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Chapter 1

Executive Summary

This document summarizes the efforts of the consortium in developing methods for generalization from
sensorimotor experience, using statistical methods as well as structural bootstrapping, including the
formation of object and action categories based on their properties experienced. These contributions
were generally created under WP3.1.

1.1 General Objective of WP3.1: Structural Bootstrapping on
sensorimotor experience

The ultimate goal is to learn cognitive categories faster than with existing methods, as well as to learn
more elaborate cognitive categories than can feasibly be done with existing methods.

We draw on two key concepts to achieve this:

• First, generative models are constructed on the basis of accumulated experience.

• Secondly, accumulated experience will be mined to erect scaffolding for future learning
problems, constraining them to accelerate learning and to learn more from less real-world interac-
tion.

Expected Outcome: WP3.1 will produce learning methods that can learn relatively elaborate
sensorimotor concepts relatively efficiently by informing future learning problems using
past experience.

1.2 An Economic View of the Objective

The objective can be stated in a quantifiable form as:

Based on the accumulated knowledge collected in the experiments, efficiently reduce the
cost (time, energy, human interaction) in the robot learning cycle.

The cost reduction and its efficiency can be measured. Therefore it can be proved that our methods can
be used at smaller cost and in a broader range of applications than other available methods.

We expect to produce first results that quantify such accelerated learning by the end of Year 3.

1.3 Outline of this Document

Sensorimotor structural bootstrapping as we pursue it in Xperience requires a fairly complex interplay of
various functionalities, including transfer of learned action parameters to new, related actions, recognizing
action sequences as instances of known or novel behaviors, categorizing objects based on shape as well
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as on actions they afford, associating actions and their parameters to objects, parts and features, and so
on.

This document begins with an interdisciplinary study of the emergence of tool use in human infants,
using psychological experiments and computational models (Chapter 2). The study illuminates how
repeated manipulation of objects and observation of its effects on other objects leads to differentiated,
goal-directed manipulations of the former objects (tools) to achieve intended effects on the latter ob-
jects (targets). This is a concrete example of infants learning manipulations efficiently following prior,
exploratory interactions, i.e., a type of sensorimotor structural bootstrapping. Although not addressing
directly the core mechanisms of structural bootstrapping, the study is conceptually of immediate interest
to Xperience, since it describes the interplay between the development of increasingly efficient behavior
and internal representations.

The following chapters 3 through 4 present some core technical achievements that will become part of
Xperience structural-bootstrapping systems.

Chapter 3 shows how motor actions can be learned efficiently on the basis of known classes of similar
actions. The idea is to learn statistical models of the parameters of known actions, which typically live in
low-dimensional manifolds of the entire action parameter space, and then use these models to constrain
or bias future learning problems, allowing the adaptation of known actions to new actions, and greatly
simplifiying the learning of new, similar actions.

Chapter 4 presents methods for assimilating action sequences given in the form of Semantic Event Chains
into models of known action sequences, as well as for accommodating them as entirely new action se-
quences.

Chapter 5 presents an integrated learning system to achieve structural bootstrapping at the level of
objects and actions. Although this takes place at a sub-symbolic and non-syntactic level, we refer to it by
a new term object-action structural bootstrapping to differentiate it from lower-level learning in continuous
sensorimotor domains such as that described in Chapter 3. Object-action structural bootstrapping is
about associating action parameters to objects, transferring them to new objects, and making inferences
about entire object categories based on limited interaction with objects, facilitated by previously-acquired
object and action knowledge. The framework presented in Chapter 5 is intended to draw together much
of the other work in perception, action and sensorimotor learning, including work from the two preceding
chapters, and work from other work packages.
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Chapter 2

Developmental learning of tool-use
competences by means of Repetition
and Differentiation

In this chapter, we describe our work on structural bootstrapping on a behavioural level. As outlined
in [12], we have identified six mechanisms (repetition (M1), variation and selection (M2), differentiation
(M3), decomposition (M4), composition (M5), modularisation (M6)) that guide the development of tool-
use abilities in infants. These six mechanisms are supplemented by a seventh mechanism (representational
re-description (M7))—crucially linked to structural bootstrapping (see figure 2.1). The diagram shows
two parallel tracks of development. On the bottom is the “concrete” track which shows the development
of sensorimotor schemas, which are observable in infant behaviour. On the top is the “abstract” track
which shows the parallel development of the underlying representations which the infant uses.

The mechanisms M1–M6 are responsible for creating the data that delivers the empirical material for
structural bootstrapping. Moreover, they interact in a complex way with the already established internal
representations. Representation re-description reorganises the already accumulated knowledge.
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Figure 2.1: Conceptual diagram, overviewing infant developments leading to tool use; for explanation see
text (taken from [12]).

In our work, we want to model the developmental process by formalising the above mentioned seven
mechanisms. In the work presented here – detailed in the two attachments [FAG+12, FAK+] – we
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focused on the application of the two mechanisms repetition (M1) and differentiation (M3) to learning
preconditions for means-ends actions.

