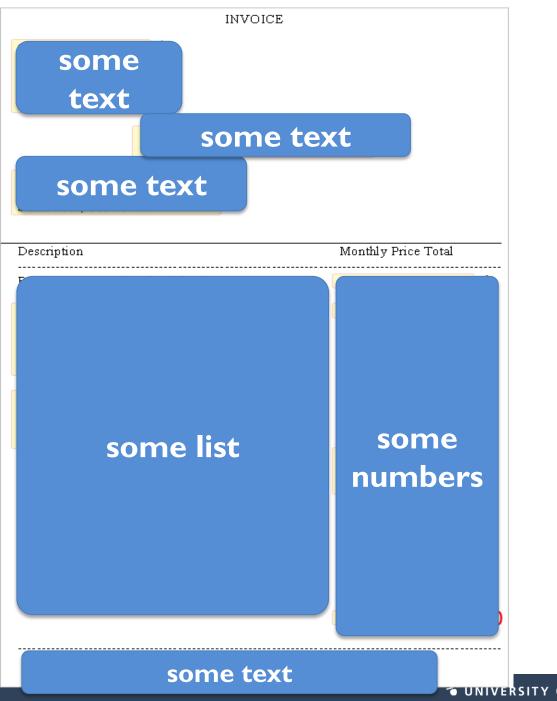
Bootstrapping for Interactions between Humans and Robots

Kerstin Fischer


University of Southern Denmark @ Sonderborg

Overview

- bootstrapping in humans (and Martians)
 - what: the uses of categories
 - how:
 - the nature of word meaning
 - child language acquisition
 - grammar as surface generalization
- bootstrapping in robots
 - and the role of social guidance
- bootstrapping for interaction
 - how does interaction work?
 - consequences for HRI design

	INVOICE							
Sonic.net, Inc. 2260 Apollo Way Santa Rosa, CA 95407 707.522.1000 support@sonic.net								
Today's Date: 2003-10-22 2								
For: John Q. Customer <u><login@sor< u=""> 123 Any Street Santa Rosa, CA 95401</login@sor<></u>	e from 2003-11-01 to 2 <u>nic.net></u> 3	.003-	12-01					
Description			Monthly Price	e Total				
Basic Internet Service, login Email account mbox1 Domain Registration Service DNS domain1.tld Multihomed webspace doma SSL Key Management login MySQL Database - login Shell Services Enabled SBC-ASI DSL, IP 64.142.0.0/ SBC-ASI DSL or Basic 384kt service Credit DSL Introductory Prio to 2003-10-17 Credit DSL Introductory Prio to 2003-11-17 Charge Additional Disk Spac Charge SBC-ASI DSL passt Basic Service 2003-10-174 Charge SBC-ASI DSL passt Pro-rated Service 2003-09-	e domain1.tld in1.tld 0 / PVC 42/49 30 ops-1.5Mbps/128kbps cing 2003-09-26 cing 2003-10-17 ce Usage for 10/02 hrough billing to 2003-11-17 9 hrough billing	6	18.95 0.00 0.00 1.95 19.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	18.95 0.00 1.95 19.00 19.00 0.00 0.00 0.00 0.00 0.00 16.10cr 23.00cr 5.00 39.00 27.30	8			
2003-10-17			Total: 91.10		10			
If you have questions, you sending email to support@s								

OUNIVERSITY OF SOUTHERN DENMARK.DK

OUNIVERSITY OF SOUTHERN DENMARK.DK

Invoices

- layout provides clues to
 - types of information
 - relevance
- layout result of
 - recurrent problems/tasks
 - evolution and conventionalization over decades
 - readers' perceptual capabilities

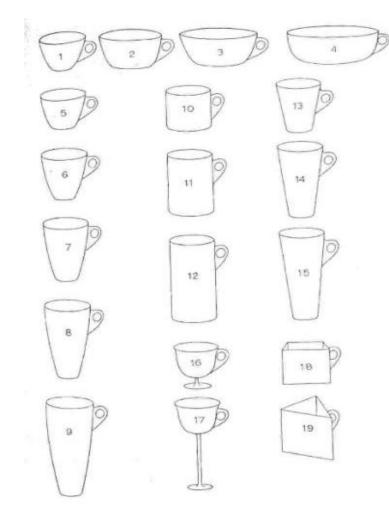
Invoices

- 'knowledge' about invoices not explicit
- never taught
- learned via exposure to exemplars
- as adults/adolescents

