
of their prior knowledge and therefore seem arbitrary to them.
This message is reinforced by a further study of 3- to 5-year-
olds [101] which points out that the ability to transfer is not
directly dependent on age, instead it is dependent on the level
of representation achieved; young children can achieve a deep
representation of causal relationships in tasks involving simple
physical manipulations, and therefore can easily transfer in
these. Older children can achieve a deeper representation in
a wider variety of domains, and hence can show transfer in
more domains. Therefore the observable ability to transfer
could serve as a proxy for deducing something about the
unobservable internal representations. Using this we could say
that representations seem to develop in (at least) the following
three ways.

1) Coarse to Fine: In some situations infants generalise
very well, and immediately (for example supports or sticks
[2, Obs. 152,160]). The fact that these generalisations can
happen immediately after the skill is first learned suggests
that the objects were already represented in the same way
(e.g. a coarse representation of a long object); once the skill
is learned for one, it can generalise to all. Sometimes infants
over-generalise, e.g., scale errors [102], where behaviour is
generalised to objects of incompatible sizes (such as a too large
peg in a hole), or the attempt to insert incompatible shapes in
holes; this again suggests a coarse representation, which might
ignore some details of shape and scale. The development of
representations seems to follow a path from coarse to fine,
with initial representations capturing rough shapes, and the
detail on objects only being gradually elaborated later.

2) Context Specific to General: In some situations infants
do not generalise well at all, for example in the way a spoon
is grasped for self-feeding, or for directing to another object
(Sec. V-C12), or placing the hand in a slot vs. posting a
disk in a slot (Sec. V-C11). Much of an infant’s learning is
quite task-specific. Examples of lack of generalisation suggest
that high level representation is not that well-developed (i.e.
the high-level similarity between tasks is not apparent to the
infant) and suggest that it is important to spend an extended
period focusing on task-specific learning. This then needs to

be followed by some process of representational redescription
(M7) which can find a higher level abstraction which is
common to a number of concrete behaviours. This higher
level may for example capture causal understanding of the
behaviour, and when it is achieved generalisation in other
domains becomes possible, and understanding of demonstrated
actions becomes possible as well.

3) Integration of Fragmentary Representations: Kellman
and Arterberry explain that “perception leads to multiple
representations that may be recruited for different tasks” [19,
p. 262]. Part of the work of development is to connect these
up to produce more generic and reliable world models. We
have seen examples of this already in the connection between
haptic object representation and visual object representation
(Sec. V-B5). Additionally, Kaufman et al. [103] describe how
the two separate visual processing streams in the infant brain
(dorsal or ventral) are responsible for different tasks. The
dorsal route seems to be primarily used for knowledge relating
to grasping (a practical representation), while the ventral is for
representation and recognition of the whole object; yet these
must be integrated to allow grasp knowledge to be associated
with an object representation. It may be at quite a late age
(maybe nine months [103]) that infants can integrate the infor-
mation from the two streams. Both before and after this there
is further evidence of integrating fragments. Surprisingly ad-
vanced perceptual competences are shown by 4-month-olds in
perceiving the 3D form of rotating wireframes [19, p. 168], yet
this seems to constitute only a fragmentary understanding of
objects because they do not “complete” solid 3D objects until 6
months [104]. Even at 18 months, fragmentary representations
based on view dependent images and parts of objects seem to
be still in use, and then there is a period of rapid change
where 3D whole-object geometric representations are built by
24 months [105]. The picture emerging from the literature
suggests that object representations may undergo a long and
complex developmental trajectory. At the same time, we can
see advantages of fragmentary task specific representations:
they provide a simple space which is appropriate to a particular
task, and when another seems more appropriate it is possible
to switch representation (see also [106]).

VII. REFLECTION AND RECOMMENDATION

In this section we firstly reflect on the psychological results
to summarise the salient points about how the overall devel-
opment works (Sec. VII-A); we then formulate some succinct
guidelines for developmental roboticists who wish to model
similar developmental trajectories (Sec. VII-B).

A. Reflection on Infant Development

In reflecting on the examples above we can see the two
tracks of sensorimotor skill and representation developing
(Fig. 1). From this we extract the following main ideas:

1) Innate Knowledge is Fragmentary and Incomplete:
Innate knowledge of the physical world seems to be given
in a fragmentary form; it is not given from the outset in the
useful form which an adult has, but rather the evolutionary
endowment seems to provide constraints and boosts for the

22

development of world knowledge at various times. It is given
in a form which presumes a prolonged development process in
concert with the environment. This can work in complex ways
where the innate fragments may be creating opportunities for
the necessary environmental interactions (see e.g. Sec. V-B1)
or providing fragmentary representations to bootstrap the
development of knowledge of objects (Sec. VI). The fact that
physical knowledge is not given in a “final” form might be
important to ensure that the knowledge eventually developed
is linked to sensorimotor experiences of the infant, and hence
more practically useful.

2) Infants Learn Slowly, but Thoroughly: Infants spend
months practising individual actions in varying circumstances,
and gathering good knowledge about how to apply an action,
and its expected effects17. We see this in the way that the
period dominated by affordance-based play must precede
goal directed planning (Sec. II-B; see also poor planning
in Sec. V-C12), and furthermore play may sometimes need
to resurface when perception-action knowledge is inadequate
(Sec. V-C6). Expertise and flexibility on a task come from
extensive practice with the elementary actions comprising
the task. During this time (in addition to the environmental
circumstances varying) small variations are tried out, and the
effects of those variations learned. Behaviours learnt in this
slow manner are well grounded. This highlights the importance
of achieving robustness and variety for controlling elementary
skills, as these will come into play later when these skills may
be constituents of more complex behaviour.

This slowness explains why we often see some (fortuitous)
success in a particular behaviour before a fuller understanding
is achieved some time later (e.g. the support, Sec. V-C3); many
complex skills are learnt in a crude outline before the con-
stituent parts are properly refined (e.g. the spoon, Sec. V-D).
The early generation of experiences through this approach
provides the training data which improve the behaviour.

There is a link between this general slowness and the
acquisition of physical world knowledge above (Sec. VII-A1).
Piaget said “to understand is to invent”, and so it makes
sense for the genetic “preprogramming” to only provide a
fragmentary outline which guides the development of the
knowledge; to achieve a thorough understanding of the physi-
cal world knowledge it is necessary for the individual to gather
significant experience with the component fragments from
which they can then themselves build the necessary concepts
(e.g. the building of knowledge of objects, Sec. VI).When
the general representations of objects and space are built in
this way they are more useful because they are so closely
connected to the actions that can manipulate them.

This process appears to be facilitated by a “schedule” for
development which forces more time to be spent on earlier
tasks; e.g. the fact that the pincer grasp arrives relatively late
(Sec. V-B3) means that significant time prior to this is spent
on coarser grasps, where a coarser representation of objects is
adequate; see also the way perception and action may help to

17This is compatible with the principle of “developmental gradualness”
[78] which describes “particular skills and abilities . . . appearing initially
in rudimentary forms and in highly specific contexts, and then gradually
becoming more complex and wide-ranging over time”.

bootstrap each other’s development (Sec. V-B5); furthermore,
in language, acquisition of vocabulary proceeds very rapidly
once it starts, but it does not begin until significant interaction
with objects is complete.

3) Generalisation Depends on Representation: The ability
to generalise and transfer to new situations is dependent on the
underlying representations in use, and sometimes infants are
surprisingly poor at this and seem to have knowledge that is
locked in context. We have seen in Sec. VI that in some cases
some of the early representations facilitate certain types of
transfer (e.g. the stick), but in other cases the ability to transfer
appears relatively late because it takes a long time for new
appropriate representations to develop (e.g. handled objects,
Sec. V-C12). The processes underlying this development are
hinted at in Sec. VI, such as representational redescription
(M7, see also Sec. VII-B2), but we know very little about
how these processes work. They seem to be slow processes
which come into play after extensive experience with more
primitive context specific representations (so there is a link
between this and the previous points).

Nevertheless, a lot of tool using behaviour can happen
without the need for advanced representations of objects
which are independent of specific tasks. Task specific learning
seems to account for most observations quite well. Popular
perceptions of the intellectual abilities underlying tool use
sometimes overemphasise the notion of “sudden insight”, and
anecdotes of dramatic inventions may often turn out to have
simpler explanations on closer inspection; i.e. they may be
minor generalisations from very similar behaviour which was
practised extensively [84, p.308],[24].

We conclude this reflection by asking what are infants good
at and what are they bad at? They seem to be good at building
on what they know; once they have acquired a skill, even
crudely, they will try it out in varied situations, and refine it
and improve it and specialise it for new situations which did
not produce quite what they expected (leading to robustness
and generalisation). They are good at assimilating new results
and relating them to what they already know (provided there
is some relation). They seem to be bad at making big leaps to
new tasks that do not build on what they already know; there
are tasks which are beyond them at certain ages, and it can take
several months for them to acquire the necessary precursors
before they can attempt them. They are however good at
innovation; when presented with a task which is beyond them
they will try a large range of strategies, and even if they do
not succeed, they may discover something new through play.

B. Direction for Roboticists

This section offers advice for those who want to make
tool-using robots which have the kind of robustness and
generalisation that children have (i.e. able to cope with changes
to tools and materials, and to find appropriate ways to do a
job without explicit detailed instructions).

Despite our incomplete knowledge of how biological sys-
tems achieve tool use, we can outline how artificial systems
might be constructed to tackle the problem in a similar way.
Starting with a small set of innate sensorimotor schemas

23

(Sec. V-A) a bootstrapping process can be initiated by which
new sensorimotor schemas develop through the interaction of
innate schemas with objects in the world (Sec. V-B and V-C)
by means of the six mechanisms M1–M6. In that process,
the preconditions and effects of the schemas are refined and
become more and more predictive. Eventually they can be
utilised by a planning machinery (which is to a large degree
innate) for the purpose tool use.

We believe that, when designing developing artificial cogni-
tive systems, for some aspects it is acceptable to take artificial
short-cuts, but for others one should be more careful to closely
follow the biological approach. For both planning and social
aspects it would seem acceptable to take advantage of the
possibilities artificial systems offer; i.e. a planning system
can be made available, and social demonstrations can be
made directly available (through human-provided motions for
example) without the need to observe or interact with a social
partner. However both, the planning operators (developing
from the sensorimotor schemas) and the representations of the
world must develop slowly and autonomously, and this should
not be short-cut by direct coding. To emulate this development
it is valuable for roboticists to attempt to emulate the tasks
which infants really can do; this avoids making robots do
overly sophisticated things (which might lead the roboticist to
use mechanisms that are inflexible and not generalisable). For
example, if starting with behaviours achieved only at two years
of age, one might need to code advanced representations, and
thereby miss out on coding the processes which build those
representations (missing out on one of the core mechanisms
of development).

To emulate the two tracks of development of Fig. 1, the
following is suggested.

1) Start with Few Schemas, to Get a Lot: We have seen that
a small number of sensorimotor schemas when applied in the
world, can lead naturally, by means of the mechanisms M1–
M6, to a wide variety of schemas. The smallness of the initial
set may be important to simplify the state-space exploration
in early development, and the gradual process of additions
may be important to allow them to be well grounded. By
“well grounded” we mean that they must be refined through
extensive practice in varied situations. For roboticists, this
requires us to build systems that can generate large amounts
of varying and meaningful experience and the patience to let
the robot “play” for a long time.

2) Representations Must Develop Gradually: The cognitive
architecture must allow representations to develop (Sec. VI),
by processes such as representational redescription (M7), in
order to facilitate generalisation and transfer. The system
may use unsophisticated representations in the early stages of
development (e.g. simple internal reproduction of perceptions
with little abstraction). There must then be an ongoing process
of upgrading the representations in use so as to capture more
generic and abstract world knowledge. This is likely to require
some scaffolding in the form of certain innate representational
fragments which help the system to generate more sophisti-
cated representations, as in the human case (Sec. VI). This
must be a gradual process; if overly advanced representations
are designed at an early stage, then there is a danger that

they will be inflexible and non-extensible. For this reason we
should not expect the early system to perform advanced tasks;
it must spend a long time on simple tasks.

3) Interaction Between the Concrete and Abstract Tracks:
A particular challenge is to establish mechanisms such as
representational rediscription (M7) which synchronise both the
concrete and abstract tracks. This requires an ongoing mod-
ification and refinement of internal representations through
the experience provided by the sensorimotor schemas and the
adaptation of these schema to the restructured internal knowl-
edge representation. This is a very complex task since it is very
difficult to observe the change of internal representations. Here
the establishing of processes in developing robot systems can
actually help to understand such processes (for two examples
and a more detailed discussion, see [13]).

4) Guiding Examples and Benchmarks for Development:
We provided a general outline of the development of sensori-
motor schemas of infants (see Fig. 2) as well as a number of
concrete stages of development in solving certain tasks (see,
e.g., the object-object behaviours of Sec. V-C). The general
outline might serve as a guide for the overall developmental
process to be realised, and the concrete examples can serve as
benchmarks for truly cognitive behaviour in artificial agents.

Reflecting on the development of tool use in infants as
outlined in this paper we have noted the crucial importance
of developments in perception and action capabilities, and
the seamless progression between this and the beginnings of
tool use; this forces us to be keenly aware of the conceptual
and technical hurdles still to be addressed in achieving the
same in artificial systems. Nevertheless we believe that it will
eventually be possible to design artificial systems that develop
advanced and stable tool use capabilities by equipping them
with (1) a small initial set of sensorimotor schemas, (2) a
suitable architecture in which the mechanisms M1-M6 operate,
and (3) large amounts of experiences generated by applying
the sensorimotor schemas to objects in the world.

REFERENCES

[1] F. Guerin, “Learning like baby: A survey of ai approaches,” The
Knowledge Engineering Review, vol. 26, no. 2, pp. 209–236, 2011.

[2] J. Piaget, The Origins of Intelligence in Children. London: Routledge
& Kegan Paul, 1936, (French version 1936, translation 1952).

[3] L. B. Smith, “Dynamic systems, sensori-motor processes and the
origins of stability and flexibility,” in Toward a unified theory of devel-
opment: Connectionism and dynamic systems theories re-considered,
J. Spencer, M. Thomas, and J. McClelland, Eds. Ox. Uni. Press, 1997.

[4] K. W. Fischer, “A theory of cognitive development: The control and
construction of hierarchies of skills,” Psychological Review, vol. 87,
no. 6, pp. 477–531, 1980.

[5] J. J. Lockman, “A perception-action perspective on tool use develop-
ment,” Child Development, vol. 71, no. 1, pp. 137–144, 2000.

[6] G. Forman, Ed., Action and thought: From sensorimotor schemes to
symbolic operation. New York: Academic Press, 1982.

[7] R. A. Brooks, “Intelligence without representation,” Artificial Intelli-
gence, vol. 47, pp. 139–159, 1991.

[8] M. Johnson, The BODY in the MIND: The Bodily Basis of Meaning,
Imagination, and Reason. Chicago: University of Chicago Press, 1987.

[9] A. Stoytchev, “Some basic principles of developmental robotics,” IEEE
Trans. Autonomous Mental Development, vol. 1, no. 2, pp. 1–9, 2009.

[10] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, pp. 379–423, 623–656, 1948.

[11] D. Mareschal, “Computational perspectives on cognitive development,”
Wiley Interdisc. Reviews: Cog. Sci., vol. 1, no. 5, pp. 696–708, 2010.

24

[12] K. W. Fischer and R. W. Hencke, “Infants’ construction of actions
in context: Piaget’s contribution to research on early development,”
Psychological Science, vol. 7, no. 4, pp. 204–210, 1996.

[13] N. Krüger, M. Popovic, L. Bodenhagen, D. Kraft, and F. Guerin, “Grasp
learning by means of developing sensorimotor schemas and generic
world knowledge,” in AISB Convention 2011; Computational Models
of Cognitive Development. AISB, 2011, pp. 23–31.

[14] A. Clark and A. Karmiloff-Smith, “The cognizer’s innards: A psycho-
logical and philosophical perspective on the development of thought,”
Mind & Language, vol. 8, no. 4, pp. 487–519, 1993.

[15] J. Bruner, “The growth and structure of skill,” in Mechanisms of motor
skill development, K. J. Connolly, Ed. New York: Academic Press,
1970, pp. 63–92.

[16] R. F. A. Cox and A. Smitsman, “The planning of tool-to-object relations
in young children,” Developmental Psychobiology, vol. 48, no. 2, pp.
178–186, 2006.

[17] B. Resende, E. Ottoni, and D. Fragaszy, “Ontogeny of manipulative
behavior and nut-cracking in young capuchin monkeys (cebus apella):
A perception-action perspective,” Developmental Science, vol. 11,
no. 6, pp. 828–840, 2008.

[18] E. Thelen, “Rhythmical behavior in infancy: an ethological perspec-
tive,” Developmental Psychology, vol. 17, no. 3, pp. 237–257, 1981.

[19] P. Kellman and M. Arterberry, The Cradle of Knowledge. MIT-Press,
1998.

[20] J. Piaget, The Construction of Reality in the Child. London: Routledge
& Kegan Paul, 1937, (French version 1937, translation 1955).

[21] A. Diamond and J. Gilbert, “Development as progressive inhibitory
control of action: retrieval of a contiguous object,” Cognitive Develop-
ment, vol. 4, no. 3, pp. 223–249, 1989.

[22] M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini, “Developmental
robotics: a survey,” Connection Sci., vol. 15, no. 4, pp. 151–190, 2003.

[23] J. Bruner, “On voluntary action and its hierarchical structure,” Inter-
national Journal of Psychology, vol. 3, no. 4, pp. 239–255, 1968.

[24] P. Willatts, “Development of problem-solving strategies in infancy,” in
Childrens Strategies: Contemporary Views of Cognitive Development,
D. Bjorklund, Ed. Lawrence Erlbaum, 1990.

[25] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Prentice-Hall, Englewood Cliffs, NJ, 2003.

[26] P. Mounoud and T. Bower, “Conservation of weight in infants,”
Cognition, vol. 3, no. 1, pp. 29–40, 1974.

[27] E. Thelen, G. Schöner, C. Scheier, and L. B. Smith, “The dynamics
of embodiment: A field theory of infant perseverative reaching,”
Behavioral and Brain Sciences, vol. 24, pp. 1–86, 2001.

[28] M. Carpenter, K. Nagell, and M. Tomasello, “Social cognition, joint
attention, and communicative competence from 9 to 15 months of age,”
Monographs of the Society for Research in Child Development, vol. 63,
no. 4, pp. i–174, 1998.

[29] M. Tomasello, The Cultural Origins of Human Cognition. Harvard
University Press, 1999.

[30] A. Meltzoff and K. Moore, “Persons and representation: why infant
imitation is important for theories of human development,” in Imitation
in infancy, J. Nadel and G. Butterworth, Eds. Cambridge University
Press, 1999, pp. 9–35.

[31] J. G. Bremner, Infancy. Cambridge, Mass. : Blackwell, 1994.
[32] E. Thelen and L. B. Smith, A dynamic systems approach to the

development of cognition and action. MIT Press, 1994.
[33] T. Wiesel and D. Hubel, “Ordered arrangement of orientation columns

in monkeys lacking visual experience,” J. Comp. Neurol., vol. 158,
pp. 307–318, 1974.

[34] B. Chapman, M. Stryker, and T. Bonhoeffer, “Development of ori-
entation preference maps in ferret primary visual cortex,” Journal of
Neuroscience, vol. 15, pp. 6443–6453, 1996.

[35] D. Kraft, R. Detry, N. Pugeault, E. Başeski, F. Guerin, J. Piater, and
N. Krüger, “Development of object and grasping knowledge by robot
exploration,” IEEE Transactions on Autonomous Mental Development,
vol. 2, no. 4, pp. 368–383, 2010.

[36] R. S. Siegler and S. Ellis, “Piaget on childhood,” Psychological Science,
vol. 7, no. 4, pp. 211–215, 1996.

[37] Z. Chen, R. S. Siegler, and M. W. Daehler, “Across the great divide:
Bridging the gap between understanding of toddlers’ and older chil-
dren’s thinking,” Monographs of the Society for Research in Child
Development, vol. 65, no. 2, pp. i–105, 2000.

[38] R. S. Siegler, Emerging Minds : The Process of Change in Children’s
Thinking. Oxford University Press, 1996.

[39] O. Sporns and G. M. Edelman, “Solving bernstein’s problem: A
proposal for the development of coordinated movement by selection,”
Child Development, vol. 64, no. 4, pp. 960–98, Aug 1993.

[40] J. J. Gibson, The Ecological Approach To Visual Perception. Lawrence
Erlbaum Associates, 1986.

[41] B. Hommel, “Perception in action: Multiple roles of sensory informa-
tion in action control,” Cognitive Processing, vol. 6, pp. 3–14, 2005.

[42] A. Murata, L. Fadiga, L. Fogassi, V. Gallese, V. Raos, and G. Rizzolatti,
“Object representation in the ventral premotor cortex (area f5) of the
monkey.” Journal of neurophys., vol. 78, no. 4, pp. 2226–2230, 1997.

[43] R. Held and A. Hein, “Movement-produced stimulation in the de-
velopment of visually guided behavior,” Journal of Comparative and
Physiological Psychology, vol. 56, no. 5, pp. 872–876, 1963.

[44] D. Mareschal, M. Johnson, S. Sirois, M. Spratling, M. Thomas, and
G. Westermann, Neuroconstructivism, Vol. I: How the brain constructs
cognition. Oxford, UK: Oxford University Press, 2007.

[45] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the appli-
cation of theorem proving to problem solving,” Artificial Intelligence,
vol. 2, no. 3-4, pp. 189–208, 1971.

[46] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artif. Intell., vol.
101, pp. 99–134, May 1998.

[47] R. S. Sutton, “Verification, the key to ai,” 2006, unpublished docu-
ment, available on author’s webpage http://www.cs.ualberta.ca/∼sutton
/IncIdeas/KeytoAI.html.

[48] G. L. Drescher, Made-Up Minds, A Constructivist Approach to Artifi-
cial Intelligence. MIT Press, 1991.

[49] H. H. Chaput, “The constructivist learning architecture: a model of cog-
nitive development for robust autonomous robots,” Ph.D. dissertation,
AI Laboratory, The University of Texas at Austin, 2004.

[50] G. Stojanov, “Petitagé: A case study in developmental robotics,”
in Proceedings of Epigenetic Robotics 1, C. Balkenius, J. Zlatev,
H. Kozima, K. Dautenhahn, and C. Breazeal, Eds., 2001.

[51] F. Perotto, J. Buisson, and L. Alvares, “Constructivist anticipatory
learning mechanism (CALM): Dealing with partially deterministic and
partially observable environments,” in Proc. of Seventh Int. Conf. on
Epigenetic Robotics, Piscataway, NJ, USA, 2007, pp. 117–127.

[52] E. Sahin, M. Çakmak, M. R. Doǧar, E. Uǧur, and G. Ücoluk, “To
afford or not to afford: A new formalization of affordances toward
affordance-based robot control,” Adaptive Behavior, vol. 15, no. 4, pp.
447–472, 2007.

[53] J. Modayil and B. Kuipers, “Autonomous development of a grounded
object ontology by a learning robot,” in Proceedings of the AAAI Spring
Symposium on Control Mechanisms for Spatial Knowledge Processing
in Cognitive/Intelligent Systems. AAAI, 2007.

[54] P. Fitzpatrick and G. Metta, “Grounding Vision Through Experimental
Manipulation,” Philos. Trans. of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 361, pp. 2165 – 2185, 2003.

[55] A. Stoytchev, “Robot tool behavior: A developmental approach to au-
tonomous tool use,” Ph.D. dissertation, College of Computing, Georgia
Institute of Technology, 2007.

[56] S. Hart and R. Grupen, “Learning generalizable control programs,”
IEEE Trans. Autonomous Mental Development (Accepted, to appear).

[57] N. K. C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter, A. Ude,
T. Asfour, D. Kraft, D. Omrčen, A. Agostini, and R. Dillmann, “Object-
action complexes: Grounded abstractions of sensorimotor processes,”
Robotics and Autonomous Systems, accepted.

[58] I. C. Uzgiris and J. M. Hunt, Assessment in infancy : ordinal scales of
psychological development. University of Illinois Press, 1975.

[59] C. von Hofsten, “An action perspective on motor development,”
TRENDS in Cognitive Sciences, vol. 8, no. 6, pp. 266–272, 2004.

[60] E. Thelen, “Rhythmical stereotypies in normal human infants,” Animal
Behaviour, vol. 27, no. 3, pp. 699–715, Dec 1979.

[61] C. K. Rovee and D. T. Rovee, “Conjugate reinforcement of infant
exploratory behavior,” Journal of Experimental Child Psychology,
vol. 8, no. 1, pp. 33–39, 1969.

[62] P. Rochat, “Self-perception and action in infancy,” Experimental Brain
Research, vol. 123, no. 1/2, pp. 102–109, 1998.

[63] T. G. R. Bower, Development in Infancy. San Francisco : W.H.
Freeman, 1982.

[64] A. Streri and J. Féron, “The development of haptic abilities in very
young infants: From perception to cognition,” Infant Behavior and
Development, vol. 28, no. 3, pp. 290–304, Sep 2005.

[65] F. Wörgötter, A. Agostini, N. Krüger, N. Shyloa, and B. Porr, “Cogni-
tive agents – a procedural perspective relying on the predictability of
object-action-complexes (OACs),” Robotics and Autonomous Systems,
vol. 57, no. 4, pp. 420–432, 2009.

[66] C. von Hofsten, “Eye-hand coordination in the newborn,” Developmen-
tal Psychology, vol. 18, no. 3, pp. 450–461, 1982.

25

[67] J. Bruner, “Organization of early skilled action,” Child Development,
vol. 44, no. 1, pp. 1–11, 1973.

[68] E. Thelen, D. Corbetta, K. Kamm, J. P. Spencer, K. Schneider, and R. F.
Zernicke, “The transition to reaching: Mapping intention and intrinsic
dynamics,” Child Development, vol. 64, no. 4, pp. 1058–1098, 1993.

[69] D. C. Witherington, “The development of prospective grasping control
between 5 and 7 months: A longitudinal study,” Infancy, vol. 7, no. 2,
pp. 143–161, Apr 2005.

[70] C. von Hofsten, “Developmental changes in the organization of pre-
reaching movements,” Developmental Psychology, vol. 20, no. 3, pp.
378–388, 1984.

[71] A. Gordon, “Development of the reach to grasp movement,” in Insights
into the reach to grasp movement, Advances in Psychology, 105,
K. Bennett and U. Castiello, Eds. Elsevier, 1994.

[72] R. K. Clifton, D. W. Muir, D. H. Ashmead, and M. G. Clarkson,
“Howinfants use vision for grasping objects,” Child Development,
vol. 64, no. 4, pp. 1099–1110, 1993.

[73] J. Fagard, “Linked proximal and distal changes in the reaching behavior
of 5- to 12-month-old human infants grasping objects of different
sizes,” Infant Behavior and Development, vol. 23, no. 3–4, pp. 317–
329, Mar 2000.

[74] C. V. Hofsten and S. Fazel-Zandy, “Development of visually guided
hand orientation in reaching,” Journal Of Experimental Child Psychol-
ogy, vol. 38, no. 2, pp. 208–219, 1984.

[75] M. E. McCarty, R. K. Clifton, D. H. Ashmead, P. Lee, and N. Goubet,
“Howinfants use vision for grasping objects,” Child Development,
vol. 72, no. 4, pp. 973–987, 2001.

[76] B. C. L. Touwen, “A study on the development of some motor
phenomena in infancy,” Developmental Medicine and Child Neurology,
vol. 13, pp. 435–446, 1971.

[77] C. P. Johnson and P. A. Blasco, “Infant growth and development,”
Pediatr. Rev., vol. 18, pp. 224–242, 1997.

[78] E. W. Bushnell and J. P. Boudreau, “Motor development and the mind:
The potential role of motor abilities as a determinant of aspects of
perceptual development,” Child Development, vol. 64, no. 4, pp. 1005–
1021, 1993.

[79] H. Ruff, “Role of manipulation in infants: responses to invariant
properties of objects,” Developmental Psychology, vol. 18, no. 5, pp.
682–691, 1982.

[80] E. W. Bushnell and J. P. Boudreau, “Exploring and exploiting objects
with the hands during infancy,” in The Psychobiology of the Hand,
K. Connolly, Ed. Cambridge University Press, 1998, pp. 144–161.

[81] T. Striano and E. W. Bushnell, “Haptic perception of material properties
by 3-month-old infants,” Infant Behavior and Development, vol. 28,
no. 3, pp. 266–289, Sep 2005.

[82] K. S. Bourgeois, A. W. Khawar, S. A. Neal, and J. J. Lockman, “In-
fant manual exploration of objects, surfaces, and their interrelations,”
Infancy, vol. 8, no. 3, pp. 233–252, 2005.

[83] R. S. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile sensing—
from humans to humanoids,” vol. 26, pp. 1–20, 2010.

[84] V. Roux and B. Bril, Eds., Stone Knapping: The necessary conditions
for a uniquely hominin behaviour. McDonald Institute Monograph
Series. London: Cambridge, 2005.

[85] P. Willatts, “pulling a support to retrieve a distant object,” Develop-
mental Psychology, vol. 35, pp. 651–667, 1999.

[86] E. Bates, V. Carlson-Luden, and I. Bretherton, “Perceptual aspects of
tool-using in infancy,” Infant Behavior and Development, vol. 3, no. 3,
pp. 181–190, 1980.

[87] B. Koslowski and J. S. Bruner, “Learning to use a lever,” Child
Development, vol. 43, no. 3, pp. 790–799, 1972.

[88] M. Kimmerle, L. A. Mick, and G. F. Michel, “Bimanual role-
differentiated toy play during infancy,” Infant Behavior and Develop-
ment, vol. 18, no. 3, pp. 299–307, 1995.

[89] S. J. Lederman and R. L. Klatzky, “Hand movements: A window into
haptic object recognition,” Cognitive Psychology, vol. 19, no. 3, pp.
342–368, Sep 1987.

[90] P. R. Zelazo and R. B. Kearsley, “The emergence of functional play in
infants: Evidence for a major cognitive transition,” Journal of Applied
Developmental Psychology, vol. 1, pp. 95–117, 1980.

[91] L. Fenson, J. Kagan, R. B. Kearsley, and P. R. Zelazo, “The develop-
mental progression of manipulative play in the first two years,” Child
Development, vol. 47, no. 1, pp. 232–236, Mar 1976.

[92] A. L. Brown, “Domain-specific principles affect learning and transfer
in children,” Cognitive Science, vol. 14, no. 1, pp. 107–133, 1990.

[93] H. Örnkloo and C. von Hofsten, “Fitting objects into holes: On the
development of spatial cognition skills,” Developmental Psychology,
vol. 43, no. 2, pp. 404–416, 2007.

[94] S. Street, K. James, S. Jones, and L. Smith, “Vision for action in
toddlers: The posting task,” Child Development, to appear.

[95] M. E. McCarty, R. K. Clifton, and R. R. Collard, “Problem solving in
infancy: The emergence of an action plan,” Developmental Psychology,
vol. 35, no. 4, pp. 1091–1101, 1999.

[96] M. E. McCarty and R. Keen, “Facilitating problem solving perfor-
mance among 9- and 12-month-old infants,” Journal of Cognition and
Development, vol. 6, no. 2, pp. 209–228, 2005.

[97] M. E. McCarty, R. K. Clifton, and R. R. Collard, “The beginnings of
tool use by infants and toddlers,” Infancy, vol. 2, no. 2, pp. 233–256,
2001.

[98] K. Connolly and J. Dalgleish, “The emergence of tool using skills in
infancy,” Developmental Psychology, vol. 25, no. 6, pp. 894–912, 1989.

[99] ——, “Individual patterns of tool use by infants,” in Motor De-
velopment in Early and Later Childhood: Longitudinal Approaches,
A. Kaverboer, B. Hopkins, and R. Geuze, Eds. European Science
Foundation–Cambridge University Press, 1993, pp. 174–204.

[100] B. Achard and C. von Hofsten, “Development of the infant’s ability to
retrieve food through a slit,” Infant and Child Development, vol. 11,
no. 1, pp. 43–56, 2002.

[101] A. L. Brown, M. J. Kane, and C. H. Echols, “Young childrens mental
models determine analogical transfer across problems with a common
goal structure,” Cognitive Development, vol. 1, pp. 103–121, 1990.

[102] K. S. Rosengren, I. T. Guti/’errez, K. N. Anderson, and S. S. Schein,
“Parental reports of children’s scale errors in everyday life,” Child
Development, vol. 80, no. 6, pp. 1586–1591, 2009.

[103] J. Kaufman, D. Mareschal, and M. H. Johnson, “Graspability and object
processing in infants,” Infant Behavior and Development, vol. 26, no. 4,
pp. 516–528, Dec 2003.

[104] K. C. Soska and S. P. Johnson, “Development of three-dimensional
object completion in infancy,” Child Development, vol. 79, no. 5, pp.
1230–1236, Sep 2008.

[105] L. B. Smith, “From fragments to geometric shape: Changes in visual
object recognition between 18- and 24- months,” Current Directions
in Psychological Science, vol. 18, no. 5, pp. 290–294, Oct 2009.

[106] M. Minsky, “Logical versus analogical or symbolic versus connection-
ist or neat versus scruffy,” AI Mag., vol. 12, pp. 34–51, April 1991.

Frank Guerin obtained his Ph.D. degree from
Imperial College, London, in 2002. Since August
2003, he has been a Lecturer in Computing Science
at the University of Aberdeen. He is interested in
infant sensorimotor development, especially means-
end behaviour and precursors to tool use. Dr. Guerin
is a member of The Society for the Study of Artifi-
cial Intelligence and Simulation of Behaviour, where
he has served as a committee member and co-chair
of the annual convention.

Norbert Krüger is a professor at the Mærsk McK-
inney Møller Institute, University of Southern Den-
mark. He holds a M.Sc. degree from the Ruhr-
Universität Bochum, Germany and his Ph.D. degree
from the University of Bielefeld. He is leading
the Cognitive Vision Lab which is focussing on
computer vision and cognitive systems, in particular
the learning of object representations in the context
of grasping.

26

Dirk Kraft obtained a diploma degree in computer
science from the University of Karlsruhe (TH), Ger-
many in 2006 and a Ph.D. degree from the Univer-
sity of Southern Denmark in 2009. He is currently an
assistant professor in the Mærsk McKinney Møller
Institute, University of Southern Denmark. His re-
search interests include cognitive systems, robotics
and computer vision.

The complexity and potential of dexterous grasping examplified

Jimmy A. Jorgensen
Maersk Mc-Kinney Moller Institute

University of Southern Denmark

Dirk Kraft
Maersk Mc-Kinney Moller Institute

University of Southern Denmark

Justus Piater
Institute of Computer Science

University of Innsbruck

Henrik G. Petersen
Maersk Mc-Kinney Moller Institute

University of Southern Denmark

Norbert Krüger
Maersk Mc-Kinney Moller Institute

University of Southern Denmark

Abstract— We give results of exhaustive dynamic grasp
simulations for 3 objects in two different scenarios – one
unconstrained ‘free-floating’ and one constrained by a ‘table’
– with a standard industrial 2-finger gripper and a dexterous
hand. Based on the simulation we give a quantification for the
potential of grasping with this dexterous hand compared to
grasping with a more simple gripper. We then investigate and
quantify the transfer of successful grasps across the two kinds
of scenario by means of the Matthews correlation coefficient.
General consequences for dexterous grasping are drawn, in
particular on the transferability and context dependency of
dexterous grasping processes.

I. INTRODUCTION

Dexterous hands have the advantages – compared to
simpler two- or three-finger hands – of being able to realize
a much larger variety of grasp and manipulation options.
In an industrial context this potentially allows for replacing
the need to design specialized grippers for specific tasks and
hence to reduce costs significantly. However, dexterous hands
have not yet been used a lot in industrial applications. There
are a number of reason for this such as limitedavailability
of dexterous hands, the robustness of existing hardware and
the cost of such devices. Fortunately in the last decade quite
a number of dexterous hands have been developed and are
used in labs such that the step towards industrial applications
might not be so big anymore. However, another obstacle in
the way of using dexterous hands is the complexity of their
control and the complexity of defining suitable grasp and
manipulation actions associated to specific objects.

The possible options of grasping objects with dexterous
hands are virtually infinite. The success of a specific grasp
applied to a specific object depends on the object shape, the
grasp type, the preshape pose and the control strategy as
well as the grasp context. For dexterous hands a large set of
grasp types can be generated (see Figure 1) and numerous
control strategies can be applied controlling forces, velocities
and joint configuration. As our results indicate, even small
differences in such parameters can in fact be decisive of
grasp success. Moreover, there are common situations where
only very specific grasp configurations lead to success. For

Fig. 1. Four preshapes used with the SDH-2 dexterous hand. From left to
right: cpar , cparsmall, cball, ccyl

example, when a flat object lies on a table the gripper pose
needs to be controlled very carefully since a small deviation
can decide between success and failure . Therefore it would
be advantageous to not only code the grasps that ‘mostly
work’ but actually the complete set of grasp affordances
associated to an object to be able to choose the applicable
grasps in different contexts. It is this variety of options
leading to a high-dimensional search space as well as the
need to choose the applicable grasps from this large variety
in a context-specific manner which makes dexterous grasping
a very hard task.

A naive approach would be to compute the success likeli-
hood for each joint/force and velocity configuration at each
pose associated to an object. This is infeasible due to the
dimensionality of the search space. In this paper we make
a compromise between coding complete grasp affordance
representations and feasibility: We select a discrete set of
grasp types and control strategies (see Figure 1) and compute
the full set of affordances by means of simulation in a ‘free
floating’ environment (see Figure 4 a,d,g). We then look at
two different grasp contexts, namely the rather artificial free-
floating context – which is often used as a context-free first
test of grasps – and the application-oriented, rather common
context where the object is placed on a table (see Figure 4
b,c,e,f,h,i). In this way we are able to provide insight into
the parameters relevant for grasping with dexterous hands as
well as the huge potential such hands provide.

We provide simulation results in terms of complete set of
affordances for 3 objects (see Figure 2) using 4 different
grasp types for the SDH-2 hand (see Figure 3) – one
grasp type with 2 control strategies – in three different
contexts (‘free floating’ and two ‘table’ environments) as
shown in Figure 4. To compare with a simpler hand we
also do simulations with the PG 70 two-finger hand (see
Figure 3). We analyze the full set of grasp affordances for
these 45 different contexts and analyze differences which
provide valuable insight into grasping with dexterous hands.
In particular we
R1) exemplify the superiority of dexterous hands compared

to a standard 2 finger gripper (PG 70) in terms of the
extend and variability of options of successful grasps to
choose from. This is done by comparing grasp success
distributions for these different gripper types in the
different contexts.

R2) show that the likelihood of a ‘random’ grasp being
successful is very different for different objects, grasp
contexts and control strategies. We show that grasps
simulated in a free-floating context are only to a small
degree directly transferable to typical table picking
scenarios, which motivates the need of transfer func-
tions that are able to transfer grasp affordances from
unconstrained environments (as the free floating envi-
ronment) to more specific environments (such as the
table environment).

R3) introduce a rather simple transfer function which al-
lows us to transfer grasp affordances from the less
constrained, free-floating environment to the table en-
vironment, and we analyze the success of this transfer
which varies with the specific object and the context it
is embedded in.

In this way we illustrate the potential of grasping with
dexterous hands (R1),reason on the complexity of the transfer
of grasping across scenarios which, as we show, depends on
many factors such as the nature of the scenarios, the objects,
the grippers and gripper configurations (R2), and finally
present a simple method for transferring from a generic
grasp representation in a ‘free-floating’ scenario to a specific
context (‘table’) (R3).

In Section II we introduce the objects, grippers and
preshapes used in the simulations. In Section III, we describe
the simulation set-up and in Section IV the actual results
which are then analyzed in Section V.

