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Chapter 1

Executive Summary

The core focus of WP4.1 is to study cooperative tasks among multiple agents. We distinguish between
tightly-coupled cooperative manipulation tasks, in which a direct, physical interaction between multiple
agents must take place in order to achieve the task goal, and loosely-coupled interaction tasks, where
multiple robots are engaged in scene interpretation and reasoning. In loosely-coupled interaction each
agent is assigned to independently perform one or more subtasks that together lead to the attainment of
the goal of the overall task.

The Xperience project is concerned both with learning at the level of motor primitives and with the
application of the learned motor primitives to accumulate new knowledge, which is then used to bootstrap
further learning. In D4.1.1 we describe our work on tightly- and loosely-coupled interaction in this context.
We focused on the following topics:

In Section 2.1 we explain how a library of movement primitives can be used for tightly-coupled in-
teraction, where the initial motor knowledge was acquired by coaching [FGMU11], [6]. The key
here is to enable real-time generation of movement primitives that take into account the external
perturbations caused by contact with another agent.

In Section 2.2 we present our approach to tightly-coupled physical interaction where a human and a
humanoid robot collaborate to carry a heavy object.

In Section 2.3 we study the problem of object learning by dual-arm manipulation. Here a humanoid
robot learns an object representation by repeatedly pushing it with one or the other hand. The
pushing behavior was again learned by coaching. Using both hands makes it easier for the robot to
acquire object views from different viewing directions while keeping the object in the center of its
workspace.

The above three problems are quite different. The first two belong to the class of tightly-coupled in-
teractive tasks. In this context we investigated how to generate motor primitives from the accumulated
training data and how to parameterize the learned primitives in real-time with respect to the incoming
sensory feedback. On the other hand, the problem described in Chapter 2.3 belongs to the class of
loosely-coupled interactive tasks. With such tasks we normally end up with a decision problem rather
than feedback control problem. The goal is to increase the utility of cooperative actions as opposed to
actions performed by a single agent. In our practical experiment each arm of a humanoid robot was
considered as an independent agent.

To enable faster acquisition of sensorimotor knowledge we focused on coaching to acquire the initial motor
skills. In our current work coaching mainly takes the form of kinesthetic guiding, where a human coach
guides a robot through a number of example trajectories (e. g. when learning reaching and grasping
movements) or through a number of postures (e. g. when learning pushing movements). This is a master-
slave architecture with the human coach as the leader and the robot as the follower. In all cases we
combined the acquired motor information with the simultaneously acquired sensing data relevant for the
task. For example, in the case of pushing the training data contained not only joint configurations of the
robot arm but also the locations of the object to be pushed. The locations were acquired by the robot’s
active vision system simultaneously with the arm configurations. Such sensing data enables the robot to
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generalize the training data to new situations that arise at execution time in a task-specific manner. In
the current version the human coach manually specifies which sensing data is relevant for the task. In
the future we plan to explore how to automatically select the appropriate sensing data to index into the
library of the accumulated sensorimotor knowledge.

The performed research is described in the following three chapters and in two paper attached to this
deliverable. It is primarily the result of our work in WP4.1. It is based on representations developed
in WP2 (learning sensorimotor representations) and provides data for WP3 (generative mechanisms) as
well as results for the demonstration workpackage WP5.
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Chapter 2

Description of Results

2.1 Tightly-Coupled Interaction: On-line Generalization of
Movement Primitives

Scenarios that involve tightly-coupled human-robot interaction require that a robot generates new move-
ments on-line as new situations arise. This is only possible if the robot can generalize the previously
acquired sensorimotor knowledge in real-time. Here we propose a methodology that enables the robot

1. to learn movement primitives from a number of example trajectories, and

2. to select and adapt the appropriate primitive in real-time (within the robot’s sensory feedback loop)
and with respect to the current task configuration.

We developed a system where a human instructor teaches the robot new movements by physically guiding
it through a number of example trajectories (see Fig. 2.1). We applied the following control law to enable
kinesthetic guiding on a torque-controlled robot

τc = h + JT f , (2.1)

where J is the Jacobian matrix, h the term combining centrifugal, Coriolis and gravity forces, f the vector
of external forces acting on the manipulator’s end-effector, and τc the commanded torques. With this
control law, a force-controlled robot can accurately follow the motion of the coach. In many practical
cases we can omit the second term from Eq. (2.1). Note that we assumed that the dynamics of the robot is
known. While it is possible to acquire inverse kinematics or inverse dynamics models by learning [9], this
was not necessary on the system (Kuka LightWeight Robot arm) we used in our practical experiments.

Based on our previous work [12] we proposed a new approach that enables interactive learning and ex-
ecution of motor primitives. In [12] we proposed a statistical approach for the generalization of motor
primitives where raw trajectories were used as input for generalization. However, the resulting com-
putational processes were too expensive to allow for on-line modification and switching of movement
primitives. In our newly developed approach we therefore first reduce the dimensionality of the input
data, which we achieve by encoding the training trajectories as dynamic movement primitives (DMPs)
[7, 8]. Based on DMP representation we developed a methodology for statistical generalization using

Figure 2.1: Coaching via kinesthetic guiding
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Gaussian process regression [11]. The parameters describing the task are employed as query points into
the trajectory database. We showed on real-world tasks that the proposed methodology can be integrated
into a sensory feedback loop, where the generalization algorithm is applied in real-time to adapt the robot
motion to the perceived changes of the task configuration. Technical details about this work can be found
in the paper attached to this deliverable [FGMU11].

In practical experiments we showed how a robot can modify or even switch the motor primitives for
reaching and grasping in order to account for perturbations caused by contact with a human. To be
able to react to external perturbations and thus ensure the safety of the person collaborating with the
robot, the robot needs to monitor the external forces while executing the desired motion. We applied the
following control law to track a trajectory in the joint space

τc = H(q̈d + Kvė + Kpe) + h, (2.2)

where H is the inertia matrix, q̈d are the desired joint accelerations, e = qd−q is the joint space tracking
error, Kv and Kp are the corresponding positive definite gain matrices, and the rest of the parameters
are defined as above. The stiffness of the robot is specified by an appropriate selection of gain matrices
Kv and Kp. When the external forces perturbing the motion become too large, the robot is not able
to follow the desired trajectory any more and starts deviating from the planned movement. Once this
happens the initial movement primitive is discarded and a new dynamic system optimal for the new task
configuration is generated. Since the calculations can be done in real-time, the robot is able to start
using the newly calculated DMP immediately. In the same way we also enabled the switching between
movement primitives, which we demonstrated in a practical experiment. In this experiment the robot
learned how to grasp an object form two different sides. The selection of the appropriate movement for
grasping from left or right side was done by taking into account the current location of the end-effector.
If the end-effector moves from one side of the object to another, the robot can immediately switch to the
different movement primitive appropriate for grasping from the opposite side.

Besides in the attached paper [FGMU11], this work was also presented at ICRA Workshop on Autonomous
Grasping [5] and at Humanoids 2011 [6]. A video showing our experimental results has been submitted
with deliverable D5.2.1.

2.2 Tightly-Coupled Interaction: Cooperative Carrying

In this work we study cooperative manipulation tasks, in which two agents (two arms, robot-robot,
human-robot) collaborate to carry big and/or heavy objects. Apart from new methods for motion and
grasp planning and control, we also aim at developing new approaches for cooperative manipulation
tasks and intuitive physical human-robot interaction and evaluating them on humanoid robots. Our
focus is on learning cooperative interaction motion primitives during physical interaction and endowing
robots with the strategies for human motion prediction in physical human-robot interaction tasks. Such
prediction strategies will enable the robot to work proactively with the human. Our hypothesis stems
from the observation that, in human-human collaborative tasks, each human constantly predicts the
other’s motion. Based on motion prediction of the other person, the human can decide whether to lead
him or to follow him. Models for prediction of human motion during such tasks will be acquired from
both 1) cooperative interaction motion primitives from human motion capture data and 2) sensorimotor
experience consisting of proprioceptive, force and tactile information during cooperative task execution.

Figure 2.2: Coaching of the humanoid robot ARMAR-III via kinesthetic guiding
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Once the robot has acquired a model of human’s motion, it can start behaving as a leader and proactively
perform the next action based on its prediction. If the robot is not able to correctly predict human’s
motion, it will comply reactively with the human. This strategy will allow for a continuous and dynamic
adjustment of the leader/follower role of the robot when acting as partner in cooperative tasks.

Based on our previous work on complaint interaction based on impedance control [10], combining visual
and force information for physical interaction tasks [16] and visual servoing [15], we conducted experiments
on tightly coupled cooperative tasks on humanoid robot ARMAR-III [1]. In particular, we investigated
and implemented

• Kinesthetic guiding of the humanoid robot ARMAR-III based on interaction forces applied by the
human. Based on applied forces, whole body motions of the robot were generated exploiting the
kinematics redundancy of the robot (see Fig. 2.2).

A video showing guiding of ARMAR-III has been submitted with deliverable D5.3.1.