Our behaviour representation (called schemas in our work) consists of a tuple of precondition, motor
program and postconditions or goal. In this work, we focused on learning preconditions while the motor
program and the postconditions were left unchanged. As our application area, we choose means-ends
behaviours (i.e. where one action is used in order to facilitate another). Figure 2.2 (top-right) shows an
example for such a means-ends behaviour; by pulling the cloth the baby is able to bring the keys placed
on the cloth into grasping range.

DIFFERENTIATION

INITIAL SCHEMA NEW SCHEMA

Pulling the cloth/tray toexamine/touch/feel it. Pulling the cloth/tray inorder to get the keys
SENSORIMOTOR

Figure 2.2: This figure illustrates how a new behaviour can be acquired by the differentiation mechanism.
The original behaviour (initial schema) simply pulls a cloth/tray in order to bring it close. The new
behaviour pulls the cloth/tray in order to bring the item supported by it closer. The new schema
acquired will need to adjust its motor behaviour, and also to learn the situations in which this new
behaviour can be expected to work. Taken from [FAK+].

The experiments in this work were performed using the dynamic simulator RobWorkStudio. This allowed
us to evaluate different learning mechanisms while retaining a certain realism. Figure 2.2 bottom shows
the simulation environment. To evaluate the influence of the sensor noise, we performed experiments with
both (1) perfect information derived directly from the simulation environment and with (2) information
derived by using an artificial RGD-D camera in the simulation environment and processing these images
using an appropriate computer vision approach.

The two cases investigated are the already mentioned support scenario (key on cloth) and an obstruction
scenario where one object in the scene is obstructing another which becomes graspable once the first
object has been removed. The support scenario was replicated in the simulation environment by having a
cup that was (or was not) placed on a plate that the robot was able to pull. For the obstruction scenario
we used a cereal box object to obstruct the reach to the cup (while we made sure that the cup stayed
visible for the camera).

To learn the preconditions for the individual actions (e.g., grasp cup, pull support), we employed repetition
(M1). We performed a number of experiments executing these actions successfully and non successfully.
Based on the situation before applying the action and the outcome of these we are able to train artificial
neural networks to predict if for a given situation (a specific configuration of objects, their location in
the scene and a given arm position) the motor program would be successful. In the grasp cup case, we
could achieve a classification success rate of 99.16%, please see Figure 2.3 for further results.

Once we have established these actions (e.g. grasp cup and pull support) repeated applications will
lead to situations where for the system unexpected things happen (e.g., the cup becomes reachable after
pulling the support). In this case, we can differentiate (M3) the pull support schema into two schemas
(one bringing the cup in range, the other not influencing any other objects besides the support). We
have discussed a mechanisms to discover this situation in [8]. Once we have differentiated the schema
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Figure 2.3: The Graph shows the accuracies of the preconditions for the three schemas Grasp Cup, Pull
Support and bringing the cup into reach. It can be seen that vision based learning performs almost as
well as the case were information is gained directly from the simulator (RW). 3000 training samples were
used. Taken from [FAK+].

into two new ones we need to adjust their motor programs (not discussed here) and their preconditions.
Having learned these preconditions, we are able to predict when we can employ the means-ends action
and thereby to plan action sequences that were not possible before or at least to learn to generate those
plans faster than it has been possible before.

One again we used repetition (M1) and performed multiple tries with situations where the cup was placed
on top of the support and where it was not. By employing the same neural network approach we were
able to predict the successful applicability of the pull support with cup means-ends action in more than
80% of the situations (see Figure 2.3).

To increase the learning speed, we evaluated different learning approaches. Our focus here was on trying to
choose the schema where the neural network used to predict a schema’s applicability (the precondition)
was least conclusive. The detailed results can be seen in [FAK+]. The experiments showed that this
approach works successfully in the cases where input directly from the simulator is used while it was not
as successful in case of using the visually computed inputs. We hypothesise that the higher noise in the
second case leads to the system selecting noisy samples rather than those that give more insight into how
to classify.

Although this work does not address the core mechanisms of structural bootstrapping, it gives an im-
portant macro perspective on the developmental processes which structural bootstrapping contributes
to.
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Chapter 3

Accelerated sensorimotor learning in
constrained domains

We use the concept of structural bootstrapping at the sensorimotor level to develop a new paradigm
that combines ideas from statistical learning and reinforcement learning to efficiently compute new robot
control policies. We start by collecting data from several robot executions of the desired task in dif-
ferent configurations of the external world. Statistical learning techniques are applied to compute a
low-dimensional approximation for the optimal manifold of robot trajectories that solve the desired task
in all possible configurations of the external world. The dimensionality of the approximating manifold is
usually much lower than the dimensionality of the space of all robot movements. This low-dimensional
manifold can be used to constrain the exploratory learning of optimal control policies for new task con-
figurations. New control policies are obtained by means of reinforcement learning on the approximating
manifold, which is much faster than learning in the full space of robot movements due to the low dimen-
sionality of the parameter space.