II. SELECTION OF OBJECTS AND GRIPPERS

Three objects were selected from the KIT Object-Models
Web Database1, see Figure 2. The objects are common
household objects which are sufficiently different to provide
interesting comparisons.

The grippers used to grasp these objects are the Schunk
parallel gripper (PG 70) and the Schunk Dexterous Hand
(SDH-2), see Figure 3. The PG 70 gripper has two fingers
coupled into one Degree Of Freedom (DOF), that is, 1 DOF

1http://wwwiaim.ira.uka.de/ObjectModels

Fig. 2. From left to right: corny object, cup-object and tomato object from
the KIT object database

Fig. 3. PG 70 gripper (left) and the SDH-2 (right).

moves both fingers. The fingers can move up to 7 cm apart
and the contact surface is approximately 2x3cm and covered
by rubber.

The SDH-2 is a 3-fingered dexterous hand with 2 DOF per
finger and one coupled DOF to control the base rotation of
two of the three fingers. The SDH-2 has 6 contacting surfaces
covered with rubber, each of them measuring approximately
2×3 cm. However, for precision grasps only the 3 contact
surfaces on the distal joints are normally used.

A number of preshapes can be associated to each gripper.
Being a simple parallel gripper the PG 70 only has one
preshape q = 3.4 cm, giving it an maximum distance of
6.8cm between its jaws. Four preshapes were chosen for
the SDH-2 which are shown in Figure 1. These different
preshapes enable different grasping options, and as such are
important when characterizing the grasp affordances of the
gripper.

We need to use preshapes because of multiple properties:

• Using preshapes is a simple and direct way of providing
multiple ways of grasping an object. The process re-
duces to the sequence: (open hand, move toward object,
close hand), which is already supported by the software
of the SDH-2. Alternatively, complex grasp planners
that rely on sensor data are typically needed.

• Preshapes do not require additional parametrization.
This property is important when sampling random
grasps since the dimensionality of the search space is
not extended by any gripper parameters such as the
individual joint configurations.

• Using preshapes enables an easy comparison between
the grippers since the dexterous gripper reduces to a

simple open/close gripper for each preshape. Hence, the
same analysis can be applied.

We perform exhaustive grasp simulations for the three
objects and all pre-shapes associated to the SDH-2 hand and
the PG70 in two kinds of scenarios: and

• free-float – In the free-floating scenario the gravity is set
to zero, and gripper and object are the only geometries
in the simulation.

• on table – In the table scenario the gravity is set to
9.8m/s2 and a table (plane) is added to the environ-
ment. The object may rest on this table in several
different poses depending on object shape, so several
table scenarios per object are used, see Figure 4.

III. COMPUTATION OF GRASP AFFORDANCES

In this paper, we compute complete grasp affordances by
evaluating randomly sampled gripper poses in the neighbour-
hood of an object. Each of these sampled poses, combined
with a preshape of the gripper, represents a grasp hypothesis
which can be evaluated in simulation. The outcome of the
simulation may be one of (success, failure or collision),
where success represents a successful grasp of the object
(indicated by the fact that the fingers are still in contact with
object after grasping it) and failure represents a grasp where
the gripper has no contact with the object after trying to grasp
it; collision represents a grasp which is initially in collision
with the object or the environment.

The evaluation of a grasp hypothesis is performed using
a dynamics grasp simulator from RobWork [2]. The main
simulation process of a single grasp is:

1) Set the initial scene configuration, eg. gravity, friction,
pose of obstacles and objects.

2) Place gripper in a “random” pose (relative to the
object) and set the gripper configuration to one of the
preshapes.

3) Test if the gripper collides with object or environment.
4) Start the simulation and set the target gripper config-

uration (preshape dependent) of the gripper controller.
5) If a grasp is obtained, lift the object and compute the

success criteria.
The sampling of the gripper and the choice of sampling

strategy necessarily influence the resulting set of grasp
affordances and the overall success probability. Typically
grasp planning focuses on gaining a high overall success
probability by exploiting knowledge of gripper, object and
environment. However, in this work we focus on the anal-
ysis and comparison of comprehensive grasp affordances;
thus, an unbiased sampling strategy is preferred. Uniformly
random sampling in SE(3) would therefore be ideal but
is impractical because of the large number of simulations
necessary to cover SE(3). Instead a sampling strategy that
is biased toward the object geometry is used. This effectively
reduces the number of required simulations without biasing
the success probability toward a specific gripper. The overall
success probabilities can then be used as a measure of the
volume of the subspace of grasp successes in SE(3) which
can be used as a quantification in the context of R1.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. The floating pose is illustrated on the left, followed by two canonical
poses on the table (side and upright). Top row: Corny object. Middle row:
Cup object. Bottom row: Tomato object.

A set of grasp affordances are defined for a specific object,
with a specific gripper and preshape, in one of the two
specific contexts, free floating or placed on a table.

Two canonical poses of each object in the table environ-
ment are used to provide different grasp contexts. These are
illustrated in Figure 4 together with the free-floating context.

A. Object specific sampling strategy

The sampling strategy used for sampling the pose of the
gripper relative to the object primarily follows the object
geometry. However, it also assumes that the approach vector
of the gripper is placed in the same direction as the positive
z axis of the gripper Tool Center Point (TCP) frame. It
effectively encapsulates the idea that the gripper needs to
point toward some part of the object geometry before it is
able to successfully grasp it.

First a random point p on the surface of the object
is selected. Then a uniformly distributed orientation R in
SO(3) is calculated and used to define the temporary target
pose Ttmp = (p,R). The pose is then translated along
the z axis by a randomly generated value d in the interval
[−0.04m; 0.04m]. The final pose is therefore:

Tpose = (p− (R · [0, 0, 1]T) · d,R) (1)

As can be seen the strategy does not directly take into
account properties of the different grippers and as such does
not explicitly bias the sampling toward a specific gripper.

Fig. 5. Each show the successes of grasping the Corny object in the same
5000 grasp simulations but performed in different contexts. From left to
right: free-float, on table (side pose) and on table (upright pose).

B. Transfer function

The sampling strategy is used once per object to generate
a grasp hypothesis for the floating environment. The same
grasp hypotheses are then also used for the on table environ-
ments. This enables the comparison between the outcome
of grasp hypotheses in the table environments against the
floating environment, which is necessary to answer how well
the outcome of the floating environment predicts the outcome
in the table environments.

A large proportion of successful grasps in the free-floating
environment will be in collision in the table environment
because of the added table geometries. Naively predicting
success in the table environment from success in the floating
environment will therefore not suffice. We therefore use a
simple transfer function to remove any grasps where the
gripper is not above the table. In practice this is simply
calculated by checking if the gripper collides with the table
plane.

IV. SIMULATION RESULTS

Figure 5 illustrates the successful outcomes of the same
5000 grasp hypotheses in the three different contexts of the
corny object grasped with the SDH-2 using the preshape
cpar. It is clear that the added table constraint significantly
reduces the number of successful grasps. However, it is
not clear if successes from the constrained environments
(center and right image) will also be successes in the
floating environment. In the following we use confusion
matrices to evaluate how well successes and failures in the
floating simulations predict successes and failures in the table
environments, and vice versa, as illustrated in Table I.

Multiple datasets were generated for each gripper. For the
SDH-2 the datasets are characterized by a triple (oi, sj , ck),
where oj is the object, sj is the specific scene (free floating
or on table, (with different poses), and ck is the grasp strategy
which includes the number of fingers and the preshape used.
The parallel gripper is simpler, and only one grasp strategy is
used. Hence we describe datasets generated with the PG 70
by a pair (oi, sj).

For each floating environment (oi, sfloat, ck), 100.0002

grasp simulations were generated using the sampling ap-
proach presented in Section III-A. The overall success
probabilities of the simulations are available in Table II.
Two success probabilities are given. The first shows the

2For the tomato object the actual number of samples is slightly lower.

percentage of grasp successes from all grasps that were not
initially in collision, the second shows the percentage of
grasp successes from all grasps including the colliding ones.

In the same table the success probabilities of the sim-
ulations of the table environments (sside, suprigt) are also
shown. These simulations use the same grasp hypotheses
as in the floating environment but performed in the specific
contexts (e.g. the object was placed upright on the table).
This makes it possible to compare the predictability of the
floating environment simulations, that is, whether a grasp
successful in the floating environment is also successful in
the specific table context, and vice versa. This predictability
is quantified by the confusion matrices in Table III, as
illustrated in Table I.

SDH-2
ocorny , cball

Results in sfloat

success failure

R
es

ul
ts

fo
r
s s

id
e success TP=74 (true positives),

the number of grasp sim-
ulations that where suc-
cessfull in both scenarios

FN=113 (false
negatives), the number
of grasp simulations
that failed in sfloat but
succeeded in s1

failure FP=539 (false positives),
the number of grasp sim-
ulations that succeeded
in sfloat but failed in s1

TN=2507 (true
negatives), the number
of grasp simulations that
failed in both sfloat
and s1

TABLE I
EXAMPLE OF A CONFUSION MATRIX ELEMENT FROM THE SUCCESS

COMPARISON TABLES. HIGH VALUES IN TP AND TN INDICATE HIGH

TRANSFERABILITY OF GRASP RESULTS FROM ONE SCENARIO TO THE

OTHER.

V. ANALYSIS OF RESULTS

We give measures supporting the questions R1, R2 and
R3 posed in the introduction.

A. Superiority of dexterous grasping (R1)

The success probabilities visualized in the previous section
show a clear picture of the superiority of the dexterous
gripper compared to the PG 70 in our setting. We express
the difference between the potential of the two-finger gripper
PG 70 and the SDH-2 for an object o and a context c by the
measure

d(o,c)(PG 70, SDH) =
max(cpar, cparsmall, cball, ccyl)

c0,PG 70
(2)

The values of d(o,c)(PG 70, SDH) are given on the right
in Table II.

It can be concluded that the grasp success probability for
the SDH-2 (under the condition that a suitable preshape
is selected) exceeds the success probability by a factor of
1.4 to 380. On average (over all scenarios and objects)
this factor is 88 in our experiments. Even with a rather
small set of preshapes tested and assuming an ideal choice
of preshape, grasping with the dexterous hand provides a
significantly higher chance of grasp success compared to

SDH-2 PG 70 d(o,c)

cpar cparsmall cball ccyl c0
o
c
o
r
n
y sfloat 43.1% 25.0% 45.5% 5.2% 70.3% 38.0% 52.9% 28.0% 12.3% 0.7% 54.2

sside 5.8% 0.4% 0.0% 0.0% 5.8% 0.2% 5.3% 0.3% 0.1% 0.0% 380.0
supright 42.1% 7.2% 41.5% 1.9% 70.9% 9.3% 51.9% 8.9% 14.4% 0.4% 25.1

o
c
u
p sfloat 54.5% 42.6% 47.7% 6.0% 79.8% 61.1% 61.7% 45.7% 41.5% 3.7% 16.5

sside 47.0% 5.8% 48.4% 1.7% 72.5% 5.4% 47.3% 6.0% 44.0% 1.6% 3.6
supright 45.0% 4.7% 65.4% 2.3% 81.9% 4.9% 47.7% 4.9% 70.4% 3.5% 1.4

o
to

m
a
to sfloat 48.5% 24.9% 30.4% 5.5% 84.9% 72.0% 72.3% 59.9% 3.8% 0.3% 240.0

sside 22.7% 2.3% 10.9% 0.3% 34.4% 1.9% 32.8% 3.4% 2.4% 0.1% 52.3
supright 43.4% 6.6% 23.1% 1.4% 75.3% 7.5% 63.1% 10.4% 17.2% 0.6% 18.9

TABLE II
SUCCESS PERCENTAGES OF THE SIMULATED OUTCOMES. IN EACH MAJOR COLUMN, THE LEFT SUBCOLUMN SHOWS THE PERCENTAGES OF SUCCESS

IF COLLISIONS ARE NOT INCLUDED, AND THE RIGHT COLUMN SHOWS THE SUCCESS PERCENTAGES IF COLLISIONS ARE INCLUDED. THE RIGHTMOST

COLUMN SHOWS THE VALUES OF THE R1 METRIC (2) INTRODUCED IN SECTION V-A.

SDH-2 PG 70
cpar cparsmall cball ccyl c0

o
c
o
r
n
y sside

159 221
933 5298

0 0
1 1495

74 113
539 2507

97 222
721 4991

0 1
0 1499

supright
6271 861
1660 8183

1777 100
284 2379

8586 761
1127 2712

6296 830
1587 5017

327 46
34 2182

o
c
u
p sside

4876 916
1903 4621

1548 126
241 1546

1459 407
303 406

893 314
474 871

1568 81
175 1924

supright
3483 1219
1683 4059

2093 207
155 1061

1574 657
195 297

917 540
449 1146

3119 396
78 1399

o
to

m
a
to sside

1019 228
1310 2923

246 31
214 2045

445 112
570 494

1063 278
1212 1531

30 35
43 2568

supright
1518 119
538 1591

547 82
219 1874

2167 91
261 477

2019 112
607 602

113 434
53 2584

TABLE III
CONFUSION MATRICES OF SUCCESSES AND FAILURES FROM FLOATING ENVIRONMENT AND THE SPECIFIC TABLE ENVIRONMENT (sside, supright).

SEE TABLE I FOR A DETAILED EXPLANATION OF A SINGLE CELL.

SDH-2 PG 70
cpar cparsmall cball ccyl c0

o
c
o
r
n
y ssideMCCR2 -0.0021 NAN -0.040 -0.035 -0.0051

ssideMCCR3 0.17 NAN 0.13 0.12 NAN
suprightMCCR2 0.34 0.44 0.22 0.31 0.61
suprightMCCR3 0.70 0.83 0.64 0.65 0.87

o
c
u
p

sside,MCCR2 0.17 0.35 -0.012 0.077 0.51
ssideMCCR3 0.55 0.79 0.34 0.39 0.86
suprightMCCR2 0.10 0.41 -0.063 0.0090 0.78
suprightMCCR3 0.45 0.78 0.25 0.35 0.79

o
to

m
a
to

ssideMCCR2 0.11 0.16 -0.021 0.032 0.20
ssideMCCR3 0.43 0.64 0.26 0.33 0.42
suprightMCCR2 0.25 0.35 0.096 0.19 0.26
suprightMCCR3 0.67 0.72 0.67 0.52 0.32

TABLE IV
QUALITY ESTIMATES OF THE CONFUSION MATRICES IN TABLE III.

the PG 70 in 43 of 45 contexts by as much as an order of
magnitude. This indicates the availability of a significantly
larger volume of successful grasping option of dexterous
hands compared to standard industrial grippers. This is
important when grasping is done in constrained scenarios
in which only few grasp options might be executable due
to limitation of workspace of the robot as well as complex
contexts (e.g., when the object is situated in a pile of objects,
as e.g. in a bin–picking context). However, it comes with the

cost of needing to select an appropriate control strategy.

B. Direct transfer between free-floating scenario and table
scenario (R2)

We express the success of a direct transfer as well as the
transfer function introduced in section III-B for both PG 70
and SDH-2 by the Matthews correlation coefficient (MCC)
[1]. The MCC produces a value between −1 and 1, where
1 indicates perfect prediction, 0 indicates random prediction

and −1 indicates inverse prediction.

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(3)

In the direct-transfer scenario, we naively apply a suc-
cessful grasp from the free floating scenario to the more
constrained table scenarios.

The MCC values for the direct-transfer scenario are given
as every other row (labeled MCCR2) in Table IV. Some
of these values are very small, notably in those cases where
the object lies flat on the table (corresponding to the rows
labeled ssideMCCR2) and the table surface impedes most
grasping approaches. Nevertheless, most of the other cases
are better behaved, and the MCC values indicate that transfer
of grasp parameters from free-floating to more constrained
scenarios is possible to some degree.

C. Simple transfer function between free-floating scenario
and table scenario (R3)

We measure the success of the simple transfer function
introduced in section III-B for both the PG 70 and the SDH-
2 using the same MCC measure (3) above. The metric is used
directly on the confusion matrices of Table III (see table I for
explanation). Note that in table III collisions to the table are
filtered away (i.e., the transfer function introduced in section
III-B is applied. The results are shown as every other row
(labeled MCCR3) in Table IV. The results show that the
quality of the prediction increases substantially compared to
the direct transfer (shown in the respective preceding rows).
In most contexts the MCC is much increased with values as
high as 0.80, indicating a very good transfer even by our
rather simple transfer function. Even for the difficult cases
of objects lying sideways on the table, most MCC values
increase, even though some remain very low nevertheless.

It is important to mention that in certain contexts quite a
number of grasps that are not successful in the free-floating
environment are succesfull in the constrained environment.
This implies that in certain scenarios context-specific control
strategies need to be taken into account. For example, the
movement of a flat object on a table when touched by one
of the fingers might be utilized in the grasping process.
These context-specific constraints cannot be accounted for
in a free-floating scenario in the same way, and need to
be learned in the specific context. In summary, the results
show that grasp simulation in free-floating scenarios – using
a straightforward transfer function – give in general quite
reliable indications of grasp success in more constrained sce-
narios. However, in certain contexts better transfer functions
are required, which should ideally be learned in a context-
specific fashion.

VI. CONCLUSION

In large-scale simulations for two grippers and three ob-
jects in different contexts, we investigated and quantified the
potential of dexterous grasping compared to grasping with a
two finger gripper, indicating a large potential of dexterous

grippers (R1). We investigated the transfer between an un-
constrained, free-floating environment and more constrained
environments, which is important for applying learned grasp
knowledge in novel contexts. We showed that grasp success
likelihoods depend heavily on the context the object is
embedded in, and that a naive transfer from a free-floating
scenario only makes sense in some contexts (R2). We then
defined a rather simple transfer function – which basically
takes collision constraints into account – and showed that
such a transfer function can give rather good results in
constrained contexts (R3). The results also suggest that in
some cases context-specific learning of control strategies is
desirable.

REFERENCES

[1] B.W. and Matthews. Comparison of the predicted and observed
secondary structure of t4 phage lysozyme. Biochimica et Biophysica
Acta (BBA) - Protein Structure, 405(2):442 – 451, 1975.

[2] J. Jorgensen, L. Ellekilde, and H. Petersen. Robworksim - an open
simulator for sensor based grasping. In Proceedings of Joint 41st
International Symposium on Robotics (ISR 2010) and the 6th German
Conference on Robotics, Munich, 2010.

Object-Action Complexes:

Grounded Abstractions of Sensorimotor Processes

Norbert Krügera, Christopher Geibb, Justus Piaterc, Ronald Petrickb, Mark
Steedmanb, Florentin Wörgötterd, Aleš Udee, Tamim Asfourf, Dirk Krafta,

Damir Omrčene, Alejandro Agostinig, Rüdiger Dillmannf

aMærsk McKinney Møller Institute, University of Southern Denmark, Odense, Denmark
bSchool of Informatics, University of Edinburgh, Edinburgh, Scotland, UK

cInstitute of Computer Science, University of Innsbruck, Austria
dBernstein Center for Computational Neuroscience (BCCN), Göttingen, Germany
eJožef Stefan Institute, Department of Automatics, Biocybernetics, and Robotics,

Ljubljana, Slovenia
fInstitute for Anthropomatics (IFA), Humanoids and Intelligence Systems Laboratories

(HIS), Karlsruhe Institute of Technology, Karlsruhe, Germany
gInstitut de Robotica i Informatica Industrial (CSIC-UPC), Barcelona, Spain

Abstract

This paper formalises Object-Action Complexes (OACs) as a basis for sym-
bolic representations of sensorimotor experience and behaviours. OACs are
designed to capture the interaction between objects and associated actions
in artificial cognitive systems. This paper gives a formal definition of OACs,
provides examples of their use for autonomous cognitive robots, and enumer-
ates a number of critical learning problems in terms of OACs.

Keywords: Robotics, grounding, reasoning about action and change,
execution monitoring, machine learning

1. Introduction

Autonomous cognitive robots must be able to interact with the world
and reason about the results of those interactions, a problem that presents
a number of representational challenges. On the one hand, physical inter-
actions are inherently continuous, noisy, and require feedback (e.g., consider
the problem of moving forward by 42.8 centimetres or until a sensor indicates
an obstacle). On the other hand, the knowledge needed for reasoning about
high-level objectives and plans is more conveniently expressed in a symbolic

Preprint submitted to Robotics and Autonomous Systems May 15, 2011

form, as predictions about discrete state changes (e.g., going into the kitchen
enables retrieving the coffee pot). Bridging the gap between low-level con-
trol knowledge and high-level abstract reasoning has been a fundamental
concern of autonomous robotics [1, 2, 3, 4]. However, the task of providing
autonomous robots with the ability to build symbolic representations of con-
tinuous sensorimotor experience de novo has received much less attention,
even though this capability is crucial if robots are ever to perform at levels
comparable to humans.

To address this need, this paper proposes a formal entity called an Object-
Action Complex (OAC, pronounced “oak”) as the basis for symbolic rep-
resentations of sensorimotor experience. The OAC formalism is designed
to achieve two ends. First, OACs provide a computational account that
brings together several existing concepts from developmental psychology, be-
havioural and cognitive robotics, and artificial intelligence. Second, by for-
malising these ideas together in a shared computational model, OACs allow
us to enumerate and clarify a number of learning problems faced by embod-
ied agents. Some of these learning problems are known and have been well
studied in the literature, while others have received little or no attention.

OACs are designed to formalise adaptive and predictive behaviours at
all levels of a cognitive processing hierarchy. In particular, the formalism
ensures that OACs are grounded in real-world experiences: all learning and
refinement of OACs will be based on statistics gained from an agent’s ongoing
interaction with the world. To relate OACs operating at different processing
levels, we will also allow OACs to be defined as combinations of other OACs
in a hierarchy, in order to produce more complex behaviours. As a result,
this formalism enables consistent, repeatable hierarchies of behaviour to be
learnt, based on statistics gained during real-world interaction, that can also
be used for probabilistic reasoning and planning. It also provides a framework
that allows the OAC designer to focus on those design ideas that are essential
for developing cognitive agents.

The goal of the OAC formalism is to provide a unifying framework for rep-
resenting diverse interactions, from low-level reactive behaviour to high-level
deliberative planning. To this end, we will build our computational models
on existing assumptions and ideas that have been shown to be productive in
previous research, in a number of different fields. In particular, we note six
design ideas (DI) that have helped motivate our formalism:

DI-1 Attributes: Actions, objects, and interactions must be formalised over

2

an appropriate attribute space, defined as a collection of properties with
sets of associated values. An agent’s expectations and predictions (see
[DI-2]) as to how the world will change if an action is performed must
also be defined over such an attribute space. Different representations
may require different attribute spaces, plus a method of mapping be-
tween them if they are to be used together.

DI-2 Prediction: A cognitive agent performing an action to achieve some
effect must be able to predict how the world will change as a result of
this action. That is, it must know which attributes of the world must
hold for an action to be possible (which will typically involve reasoning
about the presence of objects), which attributes will change when the
action is performed, and how those attributes will change.

DI-3 Execution: Many previous efforts to produce fully autonomous robotic
agents have been limited by simplifying assumptions about sensor, ac-
tion, and effector models. We instead take the approach that complete
robotic systems must be built with the ability to actually execute ac-
tions in the world and evaluate their success. This requires agents to be
embodied within physical systems that can interact with the physical
world.

DI-4 Verification: In order to improve its performance in a nondetermin-
istic physical world, an agent must be able to evaluate the effective-
ness of its actions, by recognising the difference between the states it
predicted would arise from its actions, and those states that actually
resulted from action execution.

DI-5 Learning: State and action representations are dynamic entities that
can be extended by learning in a number of ways: continuous param-
eters can be optimised, attribute spaces can be refined or extended,
new control programs can be added, and prediction functions can be
improved. Embodied physical experiences characterised in terms of ac-
tions, predictions, and outcomes provide data for learning at all levels
of a system.

DI-6 Reliability: It is not sufficient for an agent to merely have a model
of the changing world. It must also learn the reliability of this model.
Thus, our representations must measure and track the accuracy of their
predictions over past executions.

3

These design ideas are widely accepted in the literature, where they have
been discussed by various authors (see, e.g., [5, 6]). For example, a STRIPS-
style planning operator [7] can be seen as a prediction function [DI-2] built
from action preconditions and effects defined over an attribute space [DI-1].
Significant work has also been done on learning such prediction functions
given an appropriate attribute space [8, 9]. The importance of embodiment
[DI-3] in real-world cognitive systems has been pointed out by Brooks [1, 2].
Richard Sutton [10] has discussed the necessity of verifying the expected ef-
fects of actions [DI-4] to arrive at meaningful knowledge in AI systems. The
interplay between execution [DI-3] and verification [DI-5] is associated with
the grounding problem [11]. For example, Stoytchev [5] defines grounding
as “successful verification”, and discusses the importance of evaluating the
success of actions [DI-6] and maintaining “probabilistic estimates of repeata-
bility”. We will discuss the relation of our work to prior work further in
Section 3.

1.1. Paper Structure

In the remainder of the paper we will develop the OAC concept using the
above design ideas. In particular, this paper will:

• formally define OACs for use by autonomous cognitive agents,

• identify problems associated with learning OACs, and

• provide examples of OACs and their interaction within embodied sys-
tems.

The rest of the paper is organised as follows. Section 2 further motivates this
work and provides some basic terminology. Section 3 discusses the relation to
prior research. Section 4 provides a formal definition of OACs, based on the
above design ideas. Section 5 characterises a number of learning problems in
terms of OACs. Section 6 describes how OACs are executed within a phys-
ical robot system. Section 7 provides detailed examples of OACs. Finally,
Section 8 demonstrates a set of OACs interacting with each other to realise
cognitive behaviour, including object grounding and associated grasping af-
fordances, as well as planning with partly grounded entities.

4

Model

Sensed World

Actual World

wsr

CP

OAC

s0 ps

0ws

0aws awsr

Figure 1: Graphical representation of an OAC and its relationship to a control program.

2. Prerequisites for Modelling OACs

To achieve its goals in the real world, an embodied agent must develop
predictive models that capture the dynamics of the world and describe how
its actions affect the world. Building such models, by interacting with the
world, requires facing a number of representational challenges resulting from

• the continuous nature of the world,

• the limitations of the agent’s sensors, and

• the stochasticity of real-world environments.

These problems make the task of efficiently predicting the results of real-
world interactions challenging, and often require highly-specialised models of
the interaction. As a result, any framework for representing such interactions
must be able to support multiple models of the world, based on different
attribute spaces. For example, differential equations can be straightforwardly
used to predict the trajectory of straight line motions. However, this kind of
representation will not be effective for symbolic planning. We will call each
model of an interaction with the world an OAC, and stipulate that each OAC
be defined over an attribute space.

5

Given the continuous nature of the world, all of an agent’s interactions
with the external world must be mediated by low-level continuous control
routines. Such routines are necessary for the agent to sense and to act in
a noisy, continuous, and uncertain real world. For this exposition, we will
assume that the agent has a low-level control program (CP) that it uses to
interact with the world.1 Our objective then is for OACs to capture the
interactions with the world meditated by the CPs. In order words, we will
describe an OAC as modelling a CP.

Our first three design ideas suggest that an OAC must contain a pre-
diction function defined on an attribute space that captures the regularities
and results of its specific CP. Figure 1 illustrates this idea graphically with
an OAC that predicts the behaviour of a specific CP functioning in the real
world to move an agent’s end effector. Here, the control program causes
changes in the actual world that transform the actual initial state of the
world, denoted by aws0 (and sensed by the agent as ws0), to the resulting
actual world state, awsr (sensed by the agent as wsr).

An OAC that models this CP must also be able to map states of the
sensed world to states represented in terms of its own attribute space, and to
make predictions about the transitions that are caused by the CP. In Figure 1
this is captured by a correspondence between ws0 in the sensed world and
the initial state s0 in the OAC’s attribute space, and the OAC’s predicted
state sp and the resulting sensed state wsr.

In practice, we can simplify this diagram slightly. Since the agent’s per-
ception of the world is completely mediated by its sensors and effectors, any
change in the world can only be observed by the agent through its (possibly
faulty) sensors. Further, because the available sensor set of a given agent is
fixed, we can treat the actual world and the sensed world as a single level,
as shown in Figure 2. While we recognise the presence of errors in the sen-
sors and the inherently un-sensed variation of the world, since we are not
modelling learning over evolutionary time scales, we also assume that all em-
bodied agents must learn based on the noisy and incomplete sensors provided
to them. We will make this assumption for the remainder of the paper.

1We will discuss how new CPs can be learnt later in this document, but for the purpose
of introducing this idea we will simply assume a CP is given.

6

Model

Sensed World wsr

s0 ps

0ws

Actual World

CP

OAC

Figure 2: Graphical representation of an OAC and its relationship to the sensed world
and a control program.

2.1. Representational Congruency and Grounding

For an OAC to model a CP and be effective for high-level reasoning tasks,
it must consistently capture the underlying regularities present in the exe-
cution of the CP. One way to do this is to ensure that the states modelled
by an OAC are inferable from sensed features of the world, and that rel-
evant changes in the sensed world resulting from the execution of the CP
are reflected in the states predicted by the OAC. We will call this property
representational congruency, and will refer to OACs with this property as
congruent models or congruent representations of the CP.

Representational congruency imposes strong conditions on an OAC’s pre-
diction function and attribute space, with respect to the CP it models, as
illustrated in Figure 2. In particular, if s0 is an initial state in the OAC’s
attribute space, corresponding to the sensed state ws0, and the sensed state
wsr results from the execution of a CP in ws0, then the state sp predicted
by the OAC (and represented in the OAC’s attribute space) must map to
the sensed state wsr. In practical terms, such guarantees are necessary for
ensuring the correctness of high-level reasoning tasks that have consequences
at the sensed world level. (For instance, building high-level plans that are
interpreted in terms of low-level effector commands.) We will provide a for-
mal definition of representational congruency, and a further discussion, in
Section 6.

We note that nothing about representational congruency requires OACs
to share attribute spaces with the sensed world. For instance, a single state
in the OAC’s attribute space might denote a set of states at the sensed world

7

level. In general, a representationally congruent OAC is free to abstract its
attribute space from the sensed world in any way that is effective for its rea-
soning task. This allows each OAC to develop and work with representations
that are specific to their own reasoning tasks.

We also note that learning such congruent models requires a mapping
from the sensed world state to the OAC’s attribute state that is consistent.
In other words, a given sensed state of the world must always map to the same
state in the OAC’s attribute space. Without such consistencies, regularities
in the execution of the CP cannot be recognised, let alone learnt and modelled
by an OAC. Given consistent mappings, we envision the congruency of an
OAC increasing as experience extends the OAC’s attribute space.

Following DI-3, DI-4, and DI-5, we will also require all OAC learning and
refinement to be based on statistics gained through an agent’s interaction
with the world, in order to ensure that the resulting OACs are grounded
in real-world execution and sensor feedback. Thus, we envision cognitive
systems using OACs to solve a problem at a high level of abstraction while
grounding their real-world interactions with low-level control programs and
sensed world states. Further, while this section has discussed OACs as being
grounded by executing a single control program, in Section 6 we will discuss
how OACs can be defined as a combination of lower-level OACs. This will
enable consistent, probabilistic reasoning and planning based on statistics
gained during the execution of OACs in the world.

With these intuitions in hand, we will now discuss the relationship of
OACs to prior work.

3. Relation to other Approaches

The OAC concept provides a framework for formalising actions and their
effects in artificial cognitive systems, while ensuring that relevant compo-
nents and prerequisites of action acquisition, refinement, chaining and exe-
cution are defined (e.g., the attribute space, a prediction of the change of the
attribute space associated with an action together with an estimate of the
reliability of this prediction, an execution function, and a means of verifying
the outcome of an action). In particular, this framework ensures the ground-
ing of an OAC in sensory experience by means of incremental verification
and refinement (“ongoing learning”). It also specifies which components of
an OAC are subject to learning as outlined in Section 5. Our OAC definition,
however, does not specify the actual learning algorithms (e.g., whether this

8

learning takes place in a neural network, by means of reinforcement learning,
or based on Bayesian statistics); this is up to the designer of the concrete
OAC. As such, OACs ensure certain properties of action representation are
fulfilled, leaving the designer free to specify the remaining content. The OAC
framework thus provides a basis for the design of elementary cognitive units
and their interaction. Naturally, it is based on a significant amount of prior
work on action representations, as we will outline below.

A closely related concept from psychology is the (sensorimotor) schema
as defined by Piaget and others [12, 13]. A sensorimotor schema is a dynamic
entity that gathers together the perceptions and associated actions involved
in the performance of behaviours. The schema represents knowledge gener-
alised from all the experiences which have been involved in the executions
of that behaviour. It also includes knowledge about the context in which
the behaviour was performed as well as the agent’s expectations about the
action effects. Cognitive development takes place by refining and combining
these schemas. OACs can be seen as a formalisation of such schemas to be
used in artificial cognitive systems.

Together, the different components of OACs formalise concepts which
have been derived over the last decades in cognitive science, artificial in-
telligence and robotics. We discuss related work in terms of four subjects
that are addressed by the OAC concept: (1) the definition and learning of
suitable attribute spaces and the predictions taking place in these spaces,
(2) the concept of affordances, (3) the grounding of symbolic entities by the
agent’s interaction with the world, (4) the modularisation of actions allowing
for their flexible combination, (5) hybrid control schemes, and (6) learning
and memorisation.

Attributes and the prediction of expected change: The representation
of world states in terms of discrete attribute spaces, and the representation of
actions as expected changes to the values of these attributes, can be directly
linked to STRIPS [7] and other classical formalisms [14, 15, 16]. Predictabil-
ity of cause and effect (or the lack of it) is important for cognitive agents and
has been treated in a large body of work [17, 18, 19, 20, 21, 22]. However,
unlike classical formalisms, the prediction function associated with an OAC
constitutes a dynamic and grounded entity, changing under the influence of
ongoing learning processes in the cognitive system.

More specifically, OACs go beyond such classical representations by per-
mitting both continuous and discrete attribute spaces, making it possible to

9

use OACs at different levels of a processing hierarchy, from low-level sen-
sorimotor processes for robot perception and control, to high-level symbolic
units for planning and language. As a consequence, OACs can be viewed
as containers enabling subsymbolic as well as symbolic representations, and
models of both symbolic and subsymbolic cognition can be formalised using
OACs (see [23]).

Structures like POMDPs (see, e.g., [24]) are related to OACs in that they
are also defined in terms of states, actions, and state transitions. However,
unlike OACs, they employ specific probabilistic representations tailored to
optimal action selection with respect to reward signals. POMDPs are not
concerned with the issue of grounding their abstract representations in phys-
ical experience (see below). OACs provide more generic formalisations of
actions in a cognitive system, also allowing for non-probabilistic representa-
tions in which action selection may not be the primary goal.

OACs also facilitate the learning of their associated prediction functions,
an idea which is closely related to statistical structure learning [25, 26, 27, 28,
9, 8, 19], and learn how successful their executions are over particular time
windows. In particular, in early development, when actions are likely to be
unsuccessful, it is important to ensure that such execution uncertainties can
be reasoned about. The storage of statistical data concerning execution reli-
ability also has important applications to probabilistic planning [19], where
an OAC’s probability of success can be utilised to compute optimal plans.
Consistently successful plans can then be memorised for future reference.

Affordances: OACs combine the representational and computational effi-
ciency of STRIPS rules [7] and the object- and situation-oriented concept
of affordance [29, 30]. Affordance is the relation between a situation, usu-
ally specified to include an object of a defined type, and the actions that it
allows. While affordances have mostly been analysed in their purely percep-
tual aspect, the OAC concept defines them more generally as state-transition
functions suited to prediction. Such functions can be used for efficiently learn-
ing the multiple representations needed by an embodied agent for symbolic
planning, execution, and sensorimotor control.

Grounding and Situatedness: OACs reflect a growing consensus con-
cerning the importance of grounding behaviour in sensorimotor experience,
which has been stressed in the context of embodied cognition research (see,
e.g., [11, 31, 32, 33]). To build a truly cognitive system, it is necessary to
have the system’s representations grounded by interacting with the physical

10

world in a closed perception-action loop [32]. OACs are necessarily grounded
by their execution functions (Section 6), and are learnt from the sensorimo-
tor experiences of the robot (Section 5). Thus, OACs realise grounding by
“successful verification” [5] in an ongoing learning process.

The ability of OACs to formalise sensorimotor processes on different levels
of the cognitive hierarchy allows high-level abstract actions to be formally
grounded in sensory motor experience by means of lower-level actions. We
have exemplified this by a “Birth of the Object” process [34, 35] described in
Section 8.1. By this process, rich object descriptions and representations of
grasping affordances (i.e., the association of potential grasping options to an
object and their associated success likelihoods) emerge through interactions
with the world. As we outline in Section 8.1, this process can be understood
as the concatenation of several low-level perception-action interactions that
are formulated in terms of OACs, leading to processes in which symbolic
entities emerge (i.e., the notion of a specific object) and can be used on
the planning level. Note that this is very much in line with prior work
by others [6, 36] where representations and actions are likewise grounded
through interaction. Differences in the specificities of our visual and motor
representations compared to [6, 36] are discussed in detail in [35].

Modularity: The principle of modularity is widespread in cognitive process
modelling (e.g., vision [37, 38] and motor control [39, 40, 41]), allowing the
agent to make use of acquired perception and action competences in a flexible
and efficient way. As we will demonstrate in Section 7, this concept is also
inherent in the structure of OACs: OACs often operate at increasing levels of
abstraction, each with a particular representation of situations and contexts.
For instance, we will outline three examples of OACs for grasping objects. On
the lowest level, continuous end-effector poses are associated to visual feature
relations for grasping completely unknown objects. This OAC can be used
to model reactive or affordance-based behaviours (see [42, 30]) as outlined
in Section 7.2.2. At an intermediate level in another grasp-related OAC
(described in Section 7.3), grasp densities are used to hypothesise possible
grasps when the agent has some object knowledge [43]. Finally, at the highest
level, plans effectively use grasps to manipulate objects on an abstracted
symbolic scene representation (see Section 7.4).

Hybrid control schemes: OACs can be seen as a unifying representation
for modelling control schemes in hybrid (i.e., discrete-continuous) dynamical
systems (see, e.g., [44]). In this way, they are related to the idea of hybrid

11

control in systems which combine discrete events with continuous dynam-
ics. In most practical cases, hybrid control architectures formalize discrete
abstractions of inherently continuous control problems. For example, the
task of manipulating an object can be decomposed into four subtasks: (1)
reaching the grasp position, (2) grasping the object, (3) moving the object,
and (4) placing the object at the goal position. From a hybrid control point
of view, the subtasks associated with object manipulation can be described
as discrete events, e.g., represented as finite state machines with continu-
ous dynamics for each state. Each of the states might represent low-level,
continuous controller operating on motor torques, sensor readings, etc., with
discrete state transitions triggered by specific conditions of the lower-level
controllers, or by external environmental stimuli.

Such hybrid control schemes can be implemented with OACs represent-
ing states, and their control programs implementing the low-level controllers.
However, OACs can provide more than state models in hybrid dynamical sys-
tems. OACs can model open-loop, one-shot actions with stochastic outcomes,
and be stacked into hierarchical architectures containing different layers of
abstraction. At higher, symbolic levels, OACs can also be composed from
other OACs, to be used for new tasks in different contexts.

Learning, Evaluation, and Memorisation: Cognitive agents must learn
from past experience in order to improve their own development, a task that
typically requires a form of memory as a means of tracking prior interactions
(see, e.g., [45]). While memory itself is not often a problem, such processes
must ensure efficient representation, with properties like associative comple-
tion and content addressability [46, 47, 48, 49], to enable machine learning
from stored instances presented over a period of time.