• Master-slave architecture with the human as the ”leader” and the robot as the ”follower” in the
context of object carrying task (see Fig. 2.3). In the experiments, we relied on proprioceptive
and force information, which is measured by 6D force-torque sensors mounted in the writs of
the robot. The forces resulting from the interaction between the object and the robot were used
to infer the direction of motion of the human (leader) and mapped to motion commands of the robot.

A video showing the implemented cooperative human-robot carrying of a long big object has been
submitted with deliverable D5.3.1.

Figure 2.3: Cooperative carrying of big objects: motion of the robot is generated based on the 6D
force-torque information measured in the wrists.

2.3 Loosely Coupled Interaction: Bimanual Object Learning

This work demonstrates how cooperation between two independent agents (here each of the humanoid
robot’s arms is assumed to be an independent agent) can improve explorative learning. It was conducted
as part of the research that aims at showing how objects can be defined and learned if the concept of
object manipulability is taken into account [3]. Based on the concept of object manipulability, we can
define objects as physical entities that are manipulable by a robot and whose features move consistently
when the robot moves the object. The current status of our research on this issue can be summarized as
follows: the robot starts generating initial object hypotheses from the extracted 3-D points, which are
obtained through stereo vision, by detecting regular surfaces, e. g. planes and cylinders, amongst them.
The hypotheses are then statistically verified, corrected and extended by pushing them repeatedly. In
this way we can segment objects from the background without having any prior information about their
appearance. Object representations are learned using bag-of-features histograms of the SIFT descriptors
(other descriptors are also possible) of the points belonging to the object, as well as color histograms of the
area spanned by those points. We have shown experimentally that the objects learned this way can later be
recognized, and that the segmentation by pushing can serve as a powerful methodology for recognition in
complex scenes. The underlying visual processes are described in the attached paper [SUM+11]. Pushing
actions for each arm were learned by kinesthetic guiding and are described in [14] (paper attached to
deliverable D2.3.1). In the following we explain how to increase the robustness of the learning process by
utilizing both arms of a humanoid robot for pushing.
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We tested the concept described above on a torque-controlled humanoid robot [2]. However, one problem
we often encountered in our experiments was that the learning process can get stuck when the object is
pushed to a certain location from where the robot cannot push it to a new location (using the available
pushing skill). This problem can be resolved either by

1. training additional types of pushing movements to increase the versatility of the available pushing
behavior,

2. walking to a different location from where the root can push the object using the currently available
pushing skill, or

3. regularly switching the pushing arm based on the suitability of each arm to push the object at its
current location.

In this work we chose the third option, which required the robot to learn pushing with both arms. This
allows the robot to keep the object in a central area in front of it. To this end, the object is always pushed
towards a central point, but with sufficiently long pushes that its position oscillates around that point
rather than converging at it. There are many possible criteria that can be used to select the appropriate
arm for pushing in order to achieve such behavior, but it turned out that checking the side where the
object is currently located with respect to the robot body is sufficiently effective. That means that if the
object is to the right of the target position, which is defined to lie directly in front of the robot, the right
arm is used and vice versa. Although it is not completely trivial to calculate this information because
both the trunk and the head of the robot are allowed to move, we could nevertheless calculate it using
active 3-D vision. A suitable calibration process has been suggested in [13]. The developed bimanual
pushing strategy was sufficient to reliably push the object several times without any human intervention,
which provided the robot with a sufficient number of different object views to learn a view-idenpendent
representation of satisfactory quality for reliable object recognition.

In this way we provided an important new explorative behavior for the Xperience project. Note that
the developed system requires that many different robot behaviors are synchronized and work in unison
towards the same goal: the head and eyes need to move to keep the object in the center of the robot’s
viewfield; based on information acquired by active vision a decision process must decide which arm to use
for pushing; the previously learned pushing behavior of the selected arm needs to be initialized based on
information acquired by active vision and executed in the current configuration of the external world; the
motor control system must take into account the possibility of collision with the environment; example
images need to be acquired at the appropriate time and the object features need to be segmented from
the background. It is thus clear that longterm (and even more so lifelong) explorative learning requires
an ample set of robust sensorimotor skills.

Even though our current implementation of object learning already includes many different behaviors,
some are still missing. For example, we have not yet used touch information to detect the moment when
the pusher hits the object, which would allow us to determine the appropriate length of the pushing
movements. Accumulating new sensorimotor behaviors and improving the available ones need to be a
constant topic of Xperience. Our current system could obviously be improved by including additional
behaviors such as the above option 1 (learn additional pushing strategies) and 2 (move to a different

Figure 2.4: Pushing the object to be learned with two hands. The appropriate hand is selected based on
the current position and orientation of the object relative to the robot base coordinate system.

8



Xperience 270273 PU

location by walking). Moreover, we can envision a learning process in which the pushes are planned so
that they induce object motion that maximizes the amount of information that can be gained from the
next object view, which the robot acquires after the push. This type of planning process was studied
for example in [4] in the context of walking. Our work in the next year of the project will explore these
possibilities.

A video showing the implemented bimanual object learning process has been submitted with deliverable
D5.3.1.
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Abstract

Autonomous robots cannot be programmed in advance for all possible situations.
Instead, they should be able to generalize the previously acquired knowledge to
operate in new situations as they arise. A possible solution to the problem
of generalization is to apply statistical methods that can generate useful robot
responses in situations for which the robot has not been specifically instructed
how to respond. In this paper we propose a methodology for the statistical
generalization of the available sensorimotor knowledge in real-time. Example
trajectories are generalized by applying Gaussian process regression, using the
parameters describing a task as query points into the trajectory database. We
show on real-world tasks that the proposed methodology can be integrated into a
sensory feedback loop, where the generalization algorithm is applied in real-time
to adapt robot motion to the perceived changes of the external world.

1. Introduction

In this paper we investigate the problem of real-time, goal-directed trajectory
generation using a database of example movements. This problem has received a
considerable amount of attention in recent years [4, 7, 12, 22]. It has often been
studied as part of programming by demonstration systems [5, 3]. Our primary
interest is in real-time synthesis of new trajectories using local methods. For the
purpose of this paper, real-time is defined to be the frequency comparable to a
typical camera stream, i. e. 30 Hz. The initial acquisition of training movements
has been performed by sequentially guiding the robot through a set of example
trajectories, but automatic approaches to segmentation from a long sequence of
example movements is possible [11].

It has been shown by Ude et al. [22] that it is possible to generalize the
movements collected in an example database to new situations by utilizing the
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goal of an action as a query point into the database. In [22] movement gen-
eralization was implemented by employing a combination of locally weighted
regression [2] and Gaussian process regression [16], where raw trajectory data
was used as input for generalization. The proposed approach was applied to gen-
eralize various behaviors including reaching, throwing, and drumming. While
this approach can take into account external perceptual feedback to generalize
example movements to different situations, its computational cost is prohibitive
for use in a real-time feedback loop. The goal of this paper is to provide an
approach that is efficient enough to be applied in such a loop.

The approach described in [22] uses Dynamic Movement Primitives (DMPs)
[10, 9] as the basic representation for the encoding of robot movements. DMPs
have many useful properties such as a built-in ability to react to perturbations
without introducing discontinuities in the resulting robot motion. As an au-
tonomous representation, they are not directly dependent on time, which makes
it easy to stop the execution of movement without extensive bookkeeping of
time evolution [18]. DMPs can also be extended to include capabilities such
as obstacle avoidance [14] and avoidance of joint limits. All these adaptations
can be done in real-time, which enables the robot to react to external sensory
feedback. In this paper we expand on such built-in abilities by providing a
methodology for real-time generation of DMPs based on a trajectory database.
Thus we provide means for on-the-fly, task-specific adaptation of motion.

One DMP can encode one specific robot trajectory. In case of point-to-point
(discrete) movements, the trajectory of each robot degree of freedom y (given
either in joint or in task space) is described by the following system of nonlinear
differential equations

τ ż = αz(βz(g − y)− z) + f(x), (1)

τ ẏ = z, (2)

τ ẋ = −αxx, (3)

where x is the phase variable and z is an auxiliary variable. αx, αz, βz and τ need
to be specified in such a way that the system converges to the unique equilibrium
point (z, y, x) = (0, g, 0). The nonlinear term f contains free parameters that
enable the robot to follow any smooth point-to-point trajectory from the initial
position y0 to the final configuration g

f(x) =

∑N
k=1 wkΨk(x)∑N
k=1 Ψk(x)

x, Ψk(x) = exp
(
−hk (x− ck)

2
)
. (4)

Here ck are the centers of radial basis functions distributed along the trajectory
and hk > 0. Weights wk are estimated so that the DMP encodes the desired
trajectory. For robots with many degrees of freedom, each degree of freedom is
represented by its own equation system (1) - (2), but with a common phase (3).
We used the algorithm described in [22] to determine the placement, width, and
number of radial basis functions Ψk.