We propose a reinforcement learning algorithm with an extended parameter set that combines learning
in constrained domain with learning in the full space of parametric movement primitives. This way the
robot can also explore actions outside of the initial approximating manifold without needing to solve
any global, large-scale optimization problems. Newly obtained control policies can be used to refine
the approximation for the manifold of optimal trajectories that solve the desired task. The proposed
approach was tested for learning various tasks on different robots.

For more details see the attached publication [NFV+12].
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Chapter 4

Assimilation and accommodation of
sensorimotor experience using
Semantic Event Chains

Here we present a method of expanding the robot’s sensorimotor experience based on Semantic Event
Chains [2] (SECs). To summarize: a SEC is a sequence of scene graphs obtained from a video sequence,
where nodes represent objects and edges show the proximity relation (touching) of the objects. The SEC
includes only the graphs of those frames (called key frames) where abrupt changes happen: new edges
appear or edges disappear, or new nodes (objects) appear. We also attach additional information to
the key frames, which includes object identity, object poses, as well as trajectories leading from one key
frame to the next. Let us assume that the robot already has a set of memorized actions in the form of
Semantic Event Chains populated with the additional information: objects, poses, trajectories. When a
new action demonstration is observed by the robot, first a SEC is constructed from observation. Then
the SEC is compared to the SECs in memory. If the new action is similar up to some threshold to
another action in the memory then assimilation – memorizing a slightly modified version of the action –
is performed. When there is no similar action in memory then accommodation (memorizing the action
as entirely new) is performed. The framework will be described in some detail next and the full details
are given in the attached manuscript [ATV+13]. The work was done in cooperation of partners UGOE
and JSI, consulting with partner UEDIN.

The actions in the study are encoded using an Action Encoder matrix

A =


X1 [T.d]1,2 · · · [T.d]1,m
X2 [T.d]2,2 · · · [T.d]2,m
...

...
. . .

...
Xn [T.d]n,2 · · · [T.d]n,m

 (4.1)

where in the first column we present the state of the world as described by a SEC, and in the further
columns transitions Ti,j are described:

Ti,j =

{
0 if ri,j = ri,j−1, j > 1
[T.{d1, d2, . . . , dk}]i,j else

(4.2)

where ri,j defines i-th relation between objects at the stage j of the process (the j-th key frame). Tran-
sitions T.{d1, d2, . . . , dk} include the following descriptors:

• d1i,j = {oai
, obi}i describe two object identifiers of those objects that are involved in the given event;

• d2i,j = {p}i,j = {x, y, z, α, β, γ}i,j is a set containing relative pose information between two object
identifiers. The x, y, z and α, β, γ values hold corresponding translation and rotation values,
respectively;
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Figure 4.1: Action-encoder matrices (A) with extracted descriptors for the Cutting and Chopping actions.
Movement is described in table coordinate system, x and y - table plane coordinates (red and green), z
- distance from the table (blue); solid lines stand for the tool demonstrator’s hand holding, dashed lines
for the tip of the cucumber.

• d3i,j = {t}i,j = {s, g, τ, w1,...,6}i,j , s, g ∈ R6 is a set of parameters containing trajectory information
in the Cartesian task space. In this study we use the modified Dynamic Movement Primitives
(DMPs, [15]).

In Figure 4.1 we show Action-encoder matrices for cutting and chopping as obtained from observation
(left and right, correspondingly). Left to each matrix object identities for each line are shown. In the
first matrix column, relation A means that one or both objects participating in the relation are absent
from the scene. Next columns show how relations change. E.g. let us analyse the fourth line which shows
the change of relations between knife and cucumber all along the action. In the second column stands a
transition AN (absent-to-non-touching) which shows that the knife is appearing in the scene, but it is not
touching the cucumber. Then the relations between knife and cucumber for a while stays the same, but
in column five stands transition NT which shows that the relation between knife and cucumber changes
from non-touching into touching. After some more non-change columns, the knife moves away from the
cucumber (TN change), and so on. Beneath the Action-encoder matrix one can see images of objects
involved in cutting and chopping, as well as the objects which were cut/chopped, and the trajectories,
where it is shown how trajectory segments are attributed to the columns of the action encoder matrix.
Due to the SEC-based trajectory segmentation one can compare corresponding trajectory pieces in two
similar actions.

We have performed a comparison of three actions: cutting, chopping and stirring. We obtained that
chopping is similar to cutting (both matrices in the Figure 4.1 are highly similar). Thus the chopping
action was assimilated as a different variety of the cutting action. Stirring had a substantially different
action descriptor matrix as compared to cutting and chopping. Thus the stirring action was accommo-
dated as a new action. For more details on the formalism employed and similarity measures used see the
attached manuscript [ATV+13].

In future stages of the project we will show how one can accumulate a bigger action library based on
principles and structures described above. Note that the assimilation procedure allows us to reuse some
parts of the action/skill obtained before; crucially, in this way we can obtain a non-linear speed-up.
E.g. in the given chopping vs. cutting example the actions surrounding the cutting/chopping segment
(everything except the part from touching the cucumber with the knife to un-touching) can be reused,
as well as the pose of the knife perpendicular to cucumber with which cucumbers are most frequently
cut/chopped. However, velocities and trajectories of the knife shall differ in the two varieties of the
action.