Learning is also modularised through the OAC concept. In our exam-
ple OACs, the lowest-level OAC learns the difference between successful and
unsuccessful grasps. Using this as a base, another OAC learns alternative
object-specific ways of posing the hand. Again, building on this OAC, an-
other OAC learns the abstract preconditions and effects of grasping. Careful
maintenance of the attribute spaces of the different OACs allows systems to
benefit from the modularity of the information learnt for each OAC. As out-
lined in Section 8, the OAC formalism ensures that relevant data for learning
is stored (in terms of “experiments”), and that learning is taking place at all
times at all levels (even when learning is not the explicit goal of the agent).

12

4. Defining OACs

Our OAC definition is split into two parts, (1) a symbolic description
consisting of a prediction function [DI-2] defined over an attribute space [DI-
1], together with a measure of the reliability of the OAC [DI-6], and (2)
an execution specification [DI-3] defining how the OAC is executed by the
embodied system and how learning is realised [DI-5] by verification [DI-4].

This separation is intended to capture the difference between the knowl-
edge needed for cause and effect reasoning (represented in the symbolic de-
scription), and the procedural knowledge required for execution (encapsu-
lated in the execution specification). Since we do not constrain the form of
the attribute space, OACs are not limited to continuous or discrete repre-
sentations of actions. Instead, as we will see in Section 7, our definitions are
flexible enough to accommodate both kinds of representations.

In the remainder of this section we will provide a formal definition of an
OAC’s symbolic description.

Definition 4.1. We call the properties of the world captured by an OAC
attributes. Each attribute has an associated range of possible values that
can be assigned to that attribute.

Intuitively, attributes can represent any sensed or derived property that
we want our OACs to capture. In particular, Definition 4.1 does not make
any commitments about attributes being continuous, discrete, or Boolean.
This provides the OAC formalism with the flexibility to reason about very
different problem spaces.

Definition 4.2. An attribute space S is the set of all possible assignments
of values to a set of attributes. A state s ∈ S denotes a (possibly partial)
assignment of values to the attributes in the space.

Since we have not limited the form of the attributes we permit, an at-
tribute space can be very expressive, and an individual state description can
abstract over a possibly large number of real-world states. Even a complete
individual state in the OAC’s attribute space can capture a possibly infinite
number of real-world states. For example, a complete state specification that
includes the assignment of the value “full” to the attribute “statusGripper”
represents all the world states where the gripper is full, provided the other
attributes of the world state are consistent with those of the OAC’s state.

13

We also allow state descriptions to be partial, where values are only speci-
fied for a subset of the attributes in the space. For example, if the value “full”
is assigned to the attribute “statusGripper”, and no values are specified for
any of the other attributes in the state space, then the resulting partial state
denotes the set of all states where the gripper is full, regardless of the other
attribute values. As a result, this state representation provides a powerful
method for OACs to abstract over large state spaces.

We now turn our attention to formally defining OACs.

Definition 4.3. An Object-Action Complex (OAC) is a triple

(E, T,M) (1)

where:

• E is an identifier for an execution specification,

• T : S → S is a prediction function defined on an attribute space S
encoding a model of how the world (and the agent) will change if the
execution specification is executed, and

• M is a statistical measure representing the success of the OAC in a
window over the past.

Definition 1 characterises OACs using three main components. In the
examples we will discuss here, the execution specification E identifies a single
CP whose execution is modelled by the OAC. This means that multiple OACs
can share the same underlying CP.2

In general, much of the actual world state will be irrelevant for most
OACs. Therefore, we stipulate that the attribute space S captures all and
only those attributes of the world that are needed for T to make its predic-
tions. Thus, for a given OAC, S will often omit sizable portions of the sensed
world, but may include specialised attributes derived from multiple sensors.
Since observations are costly in real world systems, we can use the reduced
space of S to constrain observations and allocate system resources more ef-
ficiently, resulting in a reduced sensor load for verifying OAC execution.

M codes an evaluation of the OAC’s performance over a time window in
the past. Given the diversity of attribute spaces we can define for OACs, M

2We will discuss more complex execution specifications in Section 6.

14

must be flexible enough to capture the reliability of many types of prediction
functions. As a result, we allow each OAC to define M as a statistical
measure appropriate for its needs. Thus, different OACs in a single system
might define M in very different ways. For example:

• In a simple domain where an OAC is used until it fails and then is
never used again, we might define M as a Boolean flag that indicates
whether the OAC has failed.

• In a more complex domain where M tracks the accuracy of an OAC’s
prediction function over a certain time window in the past, we might
define M as a pair made up of the expected value of the OAC’s perfor-
mance and the sample size used to compute the expected value.

• In even more complex domains it might be convenient to store statis-
tical data beyond the expected value. For example, lower-level OACs
might maintain statistical information about the differences between
observed and expected changes in a number of specific attributes.

Note that the size of the temporal window over which M is collected is OAC
dependent. In general, during learning (where large changes can significantly
affect the success likelihood) smaller windows might be appropriate to judge
whether learning is making good progress, whereas in the case of a mature
OAC a larger window (and hence a more stable estimate of the success like-
lihood) might be appropriate.

To provide some intuition, we can imagine an agent with the following
example OACs, defined on very different attribute spaces. These examples
are described more formally in Section 7.

Ex-1 An OAC that encodes how to push an object on a table based on the
agent’s end-effector pose space and the location of the object. In this
case, the OAC might predict the position of an object after a pushing
action by the end-effector, depending on the velocity and force vector
as well as the shape of the object. For M , the OAC might maintain
the average deviation (over a certain time window) of the prediction of
the position and the measured position after pushing the object.

Ex-2 An OAC that encodes how to grasp an unknown “something” in a scene.
In this case, the OAC might predict the success or non–success (e.g.,
when the “something” is out of reach) of the grasping attempt. For M ,

15

this OAC might store the likelihood of a successful grasp over a time
window in the past.

Ex-3 An OAC that encodes how to grasp a specific object in a specific scene
suggesting an optimal gripper pose. In this case, the OAC might also
predict the success or non–success (e.g., in case the object is in a non-
graspable pose) of the grasping attempt. For M , this OAC might store
the likelihood of successfully grasping the object over a time window
in the past.

Ex-4 An OAC that encodes how to grasp an object for the purpose of planning
(e.g., to systematically clean a table). In contrast to Example Ex-3, at
the planning level the precise control information required to grasp an
object is not relevant. Rather, higher-level attributes such as the object
affordances that become executable after a successful grasp need to be
coded (e.g., the objects that are now movable to a shelf). For M , this
OAC might store the likelihood that the grasp is successful over a time
window in the past.

We will provide more detailed definitions of these example OACs and their
reliability measures in Section 7. First, however, we will motivate the discus-
sion of how OAC-based learning is formalised with the following definition.

Definition 4.4. Let execute be a function with side effects that maps an
OAC, defined on an attribute space S, to a triple of states called an exper-
iment, i.e.,

execute : (E, T,M)→ (s0, sp, sr), (2)

where:

• s0 ∈ S is the state of the world before performing the OAC’s execution
specification,

• sp ∈ S is the state of the world that T predicts will result from perform-
ing the OAC’s execution specification in s0, i.e., sp = T (s0), and

• sr ∈ S is the observed state resulting from actually performing E in
state s0.

The side effect of this function is that the execution specification of the OAC
is actually performed in the real world by the agent.

16

input : an OAC (E, T , M)
output: an experiment (so, sp, sr)
begin

so = stateCapture(T);
sp = T (so) ;
agentExec(E);
sr = stateCapture(T);

end
Algorithm 1: An implementation of execute.

Calling execute with an OAC causes the OAC’s execution specification
to be performed in the real world, producing an experiment as a result. This
experiment is an empirical event dynamically created from the sensed and
predicted states: its first element is derived by sensing the state of the world
before execution, the middle term captures the OAC’s prediction about the
state that should have resulted, while the last element encodes the actual
state of the world after execution. For example, an experiment for Example
Ex-1 might include:

• the initial state of the end effector and the object,

• the predicted state of the object, and

• the actual state of the object after the execution.

We can imagine implementing execute with the pseudo-code in Algo-
rithm 1. Here, agentExec is a function that causes the agent to perform
the specified execution specification, and stateCapture is a function that
captures the current state of the world, expressed in the attribute space of
the given prediction function. For instance, in Example Ex-1, executing the
“pushing OAC” launches a process that (1) captures the initial state, (2)
invokes the prediction function on the initial state to predict the end state
of the object after a pushing movement, (3) invokes the associated control
program, (4) waits for it to terminate, (5) captures the resulting state of the
object, and (6) reports all three states in the form of an experiment. We
note that all OAC-specific processing takes place within the execution spec-
ification. For the rest of this paper, we will refer to the process of calling
execute with a specific OAC as executing an OAC.

In our discussion up to this point, we have only considered a single OAC
modelling a single control program, which simplifies the definition of the

17

execution specification: all we need to provide is the identifier of the control
program that is to be executed. Given this mapping, execute has all the
information it needs to invoke the specified control program, allow it to run
until termination, and report the results as an experiment. In Section 7
we will see more detailed examples, and provide a discussion of how such
one-to-one mappings can be built up in Section 8. However, we can also
imagine much more complex specifications than the execution of a single
control program. In particular, OACs might be defined in terms of other
OACs, or sets of OACs. We will discuss this in more detail in Section 6.

As empirically grounded events, the experiments returned by execute can
be used to update OACs in cycles of execution and learning (see Section 7)
based on evaluations of their success [DI-4]. For instance, each of our example
OACs might update their respective Ms on the basis of an experiment.3 In
the next section we explore particular learning problems in terms of OACs.

5. Learning OACs

The definition of an OAC as an entity that captures both symbolic and
control knowledge for actions gives rise to a number of learning problems
that must be considered for OACs to be effective. We note that each of
these learning problems can be addressed by recognising that differences can
exist between predicted states and actual sensed states. In practice, these
problems may require different learning algorithms (e.g., Bayesian, neural
network-like, parametric, non-parametric, etc.), and it is left to the OAC
designer to choose an appropriate learning mechanism in each case.

As such, the following characterisations are intended to specify those
aspects of the OAC that can be modified through learning, rather than a
specific learning method. We consider four main learning problems, each of
which is labelled in Figure 3, and illustrate these problems using the examples
introduced in Section 4.

1. Translation: (Learning the mapping of real-world states to OAC states)
This learning task produces the mapping from sensed world states to
states in the OAC’s attribute space. It also involves identifying and

3We leave open the possibility that an experiment might not be used immediately for
learning, but could be stored in some type of short term memory (see, e.g., [45]) until
resources for learning are available.

18

ps

rs

Model

Sensed World

0

0ws

Actual World

s
T, M(3) (4)

(1) (1) (1)

OAC

wsr

wsp

CP (2)

Figure 3: Graphical representation of the OAC learning problems: (1) Translation,
(2) Control, (3) Prediction, and (4) Reliability.

adding to the OAC’s attribute space those attributes of the world model
that are required for effectively predicting interactions with the world.
For instance, in Example Ex-1, this process would be responsible for
adding new attributes (beyond object shape) such as the mass dis-
tribution of the object on the basis of more low-level sensory (visual
and haptic) information, or the audio information caused by the object
scraping along the surface.

2. Control: (Learning control programs) This learning task modifies an
OAC’s control program to minimise the distance between the world
state wsp predicted by the OAC and the actual sensed state wsr. For
instance, in Examples Ex-2 and Ex-3, when a grasp is not successful
even though the OAC’s T function predicts success, the control program
can be modified to produce a successful grasp.

3. Prediction: (Learning the prediction function) This learning task
modifies the prediction function to minimise the distance between a
predicted model state sp, and the actual resulting model state sr. In
Example Ex-1, this can be done by optimising the prediction function
to produce a better estimate of the final state of the object after a push.

4. Reliability: (Learning the prediction function’s long term statistics)
This learning task updates the OAC’s reliability measure M to reflect
the long-term success of the OAC. In Examples Ex-2, Ex-3, and Ex-
4, this process might record the last 100 attempts, and evaluate how
many had been successful.

19

We reiterate that all of these learning problems can be addressed by
recognising the differences between predicted states and actual sensed states
as captured by experiments (i.e., through ongoing verification). However,
the details and specifications of how each of these learning tasks might be
performed at a given level of abstraction may vary wildly depending on the
details of the attribute space. One of the critical contributions of this work is
in enumerating and formalising these problems within the OAC framework.

In the following sections, we will use a set of common function names
to denote each of these learning problems. Although these functions would
have to be appropriately tailored to a particular OAC if we were to actually
implement them, we will simply refer to them as: updateModel, updateCP,
updateT, and updateM, respectively, and assume that each function takes an
experiment as an argument.

6. Representational Congruency and Hierarchical Execution

Before we introduce hierarchical executions of OACs in Section 6.2 and
Section 6.3, we begin by discussing a fundamental problem connected to OAC
modelling, and a structural property for OACs that was earlier referred to
as representational congruency.

6.1. Representational Congruency

When an OAC is executed, all the states returned to the OAC by an
experiment are defined within the OAC’s attribute space. This means that
even in mature OACs (i.e., OACs that are well developed and are undergo-
ing very little additional modification), it is possible for there to be states of
the actual world that may not be predicted or (adequately) captured in the
OAC’s attribute space. In such OACs, there is no guarantee that its perfor-
mance could be enhanced even by introducing additional attributes (e.g., by
means of updateModel, where we actually extend an OAC’s attribute space).
This is even more true for less mature OACs that do not have fully devel-
oped attribute spaces: OACs that are “missing” attributes may fail to make
accurate predictions. As a result, OACs are only as effective at predicting
the outcomes of interactions as their learnt models allow them to be.

Representational congruency is a property that aligns an OAC’s attribute
space with that of a control program (or another OAC, as we’ll see in Sec-
tion 6.2), ensuring the completeness of the OAC’s prediction function is im-
proved. To formalise this idea, we provide the following definition.

20

Definition 6.1. Let A = (E, T,M) be an OAC defined on an attribute space
SA, and let Ssense be the agent’s “foundational attribute space” defined by the
agent’s set of sensors and the complete set of their possible values. A is said
to be representationally congruent to the control program captured by E
iff ∀ws0, wsr ∈ Ssense and ∀s0, sp ∈ SA, such that s0 and sp are the respective
projections of ws0 and wsr into SA, and the execution of E by A in a sensed
world state ws0 gives rise to a sensed world state wsr, then it follows that T
maps s0 to sp.

Note that representational congruency is not a necessary property of an
OAC. Since our OAC definition doesn’t say anything substantive about the
prediction function, any function is permitted. However, prediction functions
that consistently fail to produce sound and complete mappings (with respect
to the actual sensed world) won’t be useful for reasoning, even if they are
permitted by the OAC definition. As such, representational congruency pro-
vides the logical underpinning for an OAC’s attribute space and prediction
function to accurately model real-world interactions.

As a result, representational congruency as described in Definition 6.1 is
not a property that we assume OACs begin with. Instead it is a “target”
property that OACs converge towards as they improve their underlying mod-
els. In this view, Definition 6.1 captures a types of completeness property
that may not be fully achieveable in practice. However, the intuition behind
this definition, that representationally congruent OACs correctly predict the
states that result from the execution of a control program, is a property that
is essential if OACs are to be effective at certain reasoning tasks.

In the next section we will discuss more complex configurations of OACs
and what executing such OACs means to representational congruency and
our notion of an experiment.

6.2. Towers of OACs

It is worth recognising that, beyond being attached to external sensors,
there is no significant difference between the attribute space of an OAC and
the sensed world within which a CP operates. A CP moves the agent from
one state of the sensed world to another, while the execution of an OAC
moves the agent from one state of its attribute space to another. Building on
this correspondence, we can consider OACs that use the attribute space of
another, more basic OAC, as their “sensed world” and define their execution
specification in terms of these more basic OACs.

21

Generalising this idea results in “towers” of OACs where each OAC stands
in one-to-one relation with an OAC (or a control program in the base case)
that is beneath it in the tower. In such cases, the execution specification
of each OAC is just the recursive invocation of the OAC beneath it in the
tower. Calling execute for the highest-level OAC results in a stack of calls
to execute, one for each level of the tower, where each OAC invokes the
OAC at the next level down until the process terminates with the execution
of a single control program. The experiment that results from this execution
must then be returned back up the tower, and appropriately translated into
the attribute space of each OAC, as the result of each execute call.

For instance, consider the planning-level grasping OAC in Example Ex-4,
operating in a discrete state space with an abstract description of objects and
their graspability. This OAC’s execution specification could invoke the OAC
in Example Ex-3 which operates in the lower, continuous space of concrete
gripper poses. A call to the high-level OAC in Ex-4 would then result in a
call to the lower-level OAC in Ex-3 which computes a concrete end effector
pose and triggers the execution of the control program. At each level, the
resulting experiments would be passed back to the respective OACs.

We can modify our definition of representational congruency to permit
towers of OACs. Recall that Definition 6.1 required an attribute space de-
rived from the agent’s sensor set. To extend representational congruency, we
alter this definition to refer to the attribute space of the execution function
in general. This results in the following revised version of Definition 6.1:

Definition 6.2. Let A = (E, T,M) be an OAC defined on an attribute space
SA, and let SE be the attribute space of the OAC or CP specified by E. A
is said to be representationally congruent to the execution specification
captured by E iff ∀s′0, s′p ∈ SE and ∀s0, sp ∈ SA, such that s0 and sp are the
respective projections of s′0 and s′p into SA, and the execution of E by A in
a state s′0 results in a state s′p, then it follows that T maps s0 to sp.

We note that while Definition 6.2 is sufficient for describing representational
congruency in towers of OACs, it will need further extension if we are to
capture OACs with even more complex execution specifications, since the
attribute spaces for such constructs could be substantially more complex.

We have also discussed how an experiment resulting from executing OACs
in a tower must be passed back to each constituent OAC, and translated into
the attribute space of that OAC. This means that the attributes and values

22

of a higher-level OAC’s attribute space must be definable in terms of the
attributes and values of the lower-level OAC. To ensure this property holds,
we impose the following restriction on the attribute spaces of towers of OACs.

Definition 6.3. Let A and B be OACs and let SA and SB be the attribute
spaces of A and B, respectively. If A has an execution specification defined in
terms of B, then all the attributes of SA must be derivable from the attributes
of SB. In such cases we will say that A and B are hierarchically defined.

We will see examples of towers of OACs in Section 7.4 and Section 8.2.

6.3. One-to-Many Execution

One-to-one mappings are not the only kind of relationship we can envi-
sion for OACs. We can also imagine more complex scenarios, where an OAC
is mapped to a sequence of OACs or control programs, or has an execution
specification that involves iteration, conditional invocation, or parallel ex-
ecution. For example, an OAC for opening a door might be comprised of
a sequence of lower-level OACs that include actions to approach the door,
grasp the doorknob, twist the doorknob, pull on the doorknob, etc. In order
to execute such a higher-level OAC, each of these lower-level OACs must be
successfully executed in the correct sequence.

A formal definition that permits one-to-many execution specification re-
quires ordering constraints and success criteria for each of the sub-OACs.
Furthermore, a correct understanding of the execution specification for such
OACs must, like the one-to-one case, rest on recursively calling the execute

function and continually monitoring the execution of the underlying OACs.
We will not provide a detailed definition of such complex execution behaviour
in this paper. Instead, we leave the specification and learning of such be-
haviours as an area for future work.

7. Examples of OACs

In this section, we give formal descriptions for a number of OACs. Some
of these OACs have already been discussed informally as part of our running
examples (Ex-1—Ex-4), while others are new. For each OAC, we provide a
definition of its attribute space (S), prediction function (T), success measure
(M), and execution specification (E). We also discuss learning in these
OACs, and show how they can be embedded within procedural structures

23

Section Name Attribute space/T M Learning

7.1 (Ex-1) AgnoPush End effector’s pose
space, object
location and shape

Average deviation
of prediction from
actual final
position

T , M

7.2 (Ex-2) AgnoGrasp Space of coplanar
contour pairs,
gripper status

Long term
probability of
successful grasp

CP, M

7.3 (Ex-3) ObjGrasp Object model,
gripper status

Long term
probability of
successful grasp

CP, M

7.4 (Ex-4) PlanGrasp Logic-based rules Long term
probability of
correct result
prediction

T , M

7.4 (Ex-4) PlanPush Logic-based rules Long term
probability of
correct result
prediction

T , M

Table 1: Summary overview of example OACs.

to produce more complex behaviour. In Section 8, we will present examples
of these OACs interacting with each other, to demonstrate grounding and
planning. Table 1 provides an overview of the example OACs for comparison.

7.1. Example Ex-1: Object Pushing (AgnoPush)

In this example we define an OAC AgnoPush which models a pushing
action that moves objects in a desired direction on a planar surface without
grasping. Pushing as a nonprehensile action cannot be realised with sufficient
accuracy to ensure a given object can be moved to a desired target in one
step, i.e., by applying one pushing movement. If a higher-level planner spec-
ifies that object o should be pushed to a certain target, AgnoPush needs
to be applied iteratively in a feedback loop until the target location is even-
tually reached. To achieve this, the system needs to know how objects move
when short pushing actions are applied to them. In particular, the motion
of the pushed object depends on various properties including shape, mass
distribution, and friction. Here we will focus on shape. (A more detailed

24

description can be found in [50].)

7.1.1. Definition of AgnoPush

Defining S: Some prior knowledge needs to be available before AgnoPush
can be learnt. In particular, we assume that the robot knows how to move
the pusher (e.g., the robot hand or a tool held in its hand) along a straight
line in Cartesian space. We also assume that the robot knows how to localise
the observed objects by vision. The central issue for AgnoPush is to learn
to predict the object’s movement in response to the pusher’s movement. To
this end, the robot needs information about the object’s shape, its current
location on the planar surface, the duration of the pushing movement, and
its direction relative to the point of contact on the object’s boundary. We
represent the object’s shape by a 2D binarized image, such as those shown in
Figure 4. Such images are sufficient as shape models (as opposed to full 3D
shape models) because AgnoPush only encodes the response to an applied
pushing action for objects that do not roll on planar surfaces.

More formally, TAgnoPush is defined on the attribute space

S = {bin(o), loc(o), τ, a},

where bin(o) is the shape model in the form of a binary image of the object to
be pushed, loc(o) denotes the initial location of the object o, τ is the duration
of the push, and a denotes the parameters describing the pushing movement,
i.e., the contact of push on the object’s boundary and the direction of the
movement of the pusher.

Defining T : Based on the information in this attribute space, we can predict
the object’s new location using the transformation

T (bin(o), loc(o), τ, a) = V (bin(o), loc(o), a)τ + loc(o), (3)

where V is the function predicting the outcome of the push in terms of the
object’s linear and angular velocity.

T returns the expected position and orientation of the object after it has
been pushed at a given point of contact and angle with constant velocity for
a certain amount of time. The angle of push is defined with respect to the
boundary tangent. These parameters are fully determined by the object’s
binary image and the pusher’s Cartesian motion. Thus,

T : S −→ {loc(o)}

25

Figure 4: Samples of low resolution object images used as input to the neural network.

maps an initial state (bin(o), loco(o), τ, a) containing a concrete shape bin(o),
a location loco(o) before the action and a specific poking action parameterized
by (τ, a) to a predicted location {locp(o)} after the action.4

Defining M : The statistical evaluation M measures how close the predicted
object movement is to the real object movement over a certain time window.
We define a metric d(locp(o), locr(o)) to measure the difference between the
expected and actual object movement on the planar surface. The expectation
of AgnoPush’s performance after N experiments is thus given by

M =
1

N

N∑
i=1

d(locp(o)i, locr(o)i),

where i denotes different pushing trials (see Figure 5, right).

Defining E: An impulse to push an object in a certain direction must be
provided by a higher-level cognitive process. The appropriate parameters to
the pushing control program can be determined based on the available pre-
diction function T . These issues will be discussed in Section 7.1.2. However,
the control program modelled by AgnoPush is neither object nor target
dependent. This means that the execution specification of this OAC simply
calls the pushing control program with parameters a and τ computed by an
external process.

Calling execute results in an experiment of the form

({bin(o), loco(o), τ, a}, T (bin(o), loco(o), τ, a), locr(o))

4For brevity in Section 7 and Section 8 , we will often provide partial state descriptions
when discussing T and the experiments resulting from execute, highlighting the significant
parts of the state, rather than simply reporting complete states.

26

that is created by performing four major functions:

1. Capturing the initial state: For AgnoPush, this requires both extract-
ing the binary image of the object bin(o) and its location loco(o), and
acquiring the pushing movement parameters a.

2. Capturing the predicted resulting state: This is done by calculating
T (bin(o), loco(o), τ, a).

3. Executing the execution specification: The pushing movement is per-
formed by calling the pushing control program with parameters a and
τ .

4. Capturing the actual resulting state: This is done by localising the
object after the push, i.e., by observing locr(o).

When the task is to push an object towards a given target location, the
robot can solve this by successively applying execute in a feedback loop until
the goal has been reached. Note that in this example the control program
that realises straight-line motion of the pusher in Cartesian space is fixed
and does not need to change while learning AgnoPush.

7.1.2. Learning in AgnoPush

Learning in AgnoPush affects both its prediction function and its long-
term statistics. A process for learning the prediction function (denoted by
the function updateT) is realised using a feedforward neural network with
backpropagation. The trained network encodes a forward model for object
movements that have been recorded with each pushing action. To ensure
that AgnoPush can be applied to different objects, the shape is specified
in the form of a low resolution binary image, which is used as input to the
neural network. Function T is updated incrementally based on the observed
movements of the pushed objects. Statistical evaluation is also done incre-
mentally as experiments are performed (a process denoted by the function
updateM). Note, however, that since the prediction function T changes dur-
ing learning, the statistical evaluation only converges to the true accuracy of
the behaviour once T becomes stable (see Figure 5).

There are two modes of operation in which we consider AgnoPush:

A. Initial learning of the prediction function T , where the pushing move-
ments encoded by the parameter a are randomly selected, and

B. Pushing the object towards a given target, where the current pusher
movement a is determined based on the previously learnt prediction
function and the given target location.

27

0 200 400 600 800 10000.1

0.2

0.3

0.4

0.5

0.6

Num. of experiments

M
ea

n
er

ro
r a

cr
os

s
al

l m
ea

su
re

m
en

ts

0 200 400 600 800 1000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Num. of experiments

In
cr

em
en

ta
l m

ea
n

er
ro

r

Figure 5: Mean error of robot pushing. The left figure shows the mean error of the predictor
on the available data, i.e., after each update of the predictor we evaluate its performance
on all previous experiments. The right figure shows the incremental statistical evaluation
as realised by updateM. Four different objects were used in the experiment.

Figure 6: Pushing behaviour realised by AgnoPush after learning prediction function T .

As described above, the prediction function T is given in Equation (3), where
velocity V is encoded by a neural network with the binary image of an object,
the point of contact and the direction of the pusher movement used as input
values, and the predicted final position and orientation of the pushed object
as output. In mode B, we calculate the optimal pusher movement a (i.e., the
point of contact and the direction of the push) by first extracting the object’s
binary image and determining the desired Cartesian movement of o from its
current location towards the target location. The neural network is then
inverted using nonlinear optimisation (see [50] for details). The resulting
behaviour is shown in Figure 6.

The learning process has been implemented using explorative behaviour
as shown in Algorithm 2. In this context, updateT estimates the weights of
the neural network (for details on the learning algorithm, see [50]). To ensure
that the data used for training is not used to estimate the performance of

28

while true do
a = SelectRandomMotion; bin(o); loco(o);
expr = execute(AgnoPush);
if d(loco(o), locr(o)) > ε then

updateM(expr);
updateT(expr);

end

end

Algorithm 2: Explorative behaviour to learn AgnoPush. The constant ε > 0 is used

to determine whether the object has moved or not.

the prediction function, updateM is always applied to the data before it has
been used to refine the prediction function. This loop also demonstrates how
OACs can be embedded in procedural structures. We will see more examples
of such procedures in the following sections.

7.2. Example Ex-2: Object Independent Grasping (AgnoGrasp)

Next, we consider an OAC AgnoGrasp that predicts the success of at-
tempts to grasp unknown objects, based on an associated grasping hypothesis
(specified in terms of the 6D pose of the gripper) for a co-planar contour pair
(see Figure 7(a),(b) and [51]). Such grasp hypotheses are “agnostic” to the
object being grasped, hence the name of the OAC. As a result, AgnoGrasp
represents a visual feature/grasp association that enables an unknown “some-
thing” to be grasped (see Figure 7(d)).

7.2.1. Definition of AgnoGrasp

Defining S: We note that two co-planar contours define a plane which de-
termines the orientation normal of the pose (i.e., two orientation parameters)
for any possible grasp. The position and main orientation of a contour in 3D
space determines the position of the 6D pose and the one remaining orien-
tation parameter of the grasping hypothesis. This allows us to associate a
grasp hypothesis GH(Ci, Cj) with any pair of co-planar contours (Ci, Cj) (see
Figure 7(b)). Such grasp hypotheses can then be executed by the system.

Formally, AgnoGrasp is defined on the attribute space:

S = {statusGripper,Ω, statusGrasp} .

29

(d)

(e)

C1

C2

C1

C2

success

C1

C2

C2

C1

GH(C1,C2)

GH(C1,C2)

status(grasp)=stable

Figure 7: (a) The image of the scene captured by the left camera. (b) A possible grasping
action type defined by using the two coplanar contours C1 and C2 shown in red. (c) A
successful grasping hypothesis. The 3D contours from which the grasp was calculated are
shown. Note that the information displayed is the core of an experiment. (d) A selected
set of grasping hypotheses generated for a similar scene. (e) Change of performance as
measured by M as a result of the learning process.

This attribute space contains the set Ω containing the co-planar contours
in the scene and the status of the gripper statusGripper which either can
take the value ’full’ or ’empty’. In particular, it requires that (1) there are
co-planar contours Ci, Cj ∈ C in the scene (i.e., the set of co-planar contours
Ω is not empty), and (2) the gripper is empty.

Defining T : AgnoGrasp’s prediction function determines the value of the
attribute statusGrasp:5

statusGrasp ∈
{

undefined, noplan, collision,
void, unstable, stable

}
.

5Note that the current implementation of our learning algorithm only uses two classes,
success which is equivalent to stable, and failure which corresponds to all other states
except noplan, where the generated experiments are ignored for learning. More advanced
learning algorithms might also use extended information on the stability of a grasp.

30

The possible values of statusGrasp each capture an outcome of the exe-
cution of AgnoGrasp. Before execution, statusGrasp is set to undefined.
After selecting a specific grasping hypothesis, a motion planner tries to find
a collision-free path that allows the arm to reach the pregrasping pose as-
sociated with the grasping hypothesis, which may result in a number of
possible outcomes. If the planner fails to find a suitable trajectory or de-
cides there is none, execution stops, and the result is noplan. If the hand
unexpectedly enters into a collision, execution stops at that point, and the
result is collision. If the closed gripper is determined to be empty, the
result is void. If the gripper closes further while lifting the object, the
result is unstable. Otherwise, the grasp is deemed successful, and the
result is stable. In our case, TAgnoGrasp simply maps to a state where
statusGrasp = stable holds.6

Defining M : In AgnoGrasp, the reliability measure MAgnoGrasp is sim-
ply defined as the percentage of successful grasps in a time window of 100
grasping attempts.

Defining E: Like AgnoPush, AgnoGrasp’s execution specification is
based on executing a low-level control program. In the case of AgnoGrasp,
the CP requires as input a pair of co-planar contours from the scene (where a
grasp hypothesis can be computed) that is chosen from the set of contours Ω.
Thus, prior to execution, many grasping hypotheses from co-planar contour
pairs are computed and a single pair is chosen for execution.7

This means that when performing execute, the initial state is given by:

{Ω, statusGripper},

where Ω is the set of contours. The predicted state is simply an assertion
that statusGrasp = stable holds. After the chosen grasp hypothesis is
performed, the grasp status statusGraspt+1 is sensed. This results in an
experiment of the form:

(s0, statusGraspt+1 = stable, statusGraspt+1).

6The use of a constant mapping here not only represents the most likely outcome but,
for certain reasoning tasks, the most wanted outcome. Space prohibits a comprehensive
discussion of the motivation behind such mappings.

7In practice, the pair is chosen according to a ranking criterion. See [51] for details.

31

while true do
compute contours pairs and associated grasping hypotheses
expr = execute(AgnoGrasp);
updateCP(expr);
updateM(expr);
drop object

end

Algorithm 3: A simple learning cycle for AgnoGrasp.

(See Figure 7(c) for the main components of an experiment.) Each experi-
ment can either be used directly for on-line learning, as in the learning cycle
in algorithm 3, or stored in an episodic memory for off-line learning at a later
stage (see [52] for details).

7.2.2. Learning in AgnoGrasp

In AgnoGrasp, learning affects the execution of the control program
(through the updateCP function), and the updating of long-term statistics
(via updateM; see Figure 7(e)). We do not consider other learning problems
and, in particular, the OAC’s prediction function always remains constant.
Learning modifies the selection of the most promising grasping hypothesis
and, thus, the control program underlying the execution function. In prac-
tice, the optimal choice of grasps depends on certain parameters, such as
contour distance and the object position in working space (see Figure 7(d)).
Based on an RBF network (see [52] for details), a function estimates the
success likelihood that a certain grasp has been learnt in a cycle of experi-
mentation and learning.8 Algorithm 3 formalises this exploratory behaviour,
which realises a simple learning cycle for AgnoGrasp.

7.3. Example Ex-3: Object Specific Grasping (ObjGrasp)

In this example, we consider an OAC ObjGrasp that models the grasp-
ing options for a specific object, and their associated success likelihoods, by
means of grasp densities (see Figure 8 and [43]).

8In practice, such learning has provided an increase in the success rate from 42% to
51% (see [52] for details). Note that since AgnoGrasp uses very little prior knowledge,
a high performance cannot be expected except in trivial scenarios.

32

7.3.1. Definition of ObjGrasp

Defining S: Object models oi are stored in an object memory MO.9 An
object model includes a learnt, structural object model that represents geo-
metric relations between 3D visual patches (i.e., early cognitive vision (ECV)
features [53]) as Markov networks [54]. In addition, it contains a continuous
representation of object-relative gripper poses that lead to successful grasps
by means of grasp densities [43]. Object detection, pose estimation, and the
determination of useful gripper poses for grasping the object are all done si-
multaneously using probabilistic inference within the Markov network, given
a scene reconstruction in terms of ECV features.

The attribute space for ObjGrasp is defined by

S = {statusGripper, targetObj = o, statusGrasp}.

Here, the state description includes an attribute targetObj that specifies an
object model o that is provided by the execute function as an input to the
control program this OAC models. As notation, we will add a subscript to the
OAC’s name to identify this object model (e.g., ObjGraspBasket). Like the
two previous OACs, this model is chosen by processes external to ObjGrasp.
The state description also includes statusGripper and statusGrasp as in
Section 7.2, however, statusGrasp is only relevant to the predicted state.

Defining T : As with AgnoGrasp, the prediction function T always returns
an assertion that statusGrasp = stable is true.

Defining M : The reliability measure M for ObjGrasp is defined as the
cumulative outcome of statistics from executing this OAC (which is updated
as part of a learning cycle; see Figure 9).

Defining E: Like AgnoGrasp, the execution of ObjGrasp requires its
input parameters to be passed to a control program for execution. In the
case of ObjGrasp, this parameter is the object to be grasped. When the
execute function is performed, the process of capturing the initial state must:

1. access or reconstruct the current scene in terms of ECV features, and

9See Section 8.1 for more information about learning such models.

33

b) c)

d)

a)

e)

Hypothesis Density Empirical Density

Figure 8: Mechanisms used by ObjGrasp. a) Objects (top) are represented as Markov
networks [54] in terms of 3D ECV features [53] (bottom). b) In the following subfigures,
gripper poses (grasps) are visualised as “paddles” (top). Grasp densities are obtained
from individual grasps by kernel density estimation using SE(3) kernels, as illustrated by
unit-variance isosurfaces for 2 rotational and 3 positional degrees of freedom (bottom).
c) A grasp density D associated with the basket (a). The right-hand side shows sparser
samples for better visibility. d) Grasp hypothesis densities for specific objects such as the
basket (right) are generated at uniform orientations around 3D ECV features (left). e)
Empirical grasp density learnt by testing grasps drawn from a hypothesis density [43].

34

while true do
compute ECV features
expr = execute(ObjGrasp);
updateCP(expr);
updateM(expr);
drop object

end

Algorithm 4: Exploration learning procedure for ObjGrasp.

2. retrieve the object model o from MO, use it to locate the object, and
determine a gripper position from the associated grasp density (see
Figure 8).

Like AgnoGrasp, the OAC’s prediction function returns statusGrasp =
stable. The actual execution specification of the OAC encompasses a small,
two-step control program:

1. First, a path planner generates a plan for manoeuvring the gripper to
the intended position.

2. If such a plan is found, the CP executes the computed trajectory, and
closes the gripper to grasp the object.

This yields a new state characterised by an attribute statusGrasp that can
take on any of the values in the attribute space of the OAC AgnoGrasp, or
the value nopose, which represents the case that no object instance can be
reliably located. As a result of E, an experiment of the form

({statusGripper, o, statusGrasp}, statusGraspt+1 = stable,

statusGraspt+1).

is returned.
We note that objects are always located within the currently-sensed part

of a scene. Thus, it is up to other parts of the system to make sure that the
scene reconstruction available to execute contains one and only one instance
of the object o, e.g., by directing sensors accordingly.

7.3.2. Learning in ObjGrasp

Algorithm 4 outlines how a higher-level process might acquire and refine
grasping skills on a variety of objects. In this scenario, the scene contains up

35

0.
50

1.
00

0.
00

Knife BasketPan

grasps chosen as argmax
pose

g2(pose)

grasps drawn from g1 (learning g2)

grasps drawn from g0 (learning g1)

su
cc

es
s

ra
te

Figure 9: Evolving statistics M of statusGrasp = stable for the OACs ObjGraspPan,
ObjGraspKnife, and ObjGraspBasket over successive rounds of grasping trials [43]. In the
first round, grasps are drawn from a hypothesis density g0 generated from ECV features
(Figure 8) for each object; the red bars show the empirical success rates, and the grasp
density computed over the successful grasps is denoted g1. In the second round (green
bars), grasps are drawn from g1, resulting in g2. In the third round (blue), grasps are
chosen as the maximum of g2 for each object.

to one instance of each object of interest. The robot “plays” with the object
by repeatedly grasping and dropping the object. This leads to a learning
cycle similar to Algorithm 3, in which the system generates knowledge about
the grasp affordances associated to the object.

7.4. Example Ex-4: OACs for Planning (PlanGrasp, PlanPush)

As a final example, we consider two high-level OACs suitable for planning:
PlanGrasp, an OAC for grasping an object from a table, and PlanPush, an
OAC for pushing an object into the reachable space so that it can be grasped
[55]. Both of these OACs operate on discrete, attribute spaces defined in
terms of a set of logical predicate and function symbols that denote properties
and objects in the world. Such representations are standard in AI planning
systems and we will structure our OACs in such a way that we can use prior
planning work for building and executing plans.

7.4.1. Definition of PlanGrasp and PlanPush

Table 2 shows a complete set of attributes that formalise a simple prob-
lem domain for picking up objects from a table and putting them onto a
shelf. These attributes should be thought of as logical symbols (e.g., clear)

36

Attribute Description
clear(X) A predicate indicating that no object is stacked on X.
focusOfAttn(X) A predicate indicating that object X is the focus of attention.
gripperEmpty A predicate indicating that the robot’s gripper is empty.
inGripper(X) A predicate indicating that object X is in the gripper.
onShelf(X) A predicate indicating that object X is on the shelf.
onTable(X) A predicate indicating that object X is on the table.
pushable(X) A predicate indicating that object X is pushable by the robot.
reachable(X) A predicate indicating that object X is reachable for grasping

by the gripper.

Table 2: A set of logical attributes for a simple planning domain.

with arguments represented by variables (e.g., X). Each ground term (e.g.,
clear(Obj0)) has an associated truth value that is interpreted relative to the
current world state.