Recently, Gribovskaya et al. [7] proposed an alternative approach based
on dynamic systems that can encode a complete class of movements. In their
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approach, a class of movements is represented by a more general nonlinear
system of differential equations

ẏ = h(y). (5)

Note that the phase information is not available in this approach, which is prob-
lematic in case of intersecting velocity fields, where the same robot configuration
y is associated with more than one velocity ẏ. Nevertheless, unlike DMPs, this
representation is not limited to one specific movement but can represent more
complete velocity fields that can encode a class of movements. The nonlinear
function h can be estimated using Gaussian mixture regression [7], which results
in a large-scale global optimization problem. Once this optimization problem is
solved, the on-line robot control can be realized by integrating Eq. (5), which
enables the robot to switch to a different movement (within the learned class
of movements) in real-time. The stability analysis of the resulting system of
differential equations is also given in [7].

Since DMPs have not been designed to represent whole classes of movements,
a standard DMP cannot switch to a different type of movement in case of
perturbations. It can only react to a certain perturbation by "pulling" the
robot back to the desired trajectory in a generic fashion. While the recently
proposed approach described in [22] does allow for the generation of DMPs that
are adapted to a given configuration of the external world, this approach is
computationally too expensive to be applied within the robot feedback loop.
However, it has the advantage that the generalized DMP is computed by local
regression methods, which makes it possible to apply local, linear optimization
as compared to the global, nonlinear optimization approach described in [7].
Since the approach from [22] does not attempt to represent a whole class of
movements within one differential equation, the selection of basis functions for
regression is less critical than in [7]. In this paper we propose a new approach
to movement generalization using Gaussian process regression, which not only
preserves the advantages of the local approach, but also allows for real-time
computation of DMPs, thus making it suitable for its application within a real-
time sensory feedback loop.

2. Approximation of a class of movements with Gaussian process re-
gression

Lets assume that we have a set of robot movements Mi, i = 1, . . . , NumEx,
which all result in a successful execution of a given task in different situations.
As example we consider a set of reaching movements towards different targets in
3-D space. We denote the parameters characterizing the task by qi ∈ Rm, i =
1, . . . , NumEx, m being the dimensionality of these parameters, which we also
call query points. Every movement Mi is encoded by a sequence of trajectory
points

{
yij , ẏij , ÿij ∈ Rdof

}
, measured at times tij , j = 1, . . . , ni, ti1 = 0. Here

ni denotes the number of samples on trajectory Mi, while dof denotes the
number of degrees of freedom encoded by the example trajectories. We have
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experimented both with end-effector trajectories (in this case yij are points in
the Cartesian space) and with robot joint trajectories (in this case yij are the
joint angles stemming from the active degrees of freedom). The problem is
to compute a trajectory for any given query point q. For example, in case of
reaching, a query point is given by the desired target position and we need to
compute the associated reaching trajectory M. Example movements Mi can be
acquired either by kinesthetic guiding [8] or by imitation [21].

To become able to accomplish a task in any situation, the robot needs to learn
a function that maps the parameters describing the task q into the parameters
describing the desired trajectory M, i. e.

G : q 7−→M. (6)

In general, G is not a function. For example, in the case of reaching move-
ments, there are many different ways to reach towards a desired destination.
However, we can impose an additional constraint that synthetic reaching tra-
jectories should be similar to the example reaching trajectories. The closer the
desired query point q is to the query point qj , the more similar the generated
trajectory M should be to the trajectory Mj associated with query point qj .
With this additional constraint, G(q; {M1, . . . ,MNumEx}) becomes a function
that can be learned.

2.1. Converting the example trajectories into dynamic movement primitives

To reduce the amount of data that we need to process for action generaliza-
tion, we first encode each of the example movements Mi as a dynamic movement
primitive (DMP). Any of the standard methods proposed in the literature can
be used for this purpose. Lets denote

f targijl = τ2
i ÿijl − αz(βz(gil − yijl)− τiẏijl), (7)

where i = 1, . . . , NumEx, j = 1, . . . , ni, l = 1, . . . , dof . The above equation
can be derived by rewriting the system of two first-order differential equations
(1)-(2) as one second-order differential equation (by writing z = τ ẏ, ż = τ ÿ
in (1)). The parameters wikl, k = 1, . . . , N, (N is the number of DMP kernel
functions, see (4)) can be estimated by solving the following linear regression
problems

Xiwil = f targil , (8)

where

Xi =


Ψ1(xi1)∑N
i=1 Ψi(xi1)

xi1 . . . ΨN (xi1)∑N
k=1 Ψi(xi1)

xi1

. . . . . . . . .
Ψ1(xiT )∑N

k=1 Ψk(xiT )
xiT . . . ΨN (xiT )∑N

k=1 Ψk(xiT )
xiT

 , (9)

and wil = [wi1l, . . . wiNl]
T , fil = [f targi1l , . . . , f targiT l ]T . The phase parameters

xij = x(tij) are calculated by integrating Eq. (3) with the boundary condition
xi1 = x(0) = 1.
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The above process enables us to convert the initial raw trajectory data Mi

into DMPs, i. e. Mi 7−→ (wi,gi, τi), where wi ∈ RN×dof are the weights of
DMPs for all degrees of freedom, gi ∈ Rdof are the final configurations on the
example trajectories, i. e. gi = yini

, and τi ∈ R are the time durations of
example trajectories, i. e. τi = tini

.

2.2. Trajectory generalization using Gaussian process regression

The conversion of raw example trajectories into DMPs results in a signifi-
cant data reduction. For example, a four second trajectory sampled at 500 Hz
contains 2000 data points, which can typically be reduced to a DMP defined by
a few tens of radial basis functions. In this section we propose to synthesize new
movements directly from the estimated DMP parameters. In this case function
(6) becomes

G
(
{wi,gi, τi;qi}NumEx

i=1

)
: q 7−→ (w,g, τ) . (10)

Gaussian Process Regression (GPR) can be applied to estimate function
(10). Gaussian processes are based on Bayesian probability modeling [16]. The
resulting models have an interesting and useful feature that, besides output
values, they also predict confidence in these values. GPR exhibits good gener-
alization performance and the predictive distribution can be used to measure
the uncertainty of the estimated function. It has been demonstrated that this
technique outperforms other regression methods on problems such as estimating
inverse dynamics of a seven degrees of freedom robot arm [13].

Technically, a Gaussian process is defined as

g(q) ∼ GP (m(q), k(q,q′)) , (11)

wherem(q) = E[g(q)] is the mean function and k(q,q′) = E[(g(q)−m(q))(g(q′)−
m(q′))] the covariance function of the process. Lets assume that we have –
as when estimating function (10) – a set of noisy observations {(qi, yi)|i =
1, . . . , NumEx}, yi = g(qi) + ε, ε ∼ N (0, σ2

n). Subtracting the mean from the
training data, we can further assume that m(q) = 0. Given a set of query points
g(q∗), the joint distribution of all outputs is estimated by[

y
y∗

]
∼ N

(
0,

[
K(Q,Q) + σ2

nI K(Q,Q∗)
K(Q∗,Q) K(Q∗,Q∗)

])
, (12)

where Q, Q∗, y, y∗ respectively combine all inputs and outputs and K(·, ·) are
the associated joint covariance matrices calculated according to Eq. (11). It can
be shown [16] that the expected value ȳ∗ associated with the new query points
q∗ is given by

ȳ∗ = E[y∗|Q,y,Q∗] = K(Q∗,Q)[K(Q,Q) + σ2
nI]
−1y, (13)

with the following estimate for the covariance of the prediction

cov(y∗) = K(Q∗,Q∗)−
K(Q∗,Q)[K(Q,Q) + σ2

nI]
−1K(Q,Q∗).
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One commonly used covariance function is

k(q,q′) = σ2
f

m∑
i=1

exp

(
−1

2

(qi − q′i)2

l2i

)
, (14)

which results in a Bayesian regression model with an infinite number of basis
functions. m denotes the dimension of the query point space. See [16] for more
details.

With GPR new estimates are calculated using equation (13). The most com-
putationally expensive part is the calculation of [K(Q,Q) + σ2

nI]
−1, but since

this matrix depends only on the training data, the necessary calculations can
be done off-line using for example the Cholesky decomposition. The dimen-
sion of this matrix is equal to the number of data points. In our case, this is
equal to the number of example movements NumEx, which is typically not too
large (at most a few hundred). We thus need to invert a matrix of dimension
NumEx×NumEx.

Note that by writing

z = [K(Q,Q) + σ2
nI]
−1y, (15)

equation (13) and the estimated parameter ȳ∗ associated with the query Q∗ =
q∗ can be written as

ȳ∗ =

NumEx∑
i=1

k(q∗,qi)zi, (16)

where in our experiments ȳ∗ stands for τ̄∗, ḡ∗l , and w̄∗kl. Thus the training data
are weighted based on the distance between the training query points and the
current query point. This means that nearby training points influence the result
more. In this sense, GPR can be viewed as a local regression method.