Obvious advantages:

- > easy access: categorization of parts of the document
- \succ speeds up recognition (short cut to meaning)
- > makes invoices predictable

Bootstrapping in Humans (and Martians): the 'Gavagai' problem

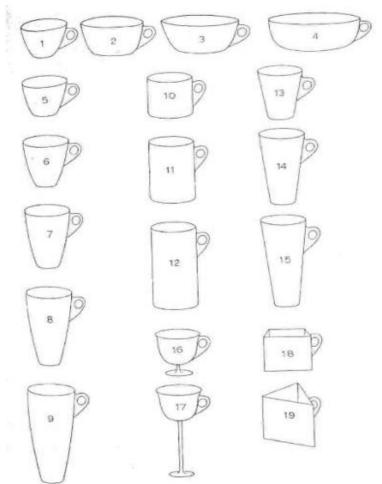


The Gavagai Problem

- identify the 'essential' characteristics
- identify distributional regularities
- identify central exemplars
- ignore accidental properties

What is meaning?

what is the meaning of 'cup'?


What is the meaning of 'cup'?

- formal semantics:
 - the meaning of the expression 'cup' is CUP
- structuralists:
 - not a mug, not a bowl, not a vase, not an X...
- Labov (1972): objective features, yet fuzzy boundaries
- cognitive linguistics:
 - embodiment
 - functionality
 - perspective
 - prototype effects

What is the meaning of 'cup'?

Labov (1972)

- width-depth ratio
- with one handle
- made of opaque vitreous material
- with a saucer
- circular in cross-section
- for consumption of hot liquid food
- > prototype structure of categories
- fuzzy boundaries
- > gradience

What is the meaning of 'cup'?

Wierzbicka (1985)

- an artefact
- to lift hot liquids to your mouth
- with one hand
- for drinking
- while sitting at a table

- language structure reflects
 human embodiment
 - human categorization

	\mathcal{F}	
5	10	13
6	11	14
7	12	15
в	16	18 P
3	T T	19

. . .

language = direct clue to categorization

- nouns = entities, concepts, 'bounded regions'
- grammar = regularly occurring experience (syntax as frozen discourse)
- f.ex.:

Who does what to whom?

argument structure constructions
 e.g. she crutched him the ball
 e.g. she crutched him

- language = direct clue to categorization
 - nouns = entities, concepts, 'bounded regions'
 - grammar = regularly occurring experience (syntax as frozen discourse)
- f.ex.:

Who does what to whom?

> argument structure constructions

 \geq also robots evolve them (Steels 2005, 2006...)

language = direct clue to categorization

- nouns = entities, concepts, 'bounded regions'
- grammar = regularly occurring experience (syntax as frozen discourse)
- f.ex.:

here is something I want to stress:

 \succ prosody: I like MARY.

> extraposition: Mary, I like; it is Mary I like; who I like is Mary

Context-dependent

language = direct clue to categorization

- nouns = entities, concepts, 'bounded regions'
- grammar = regularly occurring experience (syntax as frozen discourse)
- f.ex.:

semantic category

• /				
word order:	touch the	Color-Adj	Shape-N	
		Ø	Ø	
		red	ball	
		blue	block	
		pink	octopus	

Language as an Inventory of Constructions

- form-meaning pairs
- language can be exhaustively described as a system of signs, i.e. constructions
 - "they are abstract templates obtained by reinforcing the commonality inherent in a set of instances" (Langacker 2008: 23)
 - "abstracted from usage events" (2008: 458)
 - "entrenched patterns of processing activity we can evoke and execute as needed" (2008: 459):

Bootstrapping in Humans

- human (language) categories are shaped by human capabilities, needs, embodiment
- natural language categories are not defined by objective criteria
- natural language categories exhibit prototype effects and fuzzy boundaries
- natural language is a system of pairings between objectively identifiable forms and 'humane' meanings