Another line of current research is the improvement of the extraction of object identity and pose informa-
tion based on the visual representation in the Early Cognitive Vision system described also in Section 5.
In addition to simply computing a PCA on segmented scenes, a more detailed matching with object
models is performed (see also [MPK13]), which should further improve the SEC representation of action
sequences.
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Chapter 5

Object-Action Structural
Bootstrapping

Object-Action Structural Bootstrapping is about learning how to interact with objects such that (a)
action parameters are associated with objects, (b) action parameters can be transferred to novel objects,
and (c) entire object categories can be associated to a novel action by observing isolated examples of this
novel action. Associating actions to objects (a) implicitly categorizes the objects by their affordances.
Transferring action parameters to novel objects (b) yields efficient skill generalization, and the discovery
of the applicability of novel actions to object categories (c) yields object category generalization.

The following section provides motivating examples. Subsequent sections discuss computational ap-
proaches and first experimental scenarios and results.

5.1 Motivating examples

First, imagine a robot is shown how to grasp a concave object on the inside by poking its gripper inside
the concavity and expanding its fingers. Exploration shows that some objects are graspable in this way
under certain object-relative gripper poses, but other objects (or inappropriate gripper poses) are not. By
statistical analysis of the positive and negative grasping trials, the robot learns a classification function
of object shape that tells whether objects are graspable-inside or not. Likewise, it learns how to grasp
objects that are graspable-inside. This might be achieved by making the classification function a function
of both shape and grasp parameters, or by learning a regression function from shape to grasp parameters.

For example, shape might be represented by relations between ECV edges and surfaces [13] as illustrated in
Fig. 5.1 on the left. Here, statistical analysis identifies the fact that a configuration of two roughly parallel
edges with a surface patch located between them, in a roughly parallel plane with some perpendicular
offset, strongly correlates with inside-graspability using a gripper pose as illustrated.

One result of this experiment is a categorization of objects into objects that are inside-graspable and
those that are not. Importantly, this categorization extends to unseen objects to the extent that the
classification function generalizes appropriately.

Moreover, using the learned regression function on unseen objects is the robot’s way of internally sim-
ulating the effect of imagined actions. Together, these allow the robot to generalize the learned skill of
grasping inside to unseen objects.

Secondly, imagine the robot now observes a few examples of objects being dropped into a concave con-
tainer, where they remain. By comparing the container with known object categories, it hypothesizes that
the category of droppable-into objects coincides with the graspable-inside objects. Moreover, by compar-
ing the action parameters, it discovers that the gripper poses relative to the concavity are identical for
grasping-inside and dropping-into, except for a perpendicular offset (Fig. 5.1, right).

This allows the robot to bootstrap the new skill of dropping-into by re-using the classification function
of grasping-inside, and by deriving action parameters for dropping-into from those of grasping-inside by
simply applying a constant offset.
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Figure 5.1: Grasping Inside (left) and Dropping Into (right).

Figure 5.2: Cutting (left) and chopping (right).

While the parameters of this new skill can be refined by further training, even allowing them to diverge
from the grasping-inside parameters, the important point is that the new skill is learned much more
efficiently based on a prior skill than if it were learned from scratch.

If the classification functions do not diverge, we now have one category that applies to distinct skills. We
may make this explicit by relabeling the category from graspable-inside to the more general hollow.

Next, the agent may observe fish being cut with a knife (Fig. 5.2, left). None of this resembles anything
the agent has seen before, so it has to learn new classification and regression functions as described above,
aided by its own exploration which provides negative and additional positive training examples.

Note that this example goes beyond the above in that two objects are involved, allowing the robot to
learn about cutting tools as well as about cuttable objects.

Then, imagine the agent observes leek being chopped with a cleaver (Fig. 5.2, right). Similarly to the
transfer from grasping-inside to dropping-into, the agent can observe, by statistical analysis of observed
features and relations, that both cutting and chopping both involve flat object parts (blades) positioned
appropriately with respect to the object being sliced. This allows a generalization to all unseen objects
that exhibit features correlated with a blade.

Moreover, the agent can observe that cutting and chopping share action parameters (a transversal, up-
and-down blade movement with respect to the object being sliced), while other parameters are distinct
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(cutting involves a longitudinal movement which chopping does not). Similarly to the transfer from
grasping-inside to dropping-into, this allows the robot to derive chopping actions from cutting actions,
and vice versa. This allows the agent to use any unseen object with a blade for cutting and for chopping.
Again, these bootstrapped skills may diverge under further training, leading e.g. to the realization that
certain objects are better chopped than cut, and so on.