To generate a new movement, the robot is given a desired query point q∗, e. g.
the desired reaching location. For each of the parameters defining a generalized
DMP (τ , gl, and wkl), which encodes a suitable motion trajectory for this
task situation, we need to calculate (16) on-line, whereas (15) can be stored in
memory. Note also that matrix K(Q,Q) + σ2

nI depends only on query points
and not on the data points. Hence this matrix is the same for all parameters
defining a DMP and thus needs to be inverted only once.

2.3. Comparison with previous local approaches

In our next set of experiments we compare the performance of the proposed
approach and the performance of a method that uses complete trajectories with-
out an intermediate trajectory conversion step (as proposed in [22]) for the pur-
pose of task-specific generalization of dynamic movement primitives. In this
section we examine the advantages and disadvantages of both approaches and
their suitability for on-line generalization.

In contrast to our new approach, which converts the training data into
DMPs, the approach proposed in [22] keeps complete trajectories in memory
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and generalizes to new DMPs without the intermediate trajectory conversion
step. In this case locally weighted regression (LWR) instead of Gaussian pro-
cesses regression has to be used in some calculations that are needed for tra-
jectory generalization. LWR is a memory-oriented, non-parametric method for
statistical approximation. The basic idea is to compute local models using data
from a small neighborhood of the desired query point. Since raw trajectories
are used for estimation, the resulting systems of linear equations are much too
large to be resolved on-line. Unlike this approach, which defers most of the
calculations to the moment when a query needs to be answered, our new, GPR-
based method performs most of the calculations off-line once all of the training
data have been acquired. The most expensive off-line calculations are needed
for the calculation of (15) and for the estimation of hyper-parameters li, σf and
σn as defined in (13) and (14). After the end of learning the training data can
be discarded and only simple calculations shown in (16) are needed to answer
a new query or in other words generalize to new situations.

Here we note that in case of LWR we need to specify one additional pa-
rameter, i. e. influence radius, which determines how many nearby trajectories
will be taken into account for generalization by LWR. Some approaches for the
selection of the optimal radius can be found in [22]. Our new, GPR-based ap-
proach does not require such a parameter. In the following we call the approach
proposed in this paper MPG (Movement Primitives Generalization) and the
approach from [22] RTG (Raw Trajectories Generalization).

3. Experimental results

3.1. Simulation Results

We first show how good the proposed method is at generalizing motor knowl-
edge, which was created in simulation. For this test we generated 75 minimum
jerk trajectories in Cartesian space with zero velocity and acceleration at the
beginning and at the end of each movement. It has been shown that minimum
jerk trajectories are similar to human arm point-to-point reaching movements
[6]. The simulated Cartesian space trajectories were converted into joint space
trajectories of the right arm of humanoid robot HOAP-3 using inverse kine-
matics. This resulted in 75 four-dimensional joint space trajectories, which
were used as training data. The Cartesian end-positions of trajectories were
employed as query points. The query points were uniformly distributed 3 cm
apart within a cuboid with dimensions 6 x 12 x 12 cm (see Figure 1). In our
tests we compared how close the generalized trajectories are to the ideal mini-
mum jerk trajectories and how the proposed method compares to the method
developed in [22], which uses complete trajectories as input data without the
intermediate trajectory conversion step.

We tested the performance of both approaches by calculating the generalized
trajectories at query points different from the training queries. We compared
the generalized joint space trajectories with the ideal minimum jerk trajectories
in the Cartesian space. In summary, our experiments show that MPG calculates
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Figure 1: 75 minimum jerk trajectories were used as training data to test the generalization
abilities of our approach. The 3-D graph a) shows the generated Cartesian space minimum
jerk trajectories and 2-D graphs show the associated joint trajectories. b) shows shoulder
flexion-extension, c) shoulder abducion-adduction, d) upper arm rotation and e) elbow flexion-
extension of the right arm of the HOAP-3 robot.

the generalized trajectory much faster but with a slightly larger deviation than
RTG. In the following, we analyze the error in the calculation of DMP goals g
and the errors over the complete course of the trajectories estimated by the two
different approaches.

As shown in (10), at each query point q we need to calculate the DMP
parameters w, g, and τ . In our simulation example, query points are the end-
points on the trajectories given in the Cartesian space and g are the associated
joint angles at the end of the corresponding joint space trajectories. Thus in this
case GPR attempts to estimate one particular solution of the inverse kinematics
of the arm of HOAP-3. For testing, query points in Cartesian space given to
GPR were uniformly distributed within the training cuboid with distance of 1
cm between them. The error was measured by calculating the generalized goal g
(gjoint,gen = G

(
{wi,gi, τi;qi}NumEx

i=1 ;qxyz

)
), transforming the generalized goal

from the joint space back to the Cartesian space using known forward kinematics
of the arm (qxyz,gen = FK(gjoint,gen)), and calculating the distance between
this transformed position and the original query point e = ‖qxyz,gen − qxyz‖.
The average difference between these points was 0.8 mm (see also Figure 2),
which is significantly smaller than the distance between the training data (3
cm).

In simulation we also tested the accuracy of the complete generalized trajec-
tories as estimated MPG and RTG. We compared the results of both approaches
with the ideal minimum jerk trajectories in joint space over the entire trajecto-
ries, which end in query points situated between the training points (see Figure
3.a). We also tested how the approximation by different number of weighted
radial basis functions effect the average error in joint space and in Cartesian
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Figure 2: Error in the estimation of the DMP goal parameter g (see also the text). At dark
blue stars the estimation error is smaller than 1 mm, at light blue start the error is between
1 and 2 mm, while at green stars the error is above 2 mm. The average error is 0.8 mm.
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Figure 3: Results of MPG and RTG were compared with the ideal minimum jerk trajectories
(in joint space) ending in query points situated between the training points as shown in graph
a). The blue line in graph c) shows an error in Cartesian space of the reconstructed minimum
jerk trajectories trajectories in dependence on the number of weights (here the error is due
inaccurate approximation by DMPs), the red line shows an error of RTG, and the green
line shows an error of MPG. Graph d) depicts an error in joint space and graph b) shows
calculation times that are needed to perform RTG and MPG.

9



space:

errork =
1

Tend,k

Tend,k∑
i=1

‖yi,k,gen − yi,k,ideal‖ , k = 1, ..., NumEx, (17)

errorWn =
1

NumEx

NumEx∑
k=1

errork,n , n = 3, ...,MaxN, (18)

where yi,k are the points on the trajectory k, given either in Cartesian or in
joint space.

Results shown in Figure 3.c and d demonstrate that RTG reaches the mini-
mum error sooner and is more stable then MPG, but MPG also reaches compa-
rable error minimum when a few more radial basis functions are used to encode
the DMPs. Figure 3.b shows a big difference in computation times for MPG and
RTG as the number of DMP basis functions increases. MPG generalizes much
faster and is therefore more suitable for on-line calculation. These results also
show that 18 radial basis functions are enough to approximate the simulated
reaching trajectories. With more than 18 weights the average error does not
change significantly regardless of the selected method. Figure 4 shows how well
some of the generalized trajectories (encoded with 18 radial basis functions) fit
the ideal minimum jerk trajectories.
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Figure 4: The 3-D graph a) shows a few calculated minimum jerk trajectories compared
with generalized trajectories using MPG and RTG. Blue curves are the real minimum jerk
trajectories, green curves are the generalized trajectories estimated by MPG and red curves
are the generalized trajectories generated by RTG. 2-D graphs b), c), d) and e) show these
trajectories in joint space (as a function of time).

The number of radial basis functions needed to approximate the trajecto-
ries depends on the type of movement. With MPG we need to use the same
number of basis function to estimate all training trajectories, otherwise it is not
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possible to apply Gaussian process regression. The longer and more complex
the trajectories are, the more radial basis functions are needed to approximate
the movements. The automatic selection of the number of basis functions is
discussed in [17].

To test the MPG and RTG in real experiments, where the correct trajec-
tories are not known, we applied the leave-one-out cross validation (L1OCV)
to determine the number of necessary basis functions. In L1OCV, each of the
demonstrated trajectories is taken out from the training data and re-estimated
by generalization from remaining trajectories. The generalized and the skipped
trajectory are then compared to determine an average error over the entire tra-
jectory. The L1OCV score is given by an average error over all trajectories in
the training data. To make comparison with real experiments easier, we tested
the leave-one-out cross validation also with the simulated trajectories.

Results in Figure 5 show that the average Cartesian and joint space L1OCV
scores follow a similar pattern as in Figure 4. The differences are due to the
different distribution of training and test query points (here the test query point
is always as far away as possible from the training points, whereas in the previous
simulation experiment we tested the full distribution of query points).

3.2. Reaching and grasping with a humanoid robot HOAP-3

The aim of our next experiment was to show that our method can be used to
teach the humanoid robot HOAP-3 how to reach for an object and grasp it using
data coming from its own visual system. The training was done by collecting
a number of example reaching movements using kinesthetic guiding along the
desired reaching trajectories. We held the robot’s arm near the right elbow joint
and manually moved it from the initial position to the desired end-points in front
of the robot (Figure 6). All four joints of the right arm were collected along the
demonstrated trajectories. Altogether we collected 140 training movements to
points the robot can see with its cameras. Endpoints were about 5 cm apart
from each other distributed in the workspace of the robot’s right arm (Figure
7), which is approximately 30x30x10 cm.