- special adjustments to the language (and cognition) learner
- increase contingency
 - distributional regularities
 - increased coordination of cues
 - connection words activities

- special adjustments to the language (and cognition) learner
- increase contingency
- support comprehension
 - adjust MLU (mean length of utterance)
 - isolated words
 - conceptual decomposition
 - reformulation
 - embedding in recurrent action

- special adjustments to the language (and cognition) learner
- increase contingency
- support comprehension
- highlight distinctions
 - provision of relevant contrasts
 - increase transparency
 - isolated words
 - variation sets

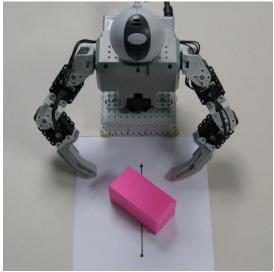
- special adjustments to the language (and cognition) learner
- increase contingency
- support comprehension
- highlight distinctions
- > form-meaning pairs co-develop
- \succ social guidance crucial during acquisition

- motor babbling
- exploration
- kinesthetic guidance, imitation, demonstration
- supervised learning (high level feedback/evaluation)

. . .

Role of language in bootstrapping categories

- Mirolli & Parisi (2009, 2012):
 - category learning & formation
 - abstraction (ignore irrelevant & highlight relevant dimensions)
 - memory
 - control & mental life
- Leugger & Nolfi (2011): labels & self talk facilitate learning
- Bhorghi & Cinatti (2012): abstract concepts learned on the basis of language as a starting point


Role of language in bootstrapping categories

- Mirolli & Parisi (2009, 2012):
 - category learning & formation
 - abstraction (ignore irrelevant & highlight relevant dimensions)
 - memory
 - control & mental life
- Leugger & Nolfi (2011): labels & self talk facilitate learning
- Bhorghi & Cinatti (2012): abstract concepts learned on the basis of language as a starting point

> inspite of natural language being so 'humane'

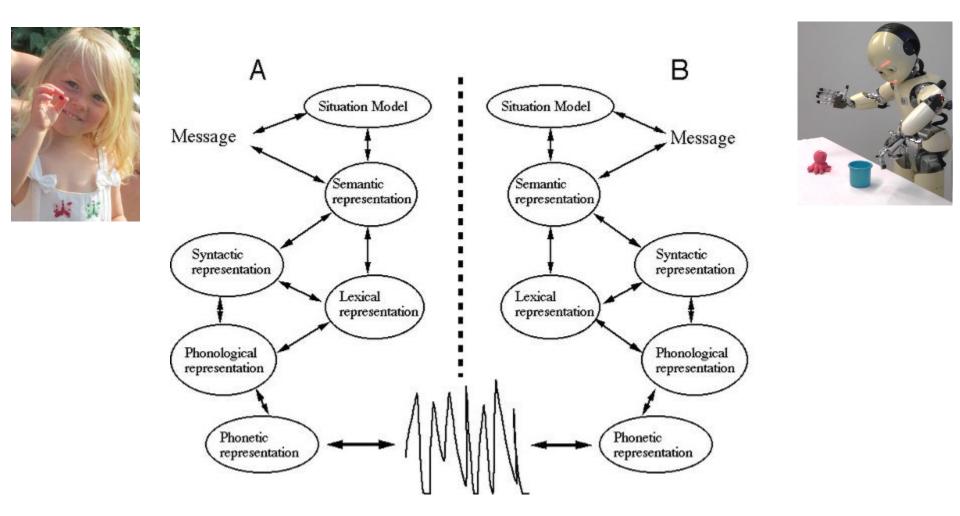
- socially guided machine learning
 - Thomaz & Cakmak (2009):
 - balance of positive & negative examples
 - number of examples provided corresponds to number of affordances of object
 - example quality:
 - people start simple
 - pointing out rare affordances
 - help in parsing action goals
 - learning results for social versus systematic data sets equally good or better, especially for rare affordances