Defining S: To define the attribute spaces for PlanGrasp and PlanPush
we restrict the set of attributes shown in Table 2. We define the attribute
space for PlanGrasp in terms of the set of logical attributes:

S =

{
focusOfAttn(X), inGripper(X), reachable(X),
clear(X), gripperEmpty, onTable(X)

}
.

We also define the attribute space for PlanPush in terms of the attributes:

S =

{
focusOfAttn(X), reachable(X), pushable(X),
clear(X), gripperEmpty, onTable(X)

}
.

We note the only significant difference between these two attribute spaces is
the inclusion of inGripper(X) for PlanGrasp, but not for PlanPush.

We also note that the representations used here could be more expressive
(e.g., the arguments could be restricted to only allow objects of a particular
type, or a multivalued logic could be used). In the interest of clarity we have
used a simple representation: identifying the attribute space of an OAC is
a challenging task no matter the level of abstraction, and learning the set
of logical attributes in this OAC is a difficult process. (We recognise this as
an instance of the “translation” learning problem.) A complete treatment of
how this attribute space could be learnt is outside the scope of this paper.

Defining T : Given these attribute spaces, we can define T for each OAC as a
pairing of initial conditions with predicted state descriptions (see Table 3). To

37

Name Initial Conditions Prediction
PlanGrasp focusOfAttn(X) inGripper(X)

reachable(X) not(gripperEmpty)

clear(X) not(onTable(X))

gripperEmpty

onTable(X)

PlanPush focusOfAttn(X) reachable(X)

not(reachable(X))

pushable(X)

clear(X)

gripperEmpty

onTable(X)

Table 3: Prediction functions T for planning-level grasping and pushing OACs.

specify the prediction function, both the initial conditions and the predictions
are assumed to be conjunctions of specific attributes, i.e., all of the initial
conditions must be true in the world for the prediction function to be defined,
and all of the predictions are expected to be true in any state that results
from the execution of the OAC. In terms of PlanGrasp, this means that
if an object is the focus of attention, on the table, clear, reachable, and
the agent’s gripper is empty, then after executing this OAC we predict the
object will be in the gripper, not on the table, and the gripper will no longer
be empty. Likewise, for PlanPush, if an object is the focus of attention,
unreachable, pushable, clear, on the table, and the agent’s gripper is empty,
then after executing this OAC we predict the object will be reachable.

Note that, like the other OACs we have discussed, these prediction func-
tions do not make predictions in all states. Their predictive ability is re-
stricted to those states where their initial conditions are met. In any world
where these conditions do not hold the prediction function is undefined.10

Defining M : Taking the simplest possible approach, we define M for each
OAC as the long-term probability that the OAC’s T function correctly pre-
dicts the resulting state, assuming the OAC’s execution began from a state
for which the OAC’s prediction function was defined.

10We can also imagine OACs whose prediction functions are best defined by disjunctions
of separate prediction rules. In such cases, if one of the rules’ initial conditions is true, that
rule is used to predict the outcome of the action. If no rule matches then the prediction
function is undefined.

38

We note that in classical AI planning systems, the reliability measure for
all OACs would be fixed as M = 1. Such planners assume a deterministic
and totally observable world, thereby removing all uncertainty from their
prediction functions. More recent work in AI planning has moved beyond
these assumptions (see, e.g., [19, 56]). For instance, there are now a number
of planning algorithms that use probabilistic statements about an action’s
long-term success to build plans with probabilistic bounds on the likelihood
that they will achieve their goals. Our definition of M makes our OACs
suitable for use by such planners.

Defining E: The execution specifications of these two OAC are straight-
forward but differ significantly from our previous examples. While each of
the previous example OACs indicated a specific control program to execute,
our planning OACs define their execution in terms of executing other OACs.
For example, the execution specification of PlanGrasp is defined in terms
of executing ObjGrasp:

EPlanGrasp = execute(ObjGrasp).

This means that invoking execute(PlanGrasp) calls execute(ObjGrasp).
Similarly the execution specification for PlanPush is defined in terms of

our previously defined pushing OAC, AgnoPush:

EPlanPush = execute(AgnoPush).

In other words, execute(PlanPush) calls execute(AgnoPush). In Section
8 we will see examples of the execution of these planning-level OACs.

7.4.2. Learning the Prediction Functions of Planning-Level OACs

The problem of learning prediction functions of the form we use in our
planning OACs has been the focus of much recent research (see, e.g., [8]).
One way this can be done is to use a training set of example actions in the
world, and corresponding observations of the world before and after each
action. For each example, a reduced world state consisting of a subset of the
propositional attributes that make up the entire world model is computed and
considered by the learning model. The attribute state is provided as input
to the learning model in the form of a vector where each bit corresponds to
the value of a single attribute. The learning problem is then treated as a
set of binary classification problems, with one classifier for each attribute,

39

and the model learns the changes to each attribute in the reduced state. The
actual learning can be performed, e.g., by using a kernelised voted perceptron
classifier [57, 58], which is computationally efficient and can handle noise and
partial observability. We refer the reader to [8] for a detailed account of how
T and M can be learnt for this kind of OAC.

8. Interacting OACs

In this section, we describe two examples of OACs interacting in a single
architecture. In Section 8.1, we illustrate the grounding of objects and object-
related grasp affordances. In Section 8.2, we describe how such grounded
representations can be used to execute plans.

8.1. Grounding Grasping OACs

In this first example of OAC interaction, we demonstrate the grounding of
objects and object-related grasping affordances based on two learning cycles
involving the OACs AgnoGrasp and ObjGrasp (see Figure 10). This pro-
cess is shown in OAC notation in Algorithm 5 (and was previously described
in [35]). The first cycle (Figure 10, top) learns a visual object model of an
unknown object by grasping the object using AgnoGrasp. Once physical
control is achieved, the model can be learnt by integrating the information
gained from different views. The second cycle (Figure 10, bottom) learns
how to grasp the object. The newly acquired visual model is used to identify
and locate the object in the scene. ObjGrasp is then used to grasp the
object. Through repeated applications of this procedure the performance of
ObjGrasp is improved.

In this process, object knowledge and grasp knowledge is built up and
stored in an internal representation (i.e., the object and grasp memory).
Certain characteristics of our OACs play an important role in this process:

• Although the purpose of the first learning cycle is not to learn the
OAC AgnoGrasp (the aim is to attain physical control over an ob-
ject), learning is nevertheless taking place by calls to the updateCP

and updateM functions, as a process parallel to those processes steered
by, e.g., intentions or automated behaviours. This demonstrates the
principle of “ongoing learning” mentioned in Section 3.

• OACs can be combined to produce complex behaviour. The interaction
of multiple OACs, as demonstrated in the two learning cycles, can

40

First learning cycle
while statusGrasp 6= stable do

open gripper
expr = execute(AgnoGrasp);
updateCP(expr);
updateM(expr);

end
Accumulate object representation oi
if accumulation successful then

transfer oi into object memory MO

initialise ObjGraspoi in MOAC

Second learning cycle
while instance of object oi in scene do

state.targetObj = oi
expr = execute(ObjGraspoi);
updateCP(expr);
updateM(expr);
open gripper

end

end

Algorithm 5: Grounding of object shape knowledge and object-specific grasp knowl-

edge by cooperative application of the OACs AgnoGrasp and ObjGrasp.

result in the grounding of symbolic entities usable for planning (see
Section 8.2).

8.2. Performing Plans

We now demonstrate how higher-level OACs can be executed by calling
lower-level OACs, in the context of performing a plan. To do this, we consider
an agent that is given the high-level goal of achieving inGripper(o) in a
world described by the high-level state:

{focusOfAttn(o), gripperEmpty,¬reachable(o),
pushable(o), onTable(o), clear(o)}.

Since reachable(o) does not initially hold in the world, a high-level planner
must build a plan that makes this property true. Using the OACs from
Section 7.4, one possible plan is an action sequence that first pushes o into a

41

Possible

3D Reconstruction

L
e
a
rn

in
g
 G

ra
sp

in
g
 A

ff
o
rd

a
n
c
e
s

Impossible

Successful

Unsuccessful

...
O

b
je

c
t

M
e
m

o
ry

B
ir

th
 o

f
th

e
 O

b
je

c
t

execute(ObjGraspo)

Figure 10: Grounding the OAC ObjGrasp in two learning cycles. In the first learning
cycle, physical control over a potential object is obtained by the use of AgnoGrasp.
Once control over the object is achieved and the visual structure changes according to
the movement of the robot arm, a 3D object representation is extracted and stored in
memory. In the second learning cycle, ObjGrasp is established and refined. First, the
object representation extracted in the first learning cycle is used to determine the pose
of the object in case it is present in the scene. Random samples of these are then tested
individually. Successful grasps are turned into a probability density function that repre-
sents the grasp affordances associated to the object, in the form of success likelihoods of
the grasp parameters.

graspable position, followed by an action that picks up o (see Figure 11).11

This results in the following plan consisting of the two high-level OACs:

PlanPush,PlanGrasp.

Recall from Section 6.2 that successful planning using OACs relies on
representational congruency and the hierarchical relationship between high-
level OACs and lower-level OACs. Further, recall from Section 7.4 that the
execution specifications of our high-level OACs are defined in terms of lower-

11We refer the reader to [55, 56] for more details on how such planning can be done.

42

Figure 11: Execution of the plan involving the OACs PlanPush, AgnoPush,
PlanGrasp, and ObjGrasp. From left to right: (1) the object is not graspable, (2)
pushing moves the object into a graspable pose, (3) the object is grasped, and (4) the
object can finally be picked up by the agent.

level OACs, so that the execution of a high-level OAC effectively calls a
lower-level OAC as a subroutine, i.e.,

EPlanPush = execute(AgnoPush),
EPlanGrasp = execute(ObjGrasp).

To understand the execution of the above plan, we must consider the
ordering of the respective execution calls—and the experiments returned by
those calls—in each of the component OACs in the plan. In this discussion,
we assume that the world and the agent act as predicted and planned, without
plan or execution failures. For reasons of space, we will also ignore all calls
to the associated learning functions. However, even under such simplifying
assumptions, the execution of the above plan requires a number of steps. We
note that these steps should not be seen as a code fragment but rather as a
trace of an executing system:

1. The execution of PlanPush is defined in terms of the execution of
AgnoPush. By our definition of representational congruency, we are
guaranteed that information can be translated from PlanPush’s high-
level representation into AgnoPush’s model. For focusOfAttn(o),
a process must first be invoked to acquire bin(o) and extract loc(o)
from the environment. Second, a process must identify τ and a for the
desired push operation.

2. As we described in Section 7.1, executing AgnoPush invokes a low-
level control program that performs the task of actually pushing o, by
making use of the agent’s end effector.

3. Executing AgnoPush returns the experiment:

({(loc(o), bin(o))}, {T (bin(o), loc(o), a, τ)}, {loc(o)′})

43

(which can, as all other experiments, either been stored in short term
memory or used directly for learning). Representational congruency
allows us to use loc(o)′ to determine the truth value of the high-level
predicate reachable(o) which is used in the experiment returned by
PlanPush.12

4. Executing PlanPush therefore returns the experiment:

({¬reachable(o), pushable(o), clear(o), gripperEmpty, onTable(o)},
{reachable(o)},
{reachable(o)})

indicating that reachable(o) is now true in the actual world, and the
agent can update its model with this information. This completes the
execution of the first action in the plan.

5. The execution of PlanGrasp is defined in terms of the execution of
ObjGraspo. As with PlanPush, information must be translated
from the high-level representation into AgnoPush’s model. Since
focusOfAttn(o) is true in the world, the translation process, based
on representational congruency, ensures that targetObj = o.

6. As we described in Section 7.3, executing ObjGraspo invokes a low-
level control program that performs the task of actually grasping o, by
making use of the agent’s end effector.

7. Executing ObjGraspo returns the experiment:

({statusGripper = empty, targetObj = o},
{statusGrasp = stable},
{statusGrasp = stable}).

Again, representational congruency ensures statusGrasp = stable

can be translated into the attribute space of the higher-level OAC, to
determine the truth value of the predicate inGripper(o). This predi-
cate can then be included in the experiment returned by PlanGrasp.

12We can imagine more complex execution specifications that would monitor the exe-
cution of the lower-level pushing OAC and call this OAC repeatedly until reachable(o)
is true. In this case, we have assumed that a single push is all that is necessary, and we
leave the definition of such complex execution specifications as an area for future work.

44

8. Executing PlanGrasp returns the experiment:

({reachable(o), clear(o), gripperEmpty, onTable(o)},
{inGripper(o),¬gripperEmpty,¬onTable(o)},
{inGripper(o),¬gripperEmpty,¬onTable(o)})

indicating that inGripper(o) is now true in the world. As before, the
agent can update its high-level model to reflect this fact. This ends the
execution of the second action of the plan, and the plan as a whole.

As illustrated in the above example, the successful execution of a plan
may typically require OACs to be invoked at multiple levels of abstraction,
translating the calls between different models, and monitoring the results to
confirm the success of the actions involved. We note that while our definitions
support this simple example, more work is needed to extend our formal OAC
definitions to more complex control structures for grounding, specifically in
the areas of OAC execution, representation congruency, and OAC hierarchies.
For instance, if planning is to be effective in real-world domains, execution
monitoring is essential for detecting divergences of planned states from actual
sensed states, and replanning accordingly (see, e.g., [59]). Such processes rely
on the structural guarantees that properties like representational congruency
provide. We leave the task of generalising such control structures as an area
for future work.

9. Conclusion

This paper introduced Object-Action Complexes (OACs) as a framework
for modelling actions and their effects in artificial cognitive systems. We
provided a formal definition of OACs and a set of concrete examples, showing
how OACs operate and interact with other OACs, and also how certain
aspects of an OAC can be learnt.

The importance of OACs lies in their ability to combine the properties
of multiple action formalisms, from a diverse range of research fields, to
provide a dynamic, learnable, refinable, and grounded representation that
binds objects, actions, and attributes in a causal model. OACs have the
ability to represent and reason about low-level (sensorimotor) processes as
well as high-level (symbolic) information and can therefore be used to join
the perception-action space of an agent with its planning-reasoning space.
In addition, OACs can be combined to produce more complex behaviours,

45

and sequenced as part of a plan generation process. As a consequence, the
OAC concept can be used to bridge the gap between low-level sensorimotor
representations, required for robot perception and control, and high-level
representations supporting abstract reasoning and planning.

10. Acknowledgements

The research leading to these results received funding from the Euro-
pean Union through the Sixth Framework PACO-PLUS project (IST-FP6-
IP-027657) and the Seventh Framework XPERIENCE project (FP7/2007-
2013, Grant No. 270273). We thank Frank Guerin for fruitful discussions
and his input to Piaget’s understanding of sensory-motor schemas.

References

[1] R. A. Brooks, A robust layered control system for a mobile robot, IEEE
Journal of Robotics and Automation 2 (1986) 14–23.

[2] R. A. Brooks, C. Breazeal, M. Marjanovic, B. Scassellati, M. M.
Williamson, The Cog project: Building a humanoid robot, Lecture
Notes in Computer Science 1562 (1999) 52–87.

[3] V. Braitenberg, Vehicles: Experiments in Synthetic Psychology, The
MIT Press, 1986.

[4] M. Huber, A hybrid architecture for adaptive robot control, Ph.D. thesis,
University of Massachusetts Amherst (2000).

[5] A. Stoytchev, Some basic principles of developmental robotics, IEEE
Transactions on Autonomous Mental Development 1 (2) (2009) 1–9.

[6] J. Modayil, B. Kuipers, Bootstrap learning for object discovery, in:
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2004, pp. 742–747.

[7] R. E. Fikes, N. J. Nilsson, STRIPS: A new approach to the application
of theorem proving to problem solving, Artificial Intelligence 2 (3-4)
(1971) 189–208.

46

[8] K. Mourão, R. Petrick, M. Steedman, Using kernel perceptrons to learn
action effects for planning, in: Proceedings of the International Confer-
ence on Cognitive Systems, 2008, pp. 45–50.

[9] E. Amir, A. Chang, Learning partially observable deterministic action
models, Journal of Artificial Intelligence Research 33 (2008) 349–402.

[10] R. Sutton, Verification, the key to AI, [Online]. Available from:
http://www.cs.ualberta.ca/~sutton/IncIdeas/KeytoAI.htm

(2001).

[11] S. Harnad, The symbol grounding problem, Physica D (42) (1990) 335–
346.

[12] J. Piaget, The Origins of Intelligence in Children, London: Routledge
& Kegan Paul, 1936, (French version published in 1936, translation by
Margaret Cook published 1952).

[13] F. J. Corbacho, M. A. Arbib, Schema-based learning: Towards a theory
of organization for biologically-inspired autonomous agents, in: Pro-
ceedings of the First International Conference on Autonomous Agents,
1997, pp. 520–521.

[14] A. Newell, H. Simon, GPS, a program that simulates human thought,
in: E. A. Feigenbaum, J. Feldman (Eds.), Computers and Thought,
McGraw-Hill, NY, 1963, pp. 279–293.

[15] C. Green, Application of theorem proving to problem solving, in: Pro-
ceedings of the First International Joint Conference on Artificial Intel-
ligence, Morgan Kaufmann, 1969, pp. 741–747.

[16] E. D. Sacerdoti, The nonlinear nature of plans, in: Proceedings of the
Fourth International Joint Conference on Artificial Intelligence, Morgan
Kaufmann, 1975, pp. 206–214.

[17] A. Samuel, Some studies in machine learning using the game of checkers,
IBM Journal of Research and Development 3 (3) (1959) 210–229.

[18] N. J. Nilsson, Learning Machines, McGraw-Hill, 1965.

47

http://www.cs.ualberta.ca/~ sutton/IncIdeas/KeytoAI.htm

[19] L. P. Kaelbling, Learning functions in k-DNF from reinforcement, in:
Proceedings of the Seventh International Workshop on Machine Learn-
ing, Morgan Kaufmann, 1990, pp. 162–169.

[20] T. Mitchel, Machine Learning, WCB McGraw Hill, 1997.

[21] H. Pasula, L. Zettlemoyer, L. P. Kaelbling, Learning symbolic models of
stochastic domains, Journal of Artificial Intelligence 29 (2007) 309–352.

[22] F. Wörgötter, A. Agostini, N. Krüger, N. Shyloa, B. Porr, Cognitive
agents — a procedural perspective relying on the predictability of object-
action-complexes (OACs), Robotics and Autonomous Systems 57 (4)
(2009) 420–432.

[23] D. Vernon, G. G. Metta, G. Sandini, A survey of artificial cognitive
systems: implications for the autonomous development of mental ca-
pabilities in computational agents, IEEE Transactions on Evolutionary
Computation 11 (2007) 151–180.

[24] L. P. Kaelbling, M. L. Littman, A. R. Cassandra, Planning and acting in
partially observable stochastic domains, Artif. Intell. 101 (1998) 99–134.
doi:10.1016/S0004-3702(98)00023-X.
URL http://portal.acm.org/citation.cfm?id=1643275.1643301

[25] J. Pearl, Probabilistic Reaasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann, 1988.

[26] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likehood from
incomplete data via the EM algorithm, Journal of the Royal Statistical
Society (Series B) 39 (1) (1977) 1–38.

[27] D. Spiegelhalter, P. Dawid, S. Lauritzen, R. Cowell, Bayesian analysis
in expert systems, Statistical Science 8 (1993) 219–283.

[28] S. Kok, P. Domingos, Learning the structure of Markov logic networks,
in: Proceedings of the Twenty-Second International Conference on Ma-
chine Learning, ACM Press, 2005, pp. 441–448.

[29] J. J. Gibson, The Perception of the Visual World, Houghton Mifflin,
Boston, 1950.

48

http://portal.acm.org/citation.cfm?id=1643275.1643301
http://portal.acm.org/citation.cfm?id=1643275.1643301
http://dx.doi.org/10.1016/S0004-3702(98)00023-X
http://portal.acm.org/citation.cfm?id=1643275.1643301

[30] E. Sahin, M. Çakmak, M. R. Doǧar, E. Uǧur, G. Ücoluk, To afford or not
to afford: A new formalization of affordances toward affordance-based
robot control, Adaptive Behavior 15 (4) (2007) 447–472.

[31] R. Brooks, Intelligence without reason, in: Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, 1991, pp. 569–595.

[32] R. Brooks, Elephants don’t play chess, Robotics and Autonomous Sys-
tems 6 (1&2) (1990) 3–15.

[33] R. Pfeifer, M. Lungarella, F. Iida, Self-organization, embodiment, and
biologically inspired robotics, Science 318 (2007) 1088–1093.

[34] D. Kraft, N. Pugeault, E. Başeski, M. Popović, D. Kragic, S. Kalkan,
F. Wörgötter, N. Krüger, Birth of the Object: Detection of Objectness
and Extraction of Object Shape through Object Action Complexes, Spe-
cial Issue on “Cognitive Humanoid Robots” of the International Journal
of Humanoid Robotics 5 (2009) 247–265.

[35] D. Kraft, R. Detry, N. Pugeault, E. Başeski, , F. Guerin, J. Piater,
N. Krüger, Development of object and grasping knowledge by robot
exploration, IEEE Transactions on Autonomous Mental Development
2 (4) (2010) 368–383.

[36] A. Stoytchev, Behavior-Grounded Representation of Tool Affordances,
in: IEEE International Conference on Robotics and Automation, 2005,
pp. 3060–3065.

[37] R. Jacobs, M. Jordan, A. Barto, Task decomposition through competi-
tion in a modular connectionist architecture: The what and where vision
tasks, Cognitive Science 15 (2) (1991) 219–250.

[38] C. M. Vigorito, A. G. Barto, Intrinsically motivated hierarchical skill
learning in structured environments, IEEE Transactions on Autonomous
Mental Development (TAMD) 2 (2) (2010) 132–143.

[39] K. Narendra, J. Balakrishnan, Adaptive control using multiple models,
IEEE Transaction on Automatic Control 42 (2) (1997) 171–187.

[40] M. Haruno, D. Wolpert, M. Kawato, MOSAIC model for sensorimotor
learning and control, Neural Computation 13 (2001) 2201–2220.

49

[41] C. Miall, Modular motor learning, Trends in Cognitive Sciences 6 (1)
(2002) 1–3.

[42] J. Gibson, The Ecological Approach to Visual Perception, Boston, MA:
Houghton Mifflin, 1979.

[43] R. Detry, D. Kraft, A. G. Buch, N. Krüger, J. Piater, Refining grasp
affordance models by experience, in: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, 2010, pp. 2287–2293.

[44] T. A. Henzinger, The theory of hybrid automata, in: M. Inan, R. Kur-
shan (Eds.), Verification of Digital and Hybrid Systems, Vol. 170 of
NATO ASI Series F: Computer and Systems Sciences, Springer, 2000,
pp. 265–292.

[45] A. D. Baddeley, Essentials of Human Memory, Psychology Press, Taylor
and Francis, 1999.

[46] D. Willshaw, P. Buneman, C. Longuet-Higgins, Non-Holographic Asso-
ciative Memory, Nature 222 (1969) 960–962.

[47] D. Willshaw, Holography, Association and Induction, in: G. Hinton,
J. Anderson (Eds.), Parallel Models of Associative Memory, Erlbaum,
Hillsdale, NJ, 1981, pp. 83–104.

[48] F. T. Sommer, G. Palm, Bidirectional Retrieval from Associative Mem-
ory, Advances in Neural Information Processing Systems 10 (1998) 675–
681.

[49] T. Plate, Holographic Reduced Representations: Convolution Algebra
for Compositional Distributed Representations, in: Proceedings of the
Twelfth International Joint Conference on Artificial Intelligence, Mor-
gan Kaufmann, San Francisco, CA, 1991, pp. 30–35.

[50] D. Omrčen, A. Ude, A. Kos, Learning primitive actions through ob-
ject exploration, in: Proceedings of the International Conference on
Humanoid Robots, Daejeon, Korea, 2008, pp. 306–311.

[51] M. Popović, D. Kraft, L. Bodenhagen, E. Başeski, N. Pugeault,
D. Kragic, T. Asfour, N. Krüger, A strategy for grasping unknown ob-
jects based on co-planarity and colour information, Robotics and Au-
tonomous Systems 58 (5) (2010) 551–565.

50

[52] L. Bodenhagen, D. Kraft, M. Popović, E. Başeski, P. E. Hotz, N. Krüger,
Learning to grasp unknown objects based on 3D edge information, in:
Proceedings of the IEEE International Conference on Computational
Intelligence in Robotics and Automation, 2009, pp. 421–428.

[53] N. Pugeault, F. Wörgötter, N. Krüger, Visual primitives: Local, con-
densed, semantically rich visual descriptors and their applications in
robotics, Special Issue on “Cognitive Humanoid Vision” of the Interna-
tional Journal of Humanoid Robotics 7 (3) (2011) 379–405.

[54] R. Detry, N. Pugeault, J. Piater, A probabilistic framework for 3D vi-
sual object representation, IEEE Transactions on Pattern Analysis and
Machine Intelligence 31 (10) (2009) 1790–1803.

[55] R. Petrick, D. Kraft, K. Mourão, C. Geib, N. Pugeault, N. Krüger,
M. Steedman, Representation and integration: Combining robot control,
high-level planning, and action learning, in: Proceedings of the Sixth
International Cognitive Robotics Workshop, Patras, Greece, 2008, pp.
32–41.

[56] R. Petrick, F. Bacchus, A knowledge-based approach to planning with
incomplete information and sensing, in: Proceedings of the International
Conference on Artificial Intelligence Planning and Scheduling, 2002, pp.
212–221.

[57] Y. Freund, R. Schapire, Large margin classification using the perceptron
algorithm, Machine Learning 37 (1999) 277–296.

[58] R. Khardon, G. M. Wachman, Noise tolerant variants of the perceptron
algorithm, Journal of Machine Learning Research 8 (2007) 227–248.

[59] R. Petrick, D. Kraft, N. Krüger, M. Steedman, Combining cognitive
vision, knowledge-level planning with sensing, and execution monitor-
ing for effective robot control, in: Proceedings of the Fourth Workshop
on Planning and Plan Execution for Real-World Systems, Thessaloniki,
Greece, 2009, pp. 58–65.

51

Norbert Krüger is a Professor at the Mærsk McKinney Møller In-
stitute, University of Southern Denmark. He holds an M.Sc. from
the Ruhr-Universität Bochum, Germany and his Ph.D. from the
University of Bielefeld. Norbert Krüger leads the Cognitive Vision
Lab which focuses on computer vision and cognitive systems, in
particular the learning of object representations in the context of

grasping. He has also been working in the areas of computational neuro-
science and machine learning.

Christopher Geib is a Research Fellow at the University of Edin-
burgh School of Informatics. He holds an M.S. and Ph.D. from the
University of Pennsylvania. His research focuses broadly on deci-
sion making and reasoning about actions under conditions of uncer-
tainty, including planning, scheduling, constraint-based reasoning,
human-computer interaction, human-robot interaction, and proba-
bilistic reasoning. His recent research has focused on probabilistic

intent recognition through weighted model counting and planning based on
grammatical formalisms.

Justus Piater is a professor of computer science at the University of
Innsbruck, Austria. He earned his Ph.D. degree at the University of
Massachusetts Amherst, USA, where he held a Fulbright graduate
student fellowship. After a European Marie-Curie Individual Fel-
lowship at INRIA Rhône-Alpes, France, he was a professor at the
University of Liège, Belgium, and a Visiting Research Scientist at
the Max Planck Institute for Biological Cybernetics in Tübingen,

Germany. His research in computer vision and machine learning is motivated
by intelligent and interactive systems, where he focuses on visual learning,
closed-loop interaction of sensorimotor systems, and video analysis.

52

Ronald Petrick is a Research Fellow in the School of Informatics
at the University of Edinburgh. He received an M.Math. degree
in computer science from the University of Waterloo and a Ph.D.
in computer science from the University of Toronto. His research
interests include planning with incomplete information and sens-

ing, cognitive robotics, knowledge representation and reasoning, generalised
planning, and natural language dialogue. He is currently the Scientific Co-
ordinator of the EU JAMES project.

Mark Steedman is a Professor of Cognitive Science in Informatics at
the University of Edinburgh, working in computational linguistics,
artificial intelligence, the communicative use of prosody, tense and
aspect, and wide-coverage parsing using Combinatory Categorial
Grammar (CCG). Prof. Steedman is a Fellow of the Association
for the Advancement of Artificial Intelligence (AAAI), the Royal

Society of Edinburgh (FRSE), and the British Academy (FBA). He is a
member of the Academy of Europe and a former President of the Association
for Computational Linguistics (ACL).

Florentin Wörgötter has studied Biology and Mathematics in
Düsseldorf. He received his Ph.D. in 1988 in Essen working exper-
imentally on the visual cortex before he turned to computational
issues at the Caltech, USA (1988-1990). After 1990 he was re-
searcher at the University of Bochum concerned with experimental
and computational neuroscience of the visual system. Between 2000
and 2005 he had been Professor for Computational Neuroscience at

the Psychology Department of the University of Stirling, Scotland where his
interests strongly turned towards “Learning in Neurons”. Since July 2005
he leads the Department for Computational Neuroscience of the Bernstein
Center at the University of Göttingen. His main research interest is infor-
mation processing in closed-loop perception-action systems, which includes
aspects of sensory processing, motor control and learning/plasticity. These
approaches are tested in walking as well as driving robotic implementations.
His group has developed the RunBot a fast and adaptive biped walking robot.

53

Aleš Ude studied applied mathematics at the University of Ljubl-
jana, Slovenia, and received his doctoral degree from the Faculty
of Informatics, University of Karlsruhe, Germany. He was awarded
the STA fellowship for postdoctoral studies in ERATO Kawato Dy-
namic Brain Project, Japan. He has been a visiting researcher at
ATR Computational Neuroscience Laboratories, Kyoto, Japan, for

a number of years and is still associated with this group. Currently he is
a senior researcher at the Department of Automatics, Biocybernetics, and
Robotics, Jožef Stefan Institute, Ljubljana, Slovenia. His research focuses on
imitation and action learning, perception of human activity, humanoid robot
vision, and humanoid cognition.

Tamim Asfour received his diploma degree in electrical engineering
and his Ph.D. degree in computer science from the University of
Karlsruhe, Germany in 1994 and 2003, respectively. He is leader
of the humanoid robotics research group at the institute for An-
thropomatics at the Karlsruhe Institute of Technology (KIT). His
research interests include humanoid robotics, grasping and manip-
ulation, imitation learning, system integration and mechatronics.

Dirk Kraft obtained a diploma degree in computer science from the
University of Karlsruhe (TH), Germany in 2006 and a Ph.D. degree
from the University of Southern Denmark in 2009. He is currently
employed as an assistant professor at the Mærsk McKinney Møller
Institute, University of Southern Denmark. His research interests
lie within cognitive systems, robotics and computer vision.

54

Damir Omrčen received his PhD in robotics from the University of
Ljubljana, Slovenia, in 2005. He is employed as a research assistant
at the Department of Automation, Biocybernetics and Robotics
at the “Jozef Stefan” Institute in Ljubljana. His fields of inter-
est include vision and robot control where he combines classical
model-based approaches and more advanced approaches based on

exploration and learning.

Alejandro Agostini received the B.S. degrees in Bioengineering with
honours from the National University of Entre Ŕıos, Argentina, and
in Electronic Engineering from the National University of Catalo-
nia (UPC), Spain. He is currently a senior Ph.D. student in Ar-
tificial Intelligence at the UPC, and is working at the Institut de
Robòtica Industrial (IRI) under a work contract drawn up by the

Spanish Research Council (CSIC). His research interests include machine
learning, robotics, decision making, and cognitive systems. He performed
several research stays at the Bernstein Centre for Computational Neuro-
science, Göttingen, Germany, and at the University of Karlsruhe, Germany.

Rüdiger Dillmann is Professor at the Computer Science Faculty,
Karlsruhe Institute of Technology (KIT), Germany. He is director
of the Research Center for Information Science (FZI), Karlsruhe.
He is scientific leader of German collaborative research centre Hu-
manoid Robots (SFB 588). His research interests include humanoid
robotics, technical cognitive systems, machine learning, computer

vision, robot programming by demonstration, and medical applications of
informatics.

55

Grasp Learning by Means of Developing Sensorimotor
Schemas and Generic World Knowledge

Norbert Kruger1 and Mila Popovic1 and Leon Bodenhagen1 and Dirk Kraft1 and Frank Guerin2

Abstract. We present a cognitive system in which grasping com-
petences are coded by means of a formalization of sensory motor
schemas in terms of so called ‘object action complexes’ (OACs).
OACs define the knowledge of the system via the effects and precon-
dition of certain behavioural patterns, and also code the uncertainty
associated with their execution. OACs are grounded through the ob-
servation and evaluation of individual executions generating ‘exper-
iments’, and dynamically adapt through using these experiments for
learning. Moreover, in parallel with the development and refinement
of OACs, generic world knowledge is permanently generated by the
system which affects the OACs on a meta level and provides a means
for the generation of new competences and better generalization. We
present an example of a developing system executing OACs which
code the grasping of known and unknown objects, and thereby illus-
trate (i) the refinement of OACs and (ii) building up generic world
knowledge. We see this as particularly important since these inter-
action processes, although fundamental for human development, are
usually difficult to observe by means of techniques in neurophysiol-
ogy and developmental psychology.

1 Introduction

Cognitive development seems to proceed at a number of different
levels of abstraction: for example there are low level developments
such as perception-action control loops for basic sensorimotor skills
involved in reaching, grasping, object manipulation, and walking; in
parallel with this there are higher developments in the knowledge of
objects, physical causality, and spatial relationships (these are more
abstract than the lower level, and allow for application in a range
of scenarios). There is a strong connection between these parallel
tracks; higher-level knowledge seems to be abstracted from lower
level context specific sensorimotor routines (see e.g. [31]), and seems
to arrive after the acquisition of skills at the lower level. In the other
direction, the higher level knowledge, once attained, can be used to
improve the appropriate application and adjustment of lower level
skills (see e.g. Piaget on the “support” [24, 25]). A major challenge
is to explain (mechanistically) how this parallel development works.
Such an explanation seems to be necessary in order to understand
how such advanced abilities as tool-use develop ontogenetically in
humans; contemporary opinion in psychology holds that advanced
tool-use has its origins in infants’ early exploratory interactions with
objects and surfaces, and that the development from these precursors
to advanced manipulations is gradual and continuous [19].

1 Syddansk Universitet, Maersk Mc-Kinney Institute, DK-5230 Odense, Den-
mark.

2 University of Aberdeen, Department of Computing Science, Aberdeen
AB24 3UE, Scotland.

In this paper we tackle one fragment of this development: that is
the fragment related to grasping; at lower levels of abstraction we can
learn specific sensorimotor routines for grasping specific objects, but
at a higher level (and in parallel) we can learn more generic object
knowledge which can improve the grasping of known objects, and
also help us to grasp novel objects. More specifically we capture the
sensorimotor skill of grasping within the framework of Object Ac-
tion Complexes (OACs) (a formal framework introduced in [18, 38]).
The formalism of OACs is a skeleton — which integrates existing
concepts in the field of artificial intelligence as well as (behavioural
and) cognitive robotics (see Sec. 2) — that can be used to formalize
adaptive and predictive behaviours on different levels of the process-
ing hierarchy. OAC executions generate empirical data in terms of
so called ‘experiments’, and these lead to different kinds of learning
which are clearly distinguished. This learning ensures grounding and
leads to an ongoing improvement of the overall system through adap-
tation and learning. By that OACs should be able to reach from low
level reactive actions to conscious planning through the experience
of actions applied to objects in the world (for details, see [18]). In
this paper, we will use this OAC concept to outline a framework for
the development of sensorimotor skills associated with grasping as
well as the parallel development of generic world knowledge.

As one innate grasping mechanism we make use of simple man-
ually defined feature–action associations (see [27]) triggered by the
early cognitive vision system [29]. These association are motivated
by innate ‘grasping reflexes’ in infants although they differ in detail
due to different embodiments (see [17] for a discussion of similar-
ities and differences to infant’s grasping). This initial ‘grasping re-
flex’ is coded as an object action complex OACgen. It becomes re-
fined during its application in the exploration process through learn-
ing. In a process (described in detail in [17]) triggered by OACgen,
world knowledge in terms of object shape knowledge is extracted.
Once this shape knowledge is available to the system, object spe-
cific grasp knowledge is learned and coded in terms of a second
OAC OACgrasp

o . While OACgen codes generic feature grasp as-
sociations, OACgrasp

o associates grasp knowledge with a specific
learned object o based on the concept of grasp densities as outlined
in [10]. OACgrasp

o and OACgen code two different strategies as-
sociated with different branches of grasp research. While OACgen

codes generic grasp affordances (see, e.g.,[30, 8, 5, 27] for work re-
lated to generic grasping), OACgrasp

o addresses the grasping of spe-
cific objects (see, e.g., [4, 20, 15, 10]).

In this paper, we outline how these two kinds of OACs develop
in parallel in a cognitive system, generate generic world knowledge
and in particular support each other by making use of this developing
generic world knowledge. This builds on existing work where we
have shown that

norbert
Typewritten Text

norbert
Typewritten Text
Published at Convention AISB 2011('Artificial Intelligence and Simulation of Behaviour'), York, 4-7 April 2011

norbert
Typewritten Text

norbert
Typewritten Text

norbert
Typewritten Text

• Innately defined feature action associations can already lead to
rather high performance grasping [27].

• Both OACs are refined over time through learning processes asso-
ciated with the OACs individually [27, 10].

• OACgen can be used to initiate the developmental process of
OACgrasp

o [17].

Building on this background, the current paper shows that conver-
gence speed is a fundamental problem associated with OACgrasp

o

which is basically ‘learning by heart’ with only little generalisa-
tion by means of local interpolation (See Sec. 5.2). Furthermore, on
the strength of our first experimental indications described here, we
make the following speculative predictions

• OACgrasp
o delivers the statistical material for the branching of

OACgen into new OACs expressing new grasping affordances.
This is done by finding indicative feature relations–grasp associ-
ation in co-occurrence tables coding visual feature relation and
the grasping success associated with grasps related to them (see
Sec. 6.2).

• OACgrasp
o and OACgen deliver the statistical material to

fundamentally change the learning algorithm associated with
OACgrasp

o and by that lead to a faster convergence of OACgrasp
o .

This is done by using the co-occurrence statistics to refine kernels
in the KDE approach [32] applied in the grasp density concept
(See Sec. 6.1).

• Finally, at the end of the developmental process, OACgen (cod-
ing grasping without object knowledge) eventually becomes pow-
erful enough to generate grasp densities close to the ones which
are initially tediously learned by OACgrasp

o , hence that there is
no fundamental difference between grasping known and unknown
objects anymore.

This paper will partly refer to already published work [27, 10, 17]
while putting it in a developmental context, partly refer novel and
ongoing work with new (and to a certain degree intermediate) results
and partly make speculative predictions based on available data. The
aim is to put existing and ongoing work in a wider context addressing
the fundamental problem of learning of sensory motor schemas for
tool use in an embodied robot system.

2 Sensorimotor schemas and object action
complexes

The sensorimotor schema3 as defined by Piaget and others [26, 9]
is a dynamic entity that gathers together the perceptions and asso-
ciated actions involved in the performance of a habitual behaviour.
The schema represents knowledge generalized from all the experi-
ences of that behaviour. It also includes knowledge about the context
in which the behaviour was performed as well as expectations about
the effects. During cognitive development these schemas are refined
and combined. Object Action Complexes (OACs) are a formalisation
of such schemas to be used in artificial cognitive systems (see [18]).