5.2 Learning object-action relations

Learning object and action relations is a difficult task. The difficulty comes from two main sources. First,
the structure of descriptions of particular objects is very complex, while those descriptions are generally
incomplete. The descriptions are derived from several sources, and the corresponding feature spaces are
high-, even infinite-dimensional. Some features possess intriguing internal structure, e.g. graphs, which
require computationally intensive preprocessing. The second source of difficulties is the small number of
experiments which can confirm our hypotheses about the relationships between objects and actions. The
experiments might even provide contradicting outcomes; thus the reliability of our knowledge is limited.
We outline a learning approach to overcome on these difficulties by synthesizing some known methods
and extending them by new elements to form an efficient learning framework. More detail is given in
[Sze12].

Another approach is to make use of elaborate structures of the sensory space, in particular vision. This
concerns in a separate modeling of visual modalities and a deep hierarchical representation of visual
information providing an efficient feature space for learning. In [14], we have presented relevant knowledge
about the structure of representation of visual information in primates for computer vision scientists. The
ECV system described in [13, 17] and [MPK13] provides visual information in a structured way similar
to the primate’s visual system. As it is made explicit in the attachment [MPK13], this structure can
be utilized to apply learning methods that identify individual features or feature dimensions relevant
for certain tasks. These methods can be related to feature selection (such as the the Random Forest
approach in appendix [MPK13]) or to the a prior algorithm [1].

To solve the learning problem drafted above we need to synthesize methods which fully or partially
address the complexity of the data representation and the same time incompleteness and the sparsity of
the available data sources. Here some possible approaches are summarized.

A general framework to learn sparse incomplete relations between several data sources is introduced in
[20]. That general framework has been applied for recommender systems in [10] and [9]. The recommender
systems connect users to objects, e.g. books, movies etc., and have to tackle problems of very high level
of sparsity, since most of the user-object pairs are missing. Very frequently less than one percent of pairs
can be observed; therefore the other ones need to be predicted. We face similar problem in learning the
relationships between actions and objects, only a very small number of actions and objects can be tried
in real experiments. Therefore, predicting the outcome of an experiment executed on an action-object
pair can borrow the approach applied for the recommender systems.

Looking the problem from another angle we can formulate the learning task as an instance of so-called
transfer learning; see a survey of approaches for example in [16]. In transfer learning, similar learning
tasks are connected by assuming that if a method can be applied on one problem P then the accuracy
of the prediction can diminish only a little bit if the problems have similar structure. The structural
similarity means that the underlying unknown distributions of those problems are sufficiently similar.
By applying transfer learning, the amount of experimental data can be reduced, or in other words a
prediction derived on a subset of experiments can be propagated towards cases of action-object pairs
having similar properties. One of the subbranches of the transfer learning is called multitask learning ;
see details in [7], where kernel methods are used to connect different learning tasks.

One can address the sparseness by applying methods of semi-supervised learning; see a survey in [27] and
a collection of papers in the book [6]. In semi-supervised learning, it is assumed that a large sample of
unlabeled cases is available. The internal structure of the space of those cases can then be exploited to
propagate the knowledge about the labeled, annotated, cases in the entire database. A concrete example:
consider the case where a large number of objects is available, but the number of actions, and the tried
action-object pairs, is small. If the structure of the space spanned by the objects is sufficiently rich, then
the action-specific properties of the objects can be transformed into each other whenever those objects are
sufficiently similar. Then, carrying out an action on one object can imply the potential outcome of that
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action on similar objects. In this way the action can be propagated among the objects. See some details
about label propagation applied in semi-supervised learning in [5]. An example where the manifold type
structure of the unlabeled cases is exploited can be found in [3] and [19].

We also need to address the complexity of the data representation. Here the objective is to find a simple
model which approximates the original representation sufficiently well. It falls close to the variational
Bayesian methods, where complex distributions are approximated by simple ones. Particular techniques
can extract a subset of observed features, or derive new, higher level features out of the elementary
observations, see methods of so called deep learning described for example in [4].

5.3 General concept of an implementable learning system

The central building blocks of the learning system, the databases and the algorithms processing those
databases to provide prediction associating object and actions, consist of the following main elements.

The learning system is built upon two databases. One contains the objects that can be used as tools or
targets in an action; the other database collects the possible actions. Both the objects and the actions
are characterized by collections of features. Those collections will be called object and action profiles in
the sequel. The databases are built upon these profiles. An example of a database element can be seen
in Figure 5.3.

  

GEOMETRY 
Mesh files,

ECV

Action logs
Grasping
Rolling

Pushing

Prior knowledge

Physical sources, 
low level

Sensorimotor data

                                       

Logical layers

Object: 
Profile: Shape representation

Verified and Conditional 
Action profiles:

Grasping,
Rolling,
Pushing

Figure 5.3: An element of a layer of the object database

Based on the features of the objects and actions we can construct a space of objects and similarly a
space of actions. These spaces are endowed with an internal structure, a certain geometry, which allows
us to compare the elements the objects and the actions. This geometry expresses the similarity, or
dissimilarity of the elements. The similarity is derived from the corresponding features, and it might
be realized by a conditional probability or a kernel function, but any similarity measure which admits
efficient computation an sufficient predictive power can be considered.