Intuitive Tutoring: Experimental Set-up

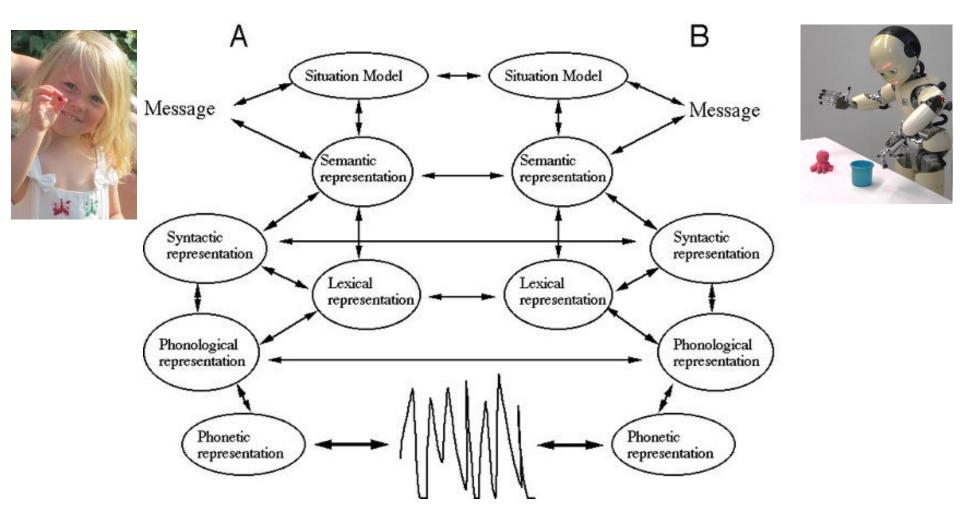
- Participants
 - 30 naïve participants
 - simulated robot 'Babyface'
 - behavior = gaze
 - driven by attention model
- Procedure
 - task: explain sentences to the robot
 - analyze people's utterances according to the participants in the scene described

Conclusions: Intuitive Tutoring

- naïve participants decompose intuitively grammatical meanings for the robotic learner
 - unexpected since linguistic knowledge is merely tacit
- users produce tutoring strategies
 - based on their understanding of the complexities of language
 - based on the robot's contingent feedback
- the socially guided learning paradigm is thus also highly promising for grounded grammar learning


Conclusion: Bootstrapping in Robots

- bootstrapping in robots profits from human guidance,
 - linguistic
 - and other


Conclusion: Bootstrapping in Robots

- bootstrapping in robots profits from human guidance,
 - linguistic
 - and other
- using natural language categories furthermore facilitates HRI

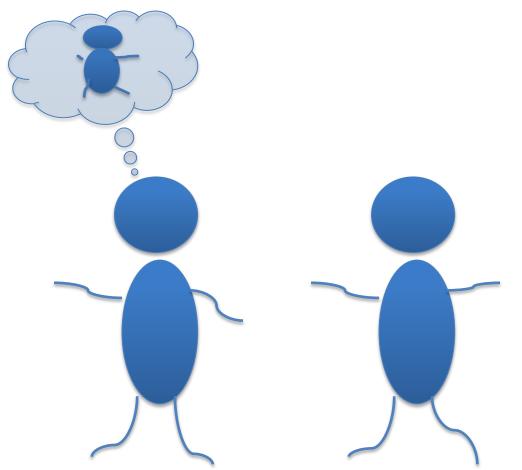
Communication (Levelt)