An OAC’s definition is split into three parts, (1) a symbolic de-
scription consisting of a prediction function defined over an attribute
space, together with a measure of the reliability of the OAC, and (2)
an execution specification that defines how the OAC is executed by
the embodied system and generates experience in terms of ‘exper-
iments’ and (3) a specification of how the learning associated with

3 also called “sensorimotor process” [33], “skill” [13], or “perception-action
routine” [19].

Figure 1: Graphical representation of an OAC and the OAC learning
problems. This shows how the actual state wsa (corresponding to sa
in the model) resulting from the execution of the control program CP
diverges from the state sp predicted by the OAC’s prediction function
T . This divergence drives the learning (i.e. refinement) of the OAC.
For further explanation see text. Figure courtesy of Christopher Geib.

the OAC is realized based on the ‘experiments’ generated by the ex-
ecuted OACs. More formally (see also Fig. 1):

Definition 2.1 An Object-Action Complex (OAC) is a triple

(id, T,M) (1)

where:

• id is a unique identifier for an execution specification,
• T : S → S is a prediction function defined on an attribute

space S encoding the system’s beliefs as to how the world (and
the robot) will change if the control is executed , and

• M is a statistical measure representing the success of the OAC
within a window over the past.

An execution function execute (see below) can map an OAC id
to an ‘experiment’ which is defined the following way:

Definition 2.2 Given an attribute space S and an OAC with identi-
fier id defined on S, an experiment is a triple

(so, sp, sa) (2)

where:

• so ∈ S, captures the state of world before execution
• sp ∈ S such that OAC id predicts that state sp will result from

its execution in so, i.e., sp = Tid(so), and
• sa ∈ S such that sa is observed as a result of actually executing

OAC id in state so.

Thus, an experiment is an empirical event by which OACs will be
grounded in sensory experience.

As an empirical grounded event, such experiments can be used
to update OACs in cycles of execution and learning based on evalua-
tions of their success (see below). Note that sometimes an experiment
is actually not used directly for learning but stored in some short term
memory (see, e.g., [3]) until resources for learning are available (e.g.,
during ‘sleeping phases’).

The execution, i.e., the actual action associated to the OAC is de-
fied as following:

Definition 2.3 execute is a function that maps an OAC id to an
experiment, i.e.,

execute : id→ expr = (so, sp, sa). (3)

The execute function is an operation that performs the OACs execu-
tion specification in the current world state, returning an experiment
expr.

The definition of OACs as capturing both symbolic and control
knowledge about actions highlights a number of learning problems
that must be addressed for OACs to be effective. We note that while
each of these learning problems can be addressed by recognizing
the differences between predicted states and those states actually
achieved, they may still require different learning algorithms (e.g.,
Bayesian, neural network-like, parametric, non-parametric, etc.). It
is up to the OAC designer to choose an appropriate learning mecha-
nism.

As such, the following characterizations are intended to specify
those aspects of the OAC that are modified through learning, not the
method of learning. We consider four main learning problems, each
of which is labelled by its respective number in Fig. 1. These are (1)
learning control programs, (2) learning the prediction function, (3)
learning the mapping from states of the real world to states of the
model and (4) learning the prediction function’s long term statistics.
In our context, it is only the learning problems (1) and (4) which are
of relevance, these are referred to by updateCP and updateM respec-
tively. All learning functions take an experiment as an argument, e.g.,
updateCP(expr).

3 Overview: Developmental process in a cognitive
architecture

As mentioned in Sec. 1, cognitive development seems to proceed at a
number of different levels of abstraction. Fig. 2 shows two such par-
allel tracks of development. On the bottom is the sensorimotor track
which shows the development of lower level sensorimotor schemas
(SMSs), which are observable in infant behaviour. Each node in the
lower track corresponds to an SMS. A directed edge travels from
each ancestor node to its descendents; for example the SMS for
pulling a string descends from a basic grasping SMS. Some SMSs
have more than one ancestor; for example an infant means-end be-
haviour will have as ancestors one SMS for the means and one for
the goal. The top of Fig. 2 is the abstract track which shows the par-
allel development of the underlying world knowledge. Nodes in the
upper track correspond to (for example) fragments of object knowl-
edge which are common to a number of SMSs, and fragments of
spatial relationships; these are gradually linked up as development
progresses (to the right), to eventually form a more comprehensive
knowledge of objects and space. We must stress here that the early
fragments of object and spatial knowledge are likely to be very con-
text specific, and strongly associated with the sensorimotor schemas
they have been abstracted from. It is only after a long devlomental
process moving to the right in Fig. 2) that these fragments become
more objective, and this developmental process must involve some
sort of “representational redescription” [7]. The evidence from the
psychology literature suggests that it is doubtful that very much ob-
jective knowledge is achieved during infancy, but rather that a high
degree of context specificity persists [34, 36, 1, see for example].

For the lower track we see a developmental process in which a
small set of innately defined SMSs lead to a large variety of SMSs
through branching and specialisation. During this developmental
process, the effects of the SMS become increasingly predictable and

N
u
m

b
e
r
o
f
b
e
h
a
v
io

u
rs

Age (spanning approx. 2 years)

C
O

N
C

R
E
T
E

p
e
rc

e
p
ti
o
n
-a

c
ti
o
n
 t
ra

c
k

A
B

S
T
R

A
C

T

re
p
re

s
e
n
ta

ti
o
n
 t
ra

c
k

sensorimotor sch
emas developing

representations developing

Figure 2: Conceptual diagram, overviewing infant developments on
both a low level sensorimotor track and a higher level representa-
tional track; for explanation see text (Sec. 3).

can then be used more and more purposefully by the cognitive agent
for the planning of behaviour. In parallel to (and triggered by) the
development of individual SMSs more generic world knowledge is
built up; as illustrated in the upper track of Fig. 2. This is done
through the abstraction of empirical data gained during the execution
of the SMSs on objects and associated actions. The central topic of
this paper is the parallel development and interaction of observable
sensorimotor schemas and the increasing abstract world knowledge
which is based on the experiments generated by the OACs.

In our case an “innate” SMS is a generic grasping OAC (which
would correspond to a single node to the lower left of Fig. 2). This
OAC then branches as different objects are encountered, spinning off
a new specific grasping OAC for each new object (in this paper three
example objects are tackled). On the upper track we have representa-
tions of objects which are acquired in “object memory” (see Fig. 7),
and also generic knowledge about the relations between low-level
visual features and the existence of grasping affordances.

Figure 2 also illustrates (with dashed curves) links between the ab-
stract and sensorimotor tracks; these links are bidirectional. To avoid
clutter only six links are shown, but in reality all representational
fragments will be linked to sensorimotor schemas. In one direction
representations are linked to the schemas they have been generalised
from (and hence can immediately link to actions which can manip-
ulate the represented object or spatial relation). In our grasping sys-
tem this means that the object representations, and general feature-
grasping relationships have been abstracted from lower level inter-
actions. In the other direction, more advanced schemas make use of
the newly formed representations, for example in their description of
the context in which a behaviour may be performed, or its effects, or
the control policy followed during execution of the schema. In our
grasping system this means that (i) the grasping of the three specific
objects which the system has practised on will be able to make use of
this more abstract knowledge once it is available, so the grasp success
rate will be much higher once sufficient statistics are gathered on the
general relationships between visual features and grasp success; (ii)
the grasping of novel objects, using the generic grasp OAC will also
leverage this generic knowledge leading it to also have a high degree
of success.

Figure 3: System architecture, see section 4.1

4 Formalising grasping with and without object
knowledge: OACgrasp

o and OACgen

Grasping novel objects is one important example of sensorimotor
schemas (SMS) (see, e.g., [26, 21]). An important property of an
SMS is that it becomes grounded, refined and sometimes signifi-
cantly modified during the developmental process. In this section we
present the two OACs which formalize two sensorimotor schema as-
sociated with grasping, with and without object knowledge. Before
we describe these two OACs in more detail in section 4.2 and 4.3, we
give some basic information on the robot vision system in which the
developmental process is taking place in section 4.1.

4.1 System in which development is taking place
In the system we envisage, the grasping process is organized as
sketched in Fig. 3. The two OACs, OACgrasp

o and OACgen, follow
different paths. OACgen is based on combination of visual features
computed by the early cognitive vision (ECV) system (described be-
low). The output of the ECV system is used directly for produc-
ing grasping hypotheses (see also Fig. 11). In case of OACgrasp

o

the acquired image representation is compared against a database of
stored object models, and once the pose estimation is done it is pos-
sible through OACgrasp

o to access abstracted grasp knowledge for
the known objects in the scene (see section 4.3). Suggested grasp-
ing hypotheses can be tested (both in simulation or with the real
setup) and the results are used to continuously improve OACgrasp

o

and OACgen.
The visual representation extracted by the early cognitive vision

(ECV) system [29] provides rich visual representations for edge
structures, surfaces and junctions. Sparse 2D and 3D features, so-
called multi-modal primitives, are created along image contours and
textured areas. These 2D features represent a small image patch in
terms of position, orientation and also appearance information (e.g.,
colour and phase). Primitives describing edge patches are called line
segments, primitives describing textured surfaces are called texlets
and primitives describing corners (intersections of edges) are called
junctions. 2D primitives are matched across two stereo views, and
pairs of corresponding 2D features permit the reconstruction of a 3D

Figure 4: (a) an example stereo image pair. (b.1) 2D line segments
for the left and the right image. (b.2) a detail from b.1. (b.3) 3D line
segments. (b.4) 3D contours. (c.1) 2D texlets for the left image. (c.2)
disparity image. (c.3) a detail from c.1. (c.4) 3D texlets. (c.5) 3D
surflings.

equivalent. The 2D and 3D primitives are organized into perceptual
groups in 2D and 3D (called contours for line segments, or surflings
for the texlets). The procedure to create visual representations (line
segments and texlets) is illustrated in Fig. 4 on an example stereo
image pair.

The sparse and symbolic nature of the multi-modal primitives al-
lows for the coding of relevant perceptual structures that express rel-
evant spatial relations in 2D and 3D [2]. The relations between con-
tours (and also surflings) allow us to define grasping hypotheses (see
section 4.2 and Fig. 11).

4.2 OACgen: Grasp affordances as feature
relation - action associations

OACgen is used to gain physical control over unknown objects, a
grasp computation mechanism based on previous work [27] is used.
Pairs of 3D contours that share a common plane and have similar
colours suggest a possible grasp (see Fig. 5b). The grasp location is
defined by the position of one of the contours. Grasp orientation is
calculated from the common plane defined by the two contours and
the contour’s orientation at the grasp location.

During execution, grasping hypotheses from co-planar contour
pairs are computed. The initial attribute space is given by

so = (|Ω|, (C1, C2), statusGrasp),

where |Ω| is the number of elements in the set Ω, and (C1, C2) is the
concrete pair of extracted contours that was picked earlier. Recall that

(d)

(e)

C1

C2

C1

C2

success

C1

C2

C2

C1

GH(C1,C2)

GH(C1,C2)

statusGrasp=stable

Figure 5: (a) The image of the scene captured by the left camera. (b) A
possible grasping action type defined by using the two coplanar con-
tours C1 and C2 shown in red. (c) A successful grasping hypothesis.
The 3D contours from which the grasp was calculated are shown.
Note that the information displayed is the core of an “expr”. (d) A
selected set of grasping hypotheses generated for a similar scene. (e)
Change of performance as a result of the learning process.

OACgen = (id, T,M). The prediction function T in our context
is trivial, since a stable grasp (statusGrasp = stable) is predicted.
M measures the percentage of successful grasps in a certain time
window (see Fig. 5e).

The computed grasping hypothesis is then performed and the
grasp status sa = statusGraspt+1 is sensed after picking up the
object, resulting in an experiment (see Fig. 5c for the main compo-
nents of an experiment):

expr = {so, statusGraspt+1 = stable, statusGraspt+1}.

Each experiment can either be used directly for on-line learning, as
in the following learning cycle:

while true do
choose pair of contours C1, C2

expr=execute(gen);
updateCP(expr);
updateM(expr);
drop object

end

or stored in an episodic memory for off-line learning at a later stage
by calling the function updateCP (see [27] for details). There we
have shown that, based on these labelled experiences, we can learn
an improved feature-based grasp generation mechanism. updateCP
uses an artificial neural net to determine which feature relations pre-
dict successful grasps. Fig. 5e shows how the success rate increases
when on-line learning is performed on the evaluated grasps. The
learning is limited by the amount of grasp data available and by the
noise that is present in the data. However, as the objects are unknown
by the system, the performance is not expected to increase to nearly
100 % even if unlimited training data would be available.

4.3 OACgrasp
o : Object specific grasping

OACgrasp
o expresses affordance relative object-gripper configura-

tions that yield stable grasps. The grasps we consider are parame-
terised by a 6D gripper pose composed of a 3D position and a 3D

(i)

a) b) c)

(ii)

statusGrasp =
stable

statusGrasp =
unstable

0.
00

0.
50

1.
00

d)

Figure 6: Grasping affordances are represented using kernel-based
grasp densities. a) Iso-probable surface of a ‘grasp kernel’, and rela-
tion between a two-finger grasp and a kernel representing this spe-
cific grasp in the model. b) Kernel-based grasp density. The right-
hand side shows lighter sampling for illustration purposes. D repre-
sents the density, while wi and Ki represent the individual weights
and kernels. c) Grasp success rates for the object ‘basket’ after dif-
ferent learning cycles (i) counting kinematic path planning errors
as failures, and (ii) excluding such errors from the score. Red bars
show the success rate of grasps before learning has been applied.
Green bars correspond to grasps that have been drawn randomly from
the learned grasp density. Blue bars correspond to the maximum-
likelihood grasps from the learned grasp density. d) shows examples
of a succeeding and a failing experiment. Figure adapted from [10],
with kind permission by the authors.

orientation. Affordances are represented probabilistically with grasp
densities [10], which correspond to continuous probability density
functions defined on the 6D pose space. Their computational repre-
sentation is non-parametric: A density is represented by a large num-
ber of weighted grasp observations. Density values are estimated by
assigning a kernel function to each observation and summing the ker-
nels [32]. An intuitive illustration of a grasp kernel is given in Fig. 6a
and 6b illustrates a kernel-based grasp density.

OACgen is potentially applicable whenever the gripper is empty
and an instance of object o is present in the scene. As in the previous
example, the prediction function T always returns statusGrasp =
stable. The attribute space S is defined by

S = {targetObj = o, statusGrasp}. (4)

Here, the state description includes an attribute targetObj that spec-
ifies which object model o is to be applied by the execute function;
this model is chosen by processes external to the OAC. M is defined
in such a way as to maintain cumulative outcome statistics of execu-
tions of this OAC, updated via updateM (see Fig. 6c).

The execute function is defined in such a way as to return an
experiment

expr = (so, statusGraspt+1 = stable, statusGraspt+1),

in sa, the attribute statusGrasp is the observed status after the

grasping attempt (see Fig. 6d). In addition, the data structures rep-
resenting so, sp and sa may include further state information such
as object and gripper poses. Such information is used, in particular,
by updateCP to update the grasp density by integrating new exper-
iments, which leads to increasingly reliable performance as can be
seen in Fig. 6c.

5 Extraction of World knowledge by exploration
In this section we briefly describe the process of generating world
knowledge by means of executing the generic and specific OACs.
An important intermediate stage is sketched in Fig. 7. The top row
in Fig. 7 represent the innate state of the system in which object
and grasp memory is empty. It illustrates the usage of OACgen to
grasp an unknown object based on the scene representation which is
available in the iconic memory. Once an object is grasped, an object
model is generated (see [17] for details). Subsequently the model can
be used for pose-estimation in future scenes and thereby enable the
association of actions to the specific object by OACgrasp

o — this is
illustrated in the bottom row in Fig. 7 representing a more advanced
state of the system.

The experiments generated by the OACs coding object indepen-
dent and object specific grasp knowledge are stored in the episodic
buffer and are the basis for more abstracted representations in two re-
spects. First, object dependent grasp knowledge is stored in the grasp
densities (see section 5.2) and second, so called ‘co-occurrence ta-
bles’ store the statistics of feature relation - action associations (see
section 5.3). Both kinds of knowledge are stored in the long term
memory. Moreover, object shape knowledge is generated and also
stored in the long term memory (see section 5.1).

5.1 Object shape knowledge
By successfully grasping a new rigid object initially (using
OACgen) full physical control over it is achieved. This allows the
object to be viewed from a variety of perspectives. From these views
an accumulated description of multi-modal primitives is extracted. A
detailed technical description of the accumulation process is given by
Pugeault and Krüger, [28]. Besides other uses this generated shape
description allows us to recognize the object in the scene and esti-
mate its pose (see [11] for more information). The ability to estimate
the object’s pose is essential to be able to associate actions to the
object as done by OACgrasp

o .

5.2 Grasp Densities
The object specific grasp experiments generated by OACgrasp

o are
used to create grasp densities. The pose of each successful grasp de-
fines one point in the 6-dimensional space and kernel density estima-
tion is used to achieve a continuous density (see [10] and figure 6 for
more details) based on the individual points. Once a grasp density is
learned it can also be improved later on for instance by evaluating
samples from it and use these to create a new, refined density which
will lead to an improved success likelihood of OACgrasp

o . Moreover,
the grasp densities represent abstracted grasp knowledge which can
be used for further learning, e.g., about how to improve the speed of
convergence of the grasp densities (see section 6.1).

The width of each kernel is currently selected manually and de-
pends on the specific use case. Typically they are chosen just large
enough to ensure that neighbouring kernels overlap in order to ensure
continuous density. The more detailed and fine grained the resulting

Coplanarity

A
m

o
u
n

t
o
f

su
cc

e
ss

fu
l

p
re

d
ic

ti
o
n

s

Figure 8: Using scenes containing one object, grasps have been cre-
ated from pairs of contours using OACgen and compared against the
grasps density associated with the object. This has been done using
three different objects in total. The co-occurrence table shows the
success likelihood of the grasps relative to the values of the feature-
relations between the contours.

density has to be, the more experiments are needed to ensure that
the density is not incomplete and appears patchy. The level of de-
tail depends one the usecase. When searching for a maxima it might
be less critical how fine-grained the density is. For other investiga-
tions, e.g. as those described in section 5.3.1, it is beneficial to have a
fine-grained density. As the density exists in a 6-dimensional space,
the required number of experiments to reach a dense coverage grows
quickly when a higher level of detail is required.

5.3 Co-occurrence tables
The experiments generated by OACgen can directly be used to im-
prove the success likelihood of OACgen by calling the update func-
tion that is intrinsic to the OAC (illustrated in Fig. 3). Moreover,
experiments generated by OACgrasp

o are used to create so called
co-occurrence tables (see Fig. 8 and 9) which represent projections
of the grasp densities abstracted from the accumulated experiments.
We discuss two different projections.

5.3.1 Co-occurrence tables for OACgen

The co-occurrence tables such as Fig. 8 store the values of relations
between pairs of contours as well as the success likelihoods of grasps
generated on these contour pairs and can thereby be used to improve
the success likelihood of OACgen. Fig. 8 is based on grasps of three
different objects and addresses coplanarity. It shows that coplanarity
indeed seems to be an indicator for grasp affordances. Beside intro-
ducing additional relations, e.g. colinearity or cocolourity which is
based on the colour-difference between those sides of the contours
that face each other, also additional experiments using different ob-
jects will ensure that the statistic becomes more and more complete.

5.3.2 Co-occurrence tables for OACgrasp
o

The kernels used in the grasp density approach in [10] are isotropic.
This is unsatisfying in two respects. First, there is a certain arbi-
trariness in the selection of kernel parameters which requires man-
ual selection. Second, it turns out that the convergence speed for the
grasp densities is rather slow as many isotropic kernels are used to
model the grasp affordances in sufficient detail. Both issues can be
addressed when using the grasp densities as basis for the learning of
the statistical dependencies of grasps in the vicinity of an already suc-
cessfully tested grasp. More specifically, a simulation environment

0.5 1.00.0
0.0

0.5

1.0

C
o
co
lo
u
ri
ty

Coplanarity

...

Iconic Memory Visuospatial Sketchpad Episodic Buffer Object Memory Grasp Memory

Competences

a) a)

b)b)
obj a

 {So,Sp,succ.}

Iconic Memory Visuospatial Sketchpad Episodic Buffer Object Memory Grasp Memory

Competences OACgen

Co-occurence table

Co-occurence table

OAC grasp
o

 {So,Sp,succ.}
 {So,Sp,fail.}
 {So,Sp,succ.}

...
 {So,Sp,succ.}

OACgrasp
o

OACgen

Figure 7: Illustration of how the system interacts by means of the two OACs interacting with the environment at two different stages of
development. The top row represents this interaction at an innate state of development while the bottom row represents a more mature state.

(a) Translations (b) Rotations

Figure 9: Each successful grasp has been (a) translated or (b) rotated
and subsequently its success likelihood is estimated using the grasp
density associated with the object. This figure shows only the results
for two dimensions of translation and rotation.

has been used to achieve a very dense grasp density, subsequently
each successful grasp is transformed locally by a rigid body motion
and using the density it is investigated whether the transformed ac-
tion still would be successful. In order to reduce the complexity, only
translations (see Fig. 9a) or rotations (see Fig. 9b) have been ap-
plied, not a combination of them. In these co-occurrence tables a
clear anisotropy in the conditional probabilities are visible indicating
that isotropic kernels are indeed a sub-optimal choice. In section 6.1
we argue that these co-occurrence tables can be used to define more
optimal kernels.

6 Interaction of the development of SMS and
world knowledge

As indicated in Fig. 2, the SMSs and the generic world knowledge
develop in parallel and complex interactions are to be expected. Mak-
ing statements about this interactions in humans is difficult since only
the change of behaviours, i.e., the executions of OACs/SMSs is di-

rectly observable. Statements of the change of internal representa-
tions are very difficult to achieve by means of neurophysiology. For
example, it is virtually impossible to do single-cell recording experi-
ments during development in awake behaving monkeys [23] (see also
[16]). Developmental psychology can generate insights into that is-
sue by means of sophisticated experiments. However, these insights
are only indirect. Hence we find it to be valuable to look at such
interactions in a developing robot system. This allows for making
algorithmic problems explicit on a high level of detail.

In this section and based on the generic world knowledge accumu-
lated by means of the OACs and abstracted in terms of grasp densities
and co-occurrence tables as described in section 5, we intend to ex-
emplify these interactions. First, we will discuss the need to improve
the grasp density learning by means of learning more appropriate ker-
nels in section 6.1. Then we discuss the role of co-occurrence tables
for finding grasp affordances by means of statistics in section 6.2.

6.1 Kernel learning

The observations manifested in the co-occurrence tables in figure 9
lead to the idea of an anisotropic kernel where the iso-probable sur-
face for the positional part becomes a ellipsoid rather than a sphere
(see figure 10). We are currently working on developing these ker-
nels in the density computation process. Besides having an empirical
justification of the kernels themselves we also expect a much better
convergence performance. The main benefit of the anisotropic kernel
is that fewer kernels can be used to describe the density. As a direct
consequence of this, we expect that fewer experiments are needed
to achieve a “complete” density, which will then also speed up the
convergence and will reduce the memory usage.

(a) Gripper (b) Kernel

Figure 10: (a) The orientation of the grasp corresponding to the mean-
value of the kernel and (b) visualization of how an anisotropic kernel
could be formed.

Figure 11: Top row: Grasping hypotheses derived from a pair of co-
planar contours, (see section 4.2). Bottom row: Grasping hypotheses
based on a single surface feature.

6.2 Co-occurrence tables as basis for justifying and
improving grasp reflex

The co-occurrence tables also allow for a statistical justification
of the originally hardwired behaviours as used in the execution of
OACgen. Looking at the co-occurrence tables in Fig. 8 it becomes
visible that the co-planarity relation is indeed indicative for success-
ful grasps. It can be expected that the statistical analysis of the space
of feature-relation action associations will reveal further indicative
relations. In Fig. 11 besides edge pair related grasp affordances (top
row) also surface related grasp affordances (bottom row) are shown.
It is likely that many more indicative feature relation-grasp affor-
dance relations do exist, potentially also for feature relations of very
high order. Once enough grasp data in terms of grasp densities is
available to the system even such higher order relations can be anal-
ysed. These can then be the basis for new OACs (i.e., branching
OACs) coding more sophisticated grasp affordances.

Note that also in this context it is important to generate a large
number of experiments and to integrate them in the co-occurrence
tables. Hence the principle of ongoing learning on all levels as re-
alised by the OACs is decisive for selecting the required material.

7 Related Work on Sensorimotor Schemas
Most work on explicitly Piaget-inspired sensorimotor schemas [12,
6, 35, 22] either does not have objects to perceive (e.g. using senso-

rimotor schemas to navigate in mazes), or has objects that are only
sensed in a binary way (present or not), and so these are not com-
parable with our work on gathering knowledge of objects. On the
other hand, recent work on affordances [37], though not explicitly
modelling sensorimotor schemas, is quite close to our work. This
work uses supervised learning to learn the patterns of visual features
which are indicative of graspability (and other affordances). Given
the appropriate training data, this approach can implicitly capture
relationships which are similar to our co-occurrence tables for ex-
ample. However our approach is capturing and representing object
knowledge more explicitly, and this should give greater generality in
application.

In an alternative approach, Hart and Grupen [14] describe a Pi-
agetian inspired framework for constructing adaptive robot control
strategies. While our OACs place little restrictions on control pro-
grams or learning schemes, Hart and Grupen’s approach limits the
usable control programs to a specific set of functions and the learn-
ing scheme to reinforcement learning. The authors show how the Pi-
agetian notions of assimilation and accomodation are implemented
an give examples of their usage within their system. Most interst-
ingly they allow composition of schemas; this goes beyond the work
reported here, and if combined with our ideas of developing generic
world knowledge, this could potentially facilitate the learning of sen-
sory abstractions which capture relations among objects, or spatial
relationships (i.e. a higher order of world knowledge). This would
be the next logical step for the learning of world knowledge in the
upper track of Fig. 2, and according to Piageian theory it is through
combinations of schemas that such knowledge is acquired [24, 25]).

8 Discussion
In this paper we demonstrated an important developmental process
which is very hard to observe by means of developmental psychol-
ogy or neurophysiology, namely the interaction of emerging generic
world knowledge and developing sensory motor schemas. In this
context, we have used the formalisation of sensory motor schemas
in terms of object action complexes. We investigated two OACs cod-
ing grasping with and without prior object knowledge. Although
still partly speculative, we could concretize potential interactions
between developing generic world knowledge and the execution of
OACs. In future work we will realise embodied systems in which
such an interactive development will take place and we will further
specify and quantify such interactions.

ACKNOWLEDGEMENTS
This work was supported by the EU Cognitive Systems project
XPERIENCE (FP7-ICT-270273).

REFERENCES
[1] Karen E. Adolph, ‘Learning to keep balance’, Advances in Child De-

velopment & Behavior, 30, 1–40, (2002).
[2] Emre Başeski, Nicolas Pugeault, Sinan Kalkan, Leon Bodenhagen, Jus-

tus H. Piater, and Norbert Krüger, ‘Using Multi-Modal 3D Contours
and Their Relations for Vision and Robotics’, Journal of Visual Com-
munication and Image Representation, 21(8), 850–864, (2010).

[3] Alan D. Baddeley, Essentials of Human Memory, Psychology Press,
Taylor and Francis, 1999.

[4] A. Bicchi and V. Kumar, ‘Robotic Grasping and Contact: A Review’,
in IEEE Int. Conf on Robotics and Automation, pp. 348–353, (2000).

[5] Jeannette Bohg and Danica Kragic, ‘Learning grasping points with
shape context’, Robotics and Autonomous Systems, (2010).

[6] H. H. Chaput, The constructivist learning architecture: a model of cog-
nitive development for robust autonomous robots, Ph.D. dissertation,
AI Laboratory, The University of Texas at Austin, 2004. Supervisors:
Kuipers and Miikkulainen.

[7] Andy Clark and Annette Karmiloff-Smith, ‘The cognizer’s innards:
A psychological and philosophical perspective on the development of
thought’, Mind & Language, 8(4), 487–519, (1993).

[8] Jefferson A. Coelho, Jr., Justus H. Piater, and Roderic A. Grupen, ‘De-
veloping haptic and visual perceptual categories for reaching and grasp-
ing with a humanoid robot’, Robotics and Autonomous Systems, 37(2–
3), 195–218, (2001).

[9] Fernando J. Corbacho and Michael A. Arbib, ‘Schema-based learning:
Towards a theory of organization for biologically-inspired autonomous
agents’, in Agents, pp. 520–521, (1997).

[10] R. Detry, D. Kraft, A. G. Buch, N. Krüger, and J. Piater, ‘Refining
grasp affordance models by experience’. International Conference on
Robotics and Automation, 2010.

[11] R. Detry, N. Pugeault, and J. Piater, ‘A probabilistic framework for 3D
visual object representation’, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(10), 1790–1803, (2009).

[12] G. L. Drescher, Made-Up Minds, A Constructivist Approach to Artifi-
cial Intelligence, MIT Press, 1991.

[13] Kurt W. Fischer, ‘A theory of cognitive development: The control
and construction of hierarchies of skills’, Psychological Review, 87(6),
477–531, (1980).

[14] Stephen Hart and Roderic Grupen, ‘Learning generalizable control pro-
grams’, IEEE Transactions on Autonomous Mental Development (Ac-
cepted for publication), (2010).

[15] K. Huebner, S. Ruthotto, and D. Kragic, ‘Minimum volume bound-
ing box decomposition for shape approximation in robot grasping’, in
Robotics and Automation, 2008. ICRA 2008. IEEE International Con-
ference on, pp. 1628 –1633, (May 2008).

[16] Z. Kourtzi, M. Augath, NK. Logothetis NK, JA Movshon, and
L. Kiorpes, ‘Development of visually evoked cortical activity in in-
fant macaque monkeys studied longitudinally with fmri’, Magn Reson
Imaging, 24(4), 359–66, (2006).

[17] Dirk Kraft, Renaud Detry, Nicolas Pugeault, Emre Başeski, Frank
Guerin, Justus Piater, and Norbert Krüger, ‘Development of object and
grasping knowledge by robot exploration’, IEEE Transactions on Au-
tonomous Mental Development, 2(4), 368–383, (2010).

[18] Norbert Krüger, Dirk Kraft, Justus Piater, Florentin Wörgötter,
Alejandro Agostino, Aleš Ude, Damir Omrčen, Mark Steed-
man, Ron Petrick, Christopher Geib, Bernhard Hommel, Dan-
ica Kragic, Jan-Olof Eklundh, Volker Krüger, Tamim Asfour, and
Rüdiger Dillmann, ‘A formal definition of object action complexes
and examples at different levels of the process hierarchy’, PA-
COplus report, http://wwwiaim.ira.uka.de/pacoplus/download/OAC-
Definition.pdf, (2009).

[19] Jeffrey J. Lockman, ‘A perception-action perspective on tool use devel-
opment’, Child Development, 71(1), 137–144, (2000).

[20] A.T. Miller, S. Knoop, H.I. Christensen, and P.K. Allen, ‘Automatic
grasp planning using shape primitives’, ICRA, (2003).

[21] Joseph Modayil and Ben Kuipers, ‘Autonomous development of a
grounded object ontology by a learning robot’, in Proceedings of the
AAAI Spring Symposium on Control Mechanisms for Spatial Knowl-
edge Processing in Cognitive/Intelligent Systems. AAAI, (2007).

[22] F.S. Perotto, J.C. Buisson, and L.O. Alvares, ‘Constructivist anticipa-
tory learning mechanism (CALM): Dealing with partially determinis-
tic and partially observable environments’, in Proceedings of the Sev-
enth International Conference on Epigenetic Robotics, Piscataway, NJ,
USA, pp. 117–127, (2007).

[23] Peter Jannsen (personal communication), (2011).
[24] J. Piaget, The Origins of Intelligence in Children, London: Routledge

& Kegan Paul, 1936. (French version published in 1936, translation by
Margaret Cook published 1952).

[25] J. Piaget, The Construction of Reality in the Child, London: Routledge
& Kegan Paul, 1937. (French version published in 1937, translation by
Margaret Cook published 1955).

[26] J. Piaget, The psychology of intelligence, 1976.
[27] Mila Popović, Dirk Kraft, Leon Bodenhagen, Emre Başeski, Nicolas

Pugeault, Danica Kragic, Tamim Asfour, and Norbert Krüger, ‘A strat-
egy for grasping unknown objects based on co-planarity and colour
information’, Robotics and Autonomous Systems, 58(5), 551 – 565,
(2010).

[28] N. Pugeault and N. Krüger, ‘Temporal accumulation of oriented visual
features’, Journal of Visual Communication and Image Representation,
(in press).

[29] N. Pugeault, F. Wörgötter, and N. Krüger, ‘Visual primitives: Local,
condensed, and semantically rich visual descriptors and their applica-
tions in robotics’, International Journal of Humanoid Robotics (Special
Issue on Cognitive Humanoid Vision), 7(3), 379–405, (2010).

[30] Ashutosh Saxena, Lawson L. S. Wong, and Andrew Y. Ng, ‘Learn-
ing grasp strategies with partial shape information’, in Proceedings of
the 23rd national conference on Artificial intelligence - Volume 3, pp.
1491–1494. AAAI Press, (2008).

[31] A. Sheya and L. B. Smith, ‘Development through sensory-motor coor-
dinations’, in Festchrift for F. Varela, MIT Press, (2010).

[32] B. W. Silverman, Density Estimation for Statistics and Data Analysis,
Chapman and Hall/CRC, 1986.

[33] L. B. Smith, ‘Dynamic systems, sensori-motor processes and the ori-
gins of stability and flexibility’, in Toward a unified theory of devel-
opment: Connectionism and dynamic systems theories re-considered,
eds., J. Spencer, M. Thomas, and J. McClelland, Oxford University
Press, (1997).

[34] Ad W. Smitsman and Ralf F. A. Cox, ‘Perseveration in tool use: A win-
dow for understanding the dynamics of the action-selection process’,
Infancy, 13(3), 249–269, (2008).

[35] Georgi Stojanov, ‘Petitagé: A case study in developmental robotics’,
in Proceedings of Epigenetic Robotics 1, eds., C. Balkenius, J. Zlatev,
H. Kozima, K. Dautenhahn, and C. Breazeal, (2001).

[36] E. Thelen and V. Whitmyer, ‘Using dynamic field theory to concep-
tualize the interface of perception, cognition and action’, in The Min-
nesota Symposium on child psychology: Vol. 33. Action as an organizer
of learning and development, eds., J. J. Rieser, J. J. Lockman, and C. A.
Nelson, Mahwah, NJ: Lawrence Erlbaum Associates, Inc., (2005).

[37] E. Ugur, E. Sahin, and E. Oztop, ‘Affordance learning from range data
for multi-step planning’, in Ninth International Conference on Epige-
netic Robotics: Modeling Cognitive Development in Robotic Systems
(EpiRob), pp. 177–184, (2009).

[38] F. Wörgötter, A. Agostini, N. Krüger, N. Shyloa, and B. Porr, ‘Cogni-
tive agents — a procedural perspective relying on the predictability of
object-action-complexes (OACs)’, Robotics and Autonomous Systems,
57(4), 420–432, (2009).

Learning STRIPS operators from noisy and incomplete observations∗

Kira Mourão
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB, UK
kmourao@inf.ed.ac.uk

Luke Zettlemoyer
Computer Science & Engineering

University of Washington
Seattle, WA98195

lsz@cs.washington.edu

Ronald P. A. Petrick
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB, UK
rpetrick@inf.ed.ac.uk

Mark Steedman
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB, UK
steedman@inf.ed.ac.uk

Abstract

When agents learn to act autonomously in real-world do-
mains, they must acquire a model of the dynamics of the do-
main in which they operate. However, learning domain dy-
namics can be challenging, especially where an agent only
has partial access to the world state, or external sensors that
generate noise. Even in standard STRIPS domains, existing
approaches cannot learn from noisy, incomplete observations
typical of real-world domains. Here we propose a method
which learns STRIPS action models in such domains, by de-
composing the problem into first learning a transition func-
tion between states in the form of a set of classifiers, and sec-
ond deriving explicit STRIPS rules from the classifiers’ pa-
rameters. We evaluate our approach by learning action mod-
els from simulated standard planning domains taken from the
International Planning Competition, and comparing the learnt
models with the original domain models. Our results show
that the approach can learn useful domain descriptions de-
spite the presence of noise and partial observability.

Introduction
Developing agents with the ability to act autonomously
in the world is one of the goals of artificial intelligence.
One important aspect of this development is the acquisi-
tion of domain models to support planning and decision-
making: to operate effectively in the world, an agent must be
able to accurately predict when its actions will succeed, and
what effects its actions will have. Only when a reliable ac-
tion model is acquired can the agent usefully combine se-
quences of actions into plans, in order to achieve wider
goals. However, learning domain dynamics can be a chal-
lenging problem: agents’ observations may be noisy, or in-
complete; actions may be non-deterministic; the world may
be noisy or contain many irrelevant objects and relations.

In this paper we consider the problem of acquiring ex-
plicit domain models from the raw experiences of an agent
exploring the world, where the agent’s observations are in-
complete, and observations and actions are subject to noise.
The domains we consider are relational STRIPS (Fikes and
Nilsson 1971) domains, although our approach has the po-
tential to be extended to more expressive domains. Further-
more, given the autonomous learning setting we restrict pre-
vious domain knowledge to that which could realistically

∗Submitted to AAAI 2012

have been acquired autonomously by the agent. Thus we as-
sume a weak domain model where the agent knows how to
identify objects, has acquired predicates to describe object
attributes and relations, and knows what types of actions it
may perform, but not the appropriate contexts for the ac-
tions, or their effects. Experience in the world is then de-
veloped through observing changes to object attributes and
relations when motor-babbling with primitive actions.

Previous work fulfils some but not all of the require-
ments for learning models in the setting we consider. In
autonomous robotics, various techniques exist to learn pre-
conditions and effects of actions in noisy, partially observ-
able worlds (Doğar et al. 2007; Metta and Fitzpatrick 2003;
Modayil and Kuipers 2008). However, none of these ap-
proaches learn relational models. Conversely, much previ-
ous work on learning relational action models relies on the
provision of prior knowledge of the action model. Strategies
include seeding initial models with approximate planning
operators (Gil 1994), using known successful plans (Wang
1995), excluding action failures (Amir and Chang 2008),
or the presence of a teacher (Benson 1996). Such knowledge
is unlikely to be available to an autonomous agent learning
the dynamics of its domain. Additionally, few approaches
are capable of learning under either partial observability
(Amir and Chang 2008; Yang, Wu, and Jiang 2007; Zhuo et
al. 2010), noise in any form (Pasula, Zettlemoyer, and Kael-
bling 2007; Rodrigues, Gérard, and Rouveirol 2010), or both
(Halbritter and Geibel 2007; Mourão, Petrick, and Steedman
2010). Approaches which handle both do so by generating
implicit action models which must be used as a black-box
to make predictions of state changes, and do not generate
symbolic action representations.

We tackle the problem of learning STRIPS operators from
noisy and incomplete observations by developing a two-
stage approach. Our motivation for this approach is to de-
couple the requirement to tolerate noisy, incomplete obser-
vations from the requirement to learn compact STRIPS op-
erators. The advantage of this decoupling is that the initial
action model acts as a noise-free, fully observable source of
observations from which to extract explicit action rules. In
the first stage we learn action models by constructing a set
of kernel classifiers which tolerate noise and partial observ-
ability, but whose action models are implicit in the learnt
parameters of the classifiers, similar to the work of Mourão,

for v ∈ SV + do
child := v
while child only covers +ve training examples do

parent := child
for each valued bit in parent do

flip bit to its negation and calculate weight
child := child whose parents have least weight difference

rulev := parent

(a) Rule extraction algorithm

-1 -1 1 1 w=-10 1 1 1 1 w=80 1 -1 1 1 w=100 1 -1 -1 1 w=90 1 -1 1 -1 w=-5

∗ -1 1 1 w=-5 1 ∗ 1 1 w=60 1 -1 ∗ 1 w=80 1 -1 1 ∗ w=0

∗ -1 ∗ 1 w=10 1 ∗ ∗ 1 w=40 1 -1 ∗ ∗ w=15

(b) Example of rule extraction process

Figure 1: Each node in (b) contains a vector corresponding to a possible precondition, and the weight w assigned to the vector
by the voted perceptron model. Each level of the lattice contains vectors with one fewer feature than the level above. Lines join
parent and children nodes: solid lines link the candidate parent rule at one level with its children in the level below, and dashed
lines link children to their alternative parent. Shaded nodes are the preconditions selected at each iteration through the lattice.
The positive support vector “seed” is the vector 〈1 -1 1 1〉 with weight 100. Following the rule extraction algorithm in (a), the
child whose parents have the least weight difference, the vector 〈1 -1 * 1〉, is chosen as the next candidate rule. The process
ends with the rule 〈1 * * 1〉 as both children have a negative counterexample in the training data (not shown).