The databases are layered; the database of objects has as many layers as actions are available. All
layers can comprise different profiles to each object. Therefore the similarity measure can vary between
layers as well, where every action implies its own space and geometry of the objects. An example of the
action-related layers of object database is shown in Figure 5.4.

The geometry of those spaces, the similarity measure, allows the learning system to propagate the knowl-
edge collected in the earlier experiments, namely: if an action A can be carried out on object X then
with a certain probability that action could be applied on similar objects in the neighborhood of X .

The object space provides the exploration space for the learning procedure; hence it allows new candidates
to be selected for the new experiment in a controlled way. This approach can efficiently enhance statistical
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Figure 5.4: Action related layers of the object database. The lines in within the layers expresses the
similarities between the objects.

stability of the learning procedure by eliminating entirely unknown objects whose behavior in any action
could be unpredictable. On the other hand based on the space structure we can apply an active learning
policy to design the new experiments.

The core of the learning model realizing the outlined system of action and object interactions has been
implemented in Matlab and in Python as well. We are going to extend the latter one to guarantee the
free dissemination of the model. The theoretical background of the implemented model is detailed in the
Appendix of [Sze12].

5.4 Proof-of-concept implementation

A first implementation of core aspects of the system outlined above was implemented at UIBK based
on maximum-margin regression. This proof of concept focuses on the scenario of a robot having to
recognize objects that are the potential targets of its activities. This can be considered as a simple
classification problem, but capturing the functional category, e.g. whether an object on the table can
be used to cut something, is more important than the simple decision whether it is a knife. One of the
most promising approaches is one that can combine the simple classification with the general functional
categories. Recognizing a concrete object obviously can help to find its functionality, but when the
number of distinct objects is large, e.g. > 100, then the accuracy of the object recognition can severely
degrade. Therefore observing wider functional categories of the objects as additional information should
improve recognition performance for robotic action.

Thus the learning task is to find the class (or category) and/or higher-level categories of an object, given
shape descriptions of the objects. The categories are given as object labels, and they are organized into
a hierarchy mainly based on the functional similarity of the objects. The functional similarity connects
objects used for the same purpose, e.g. airplanes or items of furniture. This kind of functional similarities
might also connect objects with significantly different shapes. The categories form a tree structure, where
the base classes correspond to the leaves of that tree. In this structured representation the objects are
formally annotated by a path connecting the root node of the category tree to the node corresponding
to the given class label of that object. Such models are generally known in the literature as structured
learning, see references in [Sze13].

To solve the learning problem outlined above we created an output kernel function, a graph kernel,
expressing the similarities between the paths annotating the objects, and an input kernel function ex-
pressing the similarities between the shape of the 3D objects. The output kernel is built on the weighted
node-wise similarities of the paths, where the weights can force higher similarities between the lower
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level classes expressing the concrete specificity of the objects. The input kernel is computed on the local
distribution of the point cloud representing the objects. These local distributions are then clustered to
derive characteristic classes of the surface points of the shapes. This characterization can provide the
basis for shape segmentation as well.

The optimization model implementing the learning problem is a version of Maximum Margin Regression
(MMR). This model can find the functional dependency between the complex structured outputs, the
paths of the category graph, and the inputs given by the shape features. MMR is a generalization of
the well-known Support Vector Machine that can handle arbitrary outputs representable by kernels. The
base version of the MMR model can be computed at the same level of computational complexity as the
SVM, independently of the complexity of the output representation. An extended version of MMR is
used to realize the action-object interactions.

Using these MMR methods, we produced indicative results on a small shape recognition problem involving
kitchen objects, demonstrating that knives and cleavers can be recognized as the same or as distinct
categories, as might be required by an evolving robot experience. A second, large-scale, hierarchical shape
classification experiment confirms that structured prediction can in fact exploit category hierarchies to
obtain functional predictions superior to base-category predictions. Although no directly comparable
results exist in the literature, the available data testify to the highly-competitve nature of the proposed
method [Sze13].

Further details concerning methods for implementing the general learning system of Section 5.3 are given
in another attached technical report [Sze12].

5.5 Learning grasp and tool-use competences in the cross space
of Early Cognitive Vision and Action Representation

In primates, vision plays a dominant role. Half of the primate’s cortex is connected to visual tasks (see
[14] for a review on the visual cortex for computer vision scientists), and it can provide high precision
3D shape information. In addition, vision provides rich appearance information in terms of colour and
texture, all aspects which are of significant relevance for affordance computation.