Besides the trajectories, we also measured the final reaching positions as
estimated by the active stereo vision of the robot. The positions estimated by
vision were used as query points. Despite accurate calibration of the active
camera system of a humanoid robot, some noise and errors are to be expected
[23]. By comparing the results of vision-based 3-D position estimation with the
results of the robot’s forward kinematics, we estimated the systematic vision
error to be 1.8 cm on the average. However, the systematic vision error can
be in part learned by Gaussian process regression. To collect the vision data,
we put a small, colored spherical object into the robot hand and estimated its
position at the final configuration on the trajectory (see right graph in Figure 7).
Since stereo vision is also used to estimate the object position when generating
a new movement, the vision errors that arise in training and the errors in query
points used for generalization cancel each other out.

By changing the signs of all four joints of the right arm, we were able to
transfer the training movements from the right to the left robot arm (Figure
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Figure 5: The evaluation of MPG and RTG using leave-one-out cross validation method.
The blue line in graph a) shows the Cartesian space error of DMPs encoding the simulated
minimum jerk trajectories in dependence on the number of weights, the green line shows the
error of generalization by MPG, while the red line depicts the error of generalization by RTG.
Graph b) shows the same errors in joint space, graph c) shows the computational times needed
for generalization by MPG and RTG in dependence on the number of weights and graph d)
takes a closer look on calculation times of MPG.

Figure 6: Image sequence showing the teaching of a reaching movement to humanoid robot
HOAP-3 with kinesthetic guiding. We moved the arm towards the plate in front of the robot
with points plotted at a distance of five centimeters between them. We gradually moved the
plate away from the robot and demonstrated a series of movements at four different distances
from the robot.

7 left graph). Such simplification was possible due to the design of the arm of
the humanoid robot HOAP-3. Note that it is still necessary to estimate the end
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Figure 7: The left graph shows example reaching trajectories. The final positions on the
trajectories are shown as red dots and the starting positions as green dots. The trajectories
for the left arm of the HOAP-3 robot were created by changing the signs of all four joints of
the right arm. On the right graph red dots depict the original end-points of the right arm of
all demonstrated trajectories as calculated by the robot’s forward kinematics, while the blue
dots are the same end-points as estimated by stereo vision. The green lines illustrate the shift
of end-points, which is 1.8 cm on the average and represents a systematic error of the stereo
vision.

positions on the trajectories by vision because the error in the estimation of the
object position depends on the configuration of the robot.

After collecting the training trajectories, we calculated the associated dy-
namic movement primitives (DMPs). The estimated DMP parameters (weights
associated with radial basis functions, time durations, and end-points of all
reaching trajectories in joint coordinates) were used as input for learning by
Gaussian process regression. To define how many radial basis functions were
needed to properly approximate the acquired reaching movements, we used
leave-one-out cross validation as explained above. Results can be seen in Figure
8. They are similar to our simulation results. Again, the calculation time in-
creases with more radial basis functions defining a DMP. Based on these results
we applied 27 radial basis functions to define DMPs because with a larger num-
ber of weights the L1OCW score does not change significantly. A comparison
between the demonstrated trajectories, which were omitted from the training
data, and trajectories generalized by MPG and RTG can be seen in Figure 9.

Given a new desired reaching position in Cartesian coordinates (as estimated
by the cameras), i. e. a new query point, the robot calculates the DMP parame-
ters using Gaussian process regression as described in Section 2. The generated
DMP is then integrated with Euler’s method and the integration results are
used to control the robot arm. If the object appears anywhere in the robot’s
workspace, HOAP-3 reaches towards the object with a movement similar to the
demonstrated movements (Figure 10).

When the robot hand reaches the final position, it grasps the object and
moves back to the initial position. If the object position changes while the
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Figure 8: The results of MPG and RTG were compared with the example trajectories by
leave-one-out cross validation method. In graph a), red line shows L1OCW score obtained by
RTG and green line represents an L1OCW score obtained by MPG, all in Cartesian space.
Graph b) represents the L1OCW score in joint space and graph c) shows calculation times
that are needed for MPG and RTG, all in dependence on the number of weights. Graph d)
takes a closer look at calculation times of MPG.
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Figure 9: A few examples comparing the demonstrated trajectories (blue curves), which were
omitted from the training data, and trajectories calculated by MPG (green curves) and by
RTG (red curves).

arm is moving, the robot uses its vision to estimate the new object position and
calculates the new goal parameters using Gaussian process regression. The form
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Figure 10: Top row: the blue trajectories are nearby demonstrated trajectories, the green
curves are the generalized trajectories estimated by MPG, and the red curves are generated
by RTG. Notice the shape similarity between these trajectories. Bottom row: the blue
trajectories show the generalized right hand movement if the object keeps still. The green
trajectories depict the actual right hand movement, which changed because the attractor point
g was continuously adapted using the results of vision and Gaussian process regression. The
red trajectories show the movement of the object estimated by vision.

of the movement trajectory remains similar to the training trajectories until the
end of the estimated duration time, afterwards it takes the form dictated by the
critically damped system (1) (the nonlinear part is close to zero once the time
exceeds the estimated duration). If the robot has not reached the object within
the expected time, we continue to estimate the goal parameters g by vision and
GPR, which ensures that the robot eventually reaches the object.

Figures 11 and 12 show two reaching examples where the robot motion is
continuously adapted to the current situation. In this experiment we show the
integration between the proposed approach and walking o grasp an object. A
similar experiment on a humanoid robot but based on more classic robotics
approaches have been reported in [20]. If the object falls outside of the robot’s
workspace, HOAP-3 estimates the distance between the object and the robot’s
base coordinate system with its cameras and starts walking to come closer to
the object. A predefined walking pattern was used for this task. While walking,
the robot tracks the object and keeps estimating the distance to the object.
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Figure 11: HOAP-3 detects the object and keeps tracking it. Once the object stops moving,
the robot can grasp it and move the arm back to its starting position.

This information is used to estimate how many intermediate steps are needed
to reach the goal. The robot also adapts its orientation to ensure that it walks
towards the object and finally grasp it.

Figure 12: If the object is outside of the robot’s workspace, HOAP-3 uses vision to estimate
the distance between the object and its base coordinate system and starts walking to come
closer to the object. A predefined walking pattern was used for this task.

As mentioned previously, the systematic error of stereo vision was partly
learned by GPR and was consecutively reduced, but the error due to imperfect
generalization by GPR remains. To test the generalization accuracy of GPR
in a real experiment, the error of the method was estimated in the same way
as in the simulation example. The test points, where the regression error was
measured, were distributed on a regular grid with a distance of 1 cm between
the end points inside the right arm workspace. Figure 13 shows the difference
between test points and 3-D position of that points as estimated by Gaussian
process regression and robot forward kinematics. Here the error of GPR is 7.3
mm on average, which is low enough for the given task of grasping. The error
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in the case of real data is significantly larger than in simulation, but this can
be expected because the distribution of the simulated data was more compact,
more regular and there was no noise.

Figure 13: Dark blue fields in the graph represent GPR error of less than 5 mm, light blue
between 5 and 10 mm, green between 10 and 15 mm, yellow between 15 and 20 mm, rose
between 20 and 25 mm and above 25 mm error are the red fields. The average error of this
real-task endpoints is 7.3 mm.

3.3. Switching between two different movement primitives

Our final experiment was performed with the 7 DOF KUKA Light-Weight
Robot arm. The main goal of this experiment was to demonstrate on-line gener-
alization of trajectories, which can be accomplished only with our new approach
(MPG) because RTG is too slow. The task was to reach towards an object and
grasp it. The object can be grasped either from its right or from its left side.
Thus the robot needs to learn how to grasp the object from both sides. We
demonstrated 144 reaching movements (72 from the right side and 72 from the
left side of the object), which were all acquired by kinesthetic guiding of the arm
(see Figure 14). We show the performance of real-time generalization in a task
in which the robot switches between two different types of reaching movements
(for left- and right-side grasps) in case of perturbations.

