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Chapter 1

Executive Summary

This Deliverable deals with the demos in the context of WP5.2. The execution of a variety of OACs and
the associated learning is shown on different platforms at SDU, KIT, JSI, and UGOE.

The videos associated with Section 2.1 and Section 2.2 will be delivered 2 weeks before the review.



Chapter 2

Content of the Deliverable

A learning agent needs to be able to explore its environment and seamlessly acquire data that can later
be used for fast learning by structural bootstrapping. Reliable explorative processes are needed for this
purpose. In the attached videos we demonstrate our first implementations of such explorative processes.

2.1 Affordance based grasp exploration based on two grasping

OACs

This subpart shows the execution of the two explorative grasping behaviors described in [7] AgnoGrasp
(grasping without object knowledge, see [9]) and ObjGrasp (grasping utilizing object knowledge, see [6]).
Grasping is done with the SDH dexterous three finger hand. We show how the two processes are used on
the MARVIN platform at the SDU environment to build up grasping experience in terms of ’experiments’.
Grasping attempts are shown and internal processes are visualized, e.g., storing the episodic memory and
the development reliability measure M. This demo will show the application of the OAC formalism [7])
in a cognitive architecture in which ’experiments’ are permanently produced in the exploration process
delivering data as an ’outside—in’ processes. This data is then the basis for the structural bootstrapping
as an ’inside—out’ processes.

2.2 Stirring and cutting

We demonstrate two actions: stirring and cutting, executed using Semantic Event Chains (SECs) [1].
We supplement the relational information of SECs by information required for execution, that is: pose,
trajectory and force information where required. This way the abstract representation of a SEC turns
into the concrete realization of an OAC (Object Action Complex,[I3] [7]). We show how execution of
actions generalizes to several different situations, dependent on sensory information. This shows that
the resulting OAC adheres to the affordance principle, where actions generalize across (similar) objects.
The approach is strictly generative and there are no exploratory components involved. This is done on
purpose to avoid lengthy learning procedures. The setup is based on a KUKA light-weight robot arm
available at UGOE.

2.3 Object exploration by pushing

In the next two videos we show how data about unknown objects can be acquired by applying explorative
pushing actions. The pushing behavior (or the pushing OAC) shown in the first video has been acquired
by kinesthetic guiding. It is not updated in the course of the experiment. The presented work has been
primarily done at JST and was tested in part in collaboration with ATR, Kyoto, Japan. An implementation
for a humanoid robot at KIT is currently under way.

In video ObjectLearningByPushing a robot acquires information about unknown objects that afford
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pushing. The video shows a sequence of pushing actions generated by the robot with the aim of detecting
new objects and accumulating data about them. It also shows the results of visual processing. The
explorative process starts by extracting visual features like SIFTs and MSERs, which are used as a basis
for the generation of initial hypotheses about the objects on the table. After selecting the most promising
hypothesis, the robot initializes its pushing OAC (encoded by dynamic systems) and attempts to push the
ensemble of hypothetical object features. The hypothesis is assumed confirmed if the hypothetical object
features move as a rigid body. The robot then generates additional pushes and collects more information
about the object. The accumulated object features are used to learn an object representation based on
a state of the art bag-of-features model. The subsequent active object classification process is similar to
the model acquisition process; the robot first generates initial hypotheses about possible objects in the
scene and then attempts to push the most promising hypothetical object. Based on the resulting image
motion, the hypothesis is either confirmed or rejected. If the hypothesis is confirmed, additional object
features are segmented from the scene. The segmented features are then used for classification based on
the bag-of-features approach. We have shown that the proposed paradigm is successful at autonomous,
explorative object learning and classification.

Video InteractiveObjectLearning demonstrates that the robot can be aided by a human coach, who
guides the learning process by performing the pushing actions (or other types of manipulation actions)
instead of the robot. This significantly reduces the complexity of the task because the pushing OAC is
not needed. Based on the interface showing the results of hypothesis generation, the coach can select
the most promising one and move the object. Since the system does not have any expectation about the
induced object motion, this generates the same information visible to the robot as if it pushed the object
by itself. In this way data accumulation is simplified and also becomes faster because a human coach can
normally perform the movements faster and in a more robust way than the robot.

This work has been published in [I0] and [12] (attached to D2.3.1 and D.4.1.1).

2.4 Blind grasping

In our previous work, we investigated methods for the dexterous haptic exploration of unknown objects
based on a dynamic potential field approach (see [4, B, [B]). Based on 3D point clouds acquired from
contact information during guiding the robot hand along the surface of the region on interest, grasp
hypotheses are calculated based 1) on geometric features extracted from the 3D point cloud and 2) a
post-processing step to verify the executability of grasp hypotheses by the robot hand. While the main
efforts in our previous work on haptic exploration were devoted to generate a complete 3D object model
and as many grasp hypotheses as possible, our strategy in Xperience is slightly different. The goal is
to build rich multi-sensory object representations by a tightly coupling of visual and haptic information.
Therefore, we are working on an integrated approach, by which unknown objects are explored and grasped
in haptic-guided way in a first step. In the second step, objects in the robot’s hand are manipulated in
front of the robot’s eyes to enrich the object representation and generate multiple object views.

First results toward this goal are reported in Chapter 3 of Deliverable 2.1.1.

In the first year of the project, we investigated grasping of unknown objects based on haptic exploration
and corrective hand/arm movements. We evaluated the approach on the humanoid robot ARMAR-IIIb
in the context of grasping unknown objects placed on the table in front of the robot. Based on visually
generated height map of the scene, promising grasping positions are determined. Contact detection and
estimation of contact position is determined using multi-sensory information acquired from the 6D force-
torque sensors in the wrists, the tactile sensors in the finger tips and the joint encoder values of the
finger joints. Upon contact, corrective movements are executed until contact with the palm is detected.
In this case, we assume that the object is inside the hand and the hand is closed trying to enclose the
object. A grasp stability check is performed using the position and tactile sensor data. Only if the grasp
is classified as stable, the object is lifted while continuously checking the grasp stability. The approach
for grasp stability detection is based on temporal filtering of a support vector machine classifier output
and estimates the stability continuously during the grasp attempt (see [2, [§]). The implementation and
validation of the approach on ARMAR is presented in [II].

The video BlindGrasping demonstrates the approach of grasping unknown objects, mainly based on
haptic information, on the humanoid robot ARMAR-IIIb.
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This work has been reported in Chapter 3 of Deliverable 2.1.1. The grasp stability detection based
on tactile sensor data and joint angle data of the finger joints is submitted to the IEEE BioRob-2012
conference (see [I1], attached to D2.1.1).



Chapter 3

Conclusion

OACs and exploratory behaviors executed on different demonstrators are presented. They provide a basis
for the integration efforts that will be performed in the next phase of the project.

3.1 Links to other Workpackages

Deliverable D5.2.1 is based on work performed in the WPs 1-4.
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