The human visual system constitutes a deep hierarchy covering a large number of complementary aspects
at different levels of granularity (see figure 5.5). Moreover, more than 2/3 of the visual cortex in the is
associated to task-independent feature processing in the occipital cortex displayed as yellow areas in figure
5.5. In these areas, feature descriptors covering different aspects of visual information such as color, 2D
and 3D shape as well as motion are extracted in – at least at early stages of processing – largely separated
processing streams. In the hierarchical process, the level of abstraction of feature representation as well
as the receptive field size increases. For example in the colour domain, on the retinal level a trichromatic
colour representation with a receptive field size of 0.01 degree1 while on the level of V1, color is encoded
in an opponent space with a receptive field size of 3 degree while on the level of V4, hue as an object
property with high degree of color constancy is coded by neurons with a receptive field size of up to 8
degrees. Similar transformations also occur in other domains, for example zero–th, first and second order
disparity (corresponding to absolute distances, tilt and curvature respectively) is coded at different levels
of 3D shape processing. For details, we would like to refer the reader to [14].

In the last decade, SDU has made a substantial effort to derive a functional model of these early stages
of the deep visual hierarchy covering the occipital areas of the primate’s vision system. This has lead to
the so called Early Cognitive Vision (ECV) system (see figure 5.6) presented in, e.g., [17, 13]. Structural
bootstrapping in the sensorimotor domain can take advantage of relevant patterns in the ECV space that
are highly correlated with action successes or perceptual categories.

As already pointed out by Granlund [11], the visual space is fundamentally of higher complexity compared
to the action space. This in the first place concerns the dimensionality of visual information compared to
a still low dimensionality of action parametrization connected to the rather limited number of joints to be
actuated. As a consequence, affordance learning has to fundamentally deal with the high dimensionality
of the space spanned by the visual hierarchy as discussed already in section 5.2.

In attached papers [TBK12, TK12], we present an algorithm which identifies relevant feature and action

1All measures are given for 5 degree of eccentricity.
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Figure 5.5: Hierarchy of the primate’s visual cortex.

parameters in the context of affordance learning in the cross space of the space spanned by the ECV
system and the action space (see also the examples in section 5.1). Up to now, we focus on grasping and
cutting actions. Based on a set of evaluated actions, the algorithm identifies areas in the ECV x Action
space which contain a large percentage of successful actions. A striking property of the algorithm is that
it is able to identify both, the visual features that characterize the affordance and the action parameters
associated to it, which is an important aspect in the concept discussed in section 5.3.

This algorithm is rather simple (being a variant of the a priori algorithm [1]): In the vicinity of a successful
action, we search for (or generate) other successful action. In general terms, the algorithm resembles the
’search for a needle in the haystack’ since only few of the dimensions of the ECV space – and in these
dimensions only very small subspaces – are relevant.

We demonstrate the performance of the algorithm on the generation of grasp affordances triggered by
visual feature relations (see figure 5.7) and are in the process of applying it also to the learning of a
’cutting affordance’, both according to the examples described in section 5.1. In the case of ’grasping’,
we learn the visual features that trigger grasp options as well as how to perform the actual grasp action
in relation to these features. In case of ’cutting’, we learn the shape structure that defines a cutting tool
as well as the way of performing the actual cutting action as described in [PSJ+12].

The complexities associated to the approach stems from four sources:

Generation of Sufficient Percentage of Successful Actions: Non-successes are mostly irrel-
evant — although these are used for sorting out non–interesting areas — and hence the system
needs to be able to perform actions with a certain percentage of success likelihood. This can be
achieved by introducing bias, e.g., by designing reflexes which trigger actions with sufficient success
likelihood (as in, e.g., [13]) or by means of a ’Learning by Demonstration’ setting.

Spanning a feature space which provides features that are indicative for actions: The
most challenging problem is to provide a feature space which covers features that are highly cor-
related to successful actions. Which features are relevant might depend significantly on the actual
task and most features will be actually highly uncorrelated to action successes and therefore insignif-
icant. Actually, an important aspect is to separate important from non-important sub–areas of the
ECV x Action space. The ECV space — besides covering different aspects of visual information and
providing descriptors of different granularity — also provides feature relations of different order.
This very quickly leads to a dimensionality which cannot be explored exhaustively (dimensionality
explosion). It is also important to keep in mind that the relevant features are not necessarily to
be found at high levels of the hierarchy (for example to distinguish a sawing blade from a cutting
blade requires high frequency information processed at low levels of the hierarchy).

Nevertheless, we argue that the ECV space provides some important properties that facilitate the
identification of relevant sub–areas. Most importantly, the separation of visual aspects allow for
disregarding of irrelevant dimensions. Note that, while on the pixel level different visual modalities
are still highly intermingled, it is an important task of visual processing to allow for this separation
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already at rather early stages of the processing pipeline such that irrelevant dimensions can be
easily disregarded. Another important aspect is the deep hierarchy which provides information on
different levels of granularity. The learning can then pick the relevant level of granularity for a
given task.

Defining a metric on the combined feature-action space: The algorithm searches for similar
events in the vicinity of successful feature-action associations. Hence a metric needs to be defined
on the ECV x action space. This metric might be different for different tasks. Also the metric can
be used to disregard irrelevant dimensions (see above).