The Interactive Alignment Model

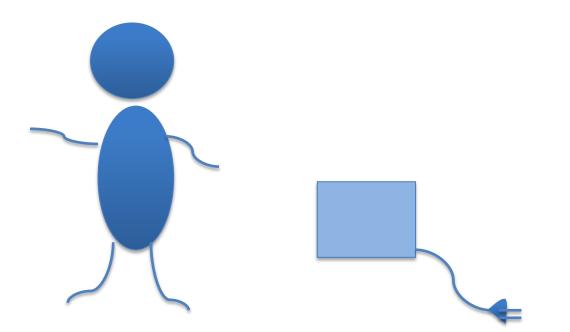
Shared Background

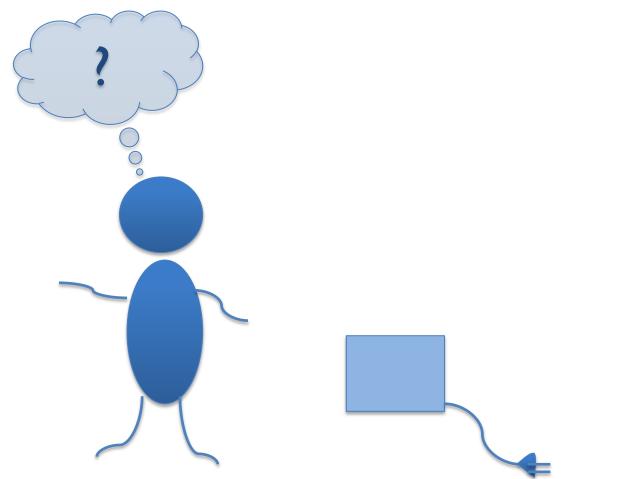
- spatial instruction dialogs
- real-time, sophisticated dialog system
- complex computational spatial model, e.g.

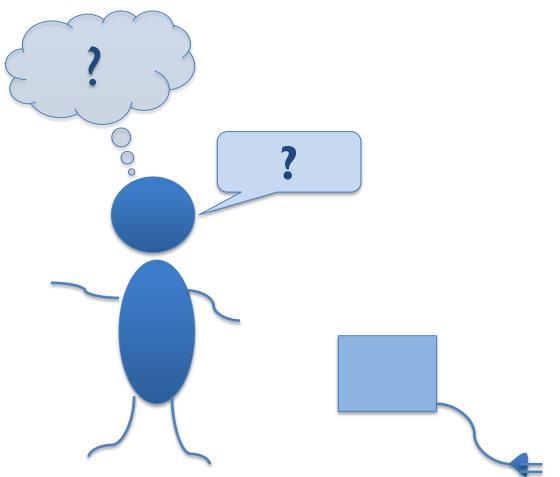
"go to the block in the middle" (out of the group of objects on your left)

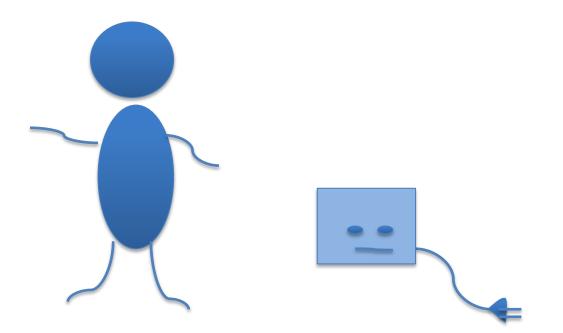

Shared Background

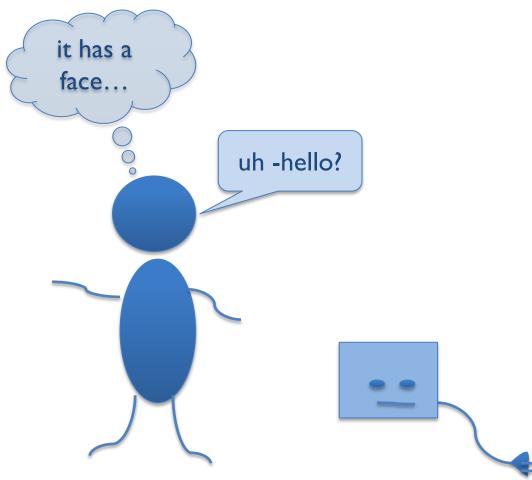
Command I: drive straight ahead to the right Command2: turn 45 degrees to the right Command3: turn to the right Command4: drive 10 cm ahead Command5: cme on Command6: come on Command7: start driving Command8: engine on