Petrick, and Steedman (2009; 2010). However, we addition-
ally use the method to learn preconditions as well as effects,
as suggested but not explored in earlier work. Also, we eval-
uate additional kernels for the learning problem and select a
better performing alternative. In the second stage we devise
a novel method to derive explicit STRIPS operators from
the model implicit in the kernel classifiers. In experiments
the resulting rules perform as well as the original classifiers,
while also providing a compact representation of the action
models suitable for use in automated planning systems.

The Learning Problem

A domain D is defined as a tuple D = 〈O,P,A〉, where
O is a finite set of world objects, P is a finite set of predi-
cate (relation) symbols, andA is a finite set of actions. Each
predicate and action also has an associated arity. A fluent ex-
pression is a statement of the form p(c1, c2, ..., cn), where
p ∈ P , n is the arity of p, and each ci ∈ O. A state is any set
of fluent expressions, and S is the set of all possible states.
For any state s ∈ S, a fluent expression φ is true at s iff
φ ∈ s. The negation of a fluent expression, ¬φ, is true at s
(also, φ is false at s) iff φ 6∈ s.

Each action a ∈ A is defined by a set of preconditions,
Prea, and a set of effects, Effa. Prea can be any set of fluent
expressions and negated fluent expressions. Each e ∈ Effa
has the form add(φ) or del(φ), and φ is any fluent expres-
sion. Objects mentioned in the preconditions or the effects
must be listed in the action parameters (the STRIPS scope
assumption (SSA) (Walsh and Littman 2008)). Action pre-
conditions and effects can also be parameterised. An action
with all of its parameters replaced with objects from O is
said to be an action instance.

The task of the learning mechanism is to learn the asso-
ciations between action-precondition pairs and their effects,
that is, rules of the form 〈A,PreA〉 → EffA. The mechanism
learns from sequences of interleaved state observations and
actions, including action failures.

Learning implicit action models

The basis of our approach is the division of the learning
problem into two parts: initially a classification method is
used to learn an implicit action model, then explicit rules are
derived from the resulting action representations. In learning
an implicit action model, our approach follows earlier work
(Croonenborghs et al. 2007; Halbritter and Geibel 2007;
Mourão, Petrick, and Steedman 2009; 2010) which encodes
the learning problem in terms of the inputs and outputs of a
set of classifiers. However, none of these methods generate
explicit rules describing the learnt action models.

We only briefly describe our approach to learning implicit
action models below, as it is an application of previous work
(Mourão, Petrick, and Steedman 2009; 2010), with minor
modifications. We first reduce the size of the state descrip-
tions by only considering objects which are mentioned in
the action parameter list. By the SSA this is sufficient to
learn STRIPS rules. For an action instance a with arguments
o1, o2, ..., on we therefore restrict the state description to all
possible fluents whose arguments are in {o1, o2, ..., on}. Ad-
ditionally we schematise the descriptions by replacing the i-
th action parameter with the label argi whenever it appears
in any fluent. Thus all state descriptions are now written in
terms of the action parameters rather than in terms of any
specific objects. The SSA fixes a small number of objects
to consider for an action, as well as their roles, which al-
lows relational state descriptions to be encoded in a vector,
as each possible fluent in a state maps to exactly one possible
fluent in any other state. We then encode state descriptions
as vectors where each bit in the vector corresponds to each
possible fluent which could exist in the schematised state de-
scription. The value of a bit is 1 if the fluent is true, −1 if
false, and a wildcard value * if the fluent is unobserved.

A set of classifiers now learns the implicit action model,
where each classifier takes as input an action and a state de-
scription vector, and predicts change to a single bit of the
state description. We use voted perceptron classifiers com-
bined with a DNF kernel, K(x, y) = 2same(x,y), where

same(x, y) is the number of bits with the same value in both
x and y (Sadohara 2001; Khardon and Servedio 2005). In
the same(x, y) calculation, bits with unobserved values are
excluded. The DNF kernel has features which are all possi-
ble conjunctions of fluents, ideal for learning where the true
underlying hypothesis is expected to be a conjunction of flu-
ents, as for action preconditions. However, DNF is not PAC-
learnable by a perceptron using the DNF kernel, as there
exist examples on which it can make exponentially many
mistakes (Khardon, Roth, and Servedio 2005). We therefore
also consider the k-DNF kernel, whose features are all pos-
sible conjunctions of fluents of length ≤ k for some fixed k:
K(x, y) =

∑k
l=0

(
same(x,y)

l

)
(Khardon and Servedio 2005).

Preconditions with more than k fluents are still possible
since the voted perceptron supports hypotheses which are
conjunctions of features.

Rule extraction
The first step in deriving explicit action rules is to ex-
tract individual rules to predict each fluent in isolation. We
will look at how to combine the rules to make full add(φ)
and del(φ) lists in the next section. Rules are extracted
from a voted perceptron with kernel K and support vectors
SV = SV + ∪ SV −, where SV + (SV −) is the set of sup-
port vectors whose predicted values are 1 (−1). The positive
support vectors are each instances of some rule learnt by the
perceptron, and so are used to “seed” the search for rules.
The extraction process aims to identify and remove all irrele-
vant bits in each support vector, using the voted perceptron’s
prediction calculation to determine which bits to remove.

The weight of any possible state description vector x
is defined to be the value calculated by the voted per-
ceptron’s prediction calculation before thresholding (Fre-
und and Schapire 1999). The predicted value for x is 1 if
weight(x) > 0 and −1 otherwise. A child of vector x is
any distinct vector obtained by replacing a single bit of x
with the value *. Similarly, a parent of x is any vector ob-
tained by replacing a *-valued bit with the value 1 or −1.

The basic intuition behind the rule extraction process is
that more discriminative features will contribute more to
the weight of an example. By repeatedly deleting the fea-
ture which contributes least to the weight, we should be left
with the most discriminative features underlying an exam-
ple, which can be used to form a precondition. An example
of the process of extracting rules is shown in Figure 1(b),
and an outline of the algorithm in Figure 1(a), as follows.
Take each positive support vector v in turn, and aim to find
a conjunction rulev which covers v and does not cover any
negative training examples, but where every child of rulev

covers at least one negative example. Construct rulev by a
greedy algorithm which first takes v as a candidate rule and
then repeatedly selects a new candidate rule by taking the
child of the current candidate whose parents have the least
difference in weight – that is, for x = (x1, ..., xi, ..., xn) and
x¬i = (x1, ...,¬xi, ..., xn), finding

argmin
xi∈{x1,...,xi,...,xn}

(weight(x)− weight(x¬i)).

Removing the resulting xi removes the least discrimina-

allRules := rules from rule extraction process
hwr := highest weighted rule in allRules
baseline := (hwr.pre, ∅)
locks = ∅
while allRules 6= ∅ do

next := highest weighted rule in allRules
allRules := allRules \ {next}
if CompatibleEffects(baseline, next) then

if CombinePrecons(baseline, next, newpre, locks)
then

BacktrackPrecons(baseline, next, newpre)
if AcceptPrecons(baseline, next, newpre) then

baseline.pre := newpre
if AcceptEffect(baseline, next.eff) then

baseline.eff := baseline.eff ∪ next.eff
BacktrackEffects(baseline)

Figure 2: Outline rule combination algorithm

tive bit in the current candidate rule. At each step the new
candidate rule is tested against the training examples. If it
classifies a negative training example as positive, then the
rule is too general and rulev is set to the previous candi-
date rule, otherwise the process repeats. The result is a set
of rules for each action, predicting when a particular output
bit changes. There may be many rules, up to one per posi-
tive support vector, each consisting of a set of preconditions
which, if satisfied, predict the output bit will change.

Rule combination
The rule combination process aims to build a single con-
junctive rule for each action. It operates on all rules
(〈precondition, effect〉 pairs) for an action produced by the
rule extraction process. For each action it first initialises the
baseline rule to a default rule consisting of the precondition
of the highest weighted rule, and no effects. The baseline
rule is then refined by attempting to combine it with each of
the remaining pairs in turn, in order of highest weight. Each
time the process must generate a suitable candidate rule, and
then decide whether to accept or reject the candidate as the
new baseline (Figure 2). Without noise or partial observabil-
ity, the combination process is a straightforward conjunc-
tion of all preconditions and all effects in the set of rules for
an action. Additional checks and backtracking are needed
to identify and eliminate fluents introduced by noise while
adding in fluents omitted due to partial observability.

In attempting to combine the current baseline rule with a
new rule, the first check is whether the new rule’s effect con-
tradicts any effect in the baseline rule (CompatibleEffects).
Effects conflict if both rules predict change to a fluent, but
the rules have different values for the fluent in their precon-
ditions. If there is a conflict, the new rule is rejected, as we
assume only one rule per action, and the higher weighted
baseline rule is more likely to be correct.

Rules can be combined on both effects and preconditions,
and each of these is considered separately, since rejecting a
noisy precondition does not necessarily mean that the cor-
responding effect should also be rejected. First, an attempt
is made (CombinePrecons) to combine the rule precondi-

tions with the baseline preconditions, to form a set of candi-
date preconditions newpre . If the preconditions of the two
rules do not contradict, they can be combined by conjunction
to form the candidate preconditions. Otherwise, the non-
conflicting fluents are conjoined, and an attempt is made to
reconcile the remaining conflicts.

For each conflicting fluent, there are three possible values
the fluent could take in the preconditions of the true rule: ∗
(unobserved), 1 (true) or −1 (false). The weight weighteff

(for each effect eff in the baseline effects) of each variant
is calculated. The preferred variant is where the value is ∗,
indicating a non-discriminative feature, and giving the sim-
plest precondition. However, a variant is only acceptable if
the weight of the resulting rule is positive for all of its ef-
fects, since then it still predicts the same effects as the base-
line rule. If accepted, the fluent is locked at the ∗ value, to
prevent later, possibly noisy rules, from resetting it. If the ∗-
variant is unacceptable, then the (1)-valued or (−1)-valued
cases are considered, provided they have positive weights on
all the effects. If both variants are acceptable, whichever has
the highest average weight over all the effects is selected. If
neither variant is acceptable then the conflict is unresolved
for this fluent. As long as the conflicts on every fluent are re-
solved, the rule combination process can continue with the
new candidate rule. If not, the current rule is rejected.

CombinePrecons allows many additional preconditions
to be added untested to the candidate, and so at this stage, a
backtracking step (BacktrackPrecons) generates a number
of alternative, less specific preconditions from the candidate
preconditions. For each fluent in the candidate which does
not exist in the original preconditions, an alternative can-
didate precondition is constructed, without that fluent. If the
scoring function (AcceptPrecons) rates the baseline precon-
dition as worse than the alternative precondition, then the
fluent is removed from the candidate preconditions.

Next, the resulting candidate rule is compared with the
baseline rule, using a separate scoring function for the pre-
conditions (AcceptPrecons) and effects (AcceptEffects). If
the precondition scoring function rates the candidate pre-
conditions as acceptable, they become the new baseline pre-
conditions, and similarly for the effects. Candidate precon-
ditions may be accepted without the effects, and vice versa.

The precondition scoring function (AcceptPrecons) ac-
cepts the candidate preconditions if they are no worse than
the existing preconditions, when used to predict any of the
effects in the candidate rule. It makes use of both the weight
calculation and coverage of the training examples. Both
should be considered, as weight alone may permit rules
which do not cover any training examples, while coverage
alone may allow negatively weighted rules. Thus a combi-
nation of two rules can be rejected if, for any of the resulting
effects e, the resulting precondition p does not have a pos-
itive weight: weighte(p) ≤ 0, or if it does not cover any
training example: coveragee(p) = 0. Coverage is defined
to account for partial observability, so that precondition p
covers example x at effect e (coverse(p, x)) if none of the
fluents in the example state contradict the fluents in the rule
preconditions, and e is in both the example state changes
and the rule effects. The coverage of p on the training set at

effect e is defined to be the number of training examples p
covers: coveragee(p) = |{x : coverse(p, x)}|.

Additionally, the precondition scoring function uses dif-
ferences in precision and recall to identify and reject any
rule which performs significantly worse than its comparison
rule. It rejects rules where either the precision or recall drops
substantially for any of the rules’ effect bits. Since precision
and recall is a trade-off, the comparison is made using the F-
score for precondition pre at effect eff : Fpre,eff . If the new
F-score Fnew,eff is less than εp times the baseline F-score
Fbaseline,eff , on any effect eff , then the new rule is rejected.
In the results presented here, εp is set to 0.95.

The effects scoring function (AcceptEffect) similarly
compares F-scores. It takes a single precondition and com-
pares the F-score of one selected effect against the F-score
for every other effect. This identifies effects which are in-
consistent with the other effects in terms of precision and
recall. In particular, effects which occur in far fewer exam-
ples than other effects are identified in this way: these are
likely to be caused by noise, or could be conditional effects.
An effect is rejected by the function if its F-score is less than
εe times the F-score on any other effect of the same rule. In
the results presented here, εe is set to 0.5.

Finally, the effects backtracking function
(BacktrackEffects) tests if any of the effects should
be removed from the rule, in light of the new preconditions.
For instance, more specific preconditions may lower the
incidence of some effects (as seen in the training data) to the
extent that AcceptEffects rejects them. Each effect is tested
by the effects scoring function and, if rejected, removed
from the rule’s effects.

At this point, the preconditions and effects are written
as vectors. The conversion from a vector precondition to
a STRIPS precondition is straightforward: given the action
and its parameters, the fluent and parameters corresponding
to a particular bit position are known, and the value of the
bit gives the value of the fluent. In the case of the effects, the
bits only indicate whether a particular fluent changes, but not
what the change is from or to. If the fluent also exists in the
preconditions then this can be used to determine the correct
value of the fluent in the effects; otherwise, the value can be
obtained from the support vector from which the rule for the
effect bit originated.

Experiments
We tested our approach on several simulated domains
taken from the International Planning Competition (IPC) at
http://ipc.icaps-conference.org/. The domains
differ in terms of the number and arity of actions and predi-
cates, and the number and hierarchy of types. The main do-
main characteristics are detailed in Table 1.

Sequences of random actions and resulting states were
generated from the PDDL domain descriptions and used
as training and testing data. All data was generated
using the Random Action Generator 0.5 available at
http://magma.cs.uiuc.edu/filter/, modified to ad-
ditionally generate action failures. Table 2 shows the num-
bers of objects used in training and testing data for each do-
main.

Domain Actions Predicates
No. Max No. Max

arity (+types) arity
BlocksWorld 4 2 5 2
Depots 5 4 6 (+6) 2
ZenoTravel 5 6 8 (+4) 2
DriverLog 6 4 6 2
Rovers 9 6 25 (+8) 3

Table 1: Domain characteristics

Domain Training Testing
BlocksWorld 13 blocks 30 blocks
Depots 1 depot 4 depots

2 distributors 4 distributors
2 trucks 4 trucks
3 pallets 10 pallets
3 hoists 8 hoists
10 crates 8 crates

ZenoTravel 5 cities 10 cities
3 planes 5 planes
7 people 10 people

DriverLog 3 road junctions 20 road junctions
3 drivers 5 drivers
7 packages 25 packages
3 trucks 5 trucks

Rovers 2 rovers 4 rovers
4 waypoints 8 waypoints
3 objectives 4 objectives
3 cameras 4 cameras
3 objectives 4 objectives
3 modes 3 modes
2 stores 4 stores
1 lander 1 lander

Table 2: Numbers of objects in training and testing worlds

Ten different randomly generated training and testing sets
were used. Each training set was a sequence of 20,000 ac-
tions, and each testing set a sequence of 2,000 actions. Both
sequences contained an equal mixture of successful and un-
successful actions (where some precondition of the action
was not satisfied, and so no change occurred in the world). In
some domains (e.g. Rovers), portions of the state space can
only be traversed once, and in these cases multiple shorter
sequences of 400 actions were generated from randomly
generated starting states.

In line with previous work (Amir and Chang 2008), in-
complete observations were simulated by randomly select-
ing a fraction (10%, 25% or 50%) of fluents (including nega-
tions) from the world to observe after each action. The re-
maining fluents were discarded and the reduced state vector
was generated from the observed fluents. Sensor noise was
simulated similarly by flipping the value of each bit in the
state vector with probability 1% and 5%.

Results
We first tested the performance of different kernels on learn-
ing the implicit action model, comparing results for a stan-

StandardVoted Voted
2-DNF

Voted
3-DNF

Voted
5-DNF

Voted
DNF

0.5

0.6

0.7

0.8

0.9

1.0

F-
sc

or
e

Average F-score by model

Figure 3: Comparison of the performance of different per-
ceptrons learning action models from 20,000 random actions
in STRIPS domains, averaged across all domains, levels of
noise and partial observability. Error bars are standard er-
ror. Performance is significantly different between models
which use a k-DNF kernel and those which do not.

dard (non-kernelised) perceptron, a voted (non-kernelised)
perceptron, and a voted kernel perceptron. Both the DNF
kernel and k-DNF kernel with k = 2, 3 and 5 were tested.
Performance was measured in terms of the F-score of the
predictions on the test sets.

The fully observable, noiseless cases are easily learnt by
any of the perceptrons tested. After 5,000 training examples,
the F-score on the test set is 1, in almost all cases. Perfor-
mance of the voted perceptron, with or without the various
kernels, is almost identical (results not shown). With the in-
troduction of unobserved fluents or noise, the voted percep-
tron performs better than the standard perceptron. However,
the DNF kernel does not improve performance, with the un-
kernelised voted perceptron learning significantly more ac-
curate action models. In contrast, the k-DNF kernels all pro-
duce significantly more accurate models than the DNF ker-
nel or no kernel (p < 0.05, repeated measures ANOVA with
post-hoc Bonferroni t-test). Figure 3 gives a comparison of
the relative performance of each model. The use of k-DNF
kernels therefore represents a significant improvement on
previous work which used only the DNF kernel. In light of
these results, the 3-DNF kernel was selected for the remain-
der of the experiments.

Next, we extracted explicit rules from the implicit action
models. There was no statistically significant difference
between the F-scores of predictions made by the perceptron
models and those made by the extracted rules (repeated
measures ANOVA, p > 0.05). We also compared the
resulting models to the original domain descriptions
using a measure of error rate (Zhuo et al. 2010). The
error rate for a single action is defined as the number of
extra or missing fluents in the preconditions and effects
(Epre and Eeff respectively) divided by the number of
possible fluents in the preconditions and effects (T):
Error(a) = 1

2

(
Epre+Eeff

T

)
. The error rate of

a domain model with a set of actions A is:
Error(A) = 1

|A|
∑

a∈AError(a).

0 10 25 50 100
0

0.02

0.04

0.06

0.08

0.1

% of observable fluents

E
rr

or
ra

te

BlocksWorld
ZenoTravel

Depots
Driverlog
Rovers

(a) 0% noise

0 10 25 50 100
0

0.02

0.04

0.06

0.08

0.1

% of observable fluents

E
rr

or
ra

te

BlocksWorld
ZenoTravel

Depots
Driverlog
Rovers

(b) 1% noise

0 10 25 50 100
0

0.02

0.04

0.06

0.08

0.1

% of observable fluents

E
rr

or
ra

te

BlocksWorld
ZenoTravel

Depots
Driverlog
Rovers

(c) 5% noise

Figure 4: Results from learning explicit action rules from 5,000 training examples at varying levels of observability and noise
in simulated planning domains. The error rate measures errors in the learnt domain model relative to the actual domain model.

(:action DEBARK
:parameters (?x1 ?x2 ?x3)
:precondition (AND (in ?x1 ?x2) (at ?x2 ?x3))
:effect (AND (at ?x1 ?x3) (NOT(in ?x1 ?x2))))

(:action BOARD
:parameters (?x1 ?x2 ?x3)
:precondition (AND (at ?x1 ?x3) (at ?x2 ?x3))
:effect (AND (NOT(at ?x1 ?x3)) (in ?x1 ?x2)))

(:action FLY
:parameters (?x1 ?x2 ?x3 ?x4 ?x5)
:precondition (AND (at ?x1 ?x2) (fuel-level ?x1 ?x4)

(next ?x5 ?x4))
:effect (AND (NOT(at ?x1 ?x2)) (at ?x1 ?x3)

(NOT(fuel-level ?x1 ?x4)) (fuel-level ?x1 ?x5)))

(:action ZOOM
:parameters (?x1 ?x2 ?x3 ?x4 ?x5 ?x6)
:precondition (AND (at ?x1 ?x2) (fuel-level ?x1 ?x4)

(next ?x6 ?x5) (next ?x5 ?x4))
:effect (AND (NOT(at ?x1 ?x2)) (at ?x1 ?x3)

(NOT(fuel-level ?x1 ?x4)) (fuel-level ?x1 ?x6)))

(:action REFUEL
:parameters (?x1 ?x2 ?x3 ?x4)
:precondition (AND (fuel-level ?x1 ?x3) (next ?x4 ?x3)

(next ?x3 ?x4) (at ?x1 ?x2))
:effect (AND (NOT(fuel-level ?x1 ?x3)) (fuel-level ?x1 ?x4))

Figure 5: Explicit action model output for the ZenoTravel
domain after 5,000 training examples with 10% observabil-
ity and 5% noise. Missing fluents are in bold italic, incorrect
fluents in bold. The error rate of this example is 0.05.

The error rates indicate that the learnt models are close
to the actual STRIPS domain definitions, falling below 0.1
after around 5,000 examples in all cases (Figure 4). In par-
ticular, for fully observable, noiseless domains the correct
STRIPS model is given by the extracted rules in fewer than
2,000 training examples, except for the most complex do-
main, Rovers. Comparisons with other approaches in the lit-
erature are difficult due to differences in the learning set-
tings. Nevertheless it is notable that the error rates of the
learnt action models are low in comparison to action mod-
els learnt by Yang, Wu, and Jiang (2007) for the same do-
mains: their error rates at 90% observability (the highest re-
ported) range from around 0.04 (ZenoTravel) to 0.1 or above
(DriverLog and Depots) to more than 0.6 (Rovers). An ex-
ample action model is shown in Figure 5, demonstrating that
the method derives compact STRIPS-like rules even with
high levels of incompleteness and noise in the observations.

Conclusions and Future Work
The results demonstrate that our approach successfully
learns STRIPS operators from noisy, incomplete observa-
tions, in contrast to previous work which either generates
explicit operators but cannot tolerate noise and incomplete
examples, or tolerates noise and incomplete examples but
does not generate explicit operators. We also show empir-
ically that the 3-DNF kernel is a more appropriate choice
than the DNF kernel for learning in this setting.

Our approach depends on decomposing the learning prob-
lem into two stages: learning implicit action models and then
deriving explicit rules from the implicit models. Crucially,
the implicit models produce noise-free, complete observa-
tions for the domain model which has been learnt. An alter-
native approach to our rule derivation process would be to
apply existing action model learning techniques to the ob-
servations produced by the implicit models. However such
an approach effectively restarts the learning process, ignor-
ing information already learnt and available in the percep-
tron models, and so is likely to be less efficient.

Our approach also depends on the STRIPS scope assump-
tion (SSA) which essentially identifies the objects which are
relevant to the action and fixes their roles. In real-world
scenarios the SSA may not apply. Without the SSA, dur-
ing learning we must also consider state relating to objects
which are not listed in the action parameters. Implicit action
models in this setting may be learnt using a graphical rep-
resentation of states combined with a suitable graph kernel
(Mourão 2012). In future work we therefore plan to extend
our rule extraction method to derive rules from classifiers
trained with graphical state representations. Additional steps
will be required to efficiently handle the complexity intro-
duced by the requirement to perform comparisons between
graphical state descriptions.

Acknowledgements
This work was partially funded by the European Commis-
sion through the EU Cognitive Systems project Xperience
(FP7-ICT-270273) and the UK EPSRC/MRC through the
Neuroinformatics and Computational Neuroscience Doc-
toral Training Centre, University of Edinburgh.

References
Amir, E., and Chang, A. 2008. Learning partially observ-
able deterministic action models. Journal of Artificial Intel-
ligence Research 33:349–402.
Benson, S. S. 1996. Learning Action Models for Reactive
Autonomous Agents. Ph.D. Dissertation, Stanford Univer-
sity.
Croonenborghs, T.; Ramon, J.; Blockeel, H.; and
Bruynooghe, M. 2007. Online learning and exploit-
ing relational models in reinforcement learning. In
Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI 2007), 726–731.
Doğar, M. R.; Çakmak, M.; Uğur, E.; and Şahin, E. 2007.
From primitive behaviors to goal directed behavior using af-
fordances. In Proceedings of the International Conference
on Intelligent Robots and Systems (IROS 2007), 729–734.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.
Freund, Y., and Schapire, R. 1999. Large margin classifi-
cation using the perceptron algorithm. Machine Learning
37:277–96.
Gil, Y. 1994. Learning by experimentation: Incremental
refinement of incomplete planning domains. In Proceedings
of the 11th International Conference on Machine Learning
(ICML 1994), 87–95.
Halbritter, F., and Geibel, P. 2007. Learning models of rela-
tional MDPs using graph kernels. In Proceedings of the 6th
Mexican International Conference on Advances in Artificial
Intelligence (MICAI 2007), 409–419.
Khardon, R., and Servedio, R. A. 2005. Maximum mar-
gin algorithms with Boolean kernels. Journal of Machine
Learning Research 6:1405–1429.
Khardon, R.; Roth, D.; and Servedio, R. A. 2005. Effi-
ciency versus convergence of Boolean kernels for on-line
learning algorithms. Journal of Artificial Intelligence Re-
search 24:341–356.
Metta, G., and Fitzpatrick, P. 2003. Early integration of
vision and manipulation. Adaptive Behavior 11(2):109–128.
Modayil, J., and Kuipers, B. 2008. The initial development
of object knowledge by a learning robot. Robotics and Au-
tonomous Systems 56(11):879–890.
Mourão, K.; Petrick, R. P. A.; and Steedman, M. 2009.
Learning action effects in partially observable domains. In
Proceedings of the ICAPS 2009 Workshop on Planning and
Learning, 15–22.
Mourão, K.; Petrick, R. P. A.; and Steedman, M. 2010.
Learning action effects in partially observable domains. In
Proceedings of the 19th European Conference on Artificial
Intelligence (ECAI 2010), 973–974.
Mourão, K. 2012. (submitted) Learning action representa-
tions using kernel perceptrons. Ph.D. Dissertation, School
of Informatics, University of Edinburgh.
Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2007.
Learning symbolic models of stochastic domains. Journal of
Artificial Intelligence Research 29:309–352.

Rodrigues, C.; Gérard, P.; and Rouveirol, C. 2010. Incre-
mental learning of relational action models in noisy envi-
ronments. In Proceedings of the International Conference
on Inductive Logic Programming (ILP 2010), 206–213.
Sadohara, K. 2001. Learning of Boolean functions us-
ing support vector machines. In Proceedings of the Inter-
national Conference on Algorithmic Learning Theory (ALT
2001), 106–118.
Walsh, T. J., and Littman, M. L. 2008. Efficient learning
of action schemas and web-service descriptions. Technical
report, Dept. of Computer Science, Rutgers University.
Wang, X. 1995. Learning by observation and practice:
An incremental approach for planning operator acquisition.
In Proceedings of the International Conference on Machine
Learning (ICML 1995), 549–557.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artifi-
cial Intelligence 171(2-3):107–143.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intelligence 174(18):1540–1569.

Learning the distribution of the succesful grasping from

simulation, a case study

Technical Report

Sandor Szedmak
IIS, University of Innsbruck
sandor.szedmak@uibk.ac.at

Heiko Hahn
IIS, University of Innsbruck
heiko.hahn@uibk.ac.at

Justus Piater
IIS, University of Innsbruck
justus.piater@uibk.ac.at

Norbert Krüger
The Maersk Mc-Kinney Moller Institute, University of Southern Denmark

norbert@mmmi.sdu.dk

Jimmy Alison Jørgensen
The Maersk Mc-Kinney Moller Institute, University of Southern Denmark

jimali@mmmi.sdu.dk

January 25, 2012

Abstract

In this technical report the effect of the sampling approaches on the
accuracy of the prediction of the successful grasping is analyzed. In
simulation based experiments two, a simple and a relatively complex,
objects were the targets and two different type of grippers, equipped
with two and three fingers, are applied. The three-finger gripper was
also used in three different configurations. Sampling procedures are
investigated and compared via a set of accuracy measures of a binary
classification which had to learn the separation of the successful and
failed grasping actions on the two objects. We also analyze the struc-
ture of the distribution by asking that how do the successful grasping
actions relate to each other; do they form a connected, contiguous
subset in the full set of measurements. The result of this analysis
is then used to improve the prediction accuracy by applying a more
adaptive sampling technique a variant of the Markov Chain Monte
Carlo(MCMC) method.

1

1 Introduction

In this study we experimentally analyze the prediction of the success of the
grasping on a relatively complex and a simple objects. The main purpose of
this analysis is to find the most promising sampling and a relating learning
method which can provide high quality density estimation to the proba-
bilities of the successful grasping actions to a given object. This sampling
methods have to be sufficiently accurate and the same time fast enough to
be applicable in a real life scenario.

The presented learning model allows us to predict not only the success
of the failure, a binary classification approach, but the probabilities of the
these potential outcomes. Further details about estimating the grasping
densities can be found in the following papers, [2], [8], [5], [7], [6], [3] and
[4]. These papers investigate the estimation in different circumstances and
from different point view, e.g. which part of the the target object is the
most promising one to grasp.

The prediction methods are applied on the data sets generated by sim-
ulation on the “Dolt” and the “Box” objects, see them on Figure 1 and
Figure 2. The first object is a non-convex not an easy task for grasping,
the second one is a relatively simple box. To grasp the Dolt object a sim-
ple two-finger robot hand is used. The results of these experiments have
been exploited to amend the sampling technique, the learning method and
the simulation procedure as well. We can consider the Dolt object based
experiment as a certain base line when the further research objectives are
outlined. When the box object is grasped a three-finger robot hand is ap-
plied in three different configurations. The details of the data collection and
of the configuration of the robot hands can be found in next Section.

In the experiments two different types of sampling are applied. The
first one can be defined as a CAD model dependent method because it tries
to follow the surface of the objects and produces an approximately uniform
sampling relative to that. This sampling yields generally unbalanced samples
where the number of successful cases are very small relative to the failed
ones. With some post-processing the proportion of successful cases can be
increased at the price of some distortion caused on the underlying unknown
distribution of the successful cases.

The other sampling approach is a certain type of Markov Chain Monte
Carlo(MCMC) sampling, which could work on an object without exploiting
its CAD model, thus can be used among more general conditions. The tar-
get of this sampling is to capture the manifold of the successful grasping in
the space of all, successful and failed, ones. It mainly collects failed cases
when the regions of successful cases are isolated and they can not be con-
nected without considering negative items. As a consequence this sampling
technique can produce data sets more characteristic on the successful items.

Comparing the two methods we need to think about how the success

2

Total number Successful Sampling Resampled
of cases cases method

Dataset1 311000 1149 CAD model
dependent

No

Dataset1r 11423 1149 CAD model
dependent

Yes

Dataset2 1367269 62269 CAD model
dependent

No

Dataset2r 91116 48124 CAD model
dependent

Yes

Dataset3mc 1091264 41010 MCMC No

Table 1: Data sets generated on the Dolt object where a two-finger hand is
applied in a floating environment

probability of a grasping action can depend on the shape of an object.
The successful grasping requires the knowledge about a sufficiently large
neighborhood of a surface point to capture the local structure. Collecting
independently information on points might not able to express the inter-
dependencies of those points. Therefore the sampling method should focus
on the exploration of the local neighborhoods around the points where the
grasping is turned to be successful.

2 Data sources

The data sets serving as input in the binary classification procedure have
been generated on two, a Dolt and a Box, objects. In case of the Dolt
object a two-finger gripper is applied in three different sampling approaches,
where samples provided by two sampling methods are resampled since they
contain too few positive cases, see details in Section 2.1. The third sampling
is designed as a more adaptive method based on a MCMCM type method
focusing on the collection of items on the manifold spanned by the successful
cases. At the end we have 5 different samples see in Table 1.

To each case in the samples there are given the object relative position
of the gripper in the space of R3, and the corresponding orientation in the
space of SO(3) which is represented by unit quaternions. The task is to
predict the potential success of the grasping by assuming the knowledge
about a given pair of position and orientation.

Since the first two data sets, Dataset1 and Dataset2, show up significantly
different distribution, see the result below, therefore the direct comparison of
the result between the data sets is difficult. It turned to be a better approach
is to find an adaptive sampling procedure, e.g. a Markov Chain Monte
Carlo(MCMC) type one, which can be applicable with more generality, see

3

Total number Successful Sampling Finger
of cases cases method configuration

Dataset4 25000 9539 CAD model
dependent

BALL

Dataset5 35000 9968 CAD model
dependent

CYL

Dataset6 40000 10009 CAD model
dependent

PAR

Dataset4mc 33101 23305 MCMC BALL
Dataset5mc 28488 18691 MCMC CYL
Dataset6mc 41970 12603 MCMC PAR

Table 2: Data sets generated to the Box object by applying three-finger
gripper(dexterous) in three different configuration in a floating environment.

further details about these approaches in [11] and the references therein.
The size of the corresponding data set, Dataset3mc, is shown in Table 1.

In the experiments dealing with the second object, the Box, a three-
finger gripper, Shunk SDH dexterous robot hand, is used in three different
configuration, see their brief description in Table 3, and these configuration
can be seen on the corresponding sub-images of Figure 4.

Abbreviation Finger configuration

BALL Ball Precision Grip
CYL Cylinder Precision Grip
PAR Parallel Grip

Table 3: Configuration of the three-finger Shunk SDH dexterous robot hand
used in the data generation

Based on these configuration six data sets are collected, three of those
are generated by sampling in a CAD model related way, and three others
come from MCMC sampling. The parameters of the these data sets are
presented in Table 2.

Remark 1. In the identifiers of the data sets we apply the following rules,
those identifiers ended with “mc” are from MCMC type sampling, if the
suffix is “r” then it shows the data set is resampled in the way detailed in
Section 2.1. If there is no alphabetic suffix after the number appearing at
the end of the identifier then the data set is generated by CAD model related
sampling.

4

2.1 Increasing the proportion of positive cases by supervised
clustering

Since the data sets, Dataset1 and Dataset2, are very unbalanced, i.e. the
negative cases overwhelmingly dominate these data sets, reducing the num-
ber of negative cases with a comprehensive strategy not only decrease the
computational burden but could increase the reliability of the estimation.
The reduction applied preserves those negative items which occurring in the
neighborhood of at least one positive item, and drops those which appear
away from any positive cases.

This reduction has been carried out by a k-means clustering like algo-
rithm. The details are the following

• Let all positive cases, (in case of Dataset1 it is equal to 1149 items),
be fixed as cluster centers.

• Negative cases satisfying simultaneously the following criteria

– at least one positive case is closer than a given distance, e.g. the
(Maximum radius of data in position) /(10

√
3),

– at least one positive case is closer in orientation than a given
angle, e.g. π/18,

are accepted, and all other negative cases are dropped.

The same procedure is applied on Dataset2 with a modification because
the number of the positive items in this set is much greater. First 2000 pos-
itive items selected randomly as seeds of the procedure then the algorithm
detailed above has been applied. The neighborhood of seeds might contain
further positive items as well which were also included together with the
adjacent negative items. At the end of this procedure we have received the
data sets, Dataset1r and Dataset2r, see their parameters in Table 1.

These modifications are partially preserve the structure of the distribu-
tion around the positive cases but the whole distribution might be biased.

3 Learning method

The grasping action can be described by the gripper position p ∈ R3 and
orientation o ∈ S(O)3, they serve as input data in the learning problem.
The success of the grasping action is given by y ∈ {+1,−1}, where the 1
labels the positive, successful cases. The number of actions considered in
the learning method is denoted by m. The learning method applied is a
generalization of the well known Support Vector Machine to the case which
can predict arbitrary, not only binary, outputs which can be represented in
a properly chosen Hilbert space, e.g. the space of square integrable func-
tions comprising the probability density functions. The learning approach

5

has been applied for multiclass classification in [14], for graph represented
structured output learning in [1] and [12], and for learning when the data
sources are incomplete [13], [10] and [9] as an alternative to the well known
Expectation Maximization algorithm.

3.1 Feature representation

All sources of the information, position, orientation and success are repre-
sented in the corresponding feature spaces. These feature spaces are denoted
by Hposition, Horientation and Hsuccess. The functions providing the feature
representations are denoted and given by

ψs : {+1,−1} → Hsuccess

φp : R3 → Hposition

φo : S(O)3 → Horientation

(1)

The feature spaces are chosen as probability density functions of Gaus-
sian distributions, namely

ψs(y) = f(.|y, σsuccess)
⇒ 1

(2π)1/2σsuccess
e−‖t−y‖

2/(2σ2
success), y ∈ {+1,−1}, t ∈ R,

φp(p) = f(.|p, σposition)

⇒ 1
(2π)3/2σ3

position

e−‖t−y‖
2/(2σ2

position), p, t ∈ R3,

φo(o) = f(.|o, σorientation)

⇒ 1
(2π)4/2σ4

orientation

e−‖t−y‖
2/(2σ2

orientation), o ∈ S3(∼ S(O)3), t ∈ R4,

(2)

where the standard deviations σsuccess, σposition and σorientation are indepen-
dently chosen to every feature mapping in cross validation. These feature
mappings lead to Gaussian kernels with parameters equal to the standard
deviations of the features multiplied by

√
2.

In the learning method we look for a linear mapping W : Hposition ⊗
Horientation → Hsuccess which can approximate the functional relationship
between the position, orientation and the success represented by the corre-
sponding feature spaces. The symbol ⊗ denotes the tensor product of two
spaces.

3.2 Optimization framework

In the optimization method we force the inner products

〈ψs(y),W(φp(p)⊗ φo(o))〉 (3)

to be uniformly high for all training items, since if the linear mapping W
is correct then the inner product between the prediction W(φp(p)⊗ φo(o))
and the real value ψs(y) has to take its maximum value. Based on this the
primal optimization problem is formulated as follows:

6

min 1
2‖W‖

2
Frobenius + C

∑m
i=1 ξi

w.r.t. W : Hposition ×Horientation → Hsuccess linear map
ξi ∈ R i = 1, . . . ,m item wise errors

s.t. 〈ψs(yi),W(φp(pi)⊗ φo(oi))〉 ≥ 1− ξi,
ξi ≥ 0, i = 1, . . . ,m,

(4)

where C > 0 is a penalty constant balancing between the regularization
term ‖W‖2Frobenius constraining the class of linear mapping to achieve better
regularization, and the empirical error

∑m
i=1 ξi.