The KUKA arm was controlled in stiffness mode. While reaching the stiff-
ness is high enough to properly perform the generalized reaching move. The
external joint torques are monitored during execution. If joint torques exceed a
threshold (determined empirically), the algorithm switches to a lower stiffness
mode, knowing that a physical disturbance occurred. During low stiffness mode
the robot is compliant enough to move in the direction of push. Meanwhile, new
generalized reaching movements are constantly calculated (every 0.03 seconds)
based on the current position of the robot’s end-effector. When the perturbation
stops, the newest generalized reaching movement starts being executed. If for
example the robot starts reaching from the right side of the object and the per-
turbation causes it to move to the left side, the algorithm switches from right- to
left-side reaching movement. The object is grasped once the robot reaches the
end-position on the reaching trajectory. We used a BarrettHand BH-8 Series
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Figure 14: Pictures show the acquisition of reaching movements by kinesthetic guiding of
KUKA Light-Weight Robot arm. The graph shows 144 reaching moves that were performed,
72 from the right side and 72 from the left side of the object.

attached at the top of the arm for grasping. The described reaching process is
shown in Figures 15, 16 and 17.
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Figure 15: Graphs shows reaching examples of Light-Weight Robot arm. Green curves are
generalized trajectories while blue curves are nearby demonstrated trajectories. Red curves
represent robot movement under physical disturbance. In all graphs initial generalized reach-
ing moves encounter physical disturbance and are pushed to different positions where new
generalized moves are performed. Graphs also shows how initial reaching moves would look
like, if there wouldn’t be any physical disturbances. In the right graph reshape of the robot
can be seen when passing to different type of reaching moves, where the beginning of the
second green curve shows reshaping of the robot.

4. Conclusion

We developed a new approach for on-line generalization of discrete move-
ments based on Gaussian process regression. The proposed methodology was
inspired by motor tapes theories [1] and motor schemas [19], in which exam-
ple movement trajectories are stored directly in memory [15]. Unlike previous
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Figure 16: Reaching with Light-Weight Robot arm controlled in stiffness mode. During
reaching the stiffness is high. The joint torques are monitored and if physical disturbance
occurs the algorithm switches to low stiffness mode where the robot is compliant enough to
be pushed to any position from where the newest generalized reaching movement is performed.
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Figure 17: 3-D graph illustrates movement of the Light-Weight Robot arm represented in
Figure 16. Green curves are generalized trajectories while blue curves are some of the demon-
strated trajectories. Red curves represent robot movement under physical disturbance. Be-
ginning of the third green curve shows reshaping of the robot when passing to different type
of reaching moves.
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generalization approaches, which either required significant on-line calculations
[22] or global optimization [7] prone to local minima, the proposed approach can
avoid both. Our experiments have shown that despite significant data reduc-
tion, which provides the basis for a real-time implementation of the proposed
methodology, the generated movements remain close to the ideal movements.
The real-time implementation enabled us to realize tasks such as on-line switch-
ing between movement primitives based on perceptual feedback, which would
not be possible with previous memory-based approaches.
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Abstract—This paper reports on a new approach for segmen-
tation and learning of new, unknown objects with a humanoid
robot. No prior knowledge about the objects or the environment is
needed. The only necessary assumptions are firstly, that the object
has a (partly) smooth surface that contains some distinctive visual
features and secondly, that the object moves as a rigid body. The
robot uses both its visual and manipulative capabilities to segment
and learn unknown objects in unknown environments. The
segmentation algorithm is based on pushing hypothetical objects
by the robot, which provides a sufficient amount of information
to distinguish the object from the background. In the case of a
successful segmentation, additional features are associated with
the object over several pushing-and-verification iterations. The
accumulated features are used to learn the appearance of the
object from multiple viewing directions. We show that the learned
model, in combination with the proposed segmentation process,
allows robust object recognition in cluttered scenes.

I. INTRODUCTION

Autonomous learning of the visual appearance of unknown
objects from camera images requires that the robot is able
to detect and segment new objects in the acquired images. If
no prior knowledge about the object and the environment is
available, it is in general very difficult to segment it accurately
and reliably based on visual information only. Although hu-
mans are usually very successful at this task, it is not easy
to replicate the equivalent ability in artificial (passive) vision
systems [1][2]. The main reason for this is that no clear and
comprehensive definition for the concept ”object” has been
found so far. For each principle that could be used to define
the concept of object, e. g. closure, connectedness, etc., coun-
terexamples can be found. Thus in general a sufficient criterion
to decide if some part of an observed scene constitutes a part
of an object is not known.

Even though simple principles are not sufficient to define the
concept of object, they can give hints to generate hypotheses
about the existence of objects. The generated hypotheses must
then be tested using stronger criteria. When a robot is not
constrained to passively observing a scene, but can use its
manipulation abilities to physically interact with the scene,
it can observe the outcome of its own actions to provide an
additional source of information. Like humans, the robot can
use its (partial) control over the objects and the resulting visual
input to observe - and learn about - the effects of its actions
[3]. For example, moving an object can help to extract its

boundaries [4]. In [5], the kinematic properties of an unknown
articulated object are obtained by moving its parts.

If the robot can grasp an object it is interested in, it can
move it in a controlled way. In this case, the object can be
segmented reliably and its visual appearance from multiple
viewing directions can be learned [6][7]. But grasping of a
completely unknown, unsegmented object is in general very
difficult, and in some cases it may be impossible anyway
because of the size or shape of the object. A simpler alternative
is to just push the object. This will result in rather uncontrolled
object movements, but has been shown to be sufficient to
acquire affordances of unknown objects [3].

In our previous work [8] we showed that pushing can be
useful for object segmentation. Here we extend this initial
work by providing a methodology to discover more candidate
surfaces that give hints about the existence of the object. More
importantly, we developed a new approach that allows for
reliable feature accumulation across a number of different
snapshots. Based on these results we developed an object
recognition system, which supports both autonomous object
learning and object recognition. The developed system has
been tested in a number of experiments that involved both
object learning and recognition.

II. OVERVIEW

Our method for learning new objects consists of the follow-
ing four procedures:

• Generation of object hypotheses: Visual features that
seem to lie on a smooth surface patch are detected and
grouped together.

• Verification by pushing: The hypothetical object is
pushed. The resulting feature motion allows to verify
which features belong to the object. Additional features
are added if they move concurrently.

• Feature accumulation: The above step can be repeated
arbitrarily many times to accumulate object features from
multiple viewpoints.

• Learning of a classifier: Since it is often difficult to
reliably extract and track the same feature point across
multiple views, we based our recognition system on a
bag-of-features approach, which does not require that all
features are tracked and matched across different views.
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Fig. 1. The Karlsruhe Humanoid Head [9], which is equipped with two pairs
of stereo cameras.

III. HYPOTHESIS GENERATION

The first step of our approach for segmenting and learning
unknown objects is to form hypotheses about possible objects.
They are generated using only the visual information that the
robot perceives from its cameras (see Fig. 1). As pointed out
in the introduction, the visual information may be misleading,
and therefore these hypotheses can only be a starting point and
must later be examined further by pushing the hypothetical
object and observing the induced feature motion.

The intended scenario for our system is a household envi-
ronment. Most objects in such environments consist of planar
or curved surfaces. Hence it is reasonable to look for planar or
cylindrical surface patches, which are mathematically simple
to describe, to generate hypothesis about the existence of the
objects.

We apply the Harris corner detector [10] to choose interest
points that can be used both for hypothesis generation and
object learning and recognition. The points determined by this
detector are usually distinctive enough to allow for reliable
matching in the two images from the stereo cameras. We can
calculate the position of the corresponding 3-D point using
the calibration of the camera pair [11]. The calibration also
allows to use epipolar geometry which reduces the matching
problem to a search along the epipolar line. There may still
be some incorrect points due to mismatches, but they are too
few to affect the hypothesis generation.

Given a set of 3-D points, our goal is to find planes and
cylinders that contain as many of these points as possible. For
each surface patch, we have to expect that only a rather small
part of all features belongs to it. To enable the detection of
surface patches among many outliers, we apply the RANSAC
algorithm [12], which enables us to find the parameters
defining the surface patch that contains maximal subsets of
feature points belonging to the parametric surfaces. RANSAC
achieves this by randomly selecting a minimal number of
points, which is sufficient to calculate the parameters of the
sought for surface, and then counting how many points of the

whole set lie within a tolerance of the defined surface.
The plane or cylinder containing the largest number of

points is added to the list of hypotheses and its points are
removed from the set. RANSAC can then be run again on the
remaining points. This is repeated until no surface with more
than a minimal number of points can be found. The specific
approaches to finding planes and cylinders using RANSAC
are described in more detail in the following two subsections.

A. Plane detection

A 3-D plane is defined by the equation ax+by+cz+d = 0
and contains all points (x, y, z) that fulfill this equation. The
vector (a, b, c) is the surface normal. If it has unit length, then
the above equation gives the distance of the point (x, y, z)
to the plane (a, b, c, d). A plane is uniquely defined by three
points that are not collinear. With this in mind, the implemen-
tation of RANSAC for planes is straightforward:

• repeat Np times:
– select 3 different points at random
– calculate the plane parameters
– check for each point if it lies within tolerance tp of

the plane, count the inliers
• return the parameters of the plane with maximal number

of inliers
It can occur that a hypothesis extends to two or more objects

which by chance contain points lying in the same plane. To
avoid misled attempts of pushing in this case, we group the
features of each plane using X-means clustering [13], which
is a k-means based algorithm that also estimates the number
of clusters. Single points that are far away from the cluster
centers are discarded, because they are with high probability
outliers. Sometimes a hypothesis containing a large object is
accidentally divided by the above clustering process. However,
this is not a serious problem for our system because the initial
hypothesis will be expanded after the push (as other feature
points on the object will move in unison with the initial
hypothesis).