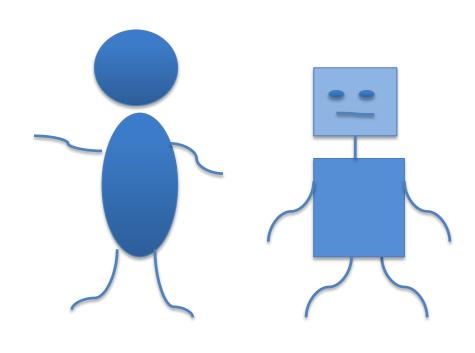



goal > path > movement > instrumental action


Interaction




Partner Models



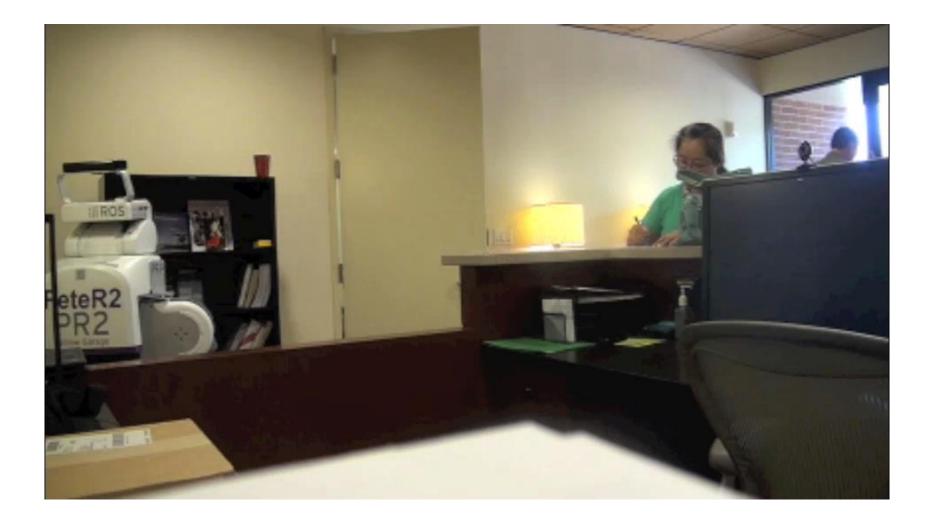
Communication with Robots

- appearance
- functionality
- whether it talks
- where the voice comes from
- what it says
- how it says what it says
- what it does
- · when it does what it

does

Human-Robot Interaction

- in order to coordinate with each other, people build up partner models
- people have only vague ideas about robots and thus rely on every cue they can get
- How do we get people to interact with robots in ways that facilitate
 - a) bootstrapping?
 - b) communication?


Getting Attention

Getting Help

Getting Attention & Help

Social Framing vs Beep: Results

	'speech' condition	'beep' condition
	N=8	N=11
average number of	1.25	0.91
glances per participant (number of participants glancing towards the robot in %)	(85.7)	(45.5)
average length of longer looks to robot in seconds (number of participants looking longer towards the robot in %)	2.13 (100)	1.64 (81)
average total looking time to robot	51.2	29.2

Social Framing vs Beep: Results

- in the speech condition, people find the robot significantly 'more approachable'
- 100% participants react to the robot's speech, yet only 18.2% to the beep
- women are significantly more likely than men to use speech to the robot
- people look at the robot much longer if it is speaking
- whether or not the robot uses speech influences the degree with which people perceive the robot as a social interaction partner
- > the robot's behavior contributes to people's partner models

Infant-Directed Speech Data

- 28 interactions between parents and infants
- 28 parents (i.e. mothers and fathers) and their 8-11 months old children (average: 10.25)

Robot-Directed Speech Data

- 30 human-robot interactions
- simulated robot
 - resembles baby
 - eye movement
 - attention to
 - movements
 - colours
 - skin

Tasks

- explain lamp
- show bell
- show putting on salt
- block world task
- putting rings in box
- stacking cups

Summary of Results

linguistic verbosity	CDS	=	HRI
linguistic diversity	CDS	<	HRI
linguistic complexity	CDS	<	HRI
linguistic interactivity	CDS	>	HRI
gesture	CDS	<	HRI

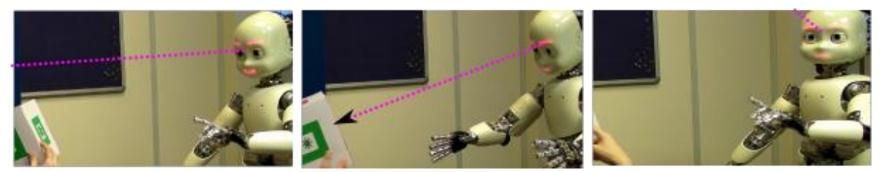
Summary of Results

linguistic verbosity	CDS	=	HRI
linguistic diversity	CDS	<	HRI
linguistic complexity	CDS	<	HRI
linguistic interactivity	CDS	>	HRI
gesture	CDS	<	HRI