After introducing Lagrangians α = (αi), i = 1, . . . ,m to each constraints
we can derive the dual problem which is finally solved instead of the primal
form

min 1
2α
′
compound kernel︷︸︸︷

K α− 〈1,α〉
w.r.t. α ≥ 0
s.t. 0 ≤ α ≤ C1,

(5)

where 1 is vector with components equal to 1, and the compound kernel
K is the point wise product of the kernels belonging to the three feature
spaces:

Kij = (Ksuccess)ij(Kposition)ij(Korientation)ij , i, j = 1, . . . ,m, (6)

where
(Ksuccess)ij = 〈ψs(yi), ψs(yj)〉 ,
(Kposition)ij = 〈φp(pi), φp(pj)〉 ,
(Korientation)ij = 〈φo(oi), φo(oj)〉 .

(7)

After solving the dual problem for α we have

W =
∑m

i=1 αi(ψs(yi)⊗ φp(pi)⊗ φo(oi)) (8)

A prediction in the feature space of success can be computed for a given
pair of position p and orientation o by applying

ψs(y) = W(φp(p)⊗ φo(o))
=

∑m
i=1 αiψs(yi) 〈φp(pi), φp(p)〉 〈φo(oi), φo(o)〉 ,

(9)

which gives a non-negative linear combination of density functions corre-
sponding to the features of success in the training set. This can be inter-
preted as an unnormalized density mixture, hence after normalization it can
be used to estimate a confidence interval around the predicted value.

To derive the success label {+1,−1} we might apply

ŷ = arg maxy∈{+1,−1} 〈ψs(y)W(φp(p)⊗ φo(o))〉
=

∑m
i=1 αi 〈ψs(y), ψs(yi)〉 〈φp(pi), φp(p)〉 〈φo(oi), φo(o)〉 .

(10)

7

TP True positive
FP False positive
FN False negative
TN True negative

Precision TP/(TP + FP)
Recall TP/(TP + FN)
F1 (2 ∗ precision ∗ recall)/(precision+ recall)

Accuracy (TP + TN)/(TP + FP + FN + TN)
EER Equal error rate in receiver operating characteristic (ROC)
AUC Area under curve of receiver operating characteristic (ROC)

5-NN stands for 5-Nearest Neighbors method

Table 4: Measures and their components used in the prediction method

4 Experimental Results

The measures used in the prediction of the successful grasping are described
in Table 4.

We apply not only one measure, the accuracy, since the data sets are very
unbalanced, might not capture correctly the capability of the prediction
of the positive cases, for example predicting in such a way that all test
items belong to the negative cases can give misleadingly high accuracy. The
measures: Area under curve(AUC), Precision, Recall and their combination
F1, see the definitions in Table 4, can reflect better how well the predictor
can behave on small number of positive cases. In this study we focus on the
AUC measure, namely the kernel parameters are optimized by maximizing
the AUC in cross validation.

The results are computed on a uniform random subsample of the original
sets via 5-fold cross validation. The kernel parameters are optimized by
further splitting the training set into validation training and validation test
sets. The results are summarized in the following tables.

4.1 Dolt object, two-finger hand

The tables presented here display the prediction results computed for the
Dolt object based on different sampling methods. We firstly computed the
estimations on the subsampled data sets Dataset1r and Dataset2r.

Precision Recall F1 Accuracy EER AUC

Dataset1r 0.3113 0.6008 0.4088 0.8258 0.6842 0.5110,

8

Average predicted frequencies, normalized to 100
Dataset1r Observed

Positive Negative

Predicted Positive TP = 6.04 FP = 13.39
Negative FN = 4.03 TN = 76.54,

Precision Recall F1 Accuracy EER AUC

Dataset2r 0.6791 0.6783 0.6762 0.6567 0.6428 0.4257,

Average predicted frequencies,normalized to 100
Dataset2r Observed

Positive Negative

Predicted Positive TP = 36.14 FP = 17.14
Negative FN = 17.14 TN = 29.57.

Dataset2r is a more balanced one which gives significantly higher values
in the precision and the recall measures. The higher accuracy in Dataset1r
is mostly the consequence of the very high proportion of negative items,
they occur approximately 10 times more than the positives cases.

The first one shows the distribution in the R3 and the second one in 3D
projection of the S(O)3 space. The points belongs to four classes of true
positives, false positives, false negatives and true negatives.

In case of the third data set, Dataset3mc we have the following result,

Precision Recall F1 Accuracy EER AUC

Dataset2 0.0841 0.8739 0.1533 0.6654 0.7176 0.5741

Dataset3mc 0.1165 0.8984 0.2060 0.7239 0.7556 0.6439,

here we omitted the subsampling which increases the proportion of the posi-
tive items. To make the results comparable we also display the corresponding
accuracy measures for the original Dataset2, whose size is approximately the
same as Dataset3mc, computed at the same conditions.

Average predicted frequencies, normalized to 100
Dataset3mc Observed

Positive Negative

Predicted Positive TP = 26.32 FP = 20.01
Negative FN = 2.99 TN = 50.68.

Since the positive cases constitute approximately 4% of the data set,
the precision measure is low but if we compare the result to Dataset2 the
improvement is clear. When those measures, EER and AUC, are considered
which suffer much less from the unbalanced classes we receive significantly
better results. Hence applying a sampling procedure which does not require

9

a CAD model is a significantly more promising approach for a robot sys-
tem which has to explore an environment consisting of new, earlier unseen,
objects.

4.2 Box object, three-finger hand

From the Tables presented here we can conclude that the three-finger hand
produces significantly high accuracy on the simple box object in all applied
measures. Furthermore we can recognize that the MCMC sampling performs
much better than that is adapted to the CAD model.

4.2.1 BALL finger configuration

Precision Recall F1 Accuracy EER AUC

Dataset4 0.7846 0.7781 0.7812 0.8314 0.7950 0.6731
Dataset4mc 0.9115 0.9283 0.9197 0.8859 0.8170 0.7288

Average predicted frequencies,normalized to 100
Dataset4 Observed

Positive Negative

Predicted Positive TP = 30.09 FP = 8.27
Negative FN = 8.59 TN = 53.05

Average predicted frequencies,normalized to 100
Dataset4mc Observed

Positive Negative

Predicted Positive TP = 65.34 FP = 6.36
Negative FN = 5.06 TN = 23.25

4.2.2 CYL finger configuration

Precision Recall F1 Accuracy EER AUC

Dataset5 0.7947 0.7109 0.7503 0.8633 0.7631 0.6579
Dataset5mc 0.9576 0.9257 0.9413 0.9122 0.8745 0.8041

Average predicted frequencies,normalized to 100
Dataset5 Observed

Positive Negative

Predicted Positive TP = 20.52 FP = 5.31
Negative FN = 8.35 TN = 65.82

Average predicted frequencies,normalized to 100
Dataset5mc Observed

Positive Negative

Predicted Positive TP = 70.48 FP = 3.13
Negative FN = 5.66 TN = 20.73

10

4.2.3 PAR finger configuration

Precision Recall F1 Accuracy EER AUC

Dataset6 0.7847 0.6822 0.7298 0.8736 0.7441 0.6395
Dataset6mc 0.8509 0.8393 0.8450 0.8423 0.8383 0.7095

Average predicted frequencies,normalized to 100
Dataset6 Observed

Positive Negative

Predicted Positive TP = 17.08 FP = 4.68
Negative FN = 7.96 TN = 70.28

Average predicted frequencies,normalized to 100
Dataset6mc Observed

Positive Negative

Predicted Positive TP = 43.00 FP = 7.54
Negative FN = 8.23 TN = 41.23

5 Investigation of the distribution of the positive
cases in CAD model dependent sampling

The small number of positive cases (=1149) in relation to the entire data
set (=311000) in Dataset1 rises the question how the positive cases are
distributed among the vast majority of negative ones. To this end the nearest
neighborhood(NN) of each of the positive cases are analyzed. The size of
these neighborhoods was set to 5 in the computation of the results presented
in the following tables.

The next tables display the local distribution of the positive and negative
items in the neighborhoods. First the number of positive items are counted,
then the number of those positive cases are enumerated whose neighborhood
contains no any other, or 1,2,3,4,5 positive cases. The enumeration was
carried out for the positions and the orientations separately.

Dataset1, 1149 positive cases

Number of positive cases in
5-NN

0 1 2 3 4 5

Positive cases with as many
positive neighbors as shown
in the first row in R3

899 212 37 1 0 0

In percentage 78.24 18.45 3.22 0.09 0.00 0.00

Positive cases with as many
positive neighbors as shown
in the first row in SO(3)

978 156 14 1 0 0

In percentage 85.12 13.58 1.22 0.09 0.00 0.00

11

This result shows that almost all positive cases are singular in Dataset1,
i.e. they lie isolated among the negative ones. It might imply that there is no
contiguous range of the position and orientation space where the positivity
is a characteristic property in that sample..

Dataset2, 62269 positive cases

Number of positive cases in
5-NN

0 1 2 3 4 5

Positive cases with as many
positive neighbors as shown
in the first row in R3

25222 18978 11568 4971 1368 162

In percentage 40.50 30.48 18.58 7.98 2.20 0.26

Positive cases with as many
positive neighbors as shown
in the first row in SO(3)

26678 18415 11253 4654 1142 127

In percentage 42.84 29.57 18.07 7.47 1.83 0.20

In Dataset2 the nearest neighbors of the positive items contain signifi-
cantly more positive items, but if we consider the majority rule, where the
number of positive neighbors greater or equal to 3, then most of the positive
cases fail to be predicted as positive ones based on a 5-NN predictor.

5.1 Conclusion

Based on this analysis we decided to change the strategy of the sampling.
The proposed new approach, an MCMC type method, concentrates on the
manifold of the successful items and try to avoid segments of the sampling
space containing no success items with high probability.

Acknowledgment

The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme FP7/2007-2013 (Spe-
cific Programme Cooperation, Theme 3, Information and Communication
Technologies) under grant agreement no. 270273, Xperience.

A Sampling by a variant of the Metropolis-Hasting
method

To implement an adaptive sampling method which highly independent from
the shape of the target object, a Markov Chain Monte Carlo type method,
a variant of the Metropolis-Hastings algorithm is applied. This algorithm
is fundamentally a proposal distribution based random search algorithm in

12

the space of the observed events. Our objective for applying this kind of
algorithm is to capture the manifold of the successful cases in the space of
all, successful and failed grasping actions.

A.1 Description of the algorithm

Let the set G = {g1, · · · , gnp} be the collection of all successful grasping.
These grasping are given by their position and orientation as usual.

1. Input:

• G set of known positive grasping,

• radius R in R3, for example R = 1cm,

• angle α defining a cone in SO(3), for example α = 15◦,

• fix sample size, and let isample = 0.

2. Let S = G be the set of successful grasping at the start point of the
algorithm.

Let F = ∅ be the set of failures which is empty at the start point.

3. Choose uniformly one positive item s of the set S of successful grasp-
ing, and let sposition be the corresponding position and sorientation be
the corresponding orientation.

4. Take a sample item

• xposition from a 3 dimensional Gaussian distributionN (sposition,Θ),
where Θ is a covariance matrix with only diagonal elements equal
to R2.

Let P (xposition) be the probability of the sample item with respect
to the Gaussian distribution N (sposition, R

2).

• and xorientation from 4 dimensional Von Mises-Fisher distribution
C4(κ) exp(κ 〈sorientation, x〉), where κ = α.

Let P (xorientation) be the probability of the sample item with re-
spect to Von Mises-Fisher distribution C4(κ) exp(κ 〈sorientation, x〉).

5. • If xposition <= R, and the angle between xorientation and sorientation
is ≤ α then

– if the grasping is successful at (xposition, xorientation) then add
this item to S,

– if the grasping is unsuccessful at (xposition, xorientation) then
add this item to F ,

• Otherwise

13

– If the grasping is successful at (xposition, xorientation) then add
this item to S,

– Otherwise
Accept the point (xposition, xorientation) with probability
P (xposition)P (xorientation), and add this item to F ,

6. If the item is not accepted then go to Step 4 and repeat the sampling
of x around the same positive item s !

7. isample+ = 1

If isample < sample size Go to Step 3,

otherwise Stop and return S and F !

14

References

[1] K. Astikainen, L. Holm, E. Pitkänen, S. Szedmak, and J. Rousu. To-
wards structured output prediction of enzyme function. In BMC Pro-
ceedings, 2(Suppl 4):S2. 2008.

[2] Emre Başeski, Nicolas Pugeault, Sinan Kalkan, Justus Piater, and Nor-
bert Krüger. Using Multi-Modal 3D Contours and Their Relations for
Object Encoding and Grasping. In 24th International Symposium on
Computer and Information Sciences, 9 2009. Northern Cyprus.

[3] Leon Bodenhagen, Renaud Detry, Justus Piater, and Norbert Krüger.
What a successful grasp tells about the success chances of grasps in its
vicinity. In ICDL-EpiRob. IEEE, 2011.

[4] Renaud Detry, Carl Ek, Marianne Madry, Justus Piater, and Danica
Kragić. Generalizing Grasps Across Partly Similar Objects. In Inter-
national Conference on Robotics and Automation, 2012. To appear.

[5] Renaud Detry, Dirk Kraft, Oliver Kroemer, Leon Bodenhagen, Jan
Peters, Norbert Krüger, and Justus Piater. Learning Grasp Affordance
Densities. Paladyn Journal of Behavioral Robotics, 2(1):1–17, 2011.

[6] Renaud Detry and Justus Piater. Grasp Generalization Via Predictive
Parts. In Austrian Robotics Workshop, 5 2011.

[7] Benedikt Hupfauf, Heiko Hahn, Leon Bodenhagen, Dirk Kraft, Norbert
Krüger, and Justus Piater. Grasp Densities for Grasp Refinement in
Industrial Bin Picking. In Workshop on Uncertainty in Automation, 5
2011. Workshop at ICRA.

[8] Dirk Kraft, Renaud Detry, Nicolas Pugeault, Emre Başeski, Frank
Guerin, Justus Piater, and Norbert Krüger. Development of Object
and Grasping Knowledge by Robot Exploration. IEEE Transactions
on Autonomous Mental Development, 2(4):368–383, 12 2010.

[9] Ghazanfar M.A., Prugel-Bennett A., and Szedmak S. Kernel mapping
recommender system algorithms. Information Sciences Journal, 2011.
Accepted.

[10] Ghazanfar M.A., Szedmak S., and Prugel-Bennett A. Incremental ker-
nel mapping algorithms for scalable recommender systems. In IEEE
International Conference on Tools with Artificial Intelligence (ICTAI),
Special Session on Recommender Systems in e-Commerce (RSEC).
2011.

[11] D.J.C. Mackay. Information Theory, Inference, and Learning Algo-
rithms. Cambridge University Press, UK, 2003.

15

[12] S. Szedmak and Z. Hussain. A universal machine learning optimiza-
tion framework for arbitrary outputs. 2009. http://eprints.pascal-
network.org.

[13] S. Szedmak, Y. Ni, and S. R. Gunn. Maximum margin
learning with incomplete data: Learning networks instead of
tabels. Journal of Machine Learning Research, Proceedings,
11, Workshop on Applications of Pattern Analysis:96–102, 2010.
jmlr.csail.mit.edu/proceedings/papers/v11/szedmak10a/szedmak10a.pdf.

[14] S. Szedmak, J. Shawe-Taylor, and E. Parado-Hernandez. Learning via
linear operators: Maximum margin regression. In PASCAL Research
Reports, http://eprints.pascal-network.org/. 2005.

16

B Figures

Figure 1: The original Dolt object whose CAD model is used in the simula-
tion

Figure 2: The CAD model of the box object

17

Dolt

Figure 3: Distribution of the grasping success in position space, R3, based on
Dataset1 generated by two-finger gripper, green = success, blue= slipped,
light red = dropped, dark red = missed

Box by BALL config. Box by CYL config. Box by PAR config.

Figure 4: Distribution of the grasping success in position space, R3, based
on data sets: Dataset4mc, Dataset5mc and Dataset4mc generated by three
configurations of the three-finger gripper, green = success, blue= slipped,
light red = dropped, dark red = missed

18

Robotics Group
The Maersk Mc-Kinney Moller Institute

University of Southern Denmark

Technical Report no. 2012 – 1

Introduction to feature to grasp
association

Mikkel Tang Thomsen [mitho07@student.sdu.dk]

February 2, 2012

Title Introduction to feature to grasp association

Copyright© 2012 Mikkel Tang Thomsen [mitho07@student.sdu.dk].
All rights reserved.

Author(s) Mikkel Tang Thomsen [mitho07@student.sdu.dk]

Publication History

Abstract

This journal serves as an introduction to the feature to grasp space. The main objective is to
investigate the feature to grasp association space in terms of the ECV (Early Cognitive Vision)
high level features of 3D contours and 3D surfaces for single features. This involves simulating
grasps with a two finger parallel gripper in a number of scenes with features of interest. A
variety of situations have been evaluated exposing the feature to grasp space. All the situations
are held up against the ground truth feature reference frame and a ECV feature extracted
reference frame showing that the surface extraction in particular seems promising whereas the
contour features introduces certain issues. A qualitative analysis has been performed on the
acquired results.

1

1 Introduction

This journal covers the work in connection with an investigation of the feature to grasp association.
In the following sections the project will be motivated introduced and related to previous work.

1.1 Motivation

Grasping of unknown objects has an increasing interest in the robotic community. One of the
primary reasons for this is the increasing integration of robots in our human world, e.g. robotic
vacuum cleaners. In order to take the next steps in autonomous robotics it is necessary for robots
to be able to interact with our world. One of the primary interactions for humans is the ability
to grasp things. This however is very complicated due to the complicated world we interact with.
Furthermore humans have a grasping mechanism which is highly sophisticated through thousand
of years of evolution.

By introducing a visual system and base grasps on visual cues, it has previously been shown that a
high probability of a successful grasp can be achieved, when utilising simple relation between two
feature and corresponding simple predefined grasps. From this results it is proposed that other and
higher order relations exist in between multiple features, that yield higher probability of successful
grasps. In a search for such higher order relations the grasp space for a given feature set must be
spanned and a search in the cross space of visual features and grasps must be carried out. In this
project the initial steps towards the objective are taken by investigating the grasp space in terms
of single specific visual features and thereby acquiring an initial understanding of the feature-grasp
cross space.

This projects serves as an introduction to a Master Thesis with the purpose of utilizing the grasp
space for a given object and corresponding ECV (Early Cognitive Vision) features to search for
higher order relation in between features that increases the probability of a successful grasp.

1.2 Overview

The problem statement can be described in the following sentences.

1. Investigate the feature to grasp association by means of 3D contours and 3D surfaces and
associated simulated grasps utilizing the grasp simulator in RobWork.

2. Show qualitatively that a correlation exists in between feature space and grasp space by
investigating the spanned feature-grasp space

The project consists of a number of different aspects each contributing to the overall objective of
investigating the feature to grasp association. In figure 1 an overview of the different aspects can
be seen. The key elements are divided into a RobWork domain part, consisting of a visualization
and simulation environment, enabling stereo camera image acquisition and grasp simulation, and a
ECV domain enabling feature extraction based on the given stereo images and camera parameters.
As an input a number of scenes or situation with specific features of interest are designed and used.
Finally a qualitatively analysis is carried out based on the acquired simulation and extraction data.

2

Figure 1: Overview of the different aspects in the project.

1.3 Related Work

The topic relates to the work conducted by Mila Popović in [5] and [4], where it was proposed
that a number of predefined simple grasp types triggered by ECV features would yield a good
probability of a successful grasp. In figure 2 the different grasp types are shown respectively for
contour grasps and surface grasp. Through a number of experiments with real world data it was
shown that such predefined simple grasp gave a high probability for being a successful grasp. In
this context the results are interesting as they should be visible in the feature to grasp space that
is spanned, and by qualitative analysis justified.

(a) (b)

Figure 2: 2(a) introducing the proposed simple grasp. 2(b) showing a visualization of three ex-
tracted surfaces and one of the corresponding grasps. Both illustrations have been taken from
[4].

2 Theory

In this section, the theoretical foundation for the feature to grasp association will be established.
This involves a brief introduction to ECV framework, RobWork simulation environment and the
grasp representation.

3

2.1 Early Cognitive Vision feature framework

The visual foundation of the feature grasp association is the ECV (Early Cognitive Vision) frame-
work feature set, see [1] for an overview of the framework. The ECV feature framework is a
hierarchical representation of visual information. The framework is relying in stereo images, from
which two different hierarchies evolves, namely a contour and surface part. Each of these parts is
layered in a hierarchy where the level of abstraction is increased. The level of abstraction starts out
with 2D feature and ends at the highest level of abstraction as 3D contours and 3D surfaces. In this
context the focus is on the high level features, because we want to utilize the level of abstraction
that is in the ECV framework to simplify the relation between a successful grasp and multiple
features.

Figure 3: Illustration of the layered hierarchical structure of the ECV feature set. Evolving from
stereo images to high level features of 3D contours and 3D surfaces. Taken from [4].

4

The 3D contour and 3D surface are formally introduced in equation 1 and 2, where P depicts the
position, Θ the orientation, C the colour distribution and D the dimension of the feature.

Πcontour = (P,Θ, C,D) (1)

Πsurface = (P,Θ, C,D) (2)

The extraction process of the position, orientation and dimension are based on the hierarchical
structure, by utilising the sub-features from the layer below. Given a set of sub-features the
position is derived by calculating the centre of mass of these sub-features. In a similar way the
sub-features are used to calculate the three main direction of this sub-feature cloud using principal
components analysis. The largest component is the x-axis the second largest the y-axis and the
smallest the z-axis giving a right hand coordinate system describing the orientation. For a 3D
surface this seems reasonable, namely that the two largest components spans the surface and the
smallest depicts the normal to the surface. For the 3D contour it is more ambiguous due to the fact
that a straight contour ideally is a line hence the orientation is undefined except from the x-axis
which will be along the contour. In the rest of this journal contour and 3D contour will be used
interchangeably for a 3D contour whereas surface and 3D surface will be used interchangeably for
3D surfaces.

2.2 Grasp representation

A grasp is given as a 6D homogeneous transformation from a reference frame to a gripper frame
and an associated grasp value which depicts the success of the grasp. In simulation this could be
discrete values, successful or non-successful, but it could also take other forms such as a quality
measure or a probability of the success of the grasp. In equation 3 a formal notation is introduced
and in figure 4 the principle is shown.

Grasp = {TGripper
Feature , success} (3)

(a) (b)

Figure 4: Example of a grasp being the homogeneous transformation from the feature frame, 20(a),
to the gripper frame, 20(b). A frame is described with three axes, x (red), y (green), z (blue).

5

2.3 Simulation in RobWork

For the grasp simulations that are to be performed as a part of the investigation of the feature
to grasp space the robotic framework of RobWork [2] is used. For simulation purposes the Rob-
WorkSim module [3] is used which is an embedded part of the RobWork framework. RobWorkSim
is tailored for grasp simulations utilizing an underlying physics engine to simulate the forces and
torques that are applied when performing a grasp.

3 Experiment

In this section the performed experiments will be described in terms of experimental procedure
and setup.

3.1 Scene setup, objects and gripper

When a grasp simulation is performed, a number of decisions have to be taken which affect the
result of the simulation. The overall scene setup, the gripper type, the objects and how the grasps
are sampled in the scene.

In this particular experiment the focus is in the grasp distribution around an feature. Therefore a
free-floating environment is found suitable. A free floating environment meaning an environment
with only the gripper and the object of interest and no outer forces affecting the object or the
gripper such as gravity.

3.1.1 Gripper - Schunk PG70

A rather simple two-finger parallel gripper, Schunk PG70 [6], has been chosen for the grasp simu-
lation. The reason for this is that the complexity of the experiment should be sufficiently low such
that the results can be interpreted easily. In figure 5 the gripper is shown. The distance between
the gripper jaws are set to be in the range from 0.00 m to 0.07 m.

(a) (b) (c)

Figure 5: PG70 gripper used for the experiments, 5(a) shows the gripper TCP-frame(Tool Center
Point), whereas 5(b) and 5(c) shows the gripper from different angles.

6

3.1.2 Objects

When choosing suitable objects for the experiments, the ECV feature framework plays a central role
as it is the foundation for the feature to grasp association. To utilize the ECV feature hierarchy the
top level features are the starting point for the experiments, namely surface features and contour
features. To evaluate the features they are set into specific context which make sense. Based on
common sense a set of situation are designed to cover some of the different situation where features
will occur, see figure 6 for a visualization.

In the following subsections the different situation are presented. The dimensions of the different
objects consisting the feature, are presented in table 1. The reason why the dimensions are inter-
esting, is that the resulting grasps are closely connected to the dimensions of the objects and the
properties of the gripper. By choosing different object sizes this correlation should be exposed.

Dimensions x [m] y [m] z [m]

Contour on surface edge 0.1 0.001 0.25
Contour on box 0.2 0.05 0.2
Small surface 0.05 0.5 0.01
Large surface 0.5 0.25 0.01
Surface on box 0.05 0.1 0.2

Table 1: Dimension of the different test objects, denoted with the feature situation that they are
related to.

(a) (b) (c)

(d) (e)

Figure 6: Visualization in RobWork of the five different situations with the embedded ground truth
reference frame. Contour on edge situation in 6(a), Contour on box situation 6(b), small surface
situation in 6(c), large surface situation in 6(d) and the surface on box situtation in 6(e).

7

Contour features
To evaluate the grasps of contours two different situations have been designed. The first situation

is shown in figure 6(a), where a contour should be on the edge of a surface. This resembles a typical
situation in a real application where the surface and the contour could be a part of an open box.

The second situation is a contour on the outer corner of a box, as can be seen in figure 6(b). The
object, which the contour is a part of is dimensioned such that the gripper actually can grasp the
object in a certain direction, which should be exposed in the experimental results later on.

Surface features
In order to investigate the grasp association with surface features three different examples with

surfaces have been designed. Each of the example object is chosen because of their different
dimension and relation to other surfaces.

The basic surface to grasp association are investigated trough a single surface feature, either a
small or large surface, as seen in figures 6(c) and 6(d).

The difference between the surfaces are their dimensions and hence the results should be consider-
able different due to the gripper properties.

The third situation is one where the surface is the top of a box, as seen in figure 6(e). This objects
resembles perhaps the most common situation of a surface, where it is paired with surfaces around
it. The dimensions of the surface feature are set such that the gripper has the physical possibility
of making a successful grasp in one direction and not in the others.

3.2 Experimental procedure

The experiments will be performed according to the following procedure.

1. Create dynamic RobWork scene with object of interest.

2. Generate 100,000 uniformly sampled grasp attempts around the feature of interest. 100.000
grasp attempts are used as it results in at least 1.000 successful grasps for every situation.

3. Simulate 100,000 grasp attempts.

4. Extract successful grasp poses.

5. Evaluate feature to grasp association.

3.2.1 Sampling strategy

In order to generate 100,000 random grasp attempts a sampling strategy is adopted. The sampling
strategy is described in the following steps.

1. A position is chosen randomly in the vicinity of the 3D CAD model surface.

2. Orientation is sampled such that the direction is towards the 3D CAD model.

3. The positional part is constrained such that the focus is in the ECV feature of interest.

8

When introducing constrains to the sampling a number of issues are solved whereas other occur.
The main issue with the sampling is that the standard sampler in RobWork is developed for
sampling a full 3D object, enabling a full grasp representation for an entire object. In this context
however one only wants sampling near the feature of interest. To achieve this a filter is introduced,
which filters out any grasp, which position is 0.001 m in the negative z-direction of the feature
reference frame. The problem with this filter is that potential good grasp can be discarded with a
too strict filter, whereas grasps that do not relate to the feature of interest can be found if a too
soft filter is used. Based on this assumption it was considered that a rather strict filter were to be
used, as it was considered important only to have grasps that relates to the feature of interest.

3.2.2 Feature reference frame

Two options have been considered, when evaluating the grasp feature association in between a
ECV high level feature and a grasp.

1. Base the feature to grasp association in a ECV extracted feature pose.

2. Base the feature to grasp association in the ground truth pose.

The first option is dependant on the feature extraction and hence dependant on the stereo images
acquired from the simulated scene. This means that the position and orientation of the feature
outcome is sensitive to the scene setup, hence the generalization can be lost in a biased or difficult
scene for the feature extraction.

The argument that talks in favour of the feature extraction is the fact that in the real world the
ground truth is not accessible as it is in simulation and hence the real data will be, at least more,
similar to those acquired through the feature extraction.

The second option has the advantage that by having a coordinate system fixed to the feature ground
truth principal axes the interpretation of the outcome is to some degree simplified. Furthermore
the second option can be said to emulate the proposed functionality of the ECV feature space and
thereby provide a generalized picture of the feature to grasp space.

4 Results

In this section the experimental results are presented one by one for the different situations pre-
sented in section 3. Furthermore the grasp simulation statistics will be presented and finally ECV
extracted features to grasp association will be compared to the ground truth results.

4.1 Grasp Simulation statistics

Table 2 depicts the grasp statistics for the different situations which have been evaluated. The
statistics shows how different the situations are in terms of grasp-ability as the success-rate of the
grasp actions spans from 1.4 % to 20.8 % for respectively the large surface and the small surface.
One thing that is not present in the statistics is the simulation time, which is highly dependant in
the amount of successful grasps. This fact is reflected in the lower amount of tried grasps for the
small surface as the time consumption was increasing compared to the less successful situation, due
to the high success-rate. The collisions show how often the gripper is found in an initial collision

9

with the object, failed denotes when the gripper fails to grasp the object, slipped means that the
object has slipped and simulation failure denoting when the physics engine failed to calculate the
physics. As with the successes the other figures are dependant on the shape and size of the object.
In this context the slipped grasp has been discarded in the results although they could be regarded
as successful grasps. The success-rate is defined as follows:

Succ.-rate =
Succ.

No. grasp attempts
% (4)

No. grasp attempts Succ. Succ.-rate Collision Failed Slipped Sim failure

ContourOnEdge 100,000 7,365 7.4 % 57,504 28,594 88 6,443
ContourOnBox 100,000 1,691 1.7 % 71,691 17,312 395 8,907
Small surface 50,000 10,396 20.8 % 25,199 9,656 1,625 3,123
Large surface 100,000 1,345 1.3 % 88,677 5,456 135 4,390
Surface on box 100,000 1,807 1.8 % 68,937 18,208 411 10,636

Table 2: Grasp simulation statistics for the different situations.

4.2 Feature to grasp association

The simulated grasp results are visualized in two different ways. A intuitively visualization is shown
in RobWork, where 500 samples of the successful grasp are visualised by inserting the gripper shown
in figure 7 in a scene with the evaluated situation, hence giving an initial understanding of the
distribution of grasp around the feature of interest. An example of this is seen in figure 10, where
different views are shown.

As a second visualization, projections of the 6D grasp space for the successful grasps are shown in
a number of histograms. The histograms are based on the 6D homogeneous transformation matrix
of a successful grasp, see equation 5. In the matrix r’s denote the rotational parts whereas p’s
denote the positional part.

Tgrasp =

rx,x rx,y rx,z px
ry,x ry,y ry,z py
rz,x rz,y rz,z pz
0 0 0 1

 (5)

By plotting the different components of the transformations matrix, projections of the 6D space can
be visualized. The projections are shown in histograms which depicts the distribution in percent
of the successful grasps in the 6D space, see figure 11 for an example.

Intuitively the histograms show the projection of the three main axis of the gripper projected into
the feature reference frame. Meaning that the vector x = [rx,x, ry,x, rz,x]T depicts the orientation
of the the gripper x-axis in terms of the feature reference frame, y = [rx,y, ry,y, rz,y]T the y-axis
and z = [rx,z, ry,z, rz,z]

T the z-axis.

In figure 7 the three main rotational axis of the gripper are illustrated. The illustration will serve
as reference point when explaining the feature to grasp association results.

10

(a)

Figure 7: Rotation around the three main axes of the gripper.

4.2.1 Rotational histogram interpretation

As an additional introduction to the histograms, three examples of the rotational part of a transfor-
mation matrix is presented and visualized with a gripper in RobWork. In equation 6 three different
rotations matrices are presented. In figure 8 the corresponding gripper orientation with respect to
a reference frame are visualised. In a corresponding histogram the three rotations are shown, see
figure 9, to get a feeling of the mapping.

Rg,1 =

1 0 0
0 −1 0
0 0 −1

Rg,2 =

1 0 0
0 0 −1
0 1 0

Rg,3 =

−0.7071 0 0.7071
0 1 0

−0.7071 0 −0.7071

 (6)

(a) (b) (c)

Figure 8: Visualisation of three different orientations for a gripper with respect to a reference
frame, given by a rotation matrix. The reference frame is in the background and the gripper frame
is visualised in the gripper.

11

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Rotational histograms with three specific rotations for a grasp embedded. Red circle
corresponds to Rg,1, figure 8(a), green circle corresponds to Rg,2, figure 8(b) and black circle
corresponds to Rg,3, figure 8(c). It should be noticed that the red and green circle is in the same
position in the figures 9(a), 9(b) and 9(a), which means the red circle is hidden by the green.

12

4.2.2 Contour on edge of surface

A sampled version of the simulations results shown in RobWork can be seen in figure 10 from
different views. The illustration gives an initial understanding of the distribution of the grasps.

(a) (b) (c) (d)

Figure 10: Visualization with a gripper of 500 successful grasp samples for the contour on surface
edge situation. (a) in perspective, (b) side view (ZY), (c) side view (XZ) and (d) top view (XY).

In figure 11 histograms of the distribution in position as well as in orientation are presented. In
the positional histogram of x and y the outline of the contour can be seen. In both histograms
with x position it can be seen that the grasps are congested at the contour ends and uniformly
distributed along the mid of the contour. The x- and z-position plots outlines the contour as well
and shows also how the grasps are congested at the ends of the contour.

The rotation of the transformation is analysed axis-wise in the following.

� X-direction: Derived from figure 11(c) the gripper x-axis is primarily directed along the
feature x and z-axis corresponding to a rotation around the feature y-axis. Secondary the
gripper has some rotation around z-axis of the feature as seen in figure 11(b).

� Y-direction: In figure 11(h) it can be seen that the gripper rotates very little around the x
axis of the feature.

� Z-direction: Shows that the gripper z-axis always is directed opposite to the feature z-axis,
figure 11(k) , furthermore it can be seen that there is slight rotation around the feature x-axis,
figure 11(l) whereas it rotates from 180 degrees around the feature y-axis, figure 11(k).

13

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 11: Distribution of the successful grasps in percent for the contour on surface edge situation,
given positional histograms in 11(a), 11(e) and 11(i). The remainder of the histograms show the
distribution of the rotation of the grasps.

14

4.2.3 Contour on a box corner

A sampled version of the simulations results shown in RobWork can be seen in figure 12 from
different views. The illustration gives an initial understanding of the distribution of the grasps.

(a) (b) (c) (d)

Figure 12: Visualization with a gripper of 500 successful grasp samples for the contour on box
situation. (a) in perspective. (b) side view (ZY), (c) side view (XZ) and (d) top view (XY).

In figure 13 histograms of the distribution in position as well as in orientation are presented. The
positional part shows 13(a), 13(e) and 13(i) shows that the grasps are distributed along the x-axis,
with higher density over the object being in negative y-position. The x- and z-position plot shows
a rather uniform distribution of grasp along the contour.

The rotation of the transformation is analysed axis-wise in the following.

� X-direction: In figures 13(b), 13(c) and 13(d), it can be extracted that the gripper x-axis
primarily is directed along the feature x-axis, along with the contour and that it rotates little
around the z-axis and more around the y-axis.

� Y-direction: It can be seen from figures 13(f), 13(g) and 13(h), that the gripper y-axis is
primarily directed along the negative feature y-axis, with some rotation around the feature
z-axis.

� Z-direction: It can be seen that the gripper z-axis is directed opposite to the feature z-axis
in figure 13(k) and 13(l). In the same figure it can be seen that the gripper can rotate a lot
around the feature y-axis whereas it is constrained to a small rotation around the feature
x-axis.

15

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 13: Distribution of the successful grasps in percent for the contour on box situation, given
positional histograms in 13(a), 13(e) and 13(i). The remainder of the histograms show the distri-
bution of the rotation of the grasps.

4.2.4 Small surface

A sampled version of the simulations results shown in RobWork can be seen in figure 14 from
different views. The illustration gives an initial understanding of the distribution of the grasps.

(a) (b) (c) (d)

Figure 14: Visualization with a gripper of 500 successful grasp samples for for the small surface
situation. (a) in perspective. (b) side view (ZY), (c) side view (XZ) and (d) top view (XY).

16

In figure 15 histograms of the distribution in position as well as in orientation are presented. The
positional histograms x and y direction shows the outline of the feature and that the grasps are
uniformly distributed on the object. The same is observed when looking at the z position with a
slight half sphere shape.

The rotational histograms shows a reasonable uniform distribution with a little weight towards
that the gripper z-axis is directed opposite to the feature z-axis.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 15: Distribution of the successful grasps in percent for the small surface situation, given po-
sitional histograms in 15(a), 15(e) and 15(i). The remainder of the histograms show the distribution
of the rotation of the grasps.

4.2.5 Large surface

A sampled version of the simulations results shown in RobWork can be seen in figure 18 from
different views. The illustration gives an initial understanding of the distribution of the grasps. It
is observed that the grasp are distributed around the edge of the surface.

17

(a) (b) (c) (d)

Figure 16: Visualization with a gripper of 500 successful grasp samples for the large surface situation
situation. (a) in perspective. (b) side view (ZY), (c) side view (XZ) and (d) top view (XY).

In figure 17 histograms of the distribution in position as well as in orientation are presented. The
positional part in x and y shows that the grasp are laying along the edge of the surface. The x-
and z-position histogram shows that a rather uniform distribution , whereas the y- and z-position
shows that the majority of the grasp are along the x-axis.

The rotation of the transformation is analysed axis-wise in the following.

� X-direction: The x-direction is in general aligned with the objects x-axis but with a rotation
around the y-axis.

� Y-direction: The y-direction shows that the gripper is aligned with the positive or negative
z-axis of the feature.

� Z-direction: The z-direction shows that the gripper is aligned with either the x- or y-axis of
the feature.

18

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 17: Distribution of the successful grasps in percent for the large surface situation, given posi-
tional histograms in 17(a), 17(e) and 17(i). The remainder of the histograms show the distribution
of the rotation of the grasps.

4.2.6 Surface on box

A sampled version of the simulations results shown in RobWork can be seen in figure 18 from
different views. The illustration gives an initial understanding of the distribution of the grasps.

(a) (b) (c) (d)

Figure 18: Visualization with a gripper of 500 successful grasp samples for the surface on box
situation. (a) in perspective. (b) side view (ZY), (c) side view (XZ) and (d) top view (XY).

19

In figure 19 histograms of the distribution in position as well as in orientation are presented. The
positional part in x and y shows that the grasp rather uniformly with some higher densities at
two corners. The x- and z-position histogram shows that a rather uniform distribution with higher
distribution at the surface edges , whereas the y- and z-position shows a similar picture. The
rotation of the transformation is analysed axis-wise in the following.

� X-direction: The x-axis is directed towards the y-axis but are reasonable uniformly dis-
tributed.

� Y-direction: The y-axis is primarily directed towards the x axis with slight rotation around
y and a larger rotation around the z-axis.

� Z-direction: The z-direction shows that the grasps are distributed with a large rotation around
the x-axis and a small rotation around the y-axis, and directed along the negative z-direction.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 19: Distribution of the successful grasps in percent for the surface on box situation, given
positional histograms in 19(a), 19(e) and 19(i). The remainder of the histograms show the distri-
bution of the rotation of the grasps.

20

4.3 ECV extraction vs. ground truth

In addition to the ground truth experiments the ECV extracted features are also used. Given a
set of stereo images the high level features of 3D surfaces and 3D contours are extracted. From the
set of features the corresponding feature of interest is selected and used as reference in the ECV
extracted results.

The problem with the extracted features are that they are sensitive to different aspects regarding
scene setup, camera position etc. This fact meant for instance that the contour used in the contour
on box situation where not found using the chosen camera view, and hence it could not be used as
reference frame. In figure 20 the extracted feature reference frame are shown in a RobWork scene
with the corresponding feature.