B. Cylinder detection

Finding cylinders in a point cloud is more complicated
because the parameters of a cylinder can not be determined
so easily from a few points on its surface. We applied the
algorithm proposed in [14], which uses a 2-stage RANSAC
approach, first estimating the cylinder axis and then the
appropriate radius and offset from the origin for that axis.

In the first stage, the algorithm uses local surface normals to
find promising candidates for possible cylinder axes. To this
end, for each 3-D point a local surface normal is estimated
using the point and its nearest neighbours. The set of normal-
ized surface normals lies on the unit sphere and is called the
Gaussian image of the points, as it is the result of applying the
Gaussian map operation to the set of points. Points belonging
to an arbitrary cylinder are mapped to a great circle on the
Gaussian sphere. A great circle on the sphere is equivalent
to the intersection of this sphere with a plane which passes
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Fig. 2. Hypotheses generation: The left image shows all detected Harris interest points, the other images display the generated hypotheses for each scene.
Usually, the hypotheses correspond to a textured region on an object’s surface. When objects are close to each other and points on their surfaces lie on a
common plane or cylinder, it may happen that these points are subsumed in one hypothesis.

Fig. 3. Hypotheses generation for cylindrical surfaces. The left image shows all Harris interest points, the central and right images show the generated
cylindrical hypotheses. Although the two objects in the central image do not have an exactly cylindrical shape, a large part of their surfaces can be captured
by the cylinder hypotheses.

through its origin. Therefore, we only need to find the plane
passing through the origin that contains the maximal number
of points on the Gaussian sphere. This problem is identical to
that of finding a plane, where one of the three sample points
is always the origin. The normal of the resulting plane is the
sought cylinder axis.

Once the cylinder axis has been detected, we still need
to find the radius of the cylinder and its offset from the
origin. This problem can be reduced to finding a 2-dimensional
circle: all points are projected onto the plane orthogonal to the
cylinder axis and we need to find a circle with the maximal
number of points lying on it. Three non-collinear 2-D points
(xi, yi) define a circle, its center coordinates (xc, yc) are given
by

xc =
(y3 − y2)(x21 + y21) + (y1 − y3)(x22 + y22) + (y2 − y1)(x23 + y23)

2δ

yc =
(x3 − x2)(x21 + y21) + (x1 − x3)(x22 + y22) + (x2 − x1)(x23 + y23)

2δ

where
δ = x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1)

and the radius is simply the distance of one of these points to
the center. Finding an optimal circle can therefore easily be
done by another application of RANSAC. Here we need to
consider only the points that contributed to the great circle on
the Gaussian sphere that defines the examined cylinder axis.

The radius of the resulting circle is the radius of the cylinder,
and the cylinder axis passes through the center of the circle.

When the number of points lying on a cylinder candidate is
being determined, only those points are accepted which would
lie on the side of the cylinder that is turned towards the camera.
To test if a point fulfills this criterion, we check if it lies on
the correct side of the plane spanned by the cylinder axis and
the vector that is orthogonal both to the cylinder axis and
the viewing direction of the camera. This turned out to be
very helpful for reducing the number of incorrect hypotheses
because sometimes objects are arranged in a way that their
sides form a half cylinder opened towards the camera. To
further reduce the number of false hypotheses, only cylinders
with a rather small radius are accepted, which again avoids the
”fusion” of several objects into one big cylindrical surface.

In every iteration of the outer RANSAC loop, a new possible
cylinder axis is determined. After a fixed number of iterations,
or when no new axis with more than a minimal support in
the Gaussian sphere can be found anymore, the parameters of
the cylinder with the maximal number of inliers are returned.
Just like in the case of planes, we next discard all points
that lie far away from the others to reduce the probability
that outliers are included. In our experiments, the clustering
of points belonging to one of the detected cylinders was not
necessary.
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IV. HYPOTHESIS VALIDATION BY PUSHING

Additional information need to be provided to verify or
discard the generated object hypotheses. By inducing the
object to move, visual features can be analyzed for coherent
motion, which is a very strong evidence for deciding if they
belong to the same object or not. Such information could
not be obtained by passive observation. The most common
assumption, which we also make, is that the object moves as
a rigid body. A more general model of motion would be, for
example, an articulated motion [5] or a deformable motion.

Inducing motion on the object, even if it is rather un-
controlled, resolves most of the ambiguities about object
segmentation. We use simple pushing movements to verify
the initial object hypotheses and to extend them to features
that move coherently with the initial features. The initial
hypotheses serve as a cue for promising points and directions
of pushing. An obvious choice for the hypothesis on which a
push is attempted is the one that contains the largest number
of features because a large number of features usually result
in a more robust estimation of object motion.

A necessary prerequisite for the estimation of feature point
motion is to be able to match the features before and after the
push. For its descriptiveness and robustness to small rotations,
we use SIFT descriptors [15] to find matches of the features
in the images before the push and after it. For all initial
features for which a corresponding feature is found, the new
3-D positions are calculated using stereo images.

Due to occlusions or too large rotations caused by the
induced object motion, some features may not be found again
after the push. There may also be mismatches, especially if
the object contains non-unique features. Again, RANSAC is a
good choice to get a robust estimation of the object motion.
The parameters of a transformation associated with the rigid
body motion can be obtained from three different pairs of
corresponding points before and after the push [16]. If xo

is the initial position of a point, then its new position xn is
given by the transformation xn = Rxo+t, where R is a 3×3
rotation matrix and t a translation vector.

After the object has been pushed, the initial hypothesis is
evaluated to confirm whether the hypothetic feature points
have moved as a rigid body or not. RANSAC is applied to
estimate the transformation with which most of the points of
the hypothesis concur. The norm of the translation vector t
and the angle of rotation ϕ, which can be calculated from R,
give a measure for the amount of motion resulting from that
transformation. The hypothesis is considered confirmed if the
weighted sum of ‖t‖ and ϕ is above a threshold. In this case,
the features that moved coherently are considered validated
and those who did not are discarded. The hypothesis is ignored
if the estimated parameters suggest that the hypothetical
features did not move. If none of the generated hypotheses
moved, another attempt to push one of them is made. If at
least one of the hypotheses has moved, and it still contains
a sufficient number of features, we assume to have found an
object whose appearance needs to be learned.

V. OBJECT LEARNING AND RECOGNITION

To learn the appearance of the segmented object from mul-
tiple viewpoints, the object must be moved, e. g. by pushing,
several times. At every step, new points are added to the
hypothesis if they seem to belong to the object, and can be
verified after the next push. The accumulated set of all verified
points, as well as the set of only those verified points that
are visible at a given instant, are admissible candidates for
representing the appearance of the object. As we use SIFT
descriptors for feature matching between stereo image frames,
it is an obvious choice to use these features for describing
the object. However, it is possible to use any other desired
local descriptor at the locations of the confirmed points. Object
recognition based on SIFT descriptors, especially when their
spatial relationships are incorporated, has been shown to be
very successful and reliable [15][17]. Another possibility is
the ”bag-of-features” approach [18]. Here a so-called ”visual
vocabulary” is learned first by clustering a large number of
training features. When working with descriptors later, each
of them is assigned to the most similar ”visual word”, i. e.
cluster center. A histogram of the occurrences of each visual
word on the object is calculated and stored in a database of his-
tograms. To recognize an object, its bag-of-features histogram
is calculated for the current, segmented image and matched to
the histograms in the database of known objects. We use the
bag-of-features approach to memorize the object appearances
from different viewpoints and, as we have several histograms
for each object, we can apply a k-nearest-neighbours decision
for recognition.

A. Object learning

The object needs to be pushed several times to acquire
snapshots from different viewpoints. This data can be used to
learn a multi-view representation of a successfully segmented
object. In this process, the already verified features are tracked
as long as they are visible, which enables the system to
estimate the underlying object motion. At every step, new
Harris interest points are detected in the image, and they are
added to the object model if

• they moved in unison with the object during the last
pushing action, which implies that they belong to the
same rigid body, or

• they lie ”inside” the object, i.e. their distance from the
object center is small compared to the extent of the object.

In both cases, the new features have to be verified after the next
push before they are confirmed and included in the learned
object description. To estimate the object’s motion caused by
the push, we use only the confirmed features.

After every push, two bag-of-features histograms of the
object are created and saved. One contains all confirmed
descriptors that have been accumulated up to the last push.
The other histogram contains only the confirmed features that
are visible after the last push. While the intent of the first
histogram is to have a more comprehensive description of the
object, the second one has a snapshot-like character and is
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Fig. 4. An object is learned by accumulating verified feature points on its surface during repeated pushing. At each step, new candidate points are added to
the object hypothesis and verified after the next push.

more specific to the appearance of the object from the current
viewpoint. In our experiments, both types of histograms turned
out to be helpful for recognition.