people do not speak to a robot like to a child

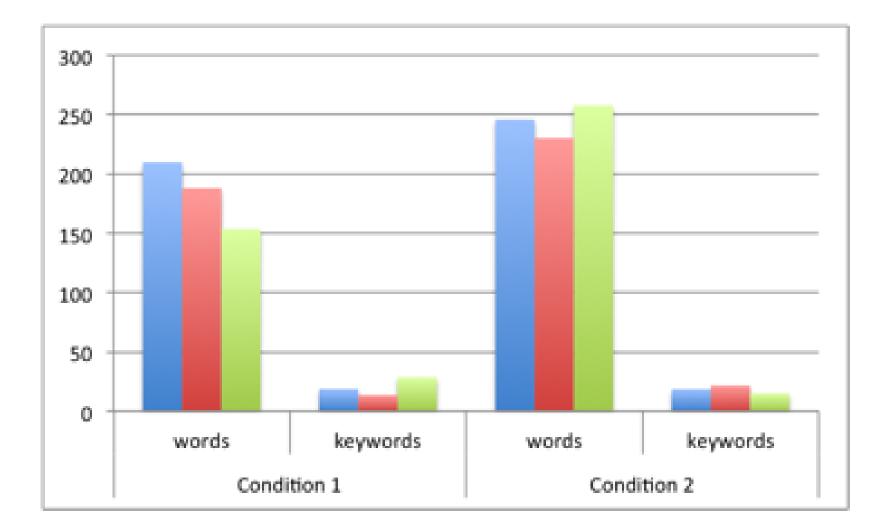
> yet they adapt to what they have contingent feedback for!

The Role of Contingency


- Contingency:
 - socially contingent robot response
 - robot response contingent to object movement
- Robot feedback:
 - in sessions 2 and 3, the robot repeats the words it had learned in between

Contingency

socially contingent robot response


Example interactions

Contingency: Results

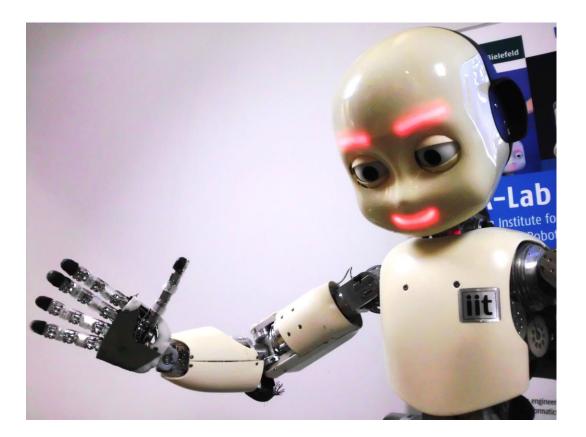
- contingent robot:
 - more turns
 - more structuring cues
 - more shorter utterances per turn
 - less diversity
 - fewer 'l', more 'let's'
 - more repetition, fewer references to past

 \checkmark more tutoring for the socially contingent robot

> people adjust only to the socially contingent robot!

Conclusions

- in the human child, language and cognition co-develop
- caregivers highlight the connection between linguistic and cognitive distinctions
 - increasing transparency
 - increasing contingency between form and meaning
 - highlighting distinctions
- in order to interact, robots and humans have to co-ordinate their categories
- learning categories from humans is helpful
 - language carves out certain slices of experience, facilitating learning, category formation, memory, etc.


Conclusions

- human tutors intuitively provide useful cues to robots
- social framing increases people's attention to a robot gesturing for help
- while people do not automatically provide the robot with all helpful clues from child-directed interactions, contingent robot response makes people adjust to the robot considerably

One word on terminology...

- in the language acquisition literature, 'bootstrapping' is associated with
 - one particular approach proposed in the 1980ies
 - that relied exclusively on distributional learning over linguistic forms
- 'bootstrapping' here is used in the wide sense, as learning categories from sensorimotor or social experience
- the approaches to language acquisition presented here are usually treated under the labels of
 - construction grammar/constructionist approaches to language acquisition

Thank you!