Large spaces need large data to be filled: Our algorithm — although (or maybe since) being
simple — requires certain amounts of data to lead to statistical statements that are significant.
This requires ’number crunching’ as well as ’large storage capacities’. Both is — in a somewhat
distressing way — provided by the human visual system with the large resources devoted to early
cognitive processing in the occipital cortex. Maybe one of the reasons of the success of human
cognition is not in the ’high complexity of algorithms’ but the ability to deal with such ’big data’.
Note that also in other fields than vision such as, e.g., speech recognition, success stories could be
drawn not by increasing the complexities of models but in the contrary, by the the simplifications
of models and the use of huge amounts of data. The reason for that might be that with the
sophistication of the models potentially sub-optimal bias enters the process.
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Figure 5.7: Learning grasp affordances.

In [TBK12], we describe the abstract learning approach and in [TK12], we give results on grasp learning.
In [MPK13], we describe a search algorithm for visual features only (in the ECV space) for object
recognition.

5.6 Progress in implementations, integration and results

A detailed description of the learning system as outlined in Section 5.3 is given in [Sze12]. Its appendix
contains a detailed description of learning algorithms that implement core aspects of this learning system.

The consortium is in the process of drafting an experimental agenda to explore and demonstrate boot-
strapping at sensorimotor and object-action levels [PSJ+12]. That document briefly summarizes the
targeted structural-bootstrapping functionalities, and outlines a sequence of increasingly ambitious ex-
periments. The first of these experiments addresses categorizing objects by affordances. For this first
experiment, affordances are provided by manual annotations; they are not grounded in actions yet. Thus,
the learning problem is reduced to a shape-based object categorization problem. Experimental results
are given in an attached technical report [Sze13].

The next step involves adding kinematic simulation of cutting actions, using these to derive implicit func-
tional categorizations of objects, and demonstrating the transfer of action parameters between objects.
Suitable kinematic simulation facilities have already been developed and implemented at SDU [PSJ+12].

Future work will ultimately add physical action, and will address more complex aspects of structural
bootstrapping, as described in the experimental agenda [PSJ+12]. This agenda is intended to be an
evolving document; the version included represents a current snapshot.

Methods and implementations for various subproblems of the integrating learning system described in
this chapter are under development by various partners within the consortium:

• Inter-object action transfer and the adaptation of known actions to other, similar actions is ad-
dressed by the sensorimotor structural bootstrapping method combining statistical and reinforce-
ment learning reported in Chapter 3.

• Refinement of action sequences on the basis of known action sequences and instantiation of new
action sequences, described at the level of parametrized relations between objects, is addressed by
the SEC assimilation and accommodation method reported in Chapter 4.

• The system outlined in this chapter operates on in-memory object models. This is a key property
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of this system, as it alleviates the need for high-performance sensing able to provide high-fidelity
reconstructions of the robot’s environment. Following this idea and similarly to human routine be-
havior, the agent possesses fairly detailed internal models of known objects on which most reasoning
is performed, while perception merely links the real world to the internal models. Several suitable
perceptual systems are available within the consortium. New methods linking 2D observations to
3D models are under development at UIBK [21, 22, 23, 24], as well as for robust and efficient 3D
shape registration [25]. These will be mentioned in the upcoming Year-2 Periodic Progress Report,
and full detail will be given in Deliverable D2.1.2 (Month 37).

• In an open world, objects need to be added to the database dynamically. This can be done via
dedicated exploration, under more control over the explored object than during casual interaction,
involving picking up the object, looking at it from several, close-up viewpoints, etc., just as hu-
mans would do. KIT has recently developed methods suitable for the discovery and exploration of
unknown objects [18], which will likewise be reported in the upcoming Progress Report.

• Object similarity functions tunable toward specific actions are a crucial ingredient of the system
described in this chapter. Anticipating that action-specific object similarity functions will benefit
from explicitly-identifiable object parts, UIBK is working on automatic discovery of common object
parts within a structural latent-variable model [26]. Again, this work will be reported in the
upcoming Progress Report and in D2.1.2.

• SDU has developed an algorithm which searches in the ECV×Action space for correlated shape-
action events. Promising experimental results for the case of grasping were achieved; current work
focuses on cutting. SDU also approached the problem of finding and utilizing features for object
recognition in the ECV space only. This work is described in attached papers [TBK12, TK12,
MPK13].
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Chapter 6

Conclusions

We have defined a promising, overarching framework for object-action structural bootstrapping (Ch. 5)
that postulates concrete computational mechanisms for the core aspects of structural bootstrapping –
leveraging past experience to boost learning on future tasks by discovering similarities between objects
and between actions, and making inferences about novel objects and actions based on past experience.
It will incorporate sensing and action from other work packages, as well as sensorimotor and event-chain
learning, spanning multiple levels of abstraction and including important contributions from multiple
project partners.

Some, but not all of the details of the framework have already been fleshed out in detail [Sze12]. We have
created a roadmap for experiments to guide future development [PSJ+12], and have produced results
for the first step of this roadmap [Sze13]. Future work will follow this roadmap. The next step involves
simulated interaction to replace the category labels of our initial results, and augmenting the scope of
the learning task to include action parameters.
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