(a) (b)

(c) (d)

Figure 20: ECV extracted feature reference frame vizualized in RobWork, 20(a) for the contour on
surface edge situation, 20(b) for the large surface situation, 20(c) for the small surface situation
and 20(d) for the surface on box situation. One should notice that the contour in the contour on
surface edge situation resulted in two extracted contours.

21

4.3.1 Contour situations

In the situation containing a contour on a surface edge two contours were extracted hence two
results are used as reference. The resulting histograms can be seen in figure 21 and 22. The plots
shows that the positional parts is off due to the surface has been split into two and the rotational
part suffers from the problem that the z- and y-axis is not aligned with the ground truth.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 21: Results of the feature to grasp association for contour on surface edge situation, when
associated with the first ECV extracted contour feature.

22

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 22: Results of the feature to grasp association for contour on surface edge situation, when
associated with the second ECV extracted contour feature.

4.3.2 Surface situations

In general the surface situation seems to yield comparable results to the ground truth reference.
In figure 23 the feature-grasp association for the small surface with respect to a ECV extracted
surface feature is shown. The ECV extracted surface feature of the small surface is slightly off
in the orientation, which can be seen in the skew that the positional histogram shows. In the
rotational part this is not noticeable because of the uniform distribution.

23

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 23: Results of the feature to grasp association for small surface situation, when associated
with ECV extracted surface feature.

In figure 24 the large surface situation with reference to the extracted surface feature can be seen.
The histogram is almost identical to the ground truth histograms and for this reason no further
remarks considering it.

24

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 24: Results of the feature to grasp association for large surface situation, when associated
with ECV extracted surface feature.

In figure 25 the histogram for the extracted surface feature in the surface on box situation is shown.
As with the large surface situation the extraction yields almost the same frame as the ground truth
despite a switched axis.

25

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 25: Results of the feature to grasp association for surface on box situation, when associated
with ECV extracted surface feature.

5 Discussion

Different aspects of the acquired results are discussed in the following subsections respectively for
contour situations and surface situations.

5.1 Contour situations

The qualitative analysis of the feature to grasp association for contour features showed that the
contours in different situations resulted in different grasp spaces. The grasp spaces were explained
in terms of rotation as well as position.

5.1.1 ECV extracted contours

In one of the situations the contour of interest was not extracted. This exposes the problem were
a specific scene setup with camera and object placement results in a missed feature during the

26

extraction process. This however can be solved by having multiple camera views, which covers the
scene in an sensible way.

Another problem for the contour is that the orientation is not unambiguously defined. The problem
with the ECV contours is that the orientation of a contour is derived from a principal component
analysis, which finds the three main axis for the sub feature cloud. An ideal straight line contour
however would only have one principal axis namely along the contour, this means that it is not
possible to find the other axes, and hence are the extracted principal axis of the contour not useful
for a generalization. To compensate for the inadequacy in the contour representation it is proposed
to introduce higher order feature relation between multiple features. Given high order relation it
is suggested that a generalization of the feature to grasp space for specific feature sets are more
likely to be found and hence be applied to predict the probability of successful grasps.

5.2 Surface situations

The surface situations and corresponding qualitative analysis of the results showed in general what
was expected, in particular that the gripper were directed opposite to the feature reference frame
and that the dimensions of the objects limited the distribution of grasps.

The small surface situation shows that just about any grasp would succeed which was expected
due to the dimension of the surface and the gripper. The high success-rate was also seen in the
simulation statistics were it hit around 20 % compared to 1 to 8 % for the other objects. In the
large surface situation the results shows that the successful grasp is spread around the edge of the
surface which was expected in connection with gripper dimensions.

The surface on the box situations showed expected results such that gripper were able to grasp a
180 degrees rotations around the feature y-axis and only slightly around the feature x-axis. One
noticeable thing is how similar the feature to grasp space for the surface on box situation, figure 19
and the contour on surface edge, figure 11 looks in particular in the orientation. This is explained
as the contour being a very narrow surface or the surface to be a very wide contour.

5.2.1 ECV extracted surfaces

The extracted surface features turned out very successful with the only problem being the pose
of the surface in the small surface situation, this however can to some extent be explained by the
rather small size of surface. Given a small surface consist if less sub features and hence the surface
extraction would risk relying more on a badly extracted sub feature. For the larger surfaces in the
other surface situations the extracted and ground truth histograms where very similar which talks
in favour of a generalization of the grasp to feature relation.

As with the contour situation it is proposed that by utilising multiple features and their relation
a more reliable feature to grasp space can be established, which is not affected of a single feature
being inadequate.

5.3 Relation to previous work

When examining the results it can be derived that the grasps which were predefined in [5] would
yield a good probability of a successful grasp given that the features occur in the situations shown
in this context. This translates to the following statement. Given that the feature situation in this

27

paper are reasonable aligned with situations for real objects the predefined simple grasp are shown
to be sensible. This could be proven by analysing the feature relations in the objects used for the
evaluation of the simple grasps.

6 Conclusion

Throughout this journal the feature to grasp association has been investigated in terms of ECV
high level features of 3D contours and 3D surfaces in a set of different situation designed to exploit
different parts of the feature to grasp space.

By grasp simulation using RobWorkSim the different situations have been evaluated by uniformly
sampling grasps in the vicinity of the feature of interest.

Given the feature reference frame and the homogeneous transformation to the successful grasps
from simulation, the feature to grasp association space is spanned, initially in terms of a ground
truth feature reference frame and afterwards with respect to a visually extracted ECV feature
reference frame. Each of the different situations have been qualitatively analysed by explanation of
the significant structures in the feature grasp space. Hereafter the resulting feature to grasp space
were evaluated in terms of a ECV extracted feature reference frame.

The comparison of the results, for respectively ground truth feature reference frame and the ex-
tracted feature reference frame, unveiled however a number of different problems, which relates to
two different aspects namely the extraction process and the feature representation. The extraction
of the contours turned out difficult as one of the proposed contours were not extracted and the
other one were divided into two contours. The surface extraction however showed reasonable re-
sults. The problem of feature representation were also revealed in the comparison as the ambiguity
in the contour representation were found.

Using the feature extraction for a single camera view, it was realized that the feature extraction
process has some built in difficulties, meaning that the extraction is not always giving the expected
results. To compensate or increase the likelihood of a reliable feature extraction, it is proposed
that multiple camera views should be the foundation for the extraction, thereby reducing the effect
of one difficult camera view to the extraction quality.

The single feature problem can be condensed to the statement that a single feature does not
carry enough information to give a reliable grasp space. In order to overcome the inadequate
information for a single feature, it is proposed that an introduction of multiple features and the
relation between them will compensate for this, essentially meaning that combination of a set of
features would provide the necessary information.

Finally the results were related to the work presented in [5] explaining the success of simple pre-
defined grasps in connection of the 3D contours and 3D surfaces.

References

[1] E. Başeski, N. Pugeault, S. Kalkan, D. Kraft, F. Wörgötter, and N. Krüger. A scene represen-
tation based on multi-modal 2d and 3d features. 3D Representation for Recognition Workshop
(in conjunction with ICCV), 2007.

28

[2] Lars-Peter Ellekilde and Jimmy Alison Jorgensen. RobWork: A Flexible Toolbox for Robotics
Research and Education. 2010.

[3] Jimmy A. Jørgensen, Lars-Peter Ellekilde, and Henrik G. Petersen. Robworksim - an open
simulator for sensor based grasping. Robotics (ISR), 2010 41st International Symposium on
and 2010 6th German Conference on Robotics (ROBOTIK), pages 1 –8, june 2010.

[4] Mila Popović, Gert Kootstra, Jimmy Alison Jørgensen, Danica Kragic, and Norbert Krüger.
Grasping unknown objects using an early cognitive vision system for general scene under-
standing. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 987–994. IEEE, 2011.

[5] Mila Popović, Dirk Kraft, Leon Bodenhagen, Emre Başeski, Nicolas Pugeault, Danica Kragic,
Tamim Asfour, and Norbert Krüger. A strategy for grasping unknown objects based on co-
planarity and colour information. Robotics and Autonomous Systems, 58(5):551 – 565, 2010.

[6] Schunk. Datasheet: Schunk PG70, http://www.schunk.com/schunk files/attachments/pg 70 en.pdf,
Januar 2012.

29

Integrating visual processing and manipulation for autonomous
learning of object representations

Aleš Ude, David Schiebener, Hirokazu Sugimoto, and Jun Morimoto

Abstract— Learning about new objects that a robot sees for
the first time is a difficult problem because it is not clear how to
define the concept of object in general terms. In this paper we
consider as objects those physical entities that are comprised
of features which move consistently when the robot acts upon
them. Among the possible actions that a robot could apply to
a hypothetical object, pushing seems to be the most suitable
one due to its relative simplicity and general applicability. We
propose a methodology to generate and apply pushing actions
to hypothetical objects. A probing push causes visual features
to move, which enables the robot to either confirm or reject the
initial hypothesis about existence of the object. Furthermore,
the robot can discriminate the object from the background and
accumulate visual features that are useful for training of state
of the art statistical classifiers such as bag of features.

I. INTRODUCTION

Statistical approaches to object recognition and categoriza-
tion have received a lot of attention by the computer vision
community in recent years. Excellent performance and state-
of-the-art results have been achieved with methods such as
bag-of-features, which represent an image as a collection of
local feature points [2], [24]. However, the bag-of-features
methods do not have a built-in ability to segment objects
from the background [12]. This can significantly reduce the
performance of object recognition, especially if the object
image covers only a small portion of the whole image.
Designing a reliable and general object segmentation system
that works in many different environments and under varying
lighting conditions is an extremely difficult problem, but
is a necessary component of an autonomous robot. While
statistical learning can overcome some of these problems,
it typically requires the robot to acquire and process many
training images. This is not an option for an autonomous
robot, which needs to have the ability to expand its library
of objects as quickly as possible to be able to operate in
unstructured and uncontrolled environments.

In this paper we propose to overcome the problem of
identifying and learning new objects by exploiting the ma-
nipulation capabilities of a humanoid robot like the one
in Fig. 1. If object manipulability is taken into account,
it is much easier to define the concept of object than
when only visual characteristics are used [3]. Based on the
concept of object manipulability, we can define objects as
physical entities that are manipulable by the robot and whose

A. Ude and D. Schiebener are with Jožef Stefan Institute, Department of
Automatics, Biocybernetics, and Robotics, Jamova 39, Ljubljana, Slovenia
ales.ude@ijs.si, david.schiebener@ijs.si

J. Morimoto H. Sugimoto, and A. Ude are with ATR Computational
Neuroscience Laboratories, Department of Brain Robot Interface, Kyoto,
Japan xmorimo@atr.jp, aude@atr.jp

features move consistently when the robot manipulates them.
Such characteristics were also used by Gibson [7] to define
the concept of object and were exploited for figure-ground
segmentation in a number of previous works [5], [10], [11],
[13], [20], [21]. While some of these works assume that
the object has been first grasped [10], [11], [21], others do
allow for simpler actions such as pushing [5], [13], [20] (also
called poking, nudging). Although pushing results in a less
controlled motion of the pushed object than manipulation
after grasping, probing pushing actions are much easier to
generate than actions that include grasping.

In this paper we present a new methodology to generate
probing pushes necessary to confirm or reject the initial ob-
ject hypotheses and techniques for segmenting and learning
of unknown objects. Based on 3-D points obtained from
local features, regular surface patches and point clusters are
detected to form initial object hypotheses. These hypotheses
are then validated by the robot as it attempts to push the
hypothetical objects. We utilize linear, autonomous dynamic
systems to generate the probing pushes. The induced motion
provides sufficient cues for distinguishing the pushed object
from its environment. After the existence of an object has
been confirmed, it is pushed repeatedly to segment and
accumulate the features that move in unison with it. We
demonstrate that these features enable reliable object learning
and recognition. The developed method requires no prior
knowledge about the object or the environment, the only

Fig. 1. Humanoid robot CB-i touching an object placed on the table. It has
an active visual system, which on the one hand improves the object fixation
capabilities, but on the other hand reduces the accuracy of 3-D vision.

Fig. 2. Initial hypotheses that were generated for a number of typical
household objects. Crosses of the same color belong to the same hypothesis.

necessary assumptions are that the object contains some
distinctive visual features and moves as a rigid body.

II. SEARCHING FOR OBJECTS

For the generation of initial object hypotheses we use
visual information obtained from stereo cameras of the
humanoid robot. In particular, we determine 3-D points
within the field of view using stereo calibration on an active
camera system [22]. Like in our previous work [20], we
use the Harris interest point detector [8] to find points that
allow robust stereo matching. These salient points are mostly
located in highly textured parts of the image. In our current
system, we additionally use color-based maximally stable
extremal regions (MSER) [15], [6] as a second type of
interest points to complement the Harris interest points in
image regions with less texture.

For both Harris interest points and color MSERs, we
perform stereo matching using epipolar geometry. In this way
we obtain a set of 3-D points, which are usually very reliable
and accurate when calculated from Harris interest points,
but somewhat less precise, although still mostly useful,
when determined from color MSERs. If an object has large
untextured areas on its surface, the hypothesis generation
benefits significantly from the use of MSERs in addition to
the Harris interest points, as can be seen in Fig. 3.

Amongst these 3-D points we look for possible objects.
The criteria we use for the initial calculation of object
hypotheses are smoothness of surface patches and local
proximity of subsets of the detected points. As we con-
sider smooth surface patches to be a more reliable hint
about the underlying structure, we search for them first.
Planar, spherical and cylindrical surface patches are detected
amongst the points using RANSAC [4]. This algorithm
repeatedly chooses a random subset of 3-D feature points,

Fig. 3. The left image shows hypotheses generated using only Harris
interest points. In the right image, color MSERs are used in addition to
them, which enables us to recover the surfaces more completely.

calculates the parameters of the considered kind of surface
from them, counts how many points of the overall set lie
within a tolerance of that surface, and returns the best found
parameters. It is a robust statistical method and is therefore
well suited to detect structures that contain only a small
portion of 3-D feature points, which is usually the case in
our scenario, especially when there are several objects in the
field of view. Details about the detection of planes, spheres
and cylinders are given in Sec. II-A and II-B.

From each of the hereby generated hypotheses we remove
the points that are far away from the hypothesis’ center
compared to the extent of the region enclosed by them, as
there is a high risk that such feature points are outliers.
To avoid subsuming several objects into one hypothesis, we
apply X-means [16] to each hypothesis and divide it if that
seems appropriate. By doing so, we might create several
hypotheses lying on the same object, but that is not a serious
problem. All features that belong to the object will later be
added again to the hypothesis if they move in unison with it
when the object is pushed (see section III-A).

We search for all three considered kinds of surface patches
simultaneously and keep the hypothesis that contains the
maximum number of feature points, which are then removed
from the complete feature point set. This process is repeated
with the remaining points until no surface containing more
than a minimum number of feature points is found. Finally,
we apply X-means clustering algorithm to the remaining
points, and the resulting clusters are added as hypotheses
if they contain enough points and have a high points-per-
volume ratio. With this last step, we can detect objects that
contain a cluster of interest points and/or color MSERs,
which do not lie on any of the considered smooth surfaces.

A. Planes and spheres

A plane in 3-D space is uniquely defined by three non-
collinear points x1,x2,x3. Its normal n can be calculated
from these three non-collinear points as n = (x2 − x1) ×
(x3−x1). The plane is then given by the equation nTx+d =
0, with d = −nTx1. This equation must be fulfilled by all
points x lying on the plane.

A sphere is uniquely defined by four non-coplanar points
x1,x2,x3,x4. Its parameters can be calculated in a closed
form, too. The center c and radius r of the sphere can
be calculated from the points by solving the determinant

equation |M| = 0, where

M =

xTx xT 1
xT
1 x1 xT

1 1
xT
2 x2 xT

2 1
xT
3 x3 xT

3 1
xT
4 x4 xT

4 1

 . (1)

Let Mij denote the submatrix of M formed by leaving away
row i and column j. The solution is given by

c =

 0.5 |M12|
|M11|

−0.5 |M13|
|M11|

0.5 |M14|
|M11|

 , (2)

r = cT c− |M15|
|M11|

. (3)

If |M11| = 0, the four points are coplanar and there is no
solution.

We can find a plane or a sphere in the 3-D point set using
RANSAC, where the following steps are repeated Np times:

• select 3 (4) points at random,
• calculate the parameters of the plane (sphere) defined

by these points,
• count how many of the points from the set lie on the

plane (sphere).

The plane (sphere) with the maximum number of inliers is
then returned.

B. Cylinders

The detection of cylinders within a point set is more
complicated because the parameters of a cylinder can not
be determined so easily from a few points on its surface.
We applied the algorithm proposed in [1], which uses a 2-
stage RANSAC approach, first estimating the cylinder axis
and then the appropriate radius and offset from the origin of
that axis.

Promising candidates for the cylinder axis can be found
by analyzing local surface normals. They are calculated from
all points and their nearest neighbors and, once normalized,
all lie on a unit sphere. A cylinder amongst the point set
corresponds to a great circle on the unit sphere. Such great
circles are equivalent to the intersection of the sphere with a
plane through its origin. Consequently, using RANSAC, the
great circle with a maximum number of inliers can be found
by testing the great circles defined by the plane through two
randomly chosen normals and the origin. The normal of the
optimal plane is chosen as the candidate cylinder axis for the
next step.

For a given cylinder axis, its offset and the cylinder
radius can be determined easily because this problem can be
reduced to finding a two dimensional circle. All 3-D points
whose local surface normals contributed to the great circle
are projected onto the plane orthogonal to the cylinder axis.
Using RANSAC again, the circle with the maximum number
of points lying on it can be found, exploiting the fact that

three non-collinear 2-D points (xi, yi) define a circle. Its
center coordinates (xc, yc) are given by

xc =
(y3 − y2)(x21 + y21) + (y1 − y3)(x22 + y22)

2δ
+

(y2 − y1)(x23 + y23)

2δ
, (4)

yc =
(x3 − x2)(x21 + y21) + (x1 − x3)(x22 + y22)

2δ
+

(x2 − x1)(x23 + y23)

2δ
, (5)

where

δ = x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1), (6)

and the radius is simply the distance of one of these points to
the center. The radius of the resulting circle is the radius of
the cylinder, and the cylinder axis passes through the center
of the circle.

In every iteration of the outer RANSAC loop, a new
possible cylinder axis is determined that has to be different
from the axes which have already been tested. After a fixed
number of iterations, or when no promising new axis can
be found anymore, the parameters of the cylinder with the
maximum number of inliers are returned.

III. ACTIVE VISION AND PUSHING

The initial object hypothesis includes information about
the hypothetical object position, which can be used to
generate a probing pushing movement. However, on a robot
with many degrees of freedom and an active eye system like
in Fig. 1, we cannot rely on the system being accurately cal-
ibrated. Even though we account for the eye configurations
when calculating stereo triangulation [22], the calculated
locations are still rather inaccurate in the robot’s body frame.
To improve the accuracy of the probing pushing movements,
we included a learning component into our system.

Training is done by moving a robot to a number of
locations on the table, on which the robot should look for
new objects. We place an object that our vision system can
easily localize at a location where the robot hand touches it.
Thus, we acquire the following data

{xi,yi}Ni=1, (7)

where xi is the position of the object as estimated by the
robot’s visual system and yi are the associated joint angles
specifying the robot configuration, including the configura-
tion of its eyes. In our experiments we placed the robot arm
at N different locations on a regular grid. To avoid the need
for using the robot’s inverse kinematics, we estimate function

F : x 7→ y, (8)

where x ∈ R3, y ∈ RD, and D is the number of
robot degrees of freedom relevant for the task. We applied
Gaussian process regression (GPR) [18], which is a state-of-
the-art statistical function approximation method, to estimate
this function. Given a new desired hand position x∗ ∈ R3,
the training data {xi,yi}, and writing yj = [yj1, . . . , y

j
N]T ,

0.05
0.1

0.15
0.2

−0.25−0.2−0.15−0.1−0.050
0

0.05

0.1

0.15

0.2

0.25

0.3

x(m)
y(m)

z(
m

)

Fig. 4. Blue dots show the robot hand positions estimated by vision,
whereas the red dots show the positions calculated by forward kinematics
from joint configurations, which were estimated by Gaussian process
regression using formula (9). There is a significant systematic error, which
is illustrated by green lines.

j = 1, . . . , D, X = [x1, . . . ,xN], the associated robot joint
configuration y∗ = [y∗1 , . . . , y

∗
D]T can be estimated as

y∗j = Kj(x
∗,X)[Kj(X,X) + σ2

j,nI]
−1yj . (9)

The coefficients of matrix Kj are defined as

(Kj(X
′,X′′))k,l = kj(x

′
k,x
′′
l), (10)

where kj is the selected real kernel function (see below) and
X′ = [x′1, . . .x

′
N ′], X′′ = [x′′1 , . . .x

′′
N ′′]. Thus Kj(x

∗,X) ∈
R1×N and Kj(X,X) ∈ RN×N . The variance of the pre-
dicted values can be estimated as

cov(y∗j) = Kj(x
∗,x∗)−

Kj(x
∗,X)[Kj(X,X) + σ2

j,nI]
−1Kj(X,x

∗).

One commonly used kernel function is

kj(x
′,x′′) = σ2

j,f

3∑
i=1

exp

(
−1

2

(xi − x′i)2

l2j,i

)
, (11)

which results in a Bayesian regression model with
an infinite number of basis functions. The parameters
{σj,f , σj,n, lj,1, lj,2, lj,3}Dj=1 are called hyperparameters and
need to be estimated by an off-line nonlinear optimization
process. See [18] for more details.

An active eye system is crucial for reliable object fixation
with a humanoid robot. On the other hand, error in the
estimated positions increases when the eyes are active [22].
Fig. 4 shows that correction by Gaussian process regression
can successfully cancel out a part of the estimation error,
which enables the robot to touch an object even though the
estimated 3-D object positions are fairly inaccurate.

To generate a pushing movement, we first estimate the
center point of all 3-D features included in the initial
object hypothesis. A probing push can be started from a

position sufficiently displaced from this central position. This
displacement is generated along a vector parallel to the
table with a randomly selected direction. The end position
is chosen to be on the other side of the object along the
selected pushing vector through the center point.

The simplest way to compute a pushing movement is to
generate a straight line between the two end-points and to
move the robot hand along this straight line parametrized
by time, using function (8) instead of the standard forward
kinematics. However, a time-parametrized movement along
the straight line is not always suitable for movements in
unstructured environments, which are often perturbed and
need to be adapted with respect to sensory signals. We there-
fore decided to generate pushing movements using a discrete
pattern generator based on autonomous dynamic systems.
The application of dynamic systems as policy primitives is
closely related to the idea of motor pattern generators in
neurobiology [19]. While general discrete arm movements
require the introduction of a nonlinear component like for
example the one introduced in [9], this was not necessary for
the generation of probing pushing movements. We employed
the following linear system to generate the desired point-to-
point movements

τ ṙ = αg(g − r) (12)
τ ż = αz(βz(r − y)− z), (13)
τ ẏ = z. (14)

Here y is one of the degrees of freedom that define the
robot configuration y from Eq. (8), and z and r are auxiliary
variables. It is easy to show that the above system is critically
damped and that it has a unique attractor point at g for
αz = 4βz > 0, αg > 0, τ > 0. System (12) – (14) is
suitable for the generation of probing pushes because it is
guaranteed to converge to g in a smooth manner regardless
of the starting position and perturbations. In addition, the
speed of movement can be modulated with parameter τ and
even if the end configuration g is changed on the fly, the
movement remains smooth up to the second order.

We generate a probing pushing behavior by executing a
sequence of five dynamic systems (12) – (14), which result
in the following movements
• Relocate the hand from its initial position to the position

above the starting point for the pushing movement
(leftmost image in Fig. 5).

• Move the hand towards the initial position for pushing
(second image left in Fig. 5).

• Move the hand from the initial to the end position cal-
culated as described above, thus generating the probing
push (from second to fourth image in Fig. 5).

• Move the hand to a position above the end position for
pushing (rightmost image in Fig. 5).

• Move the arm away from the viewfield of the robot.
The resulting probing movements are also shown in the video
that accompanies this paper. With such a sequence of move-
ments we reduce the possibility that the robot bumps into
entities that are not included in the initial object hypothesis,

Fig. 5. A successful probing push. The robot starts at the position above the object, moves to the starting position for pushing, applies the probing pushing
movement, and withdraws to the position above the object. All movements are generated using linear, autonomous dynamic systems. After the push the
robot removes the arm from the viewfield to allow for unobstructed acquisition of the object image.

which reduces the danger of damaging the robot. Note that
to generate such movements we need to train two functions
(8); one to convert 3-D positions above the table into robot
configurations and the second to convert 3-D positions on
the table into robot configurations. In our experiments we
acquired such data by kinesthetic guiding, where the robot
arm was lead to a number of positions on and above the
table, simultaneously estimating the resulting hand positions
by active vision and saving the associated joints as sensed
by proprioception.

In theory, a Cartesian straight line movement is more ap-
propriate for probing pushes than a movement generated by
a discrete dynamic system. However, since unknown objects
cannot be located precisely and because of vision errors, it is
not surprising that we observed no performance differences
in our object learning experiments when we compared the
proposed system with the pushing movements along straight-
lines in Cartesian space. Note also that it is possible to
utilize dynamic systems to generate Cartesian straight line
movements by introducing a nonlinear component into sys-
tem (12) – (14), like for example in the dynamic movement
primitives methodology proposed in [9]. The advantage of
doing this compared to straightforward time parametrization
is that nonlinear dynamic movement primitives retain all
positive properties of system (12) – (14) with respect to the
movement modulation and robustness against perturbations.
As explained above, it was not necessary to follow this route
in our experiments.

A. Hypothesis Validation

After an object has been pushed, the Harris interest points
and color MSERs have to be detected in the new camera
images to verify if one of the hypotheses has moved. To
match the interest points, we use the SIFT descriptor [14],
which has proven to be descriptive and robust to small
transformations. For the color MSERs, we use a rating
calculated from the ratio of the length of the two principal
axes of the region, and the average hue and saturation of the
pixels belonging to it.

As the SIFT descriptors are sensitive to changes in scale
and rotations in depth, we associate several descriptors with
each point. After a push, we add descriptors at three different
scales to the points that have been confirmed. When the
number of descriptors associated with a point grows above a
certain limit, we apply a k-means clustering to reduce it to the
half of that limit. In this way the points can be tracked with

Fig. 6. The extracted features as seen from the robot eyes. The upper left
image shows the initial object hypotheses. Hypothesis 0, which contains the
largest number of feature points, was selected to generate the initial push.
The upper right image shows the confirmed object feature points after the
first push. The robot then continues pushing the object to acquire more
object snapshots from different viewpoints. Note that the head and eyes
are active to ensure that the object remains within the robot’s viewfield.
The number of extracted features can vary considerably from snapshot to
snapshot. The acquired feature points are used to train a bag-of-features
classifier.

high reliability, especially when descriptors from different
viewing angles have already been accumulated.

IV. OBJECT LEARNING AND RECOGNITION

The validated object hypothesis can be extended in the
course of several push-and-verification steps, by adding new
feature points that move consistently with the object or
lie within its extent, and are verified or discarded after
each push. As the object becomes visible from different
directions, its visual appearance can be learned from multiple
viewpoints. Features get out of sight when the object is
rotated, in which case they are either simply not found or
they are mismatched to different feature points. To prevent
problems that would arise from mismatched features, a
validated feature point that does not move in unison with
the hypothesis is not used for the estimation of motion at the
next step, and if it does so twice, it is completely discarded.

To encode the visual appearance of an object, we create
a bag-of-features model (BoF) as introduced in [2], which
is a histogram of the occurrences of feature descriptors

that are assigned to clusters learned from a large number
of training features. We create the BoF model using SIFT
descriptors of the verified feature points belonging to the
object hypothesis. To include color information, we do not
directly use color MSERs, but instead create a saturation-
weighted hue histogram [23] within the ellipse spanned by
the principal axes of the set of confirmed interest points
and MSER centers. The BoF model and the hue histogram
together form an object descriptor that incorporates both
local greyscale descriptors of salient points and global color
information.

After each push and subsequent validation of the points
and MSERs belonging to the hypothesis, two object descrip-
tors are saved. One is created using all validated features
that have been accumulated so far, with the intent to obtain a
comprehensive description of the object. The other uses only
those validated features which are visible at that instant, thus
having a snapshot-like character. Depending on the number
of pushes, several descriptors are created and saved for each
object that needs to be learned.

For object recognition, the descriptor of the considered
hypothesis is calculated and compared to the stored descrip-
tors of known objects. As a distance measure between the
two descriptors, we use the weighted sum of normalized χ2

histogram distances of the BoF model and the hue histogram.
Both histogram distances are normalized individually by
dividing them by the average distance of the hypothesis to
all stored histograms. For recognition, we then apply a k-
nearest-neighbors decision.

The performance of bag-of-features based recognition
strongly depends on the successful segmentation of the object
that needs to be recognized. The segmentation problem is of-
ten resolved by statistical feature clustering and by regular or
randomized windowing [17]. As the segmentation problem is
identical to the one that we face during the learning process,
we use our hypothesis generation and active segmentation
approach also to support recognition. By pushing the object
several times, we achieve very high recognition rates due to
the highly accurate segmentation.

A. Experimental Results

Since pushing induces a rather uncontrolled object motion,
it is of crucial importance for the success of the learning
process that the robot does not loose track of the object. The
SIFT descriptor is sensitive to large changes in scale and
rotations in depth, therefore large translations in the direction
of the camera axis or significant rotations may be harmful,
while a translation in the image plane causes no problems.
Table I shows with which reliability the object is recovered
after a motion along the camera axis. Enlarging the distance
from the camera by a certain factor causes a scale change
of the same factor. As can be seen, moving the object over
a distance of up to 30% of its distance to the camera is
unproblematic, above that value there is an increasing risk
of loosing track. In practice this means that even for a rather
small object-camera distance of 50 cm, a translation of 15
cm is safe.

TABLE I
OBJECT RECOVERY RATE AFTER MOTION IN DEPTH

distance ratio 1.2x 1.3x 1.4x 1.5x 1.6x
recovery rate 100 % 100 % 91 % 54 % 4 %

TABLE II
OBJECT RECOVERY RATE AFTER ROTATION

rotation angle 20◦ 30◦ 40◦ 50◦ 60◦

recovery rate 100 % 100 % 83 % 56 % 11 %

TABLE III
OBJECT RECOGNITION RATE FOR THE INITIAL HYPOTHESES AND AFTER

A FEW PUSHES

init. hyp. 1 push 2 pushes 3 pushes
77 % 86 % 96 % 98 %

Greater peril arises from rotations in depth. Table II shows
the sensitivity of our approach to such transformations. While
a change in orientation of the object of up to 30◦ is not a
big problem, larger rotations may lead to the object not being
recovered after the push. Therefore, if the pushing strategy
is designed with the intent to reveal different sides of the
object, it is safer to execute many small rotations instead of
a few large ones.

To test the usefulness of the obtained object representation
for recognition, we learned the appearance of 25 objects from
different viewing directions (20 histograms for each object).
As recognition is based on a bag-of features model and on
a global hue histogram of the object, it is necessary to first
segment the object. Then the BoF and hue histogram are
calculated, and a 3-nearest neighbors decision based on the
χ2 histogram distance to the known objects is made.

To evaluate the performance of the recognition system,
we tested using our initial hypothesis generation (see Sec.
II) as well as the validated hypotheses after the probing
pushes. Table III shows the recognition accuracy for the
initial hypotheses and for confirmed hypotheses after 1 − 3
pushes. As can be seen, a combination of the greyscale-based
BoF and hue histogram allows for very reliable recognition.
In the process of iterative pushing and verification, false
features are discarded and an increasingly complete object
representation is obtained, which leads to nearly error-free
recognition after a few pushes.

V. CONCLUSION

While in this paper we focused on autonomous acquisition
of object models, our system allows the accumulation of
knowledge from different sources. Models can be acquired
either from large databases of stored models, in interaction
with a human teacher where the human teacher performs
the pushes instead of the robot, or fully autonomously.
Such an approach is essential to prevent on the one hand
excessively long learning times and on the other hand to
enable acquisition of new knowledge as need arises. We

believe that our integrated approach makes an important step
towards truly autonomous robots.

VI. ACKNOWLEDGMENTS

Research leading to these results was supported in part
by the EU Seventh Framework Programme under grant
agreement no. 270273, Xperience, and by ”Brain Machine
Interface Development”, SBRPS, MEXT. A. Ude would like
to thank NICT for its support within the JAPAN TRUST
International Research Cooperation Program.

REFERENCES

[1] T. Chaperon and F. Goulette. Extracting cylinders in full 3d data using
a random sampling method and the gaussian image. In Proc. Vision
Modeling and Visualization Conference, 2001.

[2] G. Csurka, C. Dance, L. X. Fan, J. Willamowski, and C. Bray. Visual
categorization with bags of keypoints. In Proc. ECCV Int. Workshop
on Statistical Learning in Computer Vision, Prague, Czech Republic,
2004.

[3] J. Feldman. What is a visual object? Trends in Cognitive Sciences,
7(6):252–256, 2003.

[4] M. A. Fischler and R. C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography. In Communications of the ACM, volume 24,
1981.

[5] P. Fitzpatrick. First contact: an active vision approach to segmentation.
In Proc. 2003 IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
pages 2161–2166, Las Vegas, Nevada, 2003.

[6] P. Forssen. Maximally stable colour regions for recognition and
matching. In IEEE Conf. Computer Vision and Pattern Recognition,
2007.

[7] J. Gibson. The Ecological Approach to Visual Perception. Houghton
Mifflin, Boston, MA, 1979.

[8] C. Harris and M. Stephens. A combined corner and edge detector. In
Alvey Vision Conference, page 147151, 1988.

[9] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with
nonlinear dynamical systems in humanoid robots. In Proc. IEEE Int.
Conf. Robotics and Automation, pages 1398–1403, Washington, DC,
2002.

[10] D. Kraft, N. Pugeault, E. Baseski, M. Popovic, D. Kragic, S. Kalkan,
F. Wörgötter, and N. Krüger. Birth of the object: Detection of object-
ness and extraction of object shape through object-action complexes.
Int. J. Humanoid Robot., 5(2):247–265, 2008.

[11] M. Krainin, P. Henry, X. Ren, and D. Fox. Manipulator and object
tracking for in-hand 3D object modeling. Int. J. Robotics Res., 2011
(online first).

[12] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, pages 2169–
2178, New York, NY, 2006.

[13] W. H. Li and L. Kleeman. Segmentation and modeling of visually
symmetric objects by robot actions. Int. J. Robotics Res., 30(9):1124–
1142, 2011.

[14] D. G. Lowe. Object recognition from local scale-invariant features. In
Proc. Int. Conf. Computer Vision, Corfu, Greece, 1999.

[15] J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline
stereo from maximally stable extremal regions. In Proc. British
Machine Vision Conference, 2002.

[16] D. Pelleg and A. Moore. X-means: Extending k-means with efficient
estimation of the number of clusters. In Proc. 17th Int. Conf. Machine
Learning, San Francisco, CA, 2000.

[17] A. Ramisa, S. Vasudevan, D. Scaramuzza, R. L. de Mántaras, and
R. Siegwart. A tale of two object recognition methods for mobile
robots. In Proc. 6th Int. Conf. Computer Vision Systems, 2008.

[18] C. E. Rasmussen and C. Williams. Gaussian Processes for Machine
Learning. MIT Press, Cambridge, MA, 2006.

[19] S. Schaal and D. Sternad. Programmable pattern generators. In Proc.
Int. Conf. on Computational Intelligence in Neuroscience, Research
Triangle Park, NC, 1998.

[20] E. Stergaršek-Kuzmič and A. Ude. Object segmentation and learning
through feature grouping and manipulation. In Proc. IEEE-RAS Int.
Conf. on Humanoid Robots, pages 371–378, Nashville, TN, 2010.

[21] A. Ude, D. Omrčen, and G. Cheng. Making object learning and
recognition an active process. Int. J. Humanoid Robot., 5(2):247–265,
2008.

[22] A. Ude and E. Oztop. Active 3-D vision on a humanoid head. In
Proc. 14th Int. Conf. Advanced Robotics, Munich, Germany, 2009.

[23] K. van de Sande, T. Gevers, and C. Snoek. Evaluating color descriptors
for object and scene recognition. In IEEE Trans. Pattern Analysis and
Machine Intelligence, pages 1582–1596, 2010.

[24] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features
and kernels for classification of texture and object categories: A
comprehensive study. Int. J. Comput. Vision, 73(2):123–138, 2007.

	Executive Summary
	Content of the Deliverable
	Object Action Complexes and Structural Bootstrapping
	Object Action Complexes
	Structural Bootstrapping

	Learning object affordances by means of semantic sensory–motor categories
	Semantic visual scene representations and probabilistic action representations
	Early Cognitive Vision (ECV) system
	Learning Probabilistic Manipulation Functions
	Learning in ECVxPMF

	Learning in ECV: Learning of interactions of entities based on statistical inference
	Learning of PMFs
	Data-efficient approximation of PMFs with kernel methods
	Probabilistic dexterous grasp function computed by dynamic simulation
	PiH with flexible objects

	Learning in ECV x PMF
	Meta Learning: Learning kernels by statistics
	Learning grasping/manipulation affordances
	ECV feature to grasp associations

	Learning Action Representations from Change Data

	Conclusion
	Links to other Workpackages

	Attached-Articles.pdf
	KGP+11_oacDef.pdf
	Introduction
	Paper Structure

	Prerequisites for Modelling OACs
	Representational Congruency and Grounding

	Relation to other Approaches
	Defining OACs
	Learning OACs
	Representational Congruency and Hierarchical Execution
	Representational Congruency
	Towers of OACs
	One-to-Many Execution

	Examples of OACs
	Example Ex-1: Object Pushing (AgnoPush)
	Definition of AgnoPush
	Learning in AgnoPush

	Example Ex-2: Object Independent Grasping (AgnoGrasp)
	Definition of AgnoGrasp
	Learning in AgnoGrasp

	Example Ex-3: Object Specific Grasping (ObjGrasp)
	Definition of ObjGrasp
	Learning in ObjGrasp

	Example Ex-4: OACs for Planning (PlanGrasp, PlanPush)
	Definition of PlanGrasp and PlanPush
	Learning the Prediction Functions of Planning-Level OACs

	Interacting OACs
	Grounding Grasping OACs
	Performing Plans

	Conclusion
	Acknowledgements
	References
	Author biographies

	SKJP12_szedmak_2012_learning_grasp_density_050.pdf
	Introduction
	Data sources
	Increasing the proportion of positive cases by supervised clustering

	Learning method
	Feature representation
	Optimization framework

	Experimental Results
	Dolt object, two-finger hand
	Box object, three-finger hand
	BALL finger configuration
	CYL finger configuration
	PAR finger configuration

	Investigation of the distribution of the positive cases in CAD model dependent sampling
	Conclusion

	Sampling by a variant of the Metropolis-Hasting method
	Description of the algorithm

	Figures

	Tho12_vision_report.pdf
	Introduction
	Motivation
	Overview
	Related Work

	Theory
	Early Cognitive Vision feature framework
	Grasp representation
	Simulation in RobWork

	Experiment
	Scene setup, objects and gripper
	Gripper - Schunk PG70
	Objects

	Experimental procedure
	Sampling strategy
	Feature reference frame

	Results
	Grasp Simulation statistics
	Feature to grasp association
	Rotational histogram interpretation
	Contour on edge of surface
	Contour on a box corner
	Small surface
	Large surface
	Surface on box

	ECV extraction vs. ground truth
	Contour situations
	Surface situations

	Discussion
	Contour situations
	ECV extracted contours

	Surface situations
	ECV extracted surfaces

	Relation to previous work

	Conclusion