Although the SIFT descriptor is robust to minor viewpoint
changes, feature matching fails once the rotation in depth
becomes too large, which normally happens after a few pushes.
Therefore after each push new descriptors are calculated from
the current image for each of the visible, verified feature
points. A new descriptor is added to the list of descriptors
associated with the feature point if it is significantly different
from the old descriptors.

When a confirmed feature becomes invisible, there is a
possibility of a mismatch, resulting in an assignment to a point
in the image that does not belong to the object. To avoid
problems that may arise from such mismatches, confirmed
points that do not follow the object’s motion two times are
not used for the motion estimation anymore. If they do not
move in unison with the object four times in succession, they
are discarded completely.

The learning process can be continued as long as required.
Due to the uncontrolled character of the object motion, there is
no guarantee that a complete description of the object will ever
be obtained. Still, the chances are good that with a moderate
number of pushes a large part of the possible view directions
onto the object will be covered.

B. Object recognition

To recognize an object using the bag-of-features approach,
its features have to be segmented in the image. Then each
of them is assigned to the most similar word of the visual

vocabulary and the histogram of word occurrences is calcu-
lated. Now the corresponding known object needs to be found,
which can be done by comparing the current histogram with
the histograms of all known objects using the χ2 histogram
distance. As several histograms of each object are available,
conventional classification techniques can be applied for reli-
able recognition. We use a k-nearest-neighbours classifier to
identify the object.

The main difficulty in recognizing objects based on the
bags-of-features technique is to correctly segment the hypo-
thetical object that needs to be recognized. If the segmentation
contains only some of the object features or many features that
do not belong to the object, the histogram is distorted, which
makes a correct recognition improbable. Classical approaches
to segmentation include feature clustering with k-means or
regular and randomized windowing [19]. In our setting – since
the object segmentation problem is equivalent to the one we
face when learning object histograms – we can apply the
same active segmentation algorithm as during the learning
process. Moreover, to improve the recognition rate, we can
push the object several times, which improves the quality of
the segmentation by adding more features and by discarding
the unstable ones.

VI. EXPERIMENTAL EVALUATION

We conducted experiments to evaluate the generation of
object hypotheses in complex scenes, the segmentation and
learning of unknown objects by pushing them repeatedly, and
the recognition of objects using both our initial hypotheses
and segmentation results that were improved by pushing the
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TABLE I
QUALITY OF THE INITIAL OBJECT HYPOTHESES.

good part of an object wrong

50 % 39 % 11 %

object several times.
In our experiments, the number of initial hypotheses was not

limited, but a hypothesis had to consist of at least 10 points.
To find planes, 1000 iterations of RANSAC were performed,
and the tolerance was 2 mm. With around 500 3-D points,
this takes about 15 ms on a standard PC with a 2.67GHz Intel
i-7 CPU. For cylinder detection, the local surface normals for
the Gaussian sphere were computed by fitting a plane through
each point and its 4 nearest neighbours. To find a cylinder
axis in the Gaussian sphere, 500 iterations of RANSAC were
executed. At most 30 different axes were evaluated, where for
each axis at most 10000 RANSAC iterations were executed
to find the optimal cylinder radius and offset from the origin
(less iterations if there are only few candidate points). The
tolerance for deciding if a point lies on a hypothetical cylinder
surface was 4 mm. Finding a cylinder in a set of 500 3-D
points takes about 150-200 ms. When the first (and largest)
planes or cylinders are found and their points are removed, the
computation time is reduced significantly. On the average it
takes around 350 ms to find all hypotheses. As RANSAC can
easily be parallelized, this time can be reduced considerably
on a multicore CPU.

The generated hypotheses can fall into three categories
of correctness: Firstly, the hypotheses can be approximately
identical with an object or at least those parts of it that contain
visual features. Secondly, it can contain a part of the object,
which frequently happens in the case of large objects. This is
acceptable because such a hypothesis still allows a successful
manipulation of the underlying object. Thirdly, the hypothesis
may span over more than one object. This can lead to failed
manipulation attempts unless the majority of the points lie on
the pushed object. We carried out a number of experiments
in different complex scenes, each containing 5-8 objects that
stand close together and partly occlude each other. Table I
shows the quality of the hypotheses in such scenes. ”Good”
means that the hypotheses approximately coincided with an
object, ”part of object” indicates that they contained a part of
an object, and the ”wrong” hypotheses contained parts of two
or more objects. In simple scenes the hypotheses are usually
correct or contain a part of a large object.

We applied our system to the learning of 15 different
objects. The number of features contained in each initial object
hypothesis varied strongly between the different objects. For
the initial hypotheses, the numbers of features ranged from 21
to 153, the average was 53. During the learning process, after
each pushing movement 20 - 150 new candidate points were
added to the hypothesis, where the actual number strongly
depended on the object (54 on average). The percentage
of candidate points that were confirmed with the next push

TABLE II
OBJECT RECOGNITION SUCCESS RATE OF THREE EXAMPLE OBJECTS, AND

THE AVERAGE OF ALL 15 OBJECTS THAT WERE LEARNED.

init. hyp. 1 push 2 pushes 3 pushes 5 pushes

Book 57 % 54 % 77 % 85 % 90 %

Tea 65 % 77 % 91 % 93 % 97 %

Bottle 69 % 68 % 73 % 78 % 81 %

Average 68 % 65 % 79 % 86 % 92 %

appeared to be approximately the same for all objects, on
the average 32%. The percentage of feature points of the
initial hypothesis which were validated after the first push was
approximately the same.

For the evaluation of the object recognition system, in
addition to the 15 test objects mentioned above, another 25
objects were learned from presegmented images. Thus the
complete database contained 40 objects. We tried to recognize
the learned objects in complex scenes containing 5-8 objects.
For the bag-of-features, a visual vocabulary of 1000 words
was learned from 50000 features that were extracted from 25
images, each containing several objects. For each object, 15-
20 histograms were learned, and we used 3-nearest-neighbours
classification with χ2 distance for recognition.

For three exemplary objects and the average of all 15 tested
objects, table II shows the recognition results for the initial
hypotheses and after n iterations of pushing and validation. On
the average, the initial hypotheses lead to a recognition rate
of 68%, which also gives an idea about their usefulness for
segmentation. While hypotheses that approximately contain
an object (compare table I) are usually classified correctly,
those hypotheses which contain only a part of an object are
frequently rejected or misclassified. Hypotheses that contain
two or more objects are usually rejected.

After the first push and the subsequent verification of the
hypothetical feature points, the average recognition rate is
65%, which is – somewhat surprisingly – slightly lower than
for the initial hypothesis. As now only the confirmed points are
used for recognition, the effect of this first push was mainly
to remove the features from the object hypothesis that did not
move in unison with the majority of feature points, or were
not found in the next image. By that, the number of features is
reduced to around 32% of the size of the initial hypothesis (see
above). Apparently, this affects the recognition so strongly that
the positive effect of eliminating the false features is voided.
But after the second push, new confirmed features are added at
each iteration, and now the positive effect is significant. The
recognition rate immediately rises to 79% after the second
push, 86% after the third and 92% after the fifth. It finally
converges to a value between 92% and 95%.

This general tendency is also visible when looking at the
particular objects. As the book is frequently divided into two
or three initial hypotheses, it profits significantly from the
accumulation of more features from the first to the second
push. The tea can be recognized very reliably, while the bottle
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has only very few features and is therefore more difficult to
identify even with a good segmentation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a method for the segmentation
and learning of unknown objects in unstructured environments.
We generate initial object hypotheses from 3-D points, which
were obtained through stereo vision, by detecting planar and
cylindrical surfaces amongst them. The hypotheses are then
verified, corrected and extended by pushing them repeatedly.
Objects are learned using bag-of-feature histograms based on
the SIFT descriptors of the points belonging to the object.
We have shown experimentally that the objects learned this
way can later be recognized, and that the segmentation by
pushing can serve as a powerful methodology for recognition
in complex scenes.

One possibility to extend our method would be to allow
other and more complex geometrical shapes for the initial
hypothesis, like spheres, ellipsoids, superquadrics, geons etc.
But since many common household objects can roughly be
modeled by planes and cylinders and since the accumulation
of features after the pushing movements is independent from
the shape of the initial hypothesis, the benefit would probably
be very limited. A more promising enhancement would be
to additionally use different local descriptors. Especially the
use of color information could prove to be helpful in com-
plementing the greyscale-based SIFT descriptors. It is also an
interesting question if our approach can be adapted to deal
with more uniformly colored objects, e. g. by using maximally
stable extremal regions (MSER) [20].
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[6] A. Ude, D. Omrčen, and G. Cheng, Making object learning and
recognition an active process, Int. Journal of Humanoid Robotics, vol.
5, no. 2, 2008.

[7] K. Welke, J. Issac, D. Schiebener, T. Asfour, and R. Dillmann, Au-
tonomous Acquisition of Visual Multi-View Object Representations for
Object Recognition on a Humanoid Robot, IEEE Int. Conf. Robotics
and Automation, Anchorage, Alaska, 2010.
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